WO2018107335A1 - 依靠气源能量提供冷却空气的火炬 - Google Patents

依靠气源能量提供冷却空气的火炬 Download PDF

Info

Publication number
WO2018107335A1
WO2018107335A1 PCT/CN2016/109525 CN2016109525W WO2018107335A1 WO 2018107335 A1 WO2018107335 A1 WO 2018107335A1 CN 2016109525 W CN2016109525 W CN 2016109525W WO 2018107335 A1 WO2018107335 A1 WO 2018107335A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
combustion chamber
air
passage
cooling air
Prior art date
Application number
PCT/CN2016/109525
Other languages
English (en)
French (fr)
Inventor
胡秀文
张诗明
刘稼瑾
Original Assignee
深圳智慧能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳智慧能源技术有限公司 filed Critical 深圳智慧能源技术有限公司
Priority to PCT/CN2016/109525 priority Critical patent/WO2018107335A1/zh
Publication of WO2018107335A1 publication Critical patent/WO2018107335A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases

Definitions

  • the air required for the existing ground bow I fire is generated by the air source.
  • the ignited air participates in the mixed combustion, and there is no excess air for cooling.
  • the combustion outdoor wall is directly exposed to high temperature and there is no cooling measures.
  • the outdoor wall of the combustion chamber of the torch is generally made of refractory material or thermal insulation material, or a structure such as a high-temperature alloy vacuum interlayer.
  • this will inevitably lead to high material input costs, increased structural volume of the torch, and most of the fire-resistant insulation materials have environmental problems.
  • the present invention proposes a torch that provides cooling air by means of air source energy.
  • a torch that provides cooling air by means of air source energy comprising a combustion device, the combustion device comprising a gas inlet and a cooling passage inlet; a turbine compressor, the turbo compressor comprising a rotating shaft and being fixed to the rotating shaft a turbine and a compressor, the turbine having a turbine inlet portion and a turbine outlet portion, the turbine inlet portion for receiving high pressure gas, the compressor comprising a compressor inlet portion and a compressor outlet portion
  • the compressor inlet portion is for receiving ambient air;
  • the gas passage is connected between the turbine outlet portion and the gas inlet; and a cooling air passage, the cooling air passage is connected to the compressor Between the outlet portion and the inlet of the cooling passage.
  • the torch further includes a heat exchanger disposed on a path of the gas passage and the cooling air passage for discharging compressed air at the outlet portion of the compressor The heat is exchanged to the expanded gas discharged from the turbine outlet.
  • the heat exchanger includes a finned tube heat sink.
  • the turbo compressor includes a casing, and the turbine, the compressor, and the heat exchanger are installed in the casing to form a module unit.
  • the turbocompressor further includes a generator, the generator being in driving connection with the turbocompressor.
  • the torch includes a plurality of layers of shields arranged in a vertical direction, each of the shields being closed in a circumferential direction to form a combustion chamber having upper and lower jaw ends, adjacent in the vertical direction
  • the radial width of the upper protective cover is greater than the radial width of the lower layer, so that an adjacent ejection zone is formed between the adjacent two protective covers, each layer of protection
  • the lower end of the cover is provided with the cooling passage inlet;
  • the ejector area is provided with a plurality of ejector burners
  • each of the protective covers comprises a combustion chamber wall tube forming the combustion chamber and a wall tube disposed in the combustion chamber
  • An outer cooling jacket the cooling jacket of each layer of the shield is sealingly connected to the combustion chamber wall cylinder at an upper and lower edge position, and a cooling flow passage is formed between the cooling jacket and the combustion chamber wall cylinder.
  • a ventilation structure is formed on the combustion chamber wall tube to communicate with the combustion chamber and the cooling flow passage, and a bottom end of the cooling jacket is provided with an annular tube communicating with the cooling flow passage, and the cooling passage inlet is disposed at the Said on the ring tube.
  • the torch includes a combustion chamber wall barrel forming a combustion chamber and a cooling jacket disposed outside the combustion chamber wall cylinder, between the cooling jacket and the combustion chamber wall tube Forming a cooling flow channel, the cooling jacket is sealingly connected to the combustion chamber wall cylinder at an upper and lower edge position, and the combustion chamber wall tube forms a ventilation structure communicating with the combustion chamber and the cooling flow channel, the cooling The bottom end of the jacket is provided with an annular pipe communicating with the cooling flow passage, and the cooling passage inlet is disposed on the annular pipe.
  • the ventilation structure is a plurality of cooling air holes penetrating the wall cylinder, and the cooling air holes are respectively connected to the combustion chamber and the cooling flow channel.
  • the combustion chamber wall tube includes a plurality of wall tubes arranged in a vertical direction, wherein a radial width of the upper layer of the wall tube is greater than a width of the upper wall tube The radial extent of the next layer is such that a gap is formed between the adjacent two layers of walls that is in fluid communication with the combustion chamber and the cooling passage.
  • the venting structure includes a wavy sheet-like structure disposed in the gap, the wavy sheet-like structure forming a plurality of cooling air passages, including a first cooling air passage and a second cooling
  • the air passage, the first cooling air passage includes a cooling air passage of the wave mouth toward the upper wall cylinder, and the second cooling air passage includes a cooling air passage of the wave mouth toward the lower wall tube.
  • the present invention provides a torch that can effectively utilize the high-pressure gas source pressure energy that needs to be treated in an oil or gas well to provide cooling air to the wall of the flare combustor.
  • a turbo compressor is placed at the inlet of the flare gas source.
  • the high pressure gas source works on the turbine through the turbine turbine, and the high pressure gas source with reduced pressure enters the flare combustion chamber.
  • the turbine rotates to drive the coaxial compressor.
  • the compressed air impeller draws air from the atmosphere and is cooled by the radiator to be delivered to the wall of the flare combustion chamber to cool the wall of the combustion chamber.
  • FIG. 2 is a partial cross-sectional view of an embodiment of a flare of the present invention.
  • FIG. 3 is a partial cross-sectional view of another angle of FIG. 2.
  • FIG. 4 is an enlarged schematic view showing the structure of the portion of the circle A in FIG. 3.
  • FIG. 5 is a partial cross-sectional view of another embodiment of a torch of the present invention.
  • FIG. 6 is a partial cross-sectional view of another angle of FIG. 5.
  • FIG. 7 is an enlarged schematic view showing the structure of the portion B of FIG.
  • the present invention provides a forced air film cooled torch including a combustion device 10, a turbo compressor 12, a gas passage 14 and a cooling air passage 16, wherein the gas passage 14 and the cooling air Channels 16 are connected between turbine compressor 12 and combustion unit 10, respectively.
  • the turbo compressor 12 is disposed at the air source inlet of the combustion device 10 for ease of installation. In other embodiments, the turbo compressor 12 may also be disposed in the combustion device 10 according to actual installation requirements. position.
  • the combustion unit 10 includes a gas inlet 18 and a cooling passage inlet 20 that communicates with the wall of the combustion chamber of the combustion unit 10.
  • the turbo compressor 12 includes a rotating shaft 22 and a turbine 24 and a compressor 26 fixedly mounted on the rotating shaft 22.
  • the turbine 24 may be of an axial flow type or a radial flow type
