WO2018105455A1 - Component sensor - Google Patents

Component sensor Download PDF

Info

Publication number
WO2018105455A1
WO2018105455A1 PCT/JP2017/042717 JP2017042717W WO2018105455A1 WO 2018105455 A1 WO2018105455 A1 WO 2018105455A1 JP 2017042717 W JP2017042717 W JP 2017042717W WO 2018105455 A1 WO2018105455 A1 WO 2018105455A1
Authority
WO
WIPO (PCT)
Prior art keywords
component sensor
flow path
light receiving
substrate
fluid
Prior art date
Application number
PCT/JP2017/042717
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 岸本
正彦 大林
境 浩司
良介 飯井
植村 猛
吉内 茂裕
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018105455A1 publication Critical patent/WO2018105455A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Definitions

  • the present disclosure relates to a component sensor such as a fluid component detection device that detects the concentration of a fluid component using light absorption characteristics such as infrared rays.
  • Patent Document 1 a component sensor for fluid flowing through a pipe is known.
  • Patent Document 1 The conventional component sensor disclosed in Patent Document 1 is connected to a pipe through which a liquid passes, and detects the component of the liquid while flowing in and passing the liquid. Moreover, the component sensor using ATR method is known as a component sensor which measures the component of a fluid (patent documents 2, 3, and 4).
  • the component sensor is configured to detect a component of the fluid.
  • the component sensor includes a substrate, first and second convex portions provided on the main surface of the substrate, and infrared rays as the first convex portion. And a light receiving portion for detecting infrared rays emitted from the second convex portion.
  • the surface on the opposite side of the main surface of the substrate is configured so that the fluid contacts.
  • This component sensor is small and can detect fluid components with high accuracy.
  • FIG. 1 is a perspective view of a component sensor in the first embodiment.
  • 2 is a cross-sectional view of the component sensor shown in FIG. 1 taken along line II-II.
  • FIG. 3 is a perspective view of the component sensor in the second embodiment.
  • 4 is a cross-sectional view of the component sensor shown in FIG. 3 taken along line IV-IV.
  • FIG. 5 is a diagram illustrating an infrared ray locus of the component sensor according to the second embodiment.
  • FIG. 6A is a cross-sectional view of a component sensor according to Embodiment 3.
  • FIG. 6B is a cross-sectional view of another component sensor according to Embodiment 3.
  • FIG. 7 is a cross-sectional view of still another component sensor in the third embodiment.
  • FIG. 8 is a cross-sectional view of still another component sensor in the third embodiment.
  • FIG. 9 is an enlarged cross-sectional view of the component sensor in the fourth embodiment.
  • FIG. 10 is a perspective view of a component sensor in the fifth embodiment.
  • FIG. 11 is a schematic diagram of a component sensor in the fifth embodiment.
  • FIG. 12 is a side view of the component sensor in the fifth embodiment.
  • 13 is a cross-sectional view of the component sensor shown in FIG. 12, taken along line XIII-XIII.
  • FIG. 14 is a schematic diagram of a component sensor according to the fifth embodiment.
  • FIG. 15 is a schematic diagram of another component sensor according to the fifth embodiment.
  • FIG. 16 is a schematic diagram of still another component sensor according to the fifth embodiment.
  • FIG. 17 is a schematic diagram of still another component sensor according to the fifth embodiment.
  • FIG. 18 is a schematic diagram of still another component sensor in the fifth embodiment.
  • FIG. 19 is a schematic diagram of a component sensor according to the sixth embodiment.
  • FIG. 20 is a schematic diagram of a component sensor of a comparative example.
  • FIG. 21A is a schematic diagram of a component sensor according to Embodiment 6.
  • FIG. 21B is a schematic diagram of a component sensor according to Embodiment 6.
  • FIG. 22 is a schematic diagram of a component sensor according to the seventh embodiment.
  • FIG. 23 is a schematic diagram of another component sensor according to the seventh embodiment.
  • FIG. 24 is a schematic diagram of still another component sensor according to the seventh embodiment.
  • FIG. 25 is a schematic diagram of still another component sensor according to the seventh embodiment.
  • FIG. 26 is a schematic diagram of a component sensor according to the eighth embodiment.
  • FIG. 1 is a perspective view of a component sensor 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the component sensor 1 shown in FIG. In FIG. 1 and FIG. 2, an X axis, a Y axis, and a Z axis that are orthogonal to each other are defined.
  • the component sensor 1 emits infrared rays 8 toward the convex portion 6, the tube portion 3 extending in the extending direction D 101 parallel to the X axis, the substrate 5, the convex portions 6 and 7 provided on the substrate 5. And a light receiving portion 10 for receiving the infrared ray 8 emitted from the convex portion 7.
  • the tube portion 3 has a side wall 2 that extends in the X-axis direction and surrounds the internal space 3S.
  • Side wall 2 has inner wall surface 2A facing inner space 3S and outer wall surface 3B opposite to inner wall surface 2A.
  • the outer wall surface 3B does not face the inner space 3S.
  • An opening 4 is provided in the side wall 2 of the tube portion 3.
  • the substrate 5 covers the opening 4.
  • FIG. 2 shows a cross section taken along line II-II of the tube part 3 shown in FIG.
  • Both ends of the pipe part 3 are open, and the fluid 91 can flow in or out.
  • the fluid 91 is a liquid of fuel such as gasoline.
  • a flat flat portion 11 is provided on the outer wall surface 2 ⁇ / b> B of the side wall 2 of the tube portion 3.
  • the opening 4 is provided in the flat portion 11.
  • the flat portion 11 can easily form the opening 4 due to its flat shape, and can easily attach the substrate 5 to the tube portion 3.
  • the tube part 3 may not have the flat part 11.
  • the cross section perpendicular to the X axis of the portion of the tube portion 3 where the flat portion 11 is provided has a rectangular parallelepiped shape as shown in FIG. This cross section of the tube part 3 may have a polygonal shape, and a part other than the flat part 11 may have an arc shape.
  • the substrate 5 is made of silicon.
  • the substrate 5 is not limited to silicon, but can be easily processed by being formed of silicon.
  • the substrate 5 has principal surfaces 12 and 13 opposite to each other.
  • the main surface 12 covers the opening 4.
  • Convex portions 6 and 7 are provided on the main surface 13.
  • the convex portions 6 and 7 are formed by etching a silicon substrate that is a material of the substrate 5, that is, the convex portions 6 and 7 are formed integrally with the substrate 5. By forming the substrate 5 and the convex portions 6 and 7 integrally, the convex portions 6 and 7 can be easily formed.
  • the convex portion 6 is provided with an inclined surface 14, and the convex portion 7 is provided with an inclined surface 15.
  • the inclined surfaces 14 and 15 are inclined with respect to the main surface 13.
  • the refractive index of the substrate 5 is larger than the refractive index of the fluid 91. For this reason, the infrared rays 8 are incident on the inside of the substrate 5 from the inclined surface 14 and are emitted from the inclined surface 15 after being totally reflected inside the substrate 5.
  • the inclined surface 14 and the inclined surface 15 are formed by anisotropic etching.
  • the inclined surfaces 14 and 15 can be easily formed by forming by anisotropic etching. When a (100) wafer is used as the substrate 5, the plane orientation of the inclined surfaces 14 and 15 is the (111) plane, and the angle ⁇ of the inclined surfaces 14 and 15 with respect to the main surface 13 is 54.7 °.
  • the infrared rays 8 can be totally reflected by the main surface 12 at the boundary surface between the substrate 5 and the internal space 3S of the tube portion 3, that is, inside the substrate 5.
  • the convex portions 6 and 7 may be formed separately from the substrate 5 and bonded to the substrate 5.
  • the infrared rays 8 incident on the substrate 5 from the inclined surface 14 are totally reflected a plurality of times by the main surfaces 12 and 13 inside the substrate 5 and emitted from the inclined surface 15.
  • an evanescent wave enters the fluid 91 and is absorbed and attenuated by the fluid 91.
  • the convex portions 6 and 7 are provided apart from each other. Therefore, the infrared rays 8 incident from the inclined surface 14 are totally reflected a plurality of times until they are emitted from the inclined surface 15.
  • the attenuation amount by which the infrared rays 8 are attenuated before entering the light receiving unit 10 is increased, and the detection accuracy of the component of the fluid 91 is improved.
  • the region through which the infrared rays 8 between the convex portions 6 and 7 of the substrate 5 are transmitted can be thinned.
  • the number of times the infrared rays 8 are totally reflected when passing through the substrate 5 is increased, and the detection accuracy of the component of the fluid 91 is improved.
  • count that the infrared rays 8 are totally reflected can be increased because the board
  • the conventional component sensor disclosed in Patent Document 1 is difficult to detect components with high accuracy. That is, this component sensor is configured as a side flow in which the flow path for the liquid containing the component to be detected flows is extremely thin. Therefore, it is difficult to stably flow in the liquid, and it is difficult to detect the components with high accuracy.
  • the component sensor is increased in size when the number of reflections of infrared rays in the substrate is increased in order to improve detection accuracy.
  • the component sensor 1 in the first embodiment can detect the component of the fluid 91 with high accuracy and can be downsized.
  • the light emitting unit 9 uses a platinum thin film resistance element capable of emitting infrared rays 8.
  • the light emitting unit 9 may use a light emitting diode capable of emitting infrared rays 8.
  • a semiconductor bare chip is used for the light emitting diode.
  • the light emitting unit 9 is provided on the side of the tube unit 3 on which the substrate 5 is provided, and is arranged so that the infrared rays 8 are incident on the projection 6.
  • the infrared ray 8 has a wavelength that is easily absorbed by the fluid 91 to be detected. In the first embodiment, the wavelength of the infrared ray 8 is 2 ⁇ m to 15 ⁇ m. By using a wavelength in this range, the component of the fluid 91 can be detected with high accuracy.
  • the wavelength range of the infrared ray 8 may be further narrowed according to the use application of the component sensor 1.
  • the wavelength range of the infrared ray 8 can be narrowed.
  • the light receiving unit 10 uses a semiconductor bare chip.
  • the light receiving unit 10 is disposed at a position where the infrared ray 8 emitted from the convex portion 7 can be detected on the side of the tube unit 3 on which the substrate 5 is provided.
  • the light receiving unit 10 includes light receiving elements 16, 17, and 18.
  • the light receiving element 16 is provided with an optical filter 19
  • the light receiving element 17 is provided with an optical filter 20, and an optical filter 21 is provided in front of the light receiving element 18.
  • the light receiving unit 10 includes a housing 22 that supports the light receiving elements 16, 17, and 18 and the optical filters 19, 20, and 21.
  • the optical filters 19, 20, and 21 transmit infrared rays having different wavelengths.
  • the optical filter 19 transmits infrared rays 8 having a small absorption amount absorbed by the fluid 91.
  • the optical filters 20 and 21 transmit the infrared ray 8 having a wavelength with a larger amount of absorption of the fluid 91 than the wavelength transmitted through the optical filter 19.
  • the amount of absorption of the infrared ray 8 in the fluid 91 can be known, so that the component of the fluid 91 can be detected with high accuracy. Even without the light receiving element 18, the components of the fluid 91 can be accurately detected by the light receiving elements 16 and 17.
  • two types of components of the fluid 91 can be detected with high accuracy. When it is desired to increase the types of components of the fluid 91 to be detected, the number of light receiving elements may be further increased.
  • the light emitting part 9 is arranged at a position spaced from the convex part 6 in the negative direction of the Z axis.
  • the light receiving unit 10 is disposed at a position away from the convex part 7 in the negative direction of the Z axis.
  • the component sensor 1 can be reduced in size.
  • the incident angle of the infrared rays 8 incident on the inclined surface 14 is reduced, and the infrared rays 8 can penetrate deeply into the fluid 91, thereby improving the detection accuracy of the component sensor 1.
  • the light emitting unit 9 and the light receiving unit 10 are provided on the surface 23 ⁇ / b> A of the same support substrate 23.
  • the light emitting unit 9 has a light emitting surface 9P that emits infrared rays 8.
  • the light receiving unit 10 has a light receiving surface 10 ⁇ / b> P that receives the infrared rays 8.
  • the light emitting unit 9 and the light receiving unit 10 are arranged so that the light emitting surface 9P of the light emitting unit 9 and the light receiving surface 10P of the light receiving unit 10 are located on the same plane P23, that is, at the same distance from the surface 23A of the support substrate 23. Yes. By arranging in this way, the light emitting unit 9 and the light receiving unit 10 can be easily mounted.