  • the compressor 26 may also be of an axial flow type or a radial flow type.
  • both the turbine 24 and the compressor 26 are of an axial flow type and collectively constitute an axial flow turbine compressor.
  • Turbine 24 includes a turbine inlet portion 28 and a turbine outlet portion 30 for introducing high pressure gas, such as high pressure natural gas from a wellsite.
  • a gas passage 14 is connected between the turbine outlet portion 30 and the gas inlet 18 of the combustion unit 10 for supplying the combustion apparatus 10 with the gas required for combustion.
  • the high-pressure natural gas enters the turbine 24 to drive the turbine to rotate. After the high-pressure natural gas expands, the pressure is reduced.
  • the natural gas expanded and depressurized by the turbine 24 is discharged into the gas passage 14 through the turbine outlet portion 30, and then enters the combustion device through the gas inlet 18.
  • the combustion chamber is burned.
  • the compressor 26 includes a compressor inlet portion 32 and a compressor outlet portion 34, and a cooling air passage 16 is connected between the compressor outlet portion 34 and the cooling passage inlet 20 of the combustion device 10.
  • the turbine turbine rotates to rotate the rotating shaft 22, and the rotating shaft 22 in turn drives the compressor impeller of the compressor 26 to rotate.
  • the compressed air impeller rotates so that ambient air is sucked into the compressor 26 from the compressor inlet portion 32, and the air is compressed by the compressor 26 and then passed through the compressor.
  • the outlet portion 34 is discharged to the cooling air passage 16 and then enters the combustion chamber cooling structure of the combustion device 10 via the cooling passage inlet 20.
  • the torch further includes a heat exchanger or heat sink 36 for cooling the compressed air, such as a finned tube heat sink 36.
  • a heat exchanger or heat sink 36 for cooling the compressed air, such as a finned tube heat sink 36.
  • Other types of heat sinks may be used in other embodiments. Not limited to this.
  • a finned tube heat sink 36 is disposed on the cooling air passage 16 to face the compressor outlet portion 34. The discharged compressed air is cooled and cooled.
  • the heat sink 36 is located on the cooling air passage 16 and the gas passage 30, so that the heat of the air in the cooling air passage 16 is exchanged to the natural gas in the gas passage 30, thereby lowering its own temperature. .
  • the high pressure gas source in the oil well contains a higher pressure energy.
  • the turbine compressor 12 is externally coupled to a generator 38, such as a high speed permanent magnet.
  • Generator 38 such as a high speed permanent magnet.
  • a compressor shaft 40 is connected to the compressor impeller of the compressor 26, and the generator 38 is disposed on the transmission shaft 40.
  • the rotation of the turbine 24 drives the transmission shaft 40 to rotate, and the transmission shaft 40 drives the generator 38 to generate electricity. I believe that the torch operates to provide electricity. Avoid waste of resources, energy saving and environmental protection.
  • the generator 38 can also be placed on the turbine 24 side.
  • the turbo compressor 12 may also include a housing (not shown) in which the turbine 24, the compressor 26 and the rotating shaft 22, or together with the generator 38, are mounted. It forms a modular unit, which facilitates the modular installation of the torch for easy maintenance.
  • the combustion apparatus 10 is an ejector type combustion apparatus 10, which includes a plurality of layers of shields arranged in a vertical direction, for example, four layers.
  • the 4-layer protective cover includes a bottom protective cover 42 and three upper protective covers located above the bottom protective cover 42.
  • the three upper protective covers are a second protective cover 44, a third protective cover 46 and a second layer from the bottom to the top.
  • Each of the shields is closed in the circumferential direction to form a combustion chamber having upper and lower jaw ends. In the two vertical shields, the radial width of the upper shield is greater than the radial width of the next layer.
  • An ejector region in fluid communication with the combustion chamber is formed between adjacent two layers of shields to ignite air.
  • the lower end of each of the shields is provided with cooling passage inlets 20, each of which is connected to the combustion chamber wall of the corresponding shield.
  • the cooling air passage 16 is connected to each layer of the shield by a number of branches.
  • the cooling air passage 16 communicates with the cooling passage inlet 20 at the lower end of the four-layer shield through four branches. It should be understood that the arrangement of the branches in this embodiment is only one embodiment of the present invention. In other embodiments, other branch design manners may be adopted according to actual design requirements.
  • the four-layer shield includes a bottom shield 42 and three upper shields above the bottom shield 42.
  • a plurality of burners and a long lamp (not shown in Fig. 1) are provided in the ejector area between the bottom of the bottom shield 42 and the adjacent two protective covers.
  • Each of the shields is provided with a cooling structure for cooling the wall of the corresponding shield.
  • the cooling structure will be described in detail below by way of example. The following description is mainly based on the combination of a blast torch. However, the cooling structure thereof can also be applied to the ejector type combustion apparatus shown in FIG.
  • the combustion apparatus 10 includes a base 56, a combustion chamber wall cylinder 57 mounted on the base 56, and a cooling structure for cooling the wall cylinder 42.
  • the wall tube 57 is a top and bottom end opening and forms a combustion chamber therein.
  • the bottom of the wall tube 57 is provided with a plurality of burners 60 and a lamp 62 for igniting the plurality of burners 60.
  • the gas inlet 18 of the combustion unit 10 is in communication with the combustor 60 such that the decompressed gas passing through the turbine 24 enters the combustor 60 for combustion via the gas inlet 18.
  • the plurality of burners 60 are evenly distributed on the gas supply pipe 61 at the bottom of the wall cylinder 57.
  • the gas supply pipe 61 has at least one pipe inlet 18 disposed on the base 56, for example, two pipe inlets 18, two Pipe inlets 18 are provided on either side of the base 56, respectively. It should be noted that the duct inlet 18 can serve as the gas inlet 18 of the above described combustion apparatus 10.
  • the cooling structure includes a cooling jacket 64 mounted outside the wall cylinder 57 and a venting structure disposed on the wall cylinder 57, and a cooling jacket 64 is formed between the cooling jacket 64 and the outer wall of the wall cylinder 57.
  • the cooling passage 66 communicates with the combustion chamber 58 and the cooling passage 66.
  • the bottom end of the cooling jacket 64 is provided with an annular tube 68 communicating with the cooling passage 66, and the annular tube 68 is for supplying compressed air to the cooling passage 66.
  • the wall cylinder 57 has a single layer structure.
  • the cooling jacket 64 is spaced apart from the wall cylinder 57.
  • the upper and lower edges of the cooling jacket 64 are respectively sealedly connected to the upper and lower edges of the wall cylinder 57 so that the upper and lower ends of the cooling flow passage 66 formed in the cooling jacket 64 are closed to avoid cooling. Air overflows, affecting the cooling effect.
  • the annular tube 68 has a conduit inlet 20 for introducing cooled compressed air, in other words, the conduit inlet 20 can serve as the cooling passage inlet 20 of the combustion apparatus 10 of FIG.
  • the annular tube 68 is provided with a plurality of evenly connected connecting branches 70 connected to the lower end of the cooling jacket 64, the connecting branch 70 and the cooling flow.
  • the passage 66 communicates to allow the cooling air to uniformly pass through the cooling passage 66 into the wall of the wall.
  • the venting structure includes a plurality of cooling vents 72 disposed through the wall barrel 57, the cooling vents 72 being in communication with the combustion chamber 58 and the cooling channels 66, respectively.