  • the light emitting unit 9 and the light receiving unit 10 do not have to be provided on the same support substrate 23, and the light emitting unit 9 and the light receiving unit 10 are in the range of the angle at which the infrared rays 8 are totally reflected in the substrate 5. You may arrange
  • FIG. 3 is a perspective view of the component sensor 31 in the second embodiment.
  • FIG. 4 is a sectional view of the component sensor 31.
  • FIG. 5 shows the locus of the infrared rays 8 of the component sensor 31.
  • FIG. 4 shows a cross section taken along line IV-IV of the tube part 3 shown in FIG.
  • FIG. 5 shows a portion hidden by the substrate 5 by a broken line, and shows a locus of the infrared rays 8 totally reflected in the substrate 5 by a broken line.
  • the same reference numerals are assigned to the same parts as those of the component sensor 1 in the first embodiment shown in FIGS. 1 and 2.
  • the component sensor 31 has a light receiving portion 32 that receives the infrared ray 8 emitted from the convex portion 7 instead of the light receiving portion 10 of the component sensor 1 shown in FIGS. 1 and 2.
  • the light receiving unit 32 has a light receiving surface 32 ⁇ / b> P that receives the infrared rays 8.
  • the light receiving unit 32 and the light emitting unit 9 are arranged so that the light receiving surface 32P of the light receiving unit 32 and the light emitting surface 9P of the light emitting unit 9 are located on the same plane P23, that is, at the same distance from the surface 23A of the support substrate 23. ing.
  • the light receiving unit 32 includes light receiving elements 16, 17, 18 and optical filters 19, 20, 21, similarly to the light receiving unit 10 of the component sensor 1 shown in FIGS. 1 and 2.
  • the light receiving elements 16, 17, and 18 have light receiving surfaces 16 ⁇ / b> P, 17 ⁇ / b> P, and 18 ⁇ / b> P that receive the infrared rays 816, 817, and 818 that are part of the infrared ray 8.
  • the light receiving elements 16, 17 and 18 are arranged such that the light receiving surfaces 16P, 17P and 18P are positioned on the plane P23, that is, at the same height from the surface 23A of the support substrate 23. This facilitates mounting of the light receiving elements 16, 17, and 18.
  • the light receiving elements 16, 17, and 18 are arranged side by side in the direction of the Y axis, that is, in the direction parallel to the main surface 13 of the substrate 5 and perpendicular to the X axis.
  • the infrared rays 8 transmitted through the substrate 5 are emitted from the convex portion 7 as infrared rays 816, 817, and 818 that are arranged in the Y-axis direction and spread away from each other.
  • the light receiving elements 16, 17, and 18 arranged side by side in the Y-axis direction can efficiently detect the infrared rays 816, 817, and 818, respectively.
  • FIG. 6A is a cross-sectional view of component sensor 41 in the third embodiment.
  • the component sensor 41 has a convex portion 47 provided on the main surface 12 of the substrate 5 instead of the convex portion 7 of the component sensor 1 shown in FIGS. 1 and 2.
  • FIG. 6A shows the positional relationship among the substrate 5, the light emitting unit 9, and the light receiving unit 10.
  • the locus of the infrared ray 8 is indicated by a straight line outside the substrate 5 and indicated by a broken line inside the substrate 5.
  • the substrate 5 of the component sensor 41 has the convex portions 6 and 47 arranged in the Z-axis direction with the substrate 5 sandwiched at the same position in the X-axis direction. Note that a deviation due to a manufacturing error is allowed from the same position here.
  • the light emitting part 9 is provided so that the infrared ray 8 is incident on the convex part 6, and the light receiving part 10 is provided so as to receive the infrared ray 8 emitted from the convex part 47.
  • a reflective film 43M made of gold, aluminum, or the like is provided on the side end face 43 of the substrate 5 in the X-axis direction.
  • the infrared ray 8 incident from the inclined surface 14 of the convex portion 6 travels inside the substrate 5 while repeating total reflection on the main surfaces 12 and 13 in the X-axis direction, and is reflected by the side end surface 43 by the reflective film 43M. It advances inside the substrate 5 while repeating total reflection at the main surfaces 12 and 13 toward 47, and exits from the inclined surface 45 of the convex portion 47 to the outside of the substrate 5.
  • the side end face 43 to reflect the infrared rays 8
  • the optical path length of the optical path in the substrate 5 on which the infrared rays 8 travel is increased, and the number of times the infrared rays 8 are reflected can be increased.
  • the sensitivity of the component sensor 41 can be improved. Further, since the optical path length of the infrared ray 8 is increased even if the length of the substrate 5 in the X-axis direction is the same, the component sensor 41 can be downsized while maintaining the sensitivity.
  • the protrusions 6 and 47 may be formed on i such as the substrate 5, or may be formed separately from the substrate 5 and bonded to the substrate 5.
  • FIG. 6B is a cross-sectional view of another component sensor 41A in the third embodiment. 6B, the same reference numerals are given to the same portions as those of the component sensor 41 shown in FIG. 6A.
  • the substrate 5 has a side end surface 143 opposite to the side end surface 43 in the X-axis direction.
  • the component sensor 41 ⁇ / b> A further includes a reflective film 143 ⁇ / b> M provided on the side end surface 143 of the substrate 5.
  • the infrared rays 8 are reflected in the substrate 5 also on the side end surface 143 by the reflective film 143M.
  • the infrared ray 8 is reflected by the side end surfaces 43 and 143 a plurality of times, the optical path length of the optical path through which the infrared ray 8 passes through the inside of the substrate 5 can be increased, and the sensitivity of the component sensor 41A is further improved. Can do. Further, the component sensor 41A can be further downsized while maintaining the sensitivity of the component sensor 41A.
  • the convex portions 6 and 47 are arranged at the same position in the X-axis direction of the substrate 5 with the substrate 5 sandwiched in the Z-axis direction. If the infrared rays 8 are reflected by the side end face 43 of the substrate 5, the arrangement positions of the convex portions 6 and 47 are not limited to this.
  • FIG. 7 is a cross-sectional view of still another component sensor 41B in the third embodiment.
  • the same reference numerals are given to the same portions as the component sensors 41 and 41A shown in FIGS. 6A and 6B.
  • FIG. 7 shows the positional relationship among the substrate 5, the light emitting unit 9, and the light receiving unit 10 of the component sensor 41B.
  • the component sensor 41B the light emitting unit 9 and the light receiving unit 10 are disposed on the same side of the substrate 5 in the Z-axis direction.
  • the component sensor 41 ⁇ / b> B has one convex portion 44 provided on the main surface 13 of the substrate 5 instead of the convex portions 6 and 7 of the component sensors 41 and 41 ⁇ / b> A.
  • the convex portion 44 includes inclined surfaces 45A and 45B that are inclined with respect to the main surface 12 of the substrate 5, and a surface 44A that connects the inclined surfaces 45A and 45B.
  • the surface 44A is parallel to the main surface 13.
  • the infrared rays 8 emitted from the light emitting unit 9 are incident from the inclined surface 45A of the convex portion 44, are repeatedly totally reflected on the surface of the substrate 5, travel inside the substrate 5, are emitted from the inclined surface 45B, and are received by the light receiving unit 10. Received light.
  • Reflective films 43M and 143M are provided on side end surfaces 43 and 143 on the opposite sides of the substrate 5 in the X-axis direction, respectively.
  • the infrared ray 8 is totally reflected at the side end faces 43 and 143 a plurality of times by the reflection films 43M and 143M inside the substrate 5, and is repeatedly totally reflected at the main surfaces 12, 13, and 44A, and from the inclined surface 45B of the convex portion 44 of the substrate 5.
  • substrate 5 of the infrared rays 8 can be lengthened, the sensitivity of the component sensor 41B can be improved, or the component sensor 41B can be reduced in size.
  • FIG. 8 is a plan view of still another component sensor 41C in the third embodiment.
  • the same reference numerals are assigned to the same portions as those of the component sensors 1, 41, and 41A shown in FIGS. 1, 2, 6A, and 6B.
  • FIG. 8 shows the positional relationship between the substrate 5 and the convex portions 6 and 7 of the component sensor 41C.
  • FIG. 8 is a view of the main surface 13 of the substrate 5 of the component sensor 41C as viewed from the Z-axis direction.
  • the component sensor 41 ⁇ / b> C is provided with convex portions 6 and 7 on the main surface 13 in the same direction of the Z axis of the substrate 5.
  • the convex portions 6 and 7 are provided at different positions in the X-axis direction and different positions in the Y-axis direction. In FIG. 8, the convex portions 6 and 7 are provided at positions opposite to each other on the diagonal of the main surface 13 of the substrate 5.
  • Reflective films 43M and 143M are provided on side end surfaces 43 and 143 in the opposite directions of the X axis of the substrate 5, respectively.
  • the infrared ray 8 incident from the convex portion 6 is totally reflected a plurality of times at the side end surfaces 43 and 143 by the reflective films 43M and 143M and is emitted from the convex portion 7.
  • the optical path length of the optical path through which the infrared rays 8 travel in the substrate 5 can be increased, so that the sensitivity of the component sensor 41C can be improved and the component sensor 41C can be downsized. .
  • FIG. 9 is an enlarged cross-sectional view of the component sensor 51 in the fourth embodiment. 9, the same parts as those of the component sensors 1, 41, 41A to 41C shown in FIGS. 1 to 8 are denoted by the same reference numerals.
  • the substrate 5 seals the opening 4 using the sealing material 53 on the tube 3.
  • the thickness L2 in the Z-axis direction of the outer edge portion 5C including the side end surfaces 43 and 143 of the substrate 5 is larger than the thickness L1 of the central portion of the substrate 5 in the Z-axis direction. That is, the outer edge portion 5C of the substrate 5 is locally thick. If the thickness of the substrate 5 in the Z-axis direction is reduced, the number of reflections of the infrared rays 8 increases, and the sensitivity of the component sensor 51 can be improved. However, since the strength of the substrate 5 decreases when the substrate 5 is thinned, the substrate 5 may be cracked when the substrate 5 is sealed with the opening portion 4 using the sealing material 53. Since the component sensor 51 locally increases the thickness L2 of the outer edge portion 5C for mounting the substrate 5 on the tube portion 3, the sealing strength can be improved.
  • FIG. 10 is a perspective view that three-dimensionally represents the component sensor 110 according to the fifth embodiment.
  • FIG. 11 is a schematic diagram of the component sensor 110.
  • FIG. 12 is a side view of the component sensor 110.
  • 13 is a cross-sectional view of the component sensor 110 shown in FIG. 12 taken along line XIII-XIII.
  • FIG. 14 is a schematic diagram of the component sensor 110. 10 to 14, the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined.
  • the component sensor 110 detects a fluid component.
  • the component sensor 110 is connected to a fuel pipe of an automobile and allows liquid fuel, which is a fluid, to flow in and pass through to detect the fuel component.
  • the component sensor 110 includes a flow channel 101 into which the fluid 191 flows, a detection flow channel 107 connected to the flow channel 101, and a flow that is connected to the detection flow channel 107 and discharges the fluid 191 to the outside of the component sensor 110.
  • a path 103 and a detour 102 connected to the flow paths 101 and 103 are provided.
  • the fluid 191 is a fuel that is a liquid.
  • the channel 101 extends in the extending direction that is the direction of the X axis.
  • the channel 101, the detection channel 107, and the channel 103 are arranged on a straight line parallel to the X axis.
  • a light emitting unit 104 and a light receiving unit 105 are provided outside the detection channel 107 so as to sandwich the detection channel 107 therebetween.
  • the Z axis extends in a direction from the center point 107C of the detection flow path 107 toward the light emitting unit 104.
  • the X axis extends from the center point 107C of the detection flow path 107 in a direction toward the connection port 116 at a right angle to the Z axis.
  • the Y axis is orthogonal to the X axis and the Z axis at the center point 107C of the detection flow path 107.
  • the detection flow path 107 is located in the extending direction of the flow path 101 from the flow path 101. That is, a straight line 101S parallel to the X axis passes through an internal space in which the fluid 191 in the flow channel 101 flows and an internal space in which a part 191A of the fluid 191 in the detection flow channel 107 flows.
  • the detour 102 has a U-shape to bypass the detection flow path 107.
  • the detour 102 is connected to the flow path 101 through the connection port 119 and is connected to the flow path 103 through the connection port 219.
  • the detection flow path 107 is connected to the flow path 101 through the connection port 116, and is connected to the flow path 103 through the connection port 121.