  • a plurality of cooling air holes 72 are uniformly symmetrically distributed along the axial direction and the circumferential direction of the wall cylinder 42, and the height of the bottommost cooling air hole 72 in the vertical direction and the burner The outlet of 60 is flush so that the cooling air can provide overall cooling to the wall 42.
  • the cooling air holes 72 are provided as oblique holes.
  • the cooling air hole 72 includes a vent inlet 74, a vent outlet 76, and a vent passage 78 connecting the vent inlet 74 and the vent outlet 76, wherein the vent inlet 7 4 is disposed on the outer wall surface of the wall cylinder 57, and the air hole outlet 76 is provided on the inner wall surface of the wall cylinder 57, and the air hole passage 78 is inclined upward from the air hole inlet 74 toward the air hole outlet 76.
  • the vent channel 78 is a straight channel.
  • the vent channel 78 can also be designed in other types, such as a curved channel or a spiral channel, as long as the cooling air exiting the vent outlet 76 is enabled. It has a vertical upward speed.
  • the compressed cooling air enters the cooling flow passage 66 through the cooling air passage 16, and then the cooling air flows upward along the cooling flow passage 66 into the cooling air hole 72.
  • the cooling air comes out of the air outlet 76, it has a vertical upward direction.
  • the horizontal dividing speed causes the cooling air to diffuse around the wall surface of the wall cylinder 57 to form a gas film, and the horizontal speed is such that the cooling air blocks the flame and the high temperature gas from flowing to the combustion chamber 58.
  • the wall tube 57 the same cooling air will take away the high temperature, increase the gas disturbance in the combustion chamber 58, and then increase the mixing with the ejector air to supplement the secondary air for the flame combustion and improve the combustion quality.
  • FIGs 5-7 are another embodiment of a flare.
  • the overall structure of the torch in this embodiment is similar to that of the embodiment of Figs. 2-4 and will not be described in detail herein. The difference is that their ventilation structure is different.
  • the wall tube 57 is a layered tower structure.
  • the wall cylinder 57 includes a plurality of wall cylinders arranged in a vertical direction, such as a 6-layer wall cylinder, and in other embodiments the multi-layer wall cylinders may be provided in other numbers.
  • the radial width of the upper layer of the wall cylinder is greater than the radial width of the next layer, so that a combustion chamber 58 and a cooling flow are formed between the adjacent two layers of the wall cylinders.
  • the gap 66 is in fluid communication.
  • the wavy sheet-like structure 82 forms a plurality of cooling air passages 88 on both sides of its sheet-like structure, the cooling air passages 88 including a first cooling air passage 90 and a second cooling air passage 92.
  • the first cooling air passage 90 is formed on a side surface facing the upper wall cylinder 84, including the wave mouth toward the upper wall cylinder 84
  • the second cooling air passage 92 is formed on a side surface facing the lower wall cylinder 86, and includes a plurality of cooling air passages facing the lower wall cylinder 86.
  • cooling air After the cooling air enters the cooling flow passage 66, a portion enters the cooling air passage 88, and the cooling air from the first cooling air passage 90 flows vertically upward against the wall surface of the wall cylinder 57, forming a layer on the inner wall of the wall cylinder 57. Cool the gas film and cut off the convective heat transfer between the high temperature source and the combustion chamber wall.
  • the cooling air from the second cooling air passage 92 is diffused to the surroundings, and has a vertical speed and a horizontal speed. The portion of the cooling air can block the high temperature flame and the gas from approaching the wall surface of the wall tube 57, taking away the high temperature gas, changing the flame. Direction, to avoid the inner wall of the combustion chamber 58 being corroded by high temperature gas and flame.
  • the same cooling air will increase the gas disturbance in the combustion chamber 58, thereby increasing the mixing with the air, supplementing the secondary air for combustion, and improving the combustion quality.
  • a part of the cooling air flows between the wall cylinder 57 and the cooling jacket 64, and the radiant heat absorbed by the combustion chamber wall cylinder 57 is taken away by convection heat exchange to form a cooling film on the outer wall of the wall cylinder 57 to form a wall cylinder.
  • the inner and outer double cooling air film improves the cooling effect on the wall tube 57.
  • the wavy sheet structure 82 is disposed in the gap 80 to form a wave cooling air passage.
  • other structures may be disposed in the gap 80 to form other types.
  • the cooling air passage, or the gap 80 is directly used as the cooling air passage, as long as the cooling air passage can allow the passing cooling air to form a gas film on the inner wall surface of the wall cylinder 57.
  • the cooling structure of the present invention uses cooling air as a barrier between the high temperature source and the combustion chamber wall cylinder, changes the direction of the high temperature source, cuts off the convective heat exchange between the heat source and the wall surface of the wall cylinder, and takes away the inner and outer walls of the combustion chamber wall tube. Radiant heat absorbed.
  • the inside and outside of the wall cylinder are cooled, and the cooling is uniform, the cooling efficiency is improved, the amount of cooling air is small, and the combustion quality can be improved.
  • FIG. 2 to FIG. 7 are exemplified by a blasting torch as a cooling structure of the torch of the present invention, it should be understood that the illustrated cooling structure can be directly or slightly modified for use in an ejector torch.
  • a plurality of protective covers 42, 44, 46, 48 are usually provided in the ejector torch, and the combustion chamber wall and the cooling jacket in Figs. 2 to 7 can be used together as an ejector torch.
  • the annular tube 68 is provided with a plurality of evenly distributed connecting branch pipes connected to the lower end of the cooling jacket, and the connecting branch pipes communicate with the cooling flow passages to enable the cooling air to uniformly pass through the cooling flow passages to the wall surface of the wall tube.
  • the present invention provides a torch that can effectively utilize the high pressure gas source pressure energy that needs to be treated in an oil or gas well to provide cooling air to the wall surface of the flare combustor.
  • a turbo compressor is placed at the inlet of the flare gas source.
  • the high pressure gas source works on the turbine through the turbine turbine, and the high pressure gas source with reduced pressure enters the flare combustion chamber.
  • the turbine rotates to drive the coaxial compressor.
  • the compressed air impeller draws air from the atmosphere and is cooled by the radiator to be delivered to the wall of the flare combustion chamber to cool the wall of the combustion chamber.
  • the invention uses the gas source pressure energy as a power source, and the high pressure gas source is passed into the turbine to reduce the pressure of the gas source, reduce the input of the high pressure decompression device, and simultaneously provide the cooling air to the combustion chamber wall by using the compressor and the radiator.
  • the problem that the combustion chamber wall surface cannot be cooled is solved, the service life of the combustion chamber is increased, the use of the refractory material, the heat insulating material, the high temperature alloy vacuum sandwich structure is reduced, the equipment volume is reduced, and the cost is reduced.
  • the present invention also connects a generator outside the turbo compressor to drive the generator to generate electricity to supply power to the torch, fully utilizing the pressure energy contained in the gas source, and alleviating the problem of tight power resources in the field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Burners (AREA)

Abstract

一种依靠气源能量提供冷却空气的火炬,包括燃烧装置(10)、透平压气机(12)、燃气通道(14)和冷却空气通道(16),其中燃气通道(14)和冷却空气通道(16)分别连接在透平压气机(12)与燃烧装置(10)之间,燃烧装置(10)包括燃气入口(18)和连通至燃烧装置(10)的燃烧室壁面的冷却通道入口(20),透平压气机(12)包括转轴(22)以及固定安装在转轴(22)上的透平(24)和压气机(26),透平(24)包括透平入口部(28)和透平出口部(30),燃气通道(14)连接在透平出口部(30)与燃烧装置(10)的燃气入口(18)之间,冷却空气通道(16)连接在压气机出口部(34)与燃烧装置(10)的冷却通道入口(20)之间,空气经压气机(26)压缩后通过压气机出口部(34)排出至冷却空气通道(16),然后经冷却通道入口(20)进入燃烧装置(10)的燃烧室冷却结构,火炬还包括设置在冷却空气通道(16)上的散热器(36),其对从压气机出口部(34 )排出的压缩空气进行冷却降温。该火炬解决了燃烧室壁面无法冷却的问题,增加了燃烧室的使用寿命,缩小设备体积,降低成本。

Description

依靠气源能量提供冷却空气的火炬 技术领域
[0001] 本发明涉及一种火炬, 特别涉及一种依靠气源能量提供冷却空气的火炬。
背景技术
[0002] 现有的地面弓 I射式火炬燃烧所需的空气是依靠气源引射所得, 当燃烧室内的燃 气燃烧吋, 引射的空气都参与混合燃烧了, 没有多余的空气用来冷却, 燃烧室 外壁直接暴露在高温环境下, 没有冷却措施。 为了保证燃烧室的使用, 减小对 外辐射, 火炬的燃烧室外壁一般都是采用耐火材料加隔热材料, 或者是采用高 温合金真空夹层等结构。 但这样势必会造成材料投入成本高, 火炬的结构体积 增大, 且耐火隔热材料大多存在环保问题。 而且野外井场本来就存在电力资源 紧张的问题, 如果另外加设冷却设备, 电力供应不足的情况则会进一步加剧。 技术问题
[0003] 有鉴于此, 本发明提出一种依靠气源能量提供冷却空气的火炬。
问题的解决方案
技术解决方案
[0004] 一种依靠气源能量提供冷却空气的火炬, 包括燃烧装置, 所述燃烧装置包括燃 气入口和冷却通道入口; 透平压气机, 所述透平压气机包括转轴以及固定在所 述转轴上的透平和压气机, 所述透平具有透平入口部和透平出口部, 所述透平 入口部用以接收高压燃气, 所述压气机包括压气机入口部和压气机出口部, 所 述压气机入口部用以接收环境空气; 燃气通道, 所述燃气通道连接在所述透平 出口部与所述燃气入口之间; 以及冷却空气通道, 所述冷却空气通道连接在所 述压气机出口部与所述冷却通道入口之间。
[0005] 在一实施例中, 所述火炬还包括热交换器, 所述热交换器设置在所述燃气通道 和冷却空气通道的路径上, 用以将所述压气机出口部排出的压缩空气的热量交 换至所述透平出口部排出的膨胀燃气上。
[0006] 在一实施例中, 所述热交换器包括翅片管散热器。 [0007] 在一实施例中, 所述透平压气机包括外壳, 所述透平、 压气机、 热交换器安装 在所述外壳内, 构成一个模块单元。
[0008] 在一实施例中, 所述透平压气机还包括发电机, 所述发电机与所述透平压气机 传动连接。
[0009] 在一实施例中, 所述火炬包括沿竖直方向布置的多层防护罩, 每层防护罩在周 向上封闭以形成具有上下两幵口端的燃烧室, 在竖直方向上相邻的两层防护罩 中, 上一层防护罩的径向宽度大于下一层的径向宽度, 使得在相邻两层防护罩 之间形成一与燃烧室流体相通的引射区, 每层防护罩下端均设有所述冷却通道 入口; 所述引射区内设有若干引射式燃烧器, 每层防护罩包括形成所述燃烧室 的燃烧室壁筒和设置在所述燃烧室壁筒外部的冷却夹套, 每层防护罩的所述冷 却夹套与所述燃烧室壁筒在上下缘位置均密封连接, 所述冷却夹套与所述燃烧 室壁筒之间形成冷却流道, 所述燃烧室壁筒上形成与所述燃烧室和冷却流道连 通的通气结构, 所述冷却夹套底端设有与所述冷却流道连通的环形管, 所述冷 却通道入口设置在所述环形管上。
[0010] 在一实施例中, 所述火炬包括形成燃烧室的燃烧室壁筒和设置在所述燃烧室壁 筒外部的冷却夹套, 所述冷却夹套与所述燃烧室壁筒之间形成冷却流道, 所述 冷却夹套与所述燃烧室壁筒在上下缘位置均密封连接, 所述燃烧室壁筒上形成 与所述燃烧室和冷却流道连通的通气结构, 所述冷却夹套底端设有与所述冷却 流道连通的环形管, 所述冷却通道入口设置在所述环形管上。
[0011] 在一实施例中, 所述通气结构为贯穿所述壁筒的若干冷却气孔, 所述冷却气孔 分别与所述燃烧室和冷却流道连通。
[0012] 在一实施例中, 所述燃烧室壁筒包括沿竖直方向布置的多层壁筒, 在竖直方向 上相邻的两层壁筒中, 上一层壁筒的径向宽度大于下一层的径向宽度, 使得在 相邻两层壁筒之间形成一与所述燃烧室和冷却流道流体相通的间隙。
[0013] 在一实施例中, 所述通气结构包括设置在所述间隙内的波浪形片状结构, 所述 波浪形片状结构形成若干冷却气道, 包括第一冷却气道和第二冷却气道, 所述 第一冷却气道包括波浪幵口朝向上层壁筒的冷却气道, 所述第二冷却气道包括 波浪幵口朝向下层壁筒的冷却气道。 发明的有益效果
有益效果
[0014] 综上所述, 本发明提出一种可有效利用油井或气井里需要处理的高压气源压能 为火炬燃烧室壁面提供冷却空气的火炬。 在火炬气源入口处设置一透平压气机 , 高压气源通过透平涡轮对涡轮做功, 压力降低的高压气源进入火炬燃烧室燃 烧。 涡轮旋转驱动同轴的压气机, 压气叶轮从大气中吸取空气压缩再经散热器 冷却后输送至火炬燃烧室壁面, 冷却燃烧室壁面。 本发明以气源压能作为动力 来源, 将高压气源通入透平降低了气源的压力, 减少了高压减压设备的投入, 同吋利用压气机及散热器为燃烧室壁面提供冷却空气, 解决了燃烧室壁面无法 冷却的问题, 增加了燃烧室的使用寿命, 减少耐火材料、 隔热材料、 高温合金 真空夹层结构的使用, 缩小设备体积, 降低成本。 此外, 本发明还在透平压气 机外连接一发电机, 驱动该发电机发电以为火炬提供电力, 充分利用了气源蕴 含的压能, 缓解野外井场电力资源紧张的问题。
对附图的简要说明
附图说明
[0015] 图 1为本发明火炬的运行流程图。
[0016] 图 2为本发明火炬一实施例的局部剖视图。
[0017] 图 3为图 2的另一角度的局部剖视图。
[0018] 图 4为图 3中圈 A部分结构的放大示意图。
[0019] 图 5为本发明火炬另一实施例的局部剖视图。
[0020] 图 6为图 5的另一角度的局部剖视图。
[0021] 图 7为图 6中圈 B部分结构的放大示意图。
本发明的实施方式
[0022] 在详细描述实施例之前, 应该理解的是, 本发明不限于本申请中下文或附图中 所描述的详细结构或元件排布。 本发明可为其它方式实现的实施例。 而且, 应 当理解, 本文所使用的措辞及术语仅仅用作描述用途, 不应作限定性解释。 本 文所使用的"包括"、 "包含"、 "具有"等类似措辞意为包含其后所列出之事项、 其 等同物及其它附加事项。 特别是, 当描述 "一个某元件 "吋, 本发明并不限定该元 件的数量为一个, 也可以包括多个。