  • the connection port 119 is perpendicular to the connection port 116.
  • FIG. 11 specifically shows the ranges of the flow path 101, the bypass 102, the flow path 103, the detection flow path 107, the connection port 116, and the connection port 119 with a frame indicated by a broken line.
  • the distance L101 of the farthest part between the internal space of the flow path 101 and the internal space of the detour 102 in the Y-axis direction is equal to the internal space of the detection flow path 107 and the detour 102. Is equal to the distance L102 of the furthest part from the internal space.
  • connection port 116 has a shape extending in the Y-axis direction, that is, toward the connection port 119. That is, the width of the connection port 116 in the Y-axis direction is larger than the width of the Z-axis direction perpendicular to that direction.
  • the connection port 116 has a rectangular shape extending in the Y-axis direction.
  • the shape may be an arbitrary shape that is elongated in the Y-axis direction.
  • the materials of the flow paths 101 and 103 and the detour 102 are appropriately selected according to the fluid 191.
  • the fluid 191 is fuel, and it is preferable to use a single metal or an alloy as the material of the flow paths 101 and 103 and the bypass 102.
  • a resin may be used as the material of the flow paths 101 and 103 and the bypass 102, or glass, wood, bamboo, etc. As long as the purpose of the form can be satisfied, it is appropriately selected.
  • the material of the detection channel 107 is made of a material that transmits the light 108 emitted from the light emitting unit 104. In the fifth embodiment, silicon, germanium, glass, or the like is used, but the material is not particularly limited thereto.
  • the flow paths 101 and 103, the detour path 102, and the detection flow path 107 are appropriately selected in consideration of the purpose of use, manufacturing cost, and the like. For example, screw connection, soldering, welding, joining by unevenness, screwing, adhesion, etc. Connected in the way. If the effects of the fifth embodiment can be realized without hindrance, the flow paths 101 and 103, the bypass path 102, and the detection flow path 107 are made of the same material and can be manufactured seamlessly using a mold or the like. Alternatively, it may be composed of two or more parts.
  • the width of the detection channel 107 in the Z-axis direction is preferably 10 ⁇ m or more and 100 ⁇ m or less, but is not limited to this as long as the object of the present embodiment can be satisfied.
  • the fluid 191 to be detected is a liquid that easily absorbs the light 108 such as water, soft drinks, and fruit juice
  • the light 108 does not easily reach the light receiving unit 105.
  • the detection flow path 107 is not easily manufactured as compared with the case where the fuel component is detected, but the width of the detection flow path 107 may be 10 ⁇ m or less.
  • the component sensor 110 performs processing based on information obtained from the light receiving unit 105 and the housing 106 that accommodates each of the above-described components, and the processing provided in the housing 106 that detects components and analyzes the concentration. And a portion 109.
  • the light 108 emitted from the light emitting unit 104 is an infrared ray having a wavelength in the range of 2.5 ⁇ m to 15 ⁇ m. Infrared light whose wavelength stays within this range is easily absorbed by the fluid 191 and can detect various components of the fluid 191 with high sensitivity.
  • the light 108 emitted from the light emitting unit 104 passes through the detection channel 107, passes through the fluid 191 flowing through the detection channel 107, and is received by the light receiving unit 105.
  • the amount of the light 108 that can be received by the liquid flowing through the detection flow path 107 and received by the light receiving unit 105 is determined in the detection flow path 107. It decreases compared to the case where there is no.
  • the processing unit 109 can process output information corresponding to the amount of light received by the light receiving unit 105 to detect a component of the fluid 191 or measure the concentration of the fluid 191.
  • the detection flow path 107 is connected to the flow path 101 in the extending direction D101 of the flow path 101. Due to this positional relationship, the fluid 191 that flows in from the outside travels straight toward the detection flow path 107. With this configuration, it is possible to solve the following problems that occur when the components of the fluid 191 are detected using the light 108.
  • the amount of absorption by which the fluid 191 absorbs the light 108 is calculated based on the amount of light 108 emitted from the light emitting unit 104 at the light receiving unit 105. Then, the component of the fluid 191 is detected and the concentration is measured.
  • the light 108 emitted from the light emitting unit 104 needs to reach the light receiving unit 105. In order to ensure that the emitted light 108 reaches the light receiving unit 105, the light 108 is increased or the distance between the light emitting unit 104 and the light receiving unit 105 is shortened.
  • the distance between the light emitting unit 104 and the light receiving unit 105 can be increased, whereby the fluid 191 can easily flow into the detection channel 107.
  • the power consumed by the light emitting unit 104 is increased and the component sensor 110 is enlarged.
  • the detection channel 107 becomes narrow, there arises a problem that it is difficult to allow the fluid 191 to flow in.
  • infrared rays used to detect components with high accuracy are easily absorbed by the fluid 191, they may be excessively absorbed by the fluid 191 before reaching the light receiving unit 105 and may not be detected by the light receiving unit 105. .
  • the detection flow path 107 is located in the extending direction D101 of the flow path 101 and is connected to the flow path 101. Therefore, the fluid 191 that is the liquid flowing in from the flow path 101 is used. Goes straight toward the connection port 116 with the detection channel 107. As a result, pressure is generated toward the detection flow path 107, and the fluid 191 (191A) easily flows into the detection flow path 107 due to this pressure.
  • the fluid 191 (191B) that has not flowed into the detection flow path 107 flows to the detour path 102, bypasses the detection flow path 107, reaches the flow path 103, and is discharged to the outside.
  • the flow path 101, the detection flow path 107, and the flow path 103 constitute a linear piping structure whose intermediate portion is narrowed rapidly.
  • the detour 102 prevents the flow of the entire fluid 191 from being obstructed by causing the part 191B of the fluid 191 to bypass the piping structure.
  • the component sensor 110 in the fifth embodiment has a symmetrical shape with respect to a straight line 107L (see FIG. 14) that passes through the center point 107C of the detection flow path 107 and extends in the Y-axis direction. In this case, even if the fluid 191 flows in from the flow path 101 or the fluid 191 flows in from the flow path 103, there is no functional problem, so the fluid 191 may flow in any direction.
  • the component sensor 110 suppresses the power consumption of the light-emitting unit 104 and allows the fluid 191 (191A) to stably flow into the narrow detection channel 107 while reducing the size. Make it possible.
  • FIG. 15 is a schematic diagram of another component sensor 110A according to the fifth embodiment.
  • the same reference numerals are given to the same portions as those of the component sensor 110 shown in FIGS. 10 to 14.
  • each of the flow paths 101 and 103 and the detour 102 form a sharp ridge of 90 degrees at the connection ports 119 and 219.
  • the U-shaped corner of the detour 102 forms a sharp ridge of 90 degrees.
  • the corners 1102 and 2102 of the connection ports 119 and 219 are smoothly rounded, and the corners 3102 to 6102 of the detour 102 are also smoothly rounded. This configuration is preferable because the flow of the fluid 191 is not hindered in the flow paths 101 and 103 and the bypass 102.
  • FIG. 16 is a schematic diagram of still another component sensor 110B in the fifth embodiment.
  • the same reference numerals are assigned to the same parts as those of the component sensor 110 shown in FIGS.
  • the component sensor 110 ⁇ / b> B bypasses the detection flow path 107 in the same manner as the bypass 102 and is connected to the flow paths 101 and 103. Is provided.
  • the detours 102A and 102B have the same effect as the detour 102.
  • a portion 191B1 of the portion 191B of the fluid 191 flows through the detour 102A, and the remaining portion 191B2 of the portion 191B of the fluid 191 flows through the detour 120B.
  • the sum of the cross-sectional areas of the cross sections perpendicular to the flow direction of the portions 191B1 and 191B2 of the part 191B of the fluid 191 of the detours 102A and 102B is equal to the cross-sectional area S4 of the detour 102 of the component sensor 110 shown in FIGS.
  • the cross-sectional area S1 of the flow channel 101, the cross-sectional area S2 of the flow channel 103, and the cross-sectional area S3 of the detection flow channel 107 satisfy the above relationship.
  • the plurality of detours 102A and 102B provide design diversity according to the size of the member, design problems, and the shape of the target to which the component sensor 110 is attached.
  • FIG. 17 is a schematic diagram of still another component sensor 110C according to the fifth embodiment.
  • the same reference numerals are given to the same portions as those of the component sensor 110 shown in FIGS. 10 to 14.
  • the flow paths 101 and 103 are bent halfway.
  • the portion connected to the connection port 116 of the flow channel 101 extends in the extending direction D101
  • the portion connected to the connection port 121 of the flow channel 103 extends in the extending direction D101.
  • FIG. 18 is a schematic diagram of still another component sensor 110D according to the fifth embodiment.
  • the same reference numerals are assigned to the same portions as those of the component sensor 110A shown in FIG.
  • the detour 102 does not have the corners 3102 to 6102 of the component sensor 110A shown in FIG. 15, but has a C shape. With this configuration, the fluid 191 flows through the detour 102 smoothly.
  • FIG. 19 is a schematic diagram of a component sensor 110E according to the sixth embodiment.
  • the same reference numerals are assigned to the same portions as those of the component sensor 110 in the fifth embodiment shown in FIGS.
  • the detection flow path 107 is displaced in parallel to the positive direction of the Y axis, and the inner space of the flow path 101 and the internal space of the detour 102 are farthest apart in the Y axis direction.
  • the distance L101 of the left portion is larger than the distance L102 of the farthest portion between the internal space of the detection flow path 107 and the internal space of the detour 102.
  • the detection flow path 107 is displaced in parallel from the flow paths 101 and 103 toward the detour 102 in the Y-axis direction.
  • a taper 120 is provided on the inner wall surface that is connected to the connection port 116 and faces the internal space through which the fluid 191 of the flow path 101 flows.
  • the taper 120 is inclined with respect to the extending direction D101 parallel to the X axis toward the detection flow path 107 and the bypass path 102.
  • the taper 120 moves the fluid 191 directly from the flow channel 101 to the detection flow channel 107 and the detour 102, thereby facilitating the inflow of the fluid 191 (191 ⁇ / b> A) into the detection flow channel 107.
  • FIG. 20 is a schematic diagram of a component sensor 110P of a comparative example. 20, the same reference numerals are assigned to the same portions as those of the component sensor 110E shown in FIG.
  • the inner wall surface of the flow path 101 is not provided with a taper.
  • the flow of the fluid 191 is hindered around the connection port 116, and the fluid 191 does not smoothly flow into the detection flow path 107 and the bypass 102.
  • 21A and 21B are schematic diagrams showing the flow of the fluid 191 of the component sensor 110E and the component sensor 110, respectively.
  • the fluid 191 flowing in from the end of the flow path 101 flows as a flow 111 toward the detection flow path 107.
  • the flow 112 reaches the connection port 116 as a flow 112 following the taper 120 leading to the detection flow path 107. Since the detection flow path 107 has a much smaller volume than the flow path 101, a part 191 ⁇ / b> B of the fluid 191 that does not flow into the detection flow path 107 flows into the detour 102 as the flow 113.
  • the fluid 191 goes straight to the detection flow path 107 as the flow 111, and a part 191B of the fluid 191 flows into the detection flow path 107 as the flow 112. A part 191B of the fluid 191 that does not flow into the detection flow path 107 flows into the detour 102 as a flow 115.
  • a stagnation 114 may occur between the flow channel 101 and the detection flow channel 107.
  • the detection flow path 107 is shifted in parallel toward the bypass path 102, thereby reducing the retention 114 of the fluid 191 and improving the movement efficiency of the fluid 191. As a result, the inflow efficiency in which a part 191A of the fluid 191 flows into the detection channel 107 is improved.
  • FIG. 22 is a schematic diagram of a component sensor 110F according to the seventh embodiment.
  • the same reference numerals are assigned to the same portions as those of the component sensor 110 in the fifth embodiment shown in FIGS.
  • the portion closest to the detour 102 on the inner wall surface facing the internal space through which a part 191A of the fluid 191 of the detection flow path 107 of the component sensor 110 in the fifth embodiment flows is the detour 102. It's shifted away.
  • a connection port 116 with the channel 101 extends to the inside of the detour 102.
  • the volume of the detection channel 107 increases, the area of the connection port 116 increases, and the inflow efficiency of the part 191A of the fluid 191 into the detection channel 107 increases.
  • FIG. 23 is a schematic diagram of another component sensor 110G according to the seventh embodiment.
  • the detection flow path 107 of the component sensor 110 ⁇ / b> F shown in FIG. 22 is shifted from the flow path 101 in parallel toward the detour 102.