[0023] 如图 1所示, 本发明提出一种强制气膜冷却的火炬, 该火炬包括燃烧装置 10、 透平压气机 12、 燃气通道 14和冷却空气通道 16, 其中燃气通道 14和冷却空气通 道 16分别连接在透平压气机 12与燃烧装置 10之间。 本实施例中, 为了方便安装 , 透平压气机 12设置在燃烧装置 10的气源入口处, 在其他实施例中, 根据实际 安装需要, 透平压气机 12也可以设置在燃烧装置 10的其他位置。 燃烧装置 10包 括燃气入口 18和连通至燃烧装置 10的燃烧室壁面的冷却通道入口 20。
[0024] 透平压气机 12包括转轴 22以及固定安装在转轴 22上的透平 24和压气机 26。 其中 , 透平 24可以是轴流型或径流型, 压气机 26也可以是轴流型或径流型。 本实施 例中, 透平 24和压气机 26均采用轴流型, 并共同组成轴流透平压气机。
[0025] 透平 24包括透平入口部 28和透平出口部 30, 透平入口部 28用以通入高压燃气, 例如来自井场的高压天然气。 燃气通道 14连接在透平出口部 30与燃烧装置 10的 燃气入口 18之间, 用以向燃烧装置 10提供燃烧所需要的燃气。 高压天然气进入 透平 24驱动透平涡轮旋转, 高压天然气膨胀后压力降低, 经透平 24膨胀降压的 天然气经透平出口部 30排出进入燃气通道 14, 然后经燃气入口 18进入燃烧装置 1 0的燃烧室进行燃烧。
[0026] 压气机 26包括压气机入口部 32和压气机出口部 34, 冷却空气通道 16连接在压气 机出口部 34与燃烧装置 10的冷却通道入口 20之间。 透平涡轮旋转带动转轴 22转 动, 转轴 22继而驱动压气机 26的压气叶轮转动, 压气叶轮转动使得环境空气从 压气机入口部 32被吸进压气机 26, 空气经压气机 26压缩后通过压气机出口部 34 排出至冷却空气通道 16, 然后经冷却通道入口 20进入燃烧装置 10的燃烧室冷却 结构。
[0027] 由于被压气机 26压缩的空气温度会上升, 影响对燃烧室壁面的冷却效果。 本实 施例中, 所述火炬还包括用以对压缩空气散热降温的热交换器或散热器 36, 例 如翅片管散热器 36, 在其他实施例中也可以采用其他类型的散热器, 本发明不 对此限定。 翅片管散热器 36设置在冷却空气通道 16上, 以对从压气机出口部 34 排出的压缩空气进行冷却降温。 在所示的实施例中, 散热器 36同吋位于冷却空 气通道 16和燃气通道 30上, 因此冷却空气通道 16内的空气的热量被交换至燃气 通道 30内的天然气上, 从而降低自身的温度。
[0028] 油井里的高压气源蕴含着较高的压能, 为了更为充分地利用该压能, 在所示的 实施例中, 透平压气机 12外接一发电机 38, 例如高速永磁发电机 38。 具体而言 , 压气机 26的压气叶轮上连接一传动轴 40, 发电机 38设置在传动轴 40上, 透平 2 4的转动同吋带动传动轴 40转动, 传动轴 40驱动发电机 38发电, 以为火炬运行提 供电力。 避免了资源浪费, 节能环保。 在其它实施例中, 发电机 38也可以设置 在透平 24—侧。
[0029] 在所示的实施例中, 透平压气机 12还可以包括外壳 (图未示出) , 透平 24、 压 气机 26及转轴 22或者连同发电机 38均安装在所述机壳内构成一个模块单元, 这 样便于火炬的模块化安装, 方便维护。
[0030] 在图 1所示的实施例中, 燃烧装置 10为引射式燃烧装置 10, 该引射式燃烧装置 1 0包括沿竖直方向布置的多层防护罩, 例如 4层。 4层防护罩包括底层防护罩 42及 位于底层防护罩 42以上的 3层上层防护罩, 该 3层上层防护罩从下往上依次为第 二层防护罩 44, 第三层防护罩 46和第四层防护罩 48。 每层防护罩在周向上封闭 以形成具有上下两幵口端的燃烧室, 在竖直方向上相邻的两层防护罩中, 上一 层防护罩的径向宽度大于下一层的径向宽度, 使得在相邻两层防护罩之间形成 一与燃烧室流体相通的引射区, 以引射空气。 每层防护罩下端均设有冷却通道 入口 20, 每个冷却通道入口 20分别连通至对应的防护罩的燃烧室壁面。
[0031] 冷却空气通道 16通过若干分支与各层防护罩连接。 在图 1所示的实施例中, 冷 却空气通道 16通过 4个分支分别与四层防护罩下端的冷却通道入口 20连通。 应当 理解的是, 本实施例中分支的设置方式仅为本发明的一种实施方式, 在其他实 施例中, 根据实际设计需要, 也可采用其他分支设计方式。
[0032] 四层防护罩包括底层防护罩 42及位于底层防护罩 42以上的三层上层防护罩。 底 层防护罩 42底部及相邻两层防护罩之间的引射区内设有若干燃烧器及长明灯 ( 图 1未示出) 。 每层防护罩上均设有用以冷却对应防护罩壁面的冷却结构。
[0033] 下面将举例对冷却结构进行详细说明。 下面的描述主要是结合鼓风式火炬来描 述, 但其冷却结构也可以应用至图 1所示的引射式燃烧装置中。
[0034] 在如图 2-4所示的实施例中, 燃烧装置 10包括底座 56、 安装在底座 56上的燃烧 室壁筒 57及用以冷却壁筒 42的冷却结构。 壁筒 57为上下两端幵口且在其内部形 成燃烧室 58, 壁筒 57底部设有若干燃烧器 60及用以点燃所述若干燃烧器 60的长 明灯 62。 燃烧装置 10的燃气入口 18与燃烧器 60连通, 以使得经透平 24减压的燃 气经燃气入口 18进入燃烧器 60燃烧。 具体而言, 所述若干燃烧器 60均匀分布在 壁筒 57底部的燃气供应管道 61上, 燃气供应管道 61具有设置于底座 56上的至少 一管道入口 18, 例如两个管道入口 18, 两个管道入口 18分别设置在底座 56的两 侧。 应当指出的是, 所述管道入口 18可以作为上述燃烧装置 10的燃气入口 18。
[0035] 如图 3和图 4所示, 冷却结构包括安装在壁筒 57外部的冷却夹套 64及设置于壁筒 57上的通气结构, 冷却夹套 64与壁筒 57的外壁之间形成冷却流道 66, 通气结构 与燃烧室 58和冷却流道 66连通, 冷却夹套 64底端设有与冷却流道 66连通的环形 管 68, 环形管 68用以为冷却流道 66供应压缩空气。
[0036] 本实施例中, 壁筒 57为单层结构。 冷却夹套 64与壁筒 57间隔设置, 冷却夹套 64 的上下缘分别与壁筒 57的上下缘密封连接, 以使得冷却夹套 64内形成的冷却流 道 66的上下两端封闭, 避免冷却空气溢出, 影响冷却效果。
[0037] 环形管 68具有一管道入口 20, 该管道入口 20用以通入冷却的压缩空气, 换句话 说, 该管道入口 20可以作为图 1的燃烧装置 10的冷却通道入口 20。 为了避免出现 壁筒壁面的冷却空气分布不均匀, 在所示的实施例中, 环形管 68上设有均匀分 布的多个连接至冷却夹套 64下端的连接支管 70, 连接支管 70与冷却流道 66连通 , 使冷却空气能够均匀地通过冷却流道 66进入壁筒壁面。
[0038] 在所示的实施例中, 通气结构包括贯穿壁筒 57设置的若干冷却气孔 72, 冷却气 孔 72分别与燃烧室 58和冷却流道 66连通。