  • the size of the members and the shape of the detection flow path 107 may be changed according to design requirements.
  • FIGS. 24 and 25 are schematic diagrams of still other component sensors 110H and 110I in the seventh embodiment, respectively. 24 and 25, the same reference numerals are assigned to the same parts as those of the component sensors 110F and 110G shown in FIGS. In the component sensors 110H and 110I shown in FIGS. 24 and 25, the detection flow path 107 is narrowed from the connection port 116 toward the connection port 121.
  • FIG. 26 is a schematic diagram of a component sensor 110J according to the eighth embodiment.
  • the same reference numerals are given to the same portions as those of the component sensor 110 shown in FIGS.
  • the flow path 103 extends in a direction orthogonal to the plane where the bypass 102 is connected to the flow path 103, that is, in the Y-axis direction. It flows in the direction of the axis.
  • the discharge flow 117 mainly from the detour 102 having a large flow rate goes straight toward the end of the flow path 103, so that the passage speed of the fluid 191 passing through the flow path 103 increases.
  • the discharge flow 118 discharged from the detection flow path 107 is also drawn into the discharge flow 117 due to the surface tension of the fluid 191 body, and the flow speed increases. To do. If the speed of the discharged water stream 118 increases, the inflow speed of the part 191A of the fluid 191 that flows into the detection channel 107 from the action of the surface tension of the fluid 191 also increases. As described above, the flow path 103 extends in the Y-axis direction, so that the discharge efficiency of the entire fluid 191 increases, and as a result, the inflow speed at which a part 191A of the fluid 191 flows into the detection flow path 107 increases. Therefore, the inflow of a part 191A of the fluid 191 into the detection channel 107 can be promoted.
  • the component sensors 110.110A to 110J in Embodiments 5 to 8 are inexpensive, space-saving and highly sensitive, and the detection accuracy is stable.
  • the concentration of the fuel component can be detected.
  • the fuel consumption of the internal combustion engine can be improved and the exhaust emission can be reduced.
  • the fluid 191 is water or a soft drink, it can be used for detection of mixing of other components, etc., to help maintain quality.

Abstract

This component sensor is configured to detect a component of a fluid. This component sensor is provided with: a substrate; first and second projections which are provided on a main surface of the substrate; a light emitting part which makes infrared light incident on the first projection; and a light receiving part which detects infrared light discharged from the second projection. A surface of the substrate, which is on the reverse side of the main surface, is configured so as to be in contact with a fluid. This component sensor is small in size, and is capable of detecting a component of a fluid with high accuracy.

Description

成分センサComponent sensor
 本開示は、赤外線などの光の吸収特性を利用して流体の成分の濃度を検出する流体成分検出装置などの成分センサに関する。 The present disclosure relates to a component sensor such as a fluid component detection device that detects the concentration of a fluid component using light absorption characteristics such as infrared rays.
 従来から、パイプを流れる流体の成分センサが知られている(特許文献1)。 Conventionally, a component sensor for fluid flowing through a pipe is known (Patent Document 1).
 特許文献1に開示されている従来の成分センサは、液体が通過するための管に接続され、液体を流入、通過させながら、該液体の成分を検出する。また、流体の成分を測定する成分センサとしてATR法を利用した成分センサが知られている(特許文献2、3、4)。 The conventional component sensor disclosed in Patent Document 1 is connected to a pipe through which a liquid passes, and detects the component of the liquid while flowing in and passing the liquid. Moreover, the component sensor using ATR method is known as a component sensor which measures the component of a fluid ( patent documents 2, 3, and 4).
国際公開第2016/121338号International Publication No. 2016/121338 特許第4948117号公報Japanese Patent No. 4948117 国際公開第2003/021239号International Publication No. 2003/021239 特開平7-20046号公報Japanese Patent Laid-Open No. 7-20046
 成分センサは、流体の成分を検出するように構成されている、この成分センサは、基板と、基板の主面に設けられた第1と第2の凸部と、赤外線を第1の凸部に入射させる発光部と、第2の凸部を出射した赤外線を検出する受光部とを備える。基板の上記主面の反対側の面は、流体が接するように構成されている。 The component sensor is configured to detect a component of the fluid. The component sensor includes a substrate, first and second convex portions provided on the main surface of the substrate, and infrared rays as the first convex portion. And a light receiving portion for detecting infrared rays emitted from the second convex portion. The surface on the opposite side of the main surface of the substrate is configured so that the fluid contacts.
 この成分センサは、小型であり、流体の成分を高精度に検出できる。 This component sensor is small and can detect fluid components with high accuracy.
図1は実施の形態1における成分センサの斜視図である。FIG. 1 is a perspective view of a component sensor in the first embodiment. 図2は図1に示す成分センサの線II-IIにおける断面図である。2 is a cross-sectional view of the component sensor shown in FIG. 1 taken along line II-II. 図3は実施の形態2における成分センサの斜視図である。FIG. 3 is a perspective view of the component sensor in the second embodiment. 図4は図3に示す成分センサの線IV-IVにおける断面図である。4 is a cross-sectional view of the component sensor shown in FIG. 3 taken along line IV-IV. 図5は実施の形態2における成分センサの赤外線の軌跡を示す図である。FIG. 5 is a diagram illustrating an infrared ray locus of the component sensor according to the second embodiment. 図6Aは実施の形態3における成分センサの断面図である。FIG. 6A is a cross-sectional view of a component sensor according to Embodiment 3. 図6Bは実施の形態3における他の成分センサの断面図である。FIG. 6B is a cross-sectional view of another component sensor according to Embodiment 3. 図7は実施の形態3におけるさらに他の成分センサの断面図である。FIG. 7 is a cross-sectional view of still another component sensor in the third embodiment. 図8は実施の形態3におけるさらに他の成分センサの断面図である。FIG. 8 is a cross-sectional view of still another component sensor in the third embodiment. 図9は実施の形態4における成分センサの拡大断面図である。FIG. 9 is an enlarged cross-sectional view of the component sensor in the fourth embodiment. 図10は実施の形態5における成分センサの斜視図である。FIG. 10 is a perspective view of a component sensor in the fifth embodiment. 図11は実施の形態5における成分センサの模式図である。FIG. 11 is a schematic diagram of a component sensor in the fifth embodiment. 図12は実施の形態5における成分センサの側面図である。FIG. 12 is a side view of the component sensor in the fifth embodiment. 図13は図12に示す成分センサの線XIII-XIIIにおける断面図である。13 is a cross-sectional view of the component sensor shown in FIG. 12, taken along line XIII-XIII. 図14は実施の形態5における成分センサの模式図である。FIG. 14 is a schematic diagram of a component sensor according to the fifth embodiment. 図15は実施の形態5における他の成分センサの模式図である。FIG. 15 is a schematic diagram of another component sensor according to the fifth embodiment. 図16は実施の形態5におけるさらに他の成分センサの模式図である。FIG. 16 is a schematic diagram of still another component sensor according to the fifth embodiment. 図17は実施の形態5におけるさらに他の成分センサの模式図である。FIG. 17 is a schematic diagram of still another component sensor according to the fifth embodiment. 図18は実施の形態5におけるさらに他の成分センサの模式図である。FIG. 18 is a schematic diagram of still another component sensor in the fifth embodiment. 図19は実施の形態6における成分センサの模式図である。FIG. 19 is a schematic diagram of a component sensor according to the sixth embodiment. 図20は比較例の成分センサの模式図である。FIG. 20 is a schematic diagram of a component sensor of a comparative example. 図21Aは実施の形態6における成分センサの模式図である。FIG. 21A is a schematic diagram of a component sensor according to Embodiment 6. 図21Bは実施の形態6における成分センサの模式図である。FIG. 21B is a schematic diagram of a component sensor according to Embodiment 6. 図22は実施の形態7における成分センサの模式図である。FIG. 22 is a schematic diagram of a component sensor according to the seventh embodiment. 図23は実施の形態7における他の成分センサの模式図である。FIG. 23 is a schematic diagram of another component sensor according to the seventh embodiment. 図24は実施の形態7におけるさらに他の成分センサの模式図である。FIG. 24 is a schematic diagram of still another component sensor according to the seventh embodiment. 図25は実施の形態7におけるさらに他の成分センサの模式図である。FIG. 25 is a schematic diagram of still another component sensor according to the seventh embodiment. 図26は実施の形態8における成分センサの模式図である。FIG. 26 is a schematic diagram of a component sensor according to the eighth embodiment.
 以下に、実施の形態に係る成分センサについて図面を用いて説明をする。なお、各図面において、同様の構成については、同一の符号を付し、説明を省略する。また、各実施の形態における各構成要素は矛盾のない範囲で任意に組み合わせても良い。また、各実施の形態における構成は発明を逸脱しない範囲で変更することが可能である。 Hereinafter, the component sensor according to the embodiment will be described with reference to the drawings. In addition, in each drawing, about the same structure, the same code | symbol is attached | subjected and description is abbreviate | omitted. In addition, each component in each embodiment may be arbitrarily combined within a consistent range. The configuration in each embodiment can be changed without departing from the scope of the invention.
 (実施の形態1)
 図1は実施の形態1における成分センサ1の斜視図である。図2は図1に示す成分センサ1の断面図である。図1と図2において互いに直交するX軸とY軸とZ軸とを定義する。
(Embodiment 1)
FIG. 1 is a perspective view of a component sensor 1 according to the first embodiment. FIG. 2 is a cross-sectional view of the component sensor 1 shown in FIG. In FIG. 1 and FIG. 2, an X axis, a Y axis, and a Z axis that are orthogonal to each other are defined.
 成分センサ1は、X軸に平行な延在方向D101に延在した管部3と、基板5と、基板5に設けられた凸部6、7と、凸部6に向かって赤外線8を発光する発光部9と、凸部7から出射した赤外線8を受光する受光部10を有している。管部3は、X軸の方向に延びて内部空間3Sを囲む側壁2を有する。側壁2は、内部空間3Sに面する内壁面2Aと、内壁面2Aの反対側の外壁面3Bとを有する。外壁面3Bは内部空間3Sに面していない。管部3の側壁2には開口部4が設けられている。基板5は開口部4を覆う。図2は、図1に示す管部3の線II-IIにおける断面を示す。 The component sensor 1 emits infrared rays 8 toward the convex portion 6, the tube portion 3 extending in the extending direction D 101 parallel to the X axis, the substrate 5, the convex portions 6 and 7 provided on the substrate 5. And a light receiving portion 10 for receiving the infrared ray 8 emitted from the convex portion 7. The tube portion 3 has a side wall 2 that extends in the X-axis direction and surrounds the internal space 3S. Side wall 2 has inner wall surface 2A facing inner space 3S and outer wall surface 3B opposite to inner wall surface 2A. The outer wall surface 3B does not face the inner space 3S. An opening 4 is provided in the side wall 2 of the tube portion 3. The substrate 5 covers the opening 4. FIG. 2 shows a cross section taken along line II-II of the tube part 3 shown in FIG.
 管部3の両端部は開口しており、流体91が流入または流出することができる。実施の形態1では、流体91はガソリン等の燃料の液体である。管部3の側壁2の外壁面2Bには平坦な平坦部11が設けられている。開口部4は平坦部11に設けられている。平坦部11はその平坦な形状により開口部4を形成しやすく、また、基板5を管部3に取り付けやすくなる。管部3は平坦部11を有していなくてもよい。管部3の平坦部11が設けられている部分のX軸に直角の断面は図1に示すように直方体形状を有する。管部3のこの断面は多角形形状を有していてもよく、さらに平坦部11以外の部分が円弧形状を有していてもよい。 Both ends of the pipe part 3 are open, and the fluid 91 can flow in or out. In the first embodiment, the fluid 91 is a liquid of fuel such as gasoline. A flat flat portion 11 is provided on the outer wall surface 2 </ b> B of the side wall 2 of the tube portion 3. The opening 4 is provided in the flat portion 11. The flat portion 11 can easily form the opening 4 due to its flat shape, and can easily attach the substrate 5 to the tube portion 3. The tube part 3 may not have the flat part 11. The cross section perpendicular to the X axis of the portion of the tube portion 3 where the flat portion 11 is provided has a rectangular parallelepiped shape as shown in FIG. This cross section of the tube part 3 may have a polygonal shape, and a part other than the flat part 11 may have an arc shape.
 基板5はシリコンで形成されている。基板5はシリコンに限られないが、シリコンで形成することで容易に加工をすることができる。基板5は互いに反対側の主面12、13を有する。主面12は開口部4を覆っている。主面13には凸部6、7が設けられている。凸部6、7は基板5の材料であるシリコン基板エッチングすることで形成されており、すなわち、凸部6、7は基板5と一体に形成されている。基板5と凸部6、7を一体に形成することで、容易に凸部6、7を形成することができる。凸部6には傾斜面14が設けられ、凸部7には傾斜面15が設けられている。傾斜面14、15は主面13に対して傾斜している。基板5の屈折率は流体91の屈折率よりも大きい。このため、赤外線8は傾斜面14から基板5の内部に入射し、基板5の内部において全反射をした後に傾斜面15から出射する。傾斜面14と傾斜面15は異方性エッチングで形成されている。異方性エッチングで形成することで傾斜面14、15を容易に形成できる。基板5に(100)ウエハを用いた場合、傾斜面14、15の面方位は(111)面となり、傾斜面14、15の主面13に対する角度θは54.7°となる。角度θを54.7°とすることで、赤外線8が基板5と管部3の内部空間3Sとの境界面すなわち基板5の内部において主面12で全反射することができる。凸部6、7は基板5とは別に形成されて、基板5に接合されていてもよい。 The substrate 5 is made of silicon. The substrate 5 is not limited to silicon, but can be easily processed by being formed of silicon. The substrate 5 has principal surfaces 12 and 13 opposite to each other. The main surface 12 covers the opening 4. Convex portions 6 and 7 are provided on the main surface 13. The convex portions 6 and 7 are formed by etching a silicon substrate that is a material of the substrate 5, that is, the convex portions 6 and 7 are formed integrally with the substrate 5. By forming the substrate 5 and the convex portions 6 and 7 integrally, the convex portions 6 and 7 can be easily formed. The convex portion 6 is provided with an inclined surface 14, and the convex portion 7 is provided with an inclined surface 15. The inclined surfaces 14 and 15 are inclined with respect to the main surface 13. The refractive index of the substrate 5 is larger than the refractive index of the fluid 91. For this reason, the infrared rays 8 are incident on the inside of the substrate 5 from the inclined surface 14 and are emitted from the inclined surface 15 after being totally reflected inside the substrate 5. The inclined surface 14 and the inclined surface 15 are formed by anisotropic etching. The inclined surfaces 14 and 15 can be easily formed by forming by anisotropic etching. When a (100) wafer is used as the substrate 5, the plane orientation of the inclined surfaces 14 and 15 is the (111) plane, and the angle θ of the inclined surfaces 14 and 15 with respect to the main surface 13 is 54.7 °. By setting the angle θ to 54.7 °, the infrared rays 8 can be totally reflected by the main surface 12 at the boundary surface between the substrate 5 and the internal space 3S of the tube portion 3, that is, inside the substrate 5. The convex portions 6 and 7 may be formed separately from the substrate 5 and bonded to the substrate 5.
 傾斜面14から基板5に入射した赤外線8は基板5の内部において主面12、13で複数回全反射し、傾斜面15から出射する。赤外線8は境界面すなわち主面12で全反射する際にエバネッセント波が流体91中に潜り込み、流体91で吸収されて減衰する。この減衰量を検出することで流体91の成分を検出することができる。凸部6、7は互いに離間して設けられている。したがって、傾斜面14から入射した赤外線8が傾斜面15から出射するまでの間に複数回全反射する。これにより、受光部10に入射するまでに赤外線8が減衰する減衰量が大きくなり、流体91の成分の検出精度が向上する。 The infrared rays 8 incident on the substrate 5 from the inclined surface 14 are totally reflected a plurality of times by the main surfaces 12 and 13 inside the substrate 5 and emitted from the inclined surface 15. When the infrared ray 8 is totally reflected at the boundary surface, that is, the main surface 12, an evanescent wave enters the fluid 91 and is absorbed and attenuated by the fluid 91. By detecting the amount of attenuation, the component of the fluid 91 can be detected. The convex portions 6 and 7 are provided apart from each other. Therefore, the infrared rays 8 incident from the inclined surface 14 are totally reflected a plurality of times until they are emitted from the inclined surface 15. Thereby, the attenuation amount by which the infrared rays 8 are attenuated before entering the light receiving unit 10 is increased, and the detection accuracy of the component of the fluid 91 is improved.
 また、凸部6、7を設けることで、基板5の凸部6、7の間の赤外線8が透過する領域を薄くすることができる。これにより、赤外線8が基板5を透過する際に全反射する回数が多くなり、流体91の成分の検出精度が向上する。また、基板5が薄いことで赤外線8が全反射する回数を増やすことができるため、凸部6、7の間の距離を短くすることができ、成分センサ1を小型化することができる。 Further, by providing the convex portions 6 and 7, the region through which the infrared rays 8 between the convex portions 6 and 7 of the substrate 5 are transmitted can be thinned. As a result, the number of times the infrared rays 8 are totally reflected when passing through the substrate 5 is increased, and the detection accuracy of the component of the fluid 91 is improved. Moreover, since the frequency | count that the infrared rays 8 are totally reflected can be increased because the board | substrate 5 is thin, the distance between the convex parts 6 and 7 can be shortened, and the component sensor 1 can be reduced in size.
 特許文献1に開示されている従来の成分センサは成分を高精度に検出することが困難である。すなわち、この成分センサは、検出する成分を含む液体を流入させる流路が極めて細い傍流として構成されている。したがって、液体を安定的に流入させることが困難であり、成分を高精度に検出することは困難である。また、特許文献2~4に開示されている成分センサでは、検出精度を向上するために基板内での赤外線の反射回数を増やすと成分センサが大型化する。 The conventional component sensor disclosed in Patent Document 1 is difficult to detect components with high accuracy. That is, this component sensor is configured as a side flow in which the flow path for the liquid containing the component to be detected flows is extremely thin. Therefore, it is difficult to stably flow in the liquid, and it is difficult to detect the components with high accuracy. In the component sensors disclosed in Patent Documents 2 to 4, the component sensor is increased in size when the number of reflections of infrared rays in the substrate is increased in order to improve detection accuracy.
 上述のように、実施の形態1における成分センサ1は流体91の成分を高精度で検出でき、小型化することができる。 As described above, the component sensor 1 in the first embodiment can detect the component of the fluid 91 with high accuracy and can be downsized.
 発光部9は、赤外線8を発光可能な白金薄膜抵抗素子を用いている。発光部9は、赤外線8を発光可能な発光ダイオードを用いても良い。発光ダイオードには、半導体のベアチップを用いている。発光部9は、管部3の基板5が設けられた側に設けられ、凸部6に赤外線8が入射するように配置されている。赤外線8は、検出対象の流体91に吸収されやすい波長を有する。実施の形態1においては、赤外線8の波長は2μm~15μmである。この範囲の波長を用いることで流体91の成分を精度良く検出することが出来る。なお、成分センサ1の使用用途に応じて、赤外線8の波長の範囲をもっと狭くしても良い。測定しようとする流体91の成分が吸収する固有の吸収波長に一致する通過帯域を有する光学バンドパスフィルタを発光部9に設けることで、赤外線8の波長の範囲を狭くする事ができる。 The light emitting unit 9 uses a platinum thin film resistance element capable of emitting infrared rays 8. The light emitting unit 9 may use a light emitting diode capable of emitting infrared rays 8. A semiconductor bare chip is used for the light emitting diode. The light emitting unit 9 is provided on the side of the tube unit 3 on which the substrate 5 is provided, and is arranged so that the infrared rays 8 are incident on the projection 6. The infrared ray 8 has a wavelength that is easily absorbed by the fluid 91 to be detected. In the first embodiment, the wavelength of the infrared ray 8 is 2 μm to 15 μm. By using a wavelength in this range, the component of the fluid 91 can be detected with high accuracy. Note that the wavelength range of the infrared ray 8 may be further narrowed according to the use application of the component sensor 1. By providing the light-emitting unit 9 with an optical bandpass filter having a passband that matches the specific absorption wavelength absorbed by the component of the fluid 91 to be measured, the wavelength range of the infrared ray 8 can be narrowed.
 受光部10は、半導体のベアチップを用いている。受光部10は管部3の基板5が設けられた側で凸部7から出射した赤外線8を検出できる位置に配置されている。受光部10は受光素子16、17、18を有している。受光素子16には光学フィルタ19が設けられ、受光素子17には光学フィルタ20が設けられ、受光素子18の前方には光学フィルタ21が設けられている。受光部10は、受光素子16、17、18と光学フィルタ19、20、21を支持する筐体22を有する。光学フィルタ19、20、21は互いに異なる波長の赤外線を透過させる。光学フィルタ19が流体91に吸収される吸収量の小さい波長の赤外線8を透過する。光学フィルタ20、21は光学フィルタ19を透過する波長よりも流体91の吸収量の大きい波長の赤外線8を透過させる。受光素子16の出力を受光素子17と受光素子18の出力と比較することで、流体91での赤外線8の吸収量がわかるため、精度良く流体91の成分を検出することができる。受光素子18が無くても受光素子16、17で流体91の成分を精度良く検出することができる。受光素子18をさらに有していることで、流体91の2種類の成分を高精度に検出することができる。検出したい流体91の成分の種類を増やしたい場合、受光素子の数をさらに増やしても良い。 The light receiving unit 10 uses a semiconductor bare chip. The light receiving unit 10 is disposed at a position where the infrared ray 8 emitted from the convex portion 7 can be detected on the side of the tube unit 3 on which the substrate 5 is provided. The light receiving unit 10 includes light receiving elements 16, 17, and 18. The light receiving element 16 is provided with an optical filter 19, the light receiving element 17 is provided with an optical filter 20, and an optical filter 21 is provided in front of the light receiving element 18. The light receiving unit 10 includes a housing 22 that supports the light receiving elements 16, 17, and 18 and the optical filters 19, 20, and 21. The optical filters 19, 20, and 21 transmit infrared rays having different wavelengths. The optical filter 19 transmits infrared rays 8 having a small absorption amount absorbed by the fluid 91. The optical filters 20 and 21 transmit the infrared ray 8 having a wavelength with a larger amount of absorption of the fluid 91 than the wavelength transmitted through the optical filter 19. By comparing the output of the light receiving element 16 with the outputs of the light receiving element 17 and the light receiving element 18, the amount of absorption of the infrared ray 8 in the fluid 91 can be known, so that the component of the fluid 91 can be detected with high accuracy. Even without the light receiving element 18, the components of the fluid 91 can be accurately detected by the light receiving elements 16 and 17. By further including the light receiving element 18, two types of components of the fluid 91 can be detected with high accuracy. When it is desired to increase the types of components of the fluid 91 to be detected, the number of light receiving elements may be further increased.
 発光部9は凸部6からZ軸の負方向に離間した位置に配置されている。受光部10は凸部7からZ軸の負方向に離間した位置に配置されている。この配置により。成分センサ1を小型化することができる。さらに、赤外線8の傾斜面14へ入射する入射角が小さくなり、流体91へ深く浸透することができ成分センサ1の検出精度を向上させる。また、発光部9と受光部10は同一の支持基板23の表面23A上に設けられている。発光部9は赤外線8を発光する発光面9Pを有する。受光部10は赤外線8を受光する受光面10Pを有する。発光部9の発光面9Pと受光部10の受光面10Pが同一平面P23上に位置する、すなわち支持基板23の表面23Aから同じ距離に位置するように発光部9と受光部10が配置されている。このように配置することで、発光部9と受光部10を実装しやすくなる。なお、発光部9と受光部10は同一の支持基板23に設けなくても良く、基板5内で赤外線8が全反射する角度の範囲内で、発光部9と受光部10が凸部6と凸部7とからZ軸に対してそれぞれ傾斜した方向に配置されていてもよい。 The light emitting part 9 is arranged at a position spaced from the convex part 6 in the negative direction of the Z axis. The light receiving unit 10 is disposed at a position away from the convex part 7 in the negative direction of the Z axis. By this arrangement. The component sensor 1 can be reduced in size. Furthermore, the incident angle of the infrared rays 8 incident on the inclined surface 14 is reduced, and the infrared rays 8 can penetrate deeply into the fluid 91, thereby improving the detection accuracy of the component sensor 1. Further, the light emitting unit 9 and the light receiving unit 10 are provided on the surface 23 </ b> A of the same support substrate 23. The light emitting unit 9 has a light emitting surface 9P that emits infrared rays 8. The light receiving unit 10 has a light receiving surface 10 </ b> P that receives the infrared rays 8. The light emitting unit 9 and the light receiving unit 10 are arranged so that the light emitting surface 9P of the light emitting unit 9 and the light receiving surface 10P of the light receiving unit 10 are located on the same plane P23, that is, at the same distance from the surface 23A of the support substrate 23. Yes. By arranging in this way, the light emitting unit 9 and the light receiving unit 10 can be easily mounted. Note that the light emitting unit 9 and the light receiving unit 10 do not have to be provided on the same support substrate 23, and the light emitting unit 9 and the light receiving unit 10 are in the range of the angle at which the infrared rays 8 are totally reflected in the substrate 5. You may arrange | position in the direction inclined with respect to the Z-axis from the convex part 7, respectively.