[0039] 为了增强对壁筒 57的冷却效果, 若干冷却气孔 72沿壁筒 42的轴向和周向均匀对 称分布, 且最底端的一圈冷却气孔 72在竖直方向上的高度与燃烧器 60的出口平 齐, 以使得冷却空气可以对壁筒 42进行全面冷却。
[0040] 本实施例中, 将冷却气孔 72设置为斜孔。 具体来说, 冷却气孔 72包括气孔入口 74、 气孔出口 76及连通气孔入口 74和气孔出口 76的气孔通道 78, 其中气孔入口 7 4设置于壁筒 57的外壁面, 气孔出口 76设置于壁筒 57的内壁面, 气孔通道 78自气 孔入口 74朝向气孔出口 76向上倾斜。 在所示的实施例中, 气孔通道 78为直通道 , 在其他实施例中, 气孔通道 78也可以设计成其他类型, 例如弧形通道或螺旋 通道, 只要能使得从气孔出口 76出来的冷却空气具有竖直向上的分速度即可。
[0041] 压缩后的冷却空气经冷却空气通道 16进入冷却流道 66, 然后冷却空气顺着冷却 流道 66向上流动, 进入冷却气孔 72, 当冷却空气从气孔出口 76出来吋具有竖直 向上方向和水平方向的分速度, 竖直向上的分速度使得冷却空气向周围扩散在 壁筒 57的壁面上形成一层气膜, 水平方向的分速度使得冷却空气阻止火焰和高 温燃气流向燃烧室 58的壁筒 57, 同吋冷却空气会带走高温, 增加燃烧室 58内燃 气扰动, 进而增加和引射空气的混合, 为火焰燃烧补充二次空气, 提高燃烧质 量。 在燃烧室 58内隔绝了高温源对燃烧室壁筒 57的对流传热。 还有一部分冷却 空气在壁筒 57与冷却夹套 64之间流动, 通过对流换热带走燃烧室壁筒 57上吸收 的辐射热, 在壁筒 57外壁形成一层冷却气膜, 形成壁筒内外双重冷却气膜, 提 高对壁筒 42的冷却效果。
[0042] 图 5-7是火炬的另一实施例。 本实施例中的火炬总体结构与图 2-4的实施例类似 , 在此不再进行详细描述。 区别在于它们的通气结构不同。
[0043] 本实施例中, 壁筒 57为分层式塔状结构。 壁筒 57包括沿竖直方向布置的多层壁 筒, 例如 6层壁筒, 在其他实施例中多层壁筒也可以设置为其他数目。 在竖直方 向上相邻的两层壁筒中, 上一层壁筒的径向宽度大于下一层的径向宽度, 使得 在相邻两层壁筒之间形成一与燃烧室 58和冷却流道 66流体相通的间隙 80。
[0044] 如图 6-7所示, 通气结构包括竖直设置在间隙 80内的波浪形片状结构 82, 波浪 形片状结构 82固定, 例如焊接固定于一上层壁筒 84和一下层壁筒 86之间。 为了 使得冷却空气更好地进入通气结构, 进而隔离高温火焰、 燃气并在壁筒上形成 冷却气膜, 在所示的实施例中, 在竖直方向上, 波浪形片状结构 82的上端高于 下层壁筒 86的顶端, 波浪形片状结构 82的下端与上层壁筒 84的底端平齐。
[0045] 由于其波浪状结构, 波浪形片状结构 82在其片状结构两侧表面形成若干冷却气 道 88, 所述冷却气道 88包括第一冷却气道 90和第二冷却气道 92。 其中, 第一冷 却气道 90形成在面向上层壁筒 84的一侧表面上, 包括波浪幵口朝向上层壁筒 84 的若干冷却气道, 第二冷却气道 92形成在面向下层壁筒 86的一侧表面, 包括波 浪幵口朝向下层壁筒 86的若干冷却气道。
[0046] 冷却空气进入冷却流道 66后, 一部分进入冷却气道 88, 从第一冷却气道 90出来 的冷却空气紧贴壁筒 57壁面竖直向上流动, 在壁筒 57内壁上形成一层冷却气膜 , 切断高温源和燃烧室壁筒的对流换热。 从第二冷却气道 92出来的冷却空气向 周围扩散, 具有竖直方向和水平方向的分速度, 该部分冷却空气可阻止高温火 焰、 燃气靠近壁筒 57的壁面, 带走高温燃气, 改变火焰方向, 避免燃烧室 58内 壁被高温燃气、 火焰灼烧腐蚀。 同吋冷却空气会增加燃烧室 58内燃气扰动, 进 而增加和空气的混合, 为燃烧补充二次空气, 提高燃烧质量。 还有一部分冷却 空气在壁筒 57与冷却夹套 64之间流动, 通过对流换热带走燃烧室壁筒 57上吸收 的辐射热, 在壁筒 57外壁形成一层冷却气膜, 形成壁筒内外双重冷却气膜, 提 高对壁筒 57的冷却效果。
[0047] 应当理解的是, 本实施例中是在间隙 80内设置波浪形片状结构 82以形成波浪冷 却气道, 在其他实施例中, 也可以在间隙 80内设置其他结构, 形成其他类型的 冷却气道, 或者直接将间隙 80作为冷却气道, 只要该冷却气道可使通过的冷却 空气能够在壁筒 57内壁面形成气膜即可。
[0048] 本发明的冷却结构用冷却空气做高温源和燃烧室壁筒之间的屏障, 改变高温源 方向, 切断热源和壁筒壁面之间的对流换热, 带走燃烧室壁筒内外壁吸收的辐 射热。 壁筒内外都进行冷却, 且冷却均匀, 冷却效率提高, 冷却空气用量少, 还可提高燃烧质量。
[0049] 虽然图 2至图 7是以鼓风式火炬为例来介绍本发明火炬的冷却结构, 应当理解的 是, 所示的冷却结构可以直接或稍加修改而应用于引射式火炬中。 例如, 如图 1 , 引射式火炬中通常设有若干层防护罩 42、 44、 46、 48, 而图 2至图 7中的燃烧 室壁筒和冷却夹套可以一起作为引射式火炬中一层防护罩, 即每层防护罩都包 含围成燃烧室的燃烧室壁筒以及与壁筒连接的冷却夹套, 壁筒与冷却夹套间隔 设置从而在其间形成冷却流道, 且壁筒上形成有上述通气结构。 同样, 上述通 气结构可以是贯穿壁筒的冷却气孔 72, 或者多层壁筒之间的间隙 80, 或者在间 隙中设置上述波浪形片状结构 82。 同样, 每层的冷却夹套底部设置环形管 68, 环形管 68具有冷却通道入口 20。 环形管 68上设有均匀分布的多个连接至冷却夹 套下端的连接支管, 连接支管与冷却流道连通, 使冷却空气能够均匀地通过冷 却流道到达壁筒壁面。
[0050] 综上所述, 本发明提出一种可有效利用油井或气井里需要处理的高压气源压能 为火炬燃烧室壁面提供冷却空气的火炬。 在火炬气源入口处设置一透平压气机 , 高压气源通过透平涡轮对涡轮做工, 压力降低的高压气源进入火炬燃烧室燃 烧。 涡轮旋转驱动同轴的压气机, 压气叶轮从大气中吸取空气压缩再经散热器 冷却后输送至火炬燃烧室壁面, 冷却燃烧室壁面。 本发明以气源压能作为动力 来源, 将高压气源通入透平降低了气源的压力, 减少了高压减压设备的投入, 同吋利用压气机及散热器为燃烧室壁面提供冷却空气, 解决了燃烧室壁面无法 冷却的问题, 增加了燃烧室的使用寿命, 减少耐火材料、 隔热材料、 高温合金 真空夹层结构的使用, 缩小设备体积, 降低成本。 此外, 本发明还在透平压气 机外连接一发电机, 驱动该发电机发电以为火炬提供电力, 充分利用了气源蕴 含的压能, 缓解野外井场电力资源紧张的问题。
[0051] 本文所描述的概念在不偏离其精神和特性的情况下可以实施成其它形式。 所公 幵的具体实施例应被视为例示性而不是限制性的。 因此, 本发明的范围是由所 附的权利要求, 而不是根据之前的这些描述进行确定。 在权利要求的字面意义 及等同范围内的任何改变都应属于这些权利要求的范围。