 (実施の形態2)
 図3は実施の形態2における成分センサ31の斜視図である。図4は成分センサ31の断面図である。図5は成分センサ31の赤外線8の軌跡を示す。図4は、図3に示す管部3の線IV-IVにおける断面を示す。図5は説明の便宜上、基板5に隠れている部分を破線で示し、基板5内を全反射している赤外線8の軌跡を破線の直線で示している。図3から図5において、図1と図2に示す実施の形態1における成分センサ1と同じ部分には同じ参照番号を付す。
(Embodiment 2)
FIG. 3 is a perspective view of the component sensor 31 in the second embodiment. FIG. 4 is a sectional view of the component sensor 31. FIG. 5 shows the locus of the infrared rays 8 of the component sensor 31. FIG. 4 shows a cross section taken along line IV-IV of the tube part 3 shown in FIG. For convenience of explanation, FIG. 5 shows a portion hidden by the substrate 5 by a broken line, and shows a locus of the infrared rays 8 totally reflected in the substrate 5 by a broken line. 3 to 5, the same reference numerals are assigned to the same parts as those of the component sensor 1 in the first embodiment shown in FIGS. 1 and 2.
 成分センサ31は、図1と図2に示す成分センサ1の受光部10の代わりに凸部7から出射した赤外線8を受光する受光部32を有している。受光部32は赤外線8を受光する受光面32Pを有する。受光部32の受光面32Pと発光部9の発光面9Pが同一平面P23上に位置する、すなわちすなわち支持基板23の表面23Aから同じ距離に位置するように受光部32と発光部9は配置されている。 The component sensor 31 has a light receiving portion 32 that receives the infrared ray 8 emitted from the convex portion 7 instead of the light receiving portion 10 of the component sensor 1 shown in FIGS. 1 and 2. The light receiving unit 32 has a light receiving surface 32 </ b> P that receives the infrared rays 8. The light receiving unit 32 and the light emitting unit 9 are arranged so that the light receiving surface 32P of the light receiving unit 32 and the light emitting surface 9P of the light emitting unit 9 are located on the same plane P23, that is, at the same distance from the surface 23A of the support substrate 23. ing.
 受光部32は、図1と図2に示す成分センサ1の受光部10と同様に、受光素子16、17、18と光学フィルタ19、20、21とを有する。受光素子16、17、18は、赤外線8の一部である赤外線816、817、818を受光する受光面16P、17P、18Pをそれぞれ有する。受光素子16、17、18は受光面16P、17P、18Pが平面P23上に位置する、すなわち支持基板23の表面23Aから同じ高さに位置するように配置されている。これにより、受光素子16、17、18の実装が容易になる。 The light receiving unit 32 includes light receiving elements 16, 17, 18 and optical filters 19, 20, 21, similarly to the light receiving unit 10 of the component sensor 1 shown in FIGS. 1 and 2. The light receiving elements 16, 17, and 18 have light receiving surfaces 16 </ b> P, 17 </ b> P, and 18 </ b> P that receive the infrared rays 816, 817, and 818 that are part of the infrared ray 8. The light receiving elements 16, 17 and 18 are arranged such that the light receiving surfaces 16P, 17P and 18P are positioned on the plane P23, that is, at the same height from the surface 23A of the support substrate 23. This facilitates mounting of the light receiving elements 16, 17, and 18.
 受光部32では、受光素子16、17、18はY軸の方向、すなわち基板5の主面13に平行でかつX軸に直角の方向に並んで配置されている。図5に示すように、基板5を透過した赤外線8は、Y軸の方向に配列されてかつ互いに離れて広がる赤外線816、817、818として凸部7から出射する。このため、Y軸方向に並べて配置された受光素子16、17、18は効率良く赤外線816、817、818をそれぞれ検出することができる。 In the light receiving unit 32, the light receiving elements 16, 17, and 18 are arranged side by side in the direction of the Y axis, that is, in the direction parallel to the main surface 13 of the substrate 5 and perpendicular to the X axis. As shown in FIG. 5, the infrared rays 8 transmitted through the substrate 5 are emitted from the convex portion 7 as infrared rays 816, 817, and 818 that are arranged in the Y-axis direction and spread away from each other. For this reason, the light receiving elements 16, 17, and 18 arranged side by side in the Y-axis direction can efficiently detect the infrared rays 816, 817, and 818, respectively.
 (実施の形態3)
 図6Aは実施の形態3における成分センサ41の断面図である。図6Aにおいて図1と図2に示す実施の形態1における成分センサ1と同じ部分には同じ参照番号を付す。成分センサ41は、図1と図2に示す成分センサ1の凸部7の代わりに、基板5の主面12に設けられた凸部47を有する。図6Aは基板5と発光部9と受光部10の位置関係を示す。図6Aでは説明の便宜上、赤外線8の軌跡を基板5外では直線で示し、基板5内では破線で示している。
(Embodiment 3)
FIG. 6A is a cross-sectional view of component sensor 41 in the third embodiment. In FIG. 6A, the same reference numerals are given to the same portions as those of the component sensor 1 in the first embodiment shown in FIGS. The component sensor 41 has a convex portion 47 provided on the main surface 12 of the substrate 5 instead of the convex portion 7 of the component sensor 1 shown in FIGS. 1 and 2. FIG. 6A shows the positional relationship among the substrate 5, the light emitting unit 9, and the light receiving unit 10. In FIG. 6A, for convenience of explanation, the locus of the infrared ray 8 is indicated by a straight line outside the substrate 5 and indicated by a broken line inside the substrate 5.
 成分センサ41の基板5は、凸部6、47はX軸の方向で同じ位置に基板5を挟んでZ軸の方向に配列されている。なお、ここでいう同じ位置とは製造誤差によるずれは許容される。凸部6に赤外線8が入射するように発光部9が設けられ、凸部47から出射した赤外線8を受光するように受光部10が設けられている。基板5のX軸の方向の側端面43には金やアルミニウム等で形成された反射膜43Mが設けられている。凸部6の傾斜面14から入射した赤外線8はX軸の方向に主面12、13で全反射を繰り返しながら基板5の内部を進行し、反射膜43Mにより側端面43で反射し、凸部47に向かって主面12、13で全反射を繰り返しながら基板5の内部を進行し、凸部47の傾斜面45から基板5の外に出射する。この様に、側端面43で赤外線8が反射するように構成することで、基板5内の赤外線8が進行する光路の光路長が長くなり、赤外線8が反射する回数を増やすことができる。したがって、成分センサ41の感度を向上させることができる。また、基板5のX軸の方向の長さが同じでも赤外線8の光路長が長くなるため、感度を維持したまま成分センサ41を小型化させることもできる。凸部6、47は基板5といったiに形成されていてもよく、基板5とは別に形成されて基板5に接合されていてもよい。 The substrate 5 of the component sensor 41 has the convex portions 6 and 47 arranged in the Z-axis direction with the substrate 5 sandwiched at the same position in the X-axis direction. Note that a deviation due to a manufacturing error is allowed from the same position here. The light emitting part 9 is provided so that the infrared ray 8 is incident on the convex part 6, and the light receiving part 10 is provided so as to receive the infrared ray 8 emitted from the convex part 47. A reflective film 43M made of gold, aluminum, or the like is provided on the side end face 43 of the substrate 5 in the X-axis direction. The infrared ray 8 incident from the inclined surface 14 of the convex portion 6 travels inside the substrate 5 while repeating total reflection on the main surfaces 12 and 13 in the X-axis direction, and is reflected by the side end surface 43 by the reflective film 43M. It advances inside the substrate 5 while repeating total reflection at the main surfaces 12 and 13 toward 47, and exits from the inclined surface 45 of the convex portion 47 to the outside of the substrate 5. In this way, by configuring the side end face 43 to reflect the infrared rays 8, the optical path length of the optical path in the substrate 5 on which the infrared rays 8 travel is increased, and the number of times the infrared rays 8 are reflected can be increased. Therefore, the sensitivity of the component sensor 41 can be improved. Further, since the optical path length of the infrared ray 8 is increased even if the length of the substrate 5 in the X-axis direction is the same, the component sensor 41 can be downsized while maintaining the sensitivity. The protrusions 6 and 47 may be formed on i such as the substrate 5, or may be formed separately from the substrate 5 and bonded to the substrate 5.
 図6Bは実施の形態3における他の成分センサ41Aの断面図である。図6Bにおいて図6Aに示す成分センサ41と同じ部分には同じ参照番号を付す。基板5はX軸の方向において側端面43の反対側の側端面143を有する。成分センサ41Aは、基板5の側端面143に設けられた反射膜143Mをさらに備える。反射膜143Mにより側端面143でも赤外線8が基板5内で反射する。これにより、赤外線8が側端面43、143で複数回反射するようになり、赤外線8が基板5の内部を通る光路の光路長を長くすることができ、成分センサ41Aの感度をさらに向上させることができる。また、成分センサ41Aの感度を維持したまま、さらに成分センサ41Aを小型化させることもできる。 FIG. 6B is a cross-sectional view of another component sensor 41A in the third embodiment. 6B, the same reference numerals are given to the same portions as those of the component sensor 41 shown in FIG. 6A. The substrate 5 has a side end surface 143 opposite to the side end surface 43 in the X-axis direction. The component sensor 41 </ b> A further includes a reflective film 143 </ b> M provided on the side end surface 143 of the substrate 5. The infrared rays 8 are reflected in the substrate 5 also on the side end surface 143 by the reflective film 143M. Thereby, the infrared ray 8 is reflected by the side end surfaces 43 and 143 a plurality of times, the optical path length of the optical path through which the infrared ray 8 passes through the inside of the substrate 5 can be increased, and the sensitivity of the component sensor 41A is further improved. Can do. Further, the component sensor 41A can be further downsized while maintaining the sensitivity of the component sensor 41A.
 なお、成分センサ41、41Aでは基板5のX軸の方向の同じ位置にZ軸の方向に基板5を挟んで凸部6、47が配列される。基板5の側端面43で赤外線8が反射する構成であれば凸部6、47の配置位置はこれに限られない。 In the component sensors 41 and 41A, the convex portions 6 and 47 are arranged at the same position in the X-axis direction of the substrate 5 with the substrate 5 sandwiched in the Z-axis direction. If the infrared rays 8 are reflected by the side end face 43 of the substrate 5, the arrangement positions of the convex portions 6 and 47 are not limited to this.
 図7は実施の形態3におけるさらに他の成分センサ41Bの断面図である。図7において図6Aと図6Bに示す成分センサ41、41Aと同じ部分には同じ参照番号を付す。図7は成分センサ41Bの基板5と発光部9と受光部10の位置関係を示す。 FIG. 7 is a cross-sectional view of still another component sensor 41B in the third embodiment. In FIG. 7, the same reference numerals are given to the same portions as the component sensors 41 and 41A shown in FIGS. 6A and 6B. FIG. 7 shows the positional relationship among the substrate 5, the light emitting unit 9, and the light receiving unit 10 of the component sensor 41B.
 成分センサ41Bでは、基板5についてZ軸の方向の同一側に発光部9と受光部10が配置されている。成分センサ41Bは、成分センサ41、41Aの凸部6、7の代わりに、基板5の主面13に設けられた1つの凸部44を有する。凸部44は基板5の主面12に対して傾斜する傾斜面45A、45Bと、傾斜面45A、45Bの間をつなぐ面44Aとを有する。面44Aは主面13と平行である。発光部9から発せられた赤外線8は凸部44の傾斜面45Aから入射し、基板5の表面で繰り返し全反射して基板5の内部を進行し、傾斜面45Bから出射して受光部10で受光される。基板5のX軸の方向の互いに反対側の側端面43、143には反射膜43M、143Mがそれぞれ設けられている。赤外線8は基板5の内部において反射膜43M、143Mにより側端面43、143で複数回全反射し、主面12、13、44Aで繰り返し全反射して基板5の凸部44の傾斜面45Bから出射する。これにより、赤外線8の基板5内での光路長を長くすることができ、成分センサ41Bの感度を向上させたり、成分センサ41Bを小型化したりできる。 In the component sensor 41B, the light emitting unit 9 and the light receiving unit 10 are disposed on the same side of the substrate 5 in the Z-axis direction. The component sensor 41 </ b> B has one convex portion 44 provided on the main surface 13 of the substrate 5 instead of the convex portions 6 and 7 of the component sensors 41 and 41 </ b> A. The convex portion 44 includes inclined surfaces 45A and 45B that are inclined with respect to the main surface 12 of the substrate 5, and a surface 44A that connects the inclined surfaces 45A and 45B. The surface 44A is parallel to the main surface 13. The infrared rays 8 emitted from the light emitting unit 9 are incident from the inclined surface 45A of the convex portion 44, are repeatedly totally reflected on the surface of the substrate 5, travel inside the substrate 5, are emitted from the inclined surface 45B, and are received by the light receiving unit 10. Received light. Reflective films 43M and 143M are provided on side end surfaces 43 and 143 on the opposite sides of the substrate 5 in the X-axis direction, respectively. The infrared ray 8 is totally reflected at the side end faces 43 and 143 a plurality of times by the reflection films 43M and 143M inside the substrate 5, and is repeatedly totally reflected at the main surfaces 12, 13, and 44A, and from the inclined surface 45B of the convex portion 44 of the substrate 5. Exit. Thereby, the optical path length in the board | substrate 5 of the infrared rays 8 can be lengthened, the sensitivity of the component sensor 41B can be improved, or the component sensor 41B can be reduced in size.
 図8は実施の形態3におけるさらに他の成分センサ41Cの平面図である。図8において図1、図2と図6Aと図6Bに示す成分センサ1、41、41Aと同じ部分には同じ参照番号を付す。図8は成分センサ41Cの基板5と凸部6、7の位置関係を示す。図8は成分センサ41Cの基板5の主面13をZ軸の方向から見た図である。 FIG. 8 is a plan view of still another component sensor 41C in the third embodiment. In FIG. 8, the same reference numerals are assigned to the same portions as those of the component sensors 1, 41, and 41A shown in FIGS. 1, 2, 6A, and 6B. FIG. 8 shows the positional relationship between the substrate 5 and the convex portions 6 and 7 of the component sensor 41C. FIG. 8 is a view of the main surface 13 of the substrate 5 of the component sensor 41C as viewed from the Z-axis direction.
 成分センサ41Cは基板5のZ軸の同じ方向の主面13に凸部6、7が設けられている。凸部6、7はX軸の方向の異なる位置で、かつ、Y軸の方向の異なる位置に設けられている。図8では、凸部6、7は基板5の主面13の対角の互いに反対側の位置に設けられている。基板5のX軸の互いに反対の方向の側端面43、143には反射膜43M、143Mがそれぞれ設けられている。凸部6から入射した赤外線8は反射膜43M、143Mにより側端面43、143で複数回全反射して凸部7から出射する。この様に基板5を構成することで、赤外線8が基板5内を進行する光路の光路長を長くすることができるため、成分センサ41Cの感度を向上させたり、成分センサ41Cを小型化したりできる。 The component sensor 41 </ b> C is provided with convex portions 6 and 7 on the main surface 13 in the same direction of the Z axis of the substrate 5. The convex portions 6 and 7 are provided at different positions in the X-axis direction and different positions in the Y-axis direction. In FIG. 8, the convex portions 6 and 7 are provided at positions opposite to each other on the diagonal of the main surface 13 of the substrate 5. Reflective films 43M and 143M are provided on side end surfaces 43 and 143 in the opposite directions of the X axis of the substrate 5, respectively. The infrared ray 8 incident from the convex portion 6 is totally reflected a plurality of times at the side end surfaces 43 and 143 by the reflective films 43M and 143M and is emitted from the convex portion 7. By configuring the substrate 5 in this manner, the optical path length of the optical path through which the infrared rays 8 travel in the substrate 5 can be increased, so that the sensitivity of the component sensor 41C can be improved and the component sensor 41C can be downsized. .
 (実施の形態4)
 図9は実施の形態4における成分センサ51の拡大断面図である。図9において図1から図8に示す成分センサ1、41、41A~41Cと同じ部分には同じ参照番号を付す。
(Embodiment 4)
FIG. 9 is an enlarged cross-sectional view of the component sensor 51 in the fourth embodiment. 9, the same parts as those of the component sensors 1, 41, 41A to 41C shown in FIGS. 1 to 8 are denoted by the same reference numerals.
 実施の形態4の成分センサ51は、基板5は管部3に封止材53を用いて開口部4を封止している。基板5の側端面43、143を含む外縁部分5CのZ軸の方向の厚さL2は、基板5の中央部分のZ軸の方向の厚さL1よりも大きい。すなわち基板5の外縁部分5Cは局所的に厚い。基板5はZ軸の方向の厚さを小さくした方が赤外線8の反射の回数が増え、成分センサ51の感度を向上させることができる。しかしながら、基板5を薄くすると基板5の強度が低下するため、基板5で封止材53を用いて開口部4で封止する際に基板5に亀裂が発生する場合がある。成分センサ51は、基板5を管部3に実装する外縁部分5Cの厚さL2を局所的に厚くしているため、封止強度を向上させることができる。 In the component sensor 51 according to the fourth embodiment, the substrate 5 seals the opening 4 using the sealing material 53 on the tube 3. The thickness L2 in the Z-axis direction of the outer edge portion 5C including the side end surfaces 43 and 143 of the substrate 5 is larger than the thickness L1 of the central portion of the substrate 5 in the Z-axis direction. That is, the outer edge portion 5C of the substrate 5 is locally thick. If the thickness of the substrate 5 in the Z-axis direction is reduced, the number of reflections of the infrared rays 8 increases, and the sensitivity of the component sensor 51 can be improved. However, since the strength of the substrate 5 decreases when the substrate 5 is thinned, the substrate 5 may be cracked when the substrate 5 is sealed with the opening portion 4 using the sealing material 53. Since the component sensor 51 locally increases the thickness L2 of the outer edge portion 5C for mounting the substrate 5 on the tube portion 3, the sealing strength can be improved.
 (実施の形態5)
 図10は実施の形態5における成分センサ110を立体的に表す斜視図である。図11は成分センサ110の模式図である。図12は成分センサ110の側面図である。図13は図12に示す成分センサ110の線XIII-XIIIにおける断面図である。図14は成分センサ110の模式図である。図10から図14において互いに直交するX軸とY軸とZ軸とを定義する。成分センサ110は流体の成分を検出し、実施の形態5では自動車の燃料パイプに接続され、流体である液体の燃料を流入、通過させ、燃料の成分を検出する。
(Embodiment 5)
FIG. 10 is a perspective view that three-dimensionally represents the component sensor 110 according to the fifth embodiment. FIG. 11 is a schematic diagram of the component sensor 110. FIG. 12 is a side view of the component sensor 110. 13 is a cross-sectional view of the component sensor 110 shown in FIG. 12 taken along line XIII-XIII. FIG. 14 is a schematic diagram of the component sensor 110. 10 to 14, the X axis, the Y axis, and the Z axis that are orthogonal to each other are defined. The component sensor 110 detects a fluid component. In the fifth embodiment, the component sensor 110 is connected to a fuel pipe of an automobile and allows liquid fuel, which is a fluid, to flow in and pass through to detect the fuel component.
 成分センサ110は、流体191が流入する流路101と、流路101に接続された検出用流路107と、検出用流路107に接続されて成分センサ110の外へ流体191を排出する流路103と、流路101、103に接続された迂路102とを備える。実施の形態5において、上述のように、流体191は液体である燃料である。流路101はX軸の方向である延在方向に延びる。流路101と検出用流路107と流路103とはX軸に平行な直線上に配列されている。流路101に流入した流体191の一部191Aは検出用流路107に流れ、流路101に流入した流体191の他の一部191Bは迂路102に流れる。検出用流路107と迂路102とにそれぞれ流れた流体191の一部191A、191Bは合わさって流路103に流れて成分センサ110の外部に排出される。検出用流路107の外側には、発光部104と受光部105が検出用流路107を挟むように設けられている。 The component sensor 110 includes a flow channel 101 into which the fluid 191 flows, a detection flow channel 107 connected to the flow channel 101, and a flow that is connected to the detection flow channel 107 and discharges the fluid 191 to the outside of the component sensor 110. A path 103 and a detour 102 connected to the flow paths 101 and 103 are provided. In the fifth embodiment, as described above, the fluid 191 is a fuel that is a liquid. The channel 101 extends in the extending direction that is the direction of the X axis. The channel 101, the detection channel 107, and the channel 103 are arranged on a straight line parallel to the X axis. A part 191 A of the fluid 191 that has flowed into the flow path 101 flows into the detection flow path 107, and another part 191 B of the fluid 191 that has flowed into the flow path 101 flows into the bypass 102. Portions 191A and 191B of the fluid 191 that flow in the detection flow path 107 and the detour path 102 together flow into the flow path 103 and are discharged to the outside of the component sensor 110. A light emitting unit 104 and a light receiving unit 105 are provided outside the detection channel 107 so as to sandwich the detection channel 107 therebetween.
 Z軸は検出用流路107の中心点107Cから発光部104に向かう方向に延びる。X軸は検出用流路107の中心点107CからZ軸に直角に接続口116に向かう方向に延びる。Y軸は検出用流路107の中心点107CにおいてX軸とZ軸とに直交する。 The Z axis extends in a direction from the center point 107C of the detection flow path 107 toward the light emitting unit 104. The X axis extends from the center point 107C of the detection flow path 107 in a direction toward the connection port 116 at a right angle to the Z axis. The Y axis is orthogonal to the X axis and the Z axis at the center point 107C of the detection flow path 107.
 検出用流路107は流路101から流路101の延在方向に位置する。すなわち、流路101の流体191が流れる内部空間と、検出用流路107の流体191の一部191Aが流れる内部空間とには、X軸に平行な直線101Sが通過する。 The detection flow path 107 is located in the extending direction of the flow path 101 from the flow path 101. That is, a straight line 101S parallel to the X axis passes through an internal space in which the fluid 191 in the flow channel 101 flows and an internal space in which a part 191A of the fluid 191 in the detection flow channel 107 flows.
 迂路102は、検出用流路107を迂回するためにコの字形状を有する。迂路102は流路101に接続口119で接続されており、流路103に接続口219で接続されている。検出用流路107は、流路101と接続口116で接続されており、流路103と接続口121で接続されている。接続口119は接続口116に直角である。 The detour 102 has a U-shape to bypass the detection flow path 107. The detour 102 is connected to the flow path 101 through the connection port 119 and is connected to the flow path 103 through the connection port 219. The detection flow path 107 is connected to the flow path 101 through the connection port 116, and is connected to the flow path 103 through the connection port 121. The connection port 119 is perpendicular to the connection port 116.
 図11は、破線によって記された枠で流路101と迂路102と流路103と検出用流路107と接続口116と接続口119の範囲を具体的に示している。 FIG. 11 specifically shows the ranges of the flow path 101, the bypass 102, the flow path 103, the detection flow path 107, the connection port 116, and the connection port 119 with a frame indicated by a broken line.
 実施の形態5における成分センサ110では、Y軸の方向において、流路101の内部空間と迂路102の内部空間との最も離れた部分の距離L101は、検出用流路107の内部空間と迂路102の内部空間との最も離れた部分の距離L102と等しい。 In the component sensor 110 according to the fifth embodiment, the distance L101 of the farthest part between the internal space of the flow path 101 and the internal space of the detour 102 in the Y-axis direction is equal to the internal space of the detection flow path 107 and the detour 102. Is equal to the distance L102 of the furthest part from the internal space.
 図13に示すように、接続口116はY軸の方向に、すなわち接続口119に向かって細長く延びる形状を有する。すなわち、接続口116のY軸の方向の幅はその方向に直角のZ軸の方向の幅より大きい、実施の形態5において接続口116はY軸の方向に細長く延びる矩形状を有するが、多角形状、涙滴形状、楕円形状、長円形状など、本実施の形態の目的を満足させられる限りにおいてY軸の方向に細長く延びる任意の形状であってよい。 As shown in FIG. 13, the connection port 116 has a shape extending in the Y-axis direction, that is, toward the connection port 119. That is, the width of the connection port 116 in the Y-axis direction is larger than the width of the Z-axis direction perpendicular to that direction. In the fifth embodiment, the connection port 116 has a rectangular shape extending in the Y-axis direction. As long as the object of the present embodiment is satisfied, such as a shape, a teardrop shape, an elliptical shape, and an oval shape, the shape may be an arbitrary shape that is elongated in the Y-axis direction.