Claims

权利要求书
[权利要求 1] 一种依靠气源能量提供冷却空气的火炬, 其特征在于, 包括:
燃烧装置, 所述燃烧装置包括燃气入口和冷却通道入口;
透平压气机, 所述透平压气机包括转轴以及固定在所述转轴上的透平 和压气机, 所述透平具有透平入口部和透平出口部, 所述透平入口部 用以接收高压燃气, 所述压气机包括压气机入口部和压气机出口部, 所述压气机入口部用以接收环境空气;
燃气通道, 所述燃气通道连接在所述透平出口部与所述燃气入口之间
; 以及
冷却空气通道, 所述冷却空气通道连接在所述压气机出口部与所述冷 却通道入口之间。
[权利要求 2] 如权利要求 1所述的依靠气源能量提供冷却空气的火炬, 其特征在于
, 所述火炬还包括热交换器, 所述热交换器设置在所述燃气通道和冷 却空气通道的路径上, 用以将所述压气机出口部排出的压缩空气的热 量交换至所述透平出口部排出的膨胀燃气上。
[权利要求 3] 如权利要求 2所述的依靠气源能量提供冷却空气的火炬, 其特征在于
, 所述热交换器包括翅片管散热器。
[权利要求 4] 如权利要求 2所述的依靠气源能量提供冷却空气的火炬, 其特征在于
, 所述透平压气机包括外壳, 所述透平、 压气机、 热交换器安装在所 述外壳内, 构成一个模块单元。
[权利要求 5] 如权利要求 1所述的依靠气源能量提供冷却空气的火炬, 其特征在于
, 所述透平压气机还包括发电机, 所述发电机与所述透平压气机传动 连接。
[权利要求 6] 如权利要求 1所述的依靠气源能量提供冷却空气的火炬, 其特征在于
, 所述火炬包括沿竖直方向布置的多层防护罩, 每层防护罩在周向上 封闭以形成具有上下两幵口端的燃烧室, 在竖直方向上相邻的两层防 护罩中, 上一层防护罩的径向宽度大于下一层的径向宽度, 使得在相 邻两层防护罩之间形成一与燃烧室流体相通的引射区, 每层防护罩下 端均设有所述冷却通道入口; 所述引射区内设有若干引射式燃烧器, 每层防护罩包括形成所述燃烧室的燃烧室壁筒和设置在所述燃烧室壁 筒外部的冷却夹套, 每层防护罩的所述冷却夹套与所述燃烧室壁筒在 上下缘位置均密封连接, 所述冷却夹套与所述燃烧室壁筒之间形成冷 却流道, 所述燃烧室壁筒上形成与所述燃烧室和冷却流道连通的通气 结构, 所述冷却夹套底端设有与所述冷却流道连通的环形管, 所述冷 却通道入口设置在所述环形管上。
如权利要求 1所述的依靠气源能量提供冷却空气的火炬, 其特征在于
, 所述火炬包括形成燃烧室的燃烧室壁筒和设置在所述燃烧室壁筒外 部的冷却夹套, 所述冷却夹套与所述燃烧室壁筒之间形成冷却流道, 所述冷却夹套与所述燃烧室壁筒在上下缘位置均密封连接, 所述燃烧 室壁筒上形成与所述燃烧室和冷却流道连通的通气结构, 所述冷却夹 套底端设有与所述冷却流道连通的环形管, 所述冷却通道入口设置在 所述环形管上。
如权利要求 6或 7所述的依靠气源能量提供冷却空气的火炬, 其特征在 于, 所述通气结构为贯穿所述壁筒的若干冷却气孔, 所述冷却气孔分 别与所述燃烧室和冷却流道连通。
如权利要求 6或 7所述的依靠气源能量提供冷却空气的火炬, 其特征在 于, 所述燃烧室壁筒包括沿竖直方向布置的多层壁筒, 在竖直方向上 相邻的两层壁筒中, 上一层壁筒的径向宽度大于下一层的径向宽度, 使得在相邻两层壁筒之间形成一与所述燃烧室和冷却流道流体相通的 间隙。
如权利要求 9所述的依靠气源能量提供冷却空气的火炬, 其特征在于 , 所述通气结构包括设置在所述间隙内的波浪形片状结构, 所述波浪 形片状结构形成若干冷却气道, 包括第一冷却气道和第二冷却气道, 所述第一冷却气道包括波浪幵口朝向上层壁筒的冷却气道, 所述第二 冷却气道包括波浪幵口朝向下层壁筒的冷却气道。
PCT/CN2016/109525 2016-12-12 2016-12-12 依靠气源能量提供冷却空气的火炬 WO2018107335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109525 WO2018107335A1 (zh) 2016-12-12 2016-12-12 依靠气源能量提供冷却空气的火炬

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109525 WO2018107335A1 (zh) 2016-12-12 2016-12-12 依靠气源能量提供冷却空气的火炬

Publications (1)

Publication Number Publication Date
WO2018107335A1 true WO2018107335A1 (zh) 2018-06-21

Family

ID=62557789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109525 WO2018107335A1 (zh) 2016-12-12 2016-12-12 依靠气源能量提供冷却空气的火炬

Country Status (1)

Country Link
WO (1) WO2018107335A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052730A (zh) * 1989-12-22 1991-07-03 株式会社日立制作所 燃烧设备及此种设备中的燃烧方法
US20030106694A1 (en) * 2001-12-11 2003-06-12 Wiseman Thomas R. Method for disposal of liquid from gas wells
JP2004211941A (ja) * 2002-12-27 2004-07-29 Tetsuto Tamura 多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置
CN1644906A (zh) * 2003-11-25 2005-07-27 通用电气公司 具有燃料预处理的脉冲爆燃动力系统和设备
JP3692127B2 (ja) * 2003-05-29 2005-09-07 哲人 田村 爆轟波発生装置
CN101581450A (zh) * 2008-05-13 2009-11-18 通用电气公司 冷却和稀释调节燃烧器衬里与过渡件交界面的方法和装置
CN101725977A (zh) * 2008-10-31 2010-06-09 通用电气公司 燃烧器衬套冷却流散布件及相关方法
CN101832555A (zh) * 2009-03-10 2010-09-15 通用电气公司 燃烧器衬套冷却系统
CN104791774A (zh) * 2015-04-01 2015-07-22 深圳智慧能源技术有限公司 能降低热辐射的引射式燃烧装置
CN106482133A (zh) * 2016-12-12 2017-03-08 深圳智慧能源技术有限公司 依靠气源能量提供冷却空气的火炬

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052730A (zh) * 1989-12-22 1991-07-03 株式会社日立制作所 燃烧设备及此种设备中的燃烧方法
US20030106694A1 (en) * 2001-12-11 2003-06-12 Wiseman Thomas R. Method for disposal of liquid from gas wells
JP2004211941A (ja) * 2002-12-27 2004-07-29 Tetsuto Tamura 多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置
JP3692127B2 (ja) * 2003-05-29 2005-09-07 哲人 田村 爆轟波発生装置
CN1644906A (zh) * 2003-11-25 2005-07-27 通用电气公司 具有燃料预处理的脉冲爆燃动力系统和设备
CN101581450A (zh) * 2008-05-13 2009-11-18 通用电气公司 冷却和稀释调节燃烧器衬里与过渡件交界面的方法和装置
CN101725977A (zh) * 2008-10-31 2010-06-09 通用电气公司 燃烧器衬套冷却流散布件及相关方法
CN101832555A (zh) * 2009-03-10 2010-09-15 通用电气公司 燃烧器衬套冷却系统
CN104791774A (zh) * 2015-04-01 2015-07-22 深圳智慧能源技术有限公司 能降低热辐射的引射式燃烧装置
CN106482133A (zh) * 2016-12-12 2017-03-08 深圳智慧能源技术有限公司 依靠气源能量提供冷却空气的火炬

Similar Documents

Publication Publication Date Title
US6173561B1 (en) Steam cooling method for gas turbine combustor and apparatus therefor
US10823456B2 (en) Gas water heating apparatus
CN104154558A (zh) 烟气余热回收灶具
CN207958277U (zh) 一种烧嘴
WO2018107335A1 (zh) 依靠气源能量提供冷却空气的火炬
CN106705075B (zh) 强制气膜冷却的火炬
CN207049951U (zh) 一种炭黑尾气燃烧炉
CN107165739A (zh) 固液火箭发动机环缝式塞式喷管
CN211622436U (zh) 一种管道井防火通风结构
CN206247354U (zh) 依靠气源能量提供冷却空气的火炬
CN106482133B (zh) 依靠气源能量提供冷却空气的火炬
CN206247356U (zh) 强制气膜冷却的火炬
CN206958918U (zh) 通风型燃烧器
WO2018107336A1 (zh) 强制气膜冷却的火炬
JP2002021581A (ja) 熱交換器を備えたガスタービン装置
CN214199197U (zh) 一种大型分体间接换热式燃气热风炉
RU2005109936A (ru) Горелка, в частности горелка вентури, с топочной трубой
US20200386163A1 (en) Heat exchange apparatus and gas turbine having the same
CN112856813A (zh) 一种大型分体间接换热式燃气热风炉
CN207035201U (zh) 配风系统及混合燃料锅炉
CN106661958A (zh) 具有细分成环带扇区的环形通道的燃气轮机
CN210511670U (zh) 一种新型自冷却引射式燃烧器
CN218033734U (zh) 一种全预混冷凝式交换器
JP5914134B2 (ja) 熱風管の冷却方法および補修方法
CN216521642U (zh) 一种风道可调的高效率燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923781

Country of ref document: EP

Kind code of ref document: A1