 流路101、103と迂路102の材料は流体191に応じて適宜選択される。実施の形態5においては、流体191は燃料であり、流路101、103と迂路102の材料として単体金属または合金を用いることが好ましい。流体191が水や清涼飲料水であり、果汁の成分を検出する場合には、流路101、103と迂路102の材料として樹脂を用いても良いし、ガラス、木材、竹など、本実施の形態の目的を満足させられる限りにおいて、適宜選択する。検出用流路107の材料は、発光部104より放射される光108を透過する材料よりなり、実施の形態5ではシリコン、ゲルマニウム、ガラスなどであるが、特にこれらに限定されない。 The materials of the flow paths 101 and 103 and the detour 102 are appropriately selected according to the fluid 191. In the fifth embodiment, the fluid 191 is fuel, and it is preferable to use a single metal or an alloy as the material of the flow paths 101 and 103 and the bypass 102. In the case where the fluid 191 is water or soft drink and a fruit juice component is detected, a resin may be used as the material of the flow paths 101 and 103 and the bypass 102, or glass, wood, bamboo, etc. As long as the purpose of the form can be satisfied, it is appropriately selected. The material of the detection channel 107 is made of a material that transmits the light 108 emitted from the light emitting unit 104. In the fifth embodiment, silicon, germanium, glass, or the like is used, but the material is not particularly limited thereto.
 流路101、103と迂路102と検出用流路107は、使用目的や、製造コストなどに鑑みて適宜選択された、例えば、ねじ込み接続、ハンダ付け、溶接、凹凸による接合、ビス止め、接着などの方法で接続されている。また、実施の形態5の効果を障り無く実現できるのであれば、流路101、103と迂路102と検出用流路107は同一の材料から成り、金型等を用いて継目無く製造してもよく、2つ以上の部品で構成してもよい。 The flow paths 101 and 103, the detour path 102, and the detection flow path 107 are appropriately selected in consideration of the purpose of use, manufacturing cost, and the like. For example, screw connection, soldering, welding, joining by unevenness, screwing, adhesion, etc. Connected in the way. If the effects of the fifth embodiment can be realized without hindrance, the flow paths 101 and 103, the bypass path 102, and the detection flow path 107 are made of the same material and can be manufactured seamlessly using a mold or the like. Alternatively, it may be composed of two or more parts.
 流路101を流体191が流れる方向に直角の方向での流路101の断面積S1と、流路103を流体191が流れる方向に直角の方向での流路103の断面積S2と、検出用流路107を流体191(191A)が流れる方向に直角の方向での検出用流路107の断面積S3と、迂路102を流体191(191B)が流れる方向に直角の方向での迂路102の断面積S4はS1=S2>S4>S3の関係を満たす。検出用流路107のZ軸の方向の幅10μm以上100μm以下であることが好ましいが、本実施の形態の目的を満足させられる限りにおいて、これに限定されない。例えば、検出の対象となる流体191が水、清涼飲料水、果汁のような、光108を吸収しやすい液体である場合には、受光部105へ光108が到達しにくい。このため、実施可能な範囲において、燃料の成分を検出する場合に比べて検出用流路107の製造は容易ではなくなるが、検出用流路107の幅を10μm以下とする場合もある。 The cross-sectional area S1 of the flow path 101 in the direction perpendicular to the direction in which the fluid 191 flows through the flow path 101, the cross-sectional area S2 of the flow path 103 in the direction perpendicular to the direction in which the fluid 191 flows in the flow path 103, and for detection The cross-sectional area S3 of the detection flow path 107 in a direction perpendicular to the direction in which the fluid 191 (191A) flows through the flow path 107, and the bypass 102 in the direction perpendicular to the direction in which the fluid 191 (191B) flows. The area S4 satisfies the relationship S1 = S2> S4> S3. The width of the detection channel 107 in the Z-axis direction is preferably 10 μm or more and 100 μm or less, but is not limited to this as long as the object of the present embodiment can be satisfied. For example, when the fluid 191 to be detected is a liquid that easily absorbs the light 108 such as water, soft drinks, and fruit juice, the light 108 does not easily reach the light receiving unit 105. For this reason, in the feasible range, the detection flow path 107 is not easily manufactured as compared with the case where the fuel component is detected, but the width of the detection flow path 107 may be 10 μm or less.
 成分センサ110は、上記の各構成要素を収容する筐体106と、受光部105から得られる情報に基づき演算を行い、成分を検出したり濃度を分析したりする筐体106に設けられた処理部109とをさらに備えている。 The component sensor 110 performs processing based on information obtained from the light receiving unit 105 and the housing 106 that accommodates each of the above-described components, and the processing provided in the housing 106 that detects components and analyzes the concentration. And a portion 109.
 実施の形態5では、発光部104から発する光108は波長が2.5μm以上15μm以下の範囲にある赤外線である。波長が該範囲内に留まる赤外線光は流体191に吸収されやすく、高感度で、流体191の様々な成分を検出できる。発光部104より放射された光108は検出用流路107内を通過し、検出用流路107を流れる流体191を通過して受光部105に受光される。光108が検出用流路107内を通過するとき、検出用流路107内を流れる液体に光108が吸収され、受光部105が受光できる光108の量は、検出用流路107内に何もない場合と比較し減少する。受光部105が受けた光の量に対応する出力情報を処理部109は処理し、流体191の成分を検出し、もしくは流体191の濃度を測定することができる。 In the fifth embodiment, the light 108 emitted from the light emitting unit 104 is an infrared ray having a wavelength in the range of 2.5 μm to 15 μm. Infrared light whose wavelength stays within this range is easily absorbed by the fluid 191 and can detect various components of the fluid 191 with high sensitivity. The light 108 emitted from the light emitting unit 104 passes through the detection channel 107, passes through the fluid 191 flowing through the detection channel 107, and is received by the light receiving unit 105. When the light 108 passes through the detection flow path 107, the amount of the light 108 that can be received by the liquid flowing through the detection flow path 107 and received by the light receiving unit 105 is determined in the detection flow path 107. It decreases compared to the case where there is no. The processing unit 109 can process output information corresponding to the amount of light received by the light receiving unit 105 to detect a component of the fluid 191 or measure the concentration of the fluid 191.
 実施の形態5では、流路101の延在方向D101に検出用流路107が流路101に接続される。この位置関係により、外部より流入される流体191が検出用流路107に向かって直進する。この構成によって、光108を用いて流体191の成分を検出する場合に生ずる下記の問題を解決することができる。 In the fifth embodiment, the detection flow path 107 is connected to the flow path 101 in the extending direction D101 of the flow path 101. Due to this positional relationship, the fluid 191 that flows in from the outside travels straight toward the detection flow path 107. With this configuration, it is possible to solve the following problems that occur when the components of the fluid 191 are detected using the light 108.
 光108を用いて特に液体である流体191の成分を検出する場合、発光部104より放射された光108の受光部105での受光量に基づき、流体191が光108を吸収する吸収量を計算し、流体191の成分を検出したり濃度を測定する。このような方法で、光108を用いた流体191の成分を検出する場合に、発光部104から放射された光108が受光部105まで到達する必要がなる。放射された光108を受光部105に確実に到達させるためには、光108を強くするか、発光部104と受光部105との間の距離を短くする。 When detecting the component of the fluid 191 that is a liquid in particular using the light 108, the amount of absorption by which the fluid 191 absorbs the light 108 is calculated based on the amount of light 108 emitted from the light emitting unit 104 at the light receiving unit 105. Then, the component of the fluid 191 is detected and the concentration is measured. When the component of the fluid 191 using the light 108 is detected by such a method, the light 108 emitted from the light emitting unit 104 needs to reach the light receiving unit 105. In order to ensure that the emitted light 108 reaches the light receiving unit 105, the light 108 is increased or the distance between the light emitting unit 104 and the light receiving unit 105 is shortened.
 光108を強くすれば、発光部104と受光部105との間の距離を長くすることができ、これにより検出用流路107に流体191を容易に流入させることができる。しかし、発光部104の消費する電力が増大するという問題や、成分センサ110が大型化する問題が発生する。 If the light 108 is strengthened, the distance between the light emitting unit 104 and the light receiving unit 105 can be increased, whereby the fluid 191 can easily flow into the detection channel 107. However, there arises a problem that the power consumed by the light emitting unit 104 is increased and the component sensor 110 is enlarged.
 一方で、発光部104と受光部105との間の距離を短くすれば、消費電力を抑えられ、成分センサ110の小型化も可能となる。しかし、検出用流路107が狭くなるため流体191を流入させることが困難となるという問題が生ずる。特に、高精度に成分を検出するために用いられる赤外線は、流体191に吸収されやすいので、受光部105に到達するまでに流体191に過度に吸収され、受光部105により検出されなくなる場合がある。これを防止するために検出用流路107の幅を狭小とする要望が高まるが、これはますます検出用流路107への流体191の流入を困難にさせる。 On the other hand, if the distance between the light emitting unit 104 and the light receiving unit 105 is shortened, power consumption can be suppressed and the component sensor 110 can be downsized. However, since the detection channel 107 becomes narrow, there arises a problem that it is difficult to allow the fluid 191 to flow in. In particular, since infrared rays used to detect components with high accuracy are easily absorbed by the fluid 191, they may be excessively absorbed by the fluid 191 before reaching the light receiving unit 105 and may not be detected by the light receiving unit 105. . In order to prevent this, there is an increasing demand for narrowing the width of the detection flow path 107, but this makes it more difficult for the fluid 191 to flow into the detection flow path 107.
 実施の形態5における成分センサ110では、流路101の延在方向D101に検出用流路107が位置して流路101に接続されているので、流路101より流入してきた液体である流体191は検出用流路107との接続口116に向かって直進する。これにより、検出用流路107に向かって圧力が生じ、この圧力によって検出用流路107へ流体191(191A)を流入しやくなる。検出用流路107に流入しきらなかった流体191(191B)は迂路102へと流れ、検出用流路107を迂回し、流路103へと到達し外部へと排出される。流路101と検出用流路107と流路103とが、中間部分が急激に狭小化している直線状の配管構造体を構成する。迂路102が、流体191の一部191Bにこの配管構造体を迂回させることで、流体191全体の流れを阻害することを防止する。実施の形態5における成分センサ110は、検出用流路107の中心点107Cを通りY軸の方向の延びる直線107L(図14参照)について対称な形状を有する。この場合には、流路101から流体191が流入しても、流路103から流体191が流入しても機能上なんら問題は生じないため、いずれの方向に流体191を流してもよい。 In the component sensor 110 according to the fifth embodiment, the detection flow path 107 is located in the extending direction D101 of the flow path 101 and is connected to the flow path 101. Therefore, the fluid 191 that is the liquid flowing in from the flow path 101 is used. Goes straight toward the connection port 116 with the detection channel 107. As a result, pressure is generated toward the detection flow path 107, and the fluid 191 (191A) easily flows into the detection flow path 107 due to this pressure. The fluid 191 (191B) that has not flowed into the detection flow path 107 flows to the detour path 102, bypasses the detection flow path 107, reaches the flow path 103, and is discharged to the outside. The flow path 101, the detection flow path 107, and the flow path 103 constitute a linear piping structure whose intermediate portion is narrowed rapidly. The detour 102 prevents the flow of the entire fluid 191 from being obstructed by causing the part 191B of the fluid 191 to bypass the piping structure. The component sensor 110 in the fifth embodiment has a symmetrical shape with respect to a straight line 107L (see FIG. 14) that passes through the center point 107C of the detection flow path 107 and extends in the Y-axis direction. In this case, even if the fluid 191 flows in from the flow path 101 or the fluid 191 flows in from the flow path 103, there is no functional problem, so the fluid 191 may flow in any direction.
 以上のように、実施の形態5における成分センサ110は、発光部104の消費電力を抑え、小型化しながら、狭小な検出用流路107にも流体191(191A)を安定的に流入させることを可能とする。 As described above, the component sensor 110 according to the fifth embodiment suppresses the power consumption of the light-emitting unit 104 and allows the fluid 191 (191A) to stably flow into the narrow detection channel 107 while reducing the size. Make it possible.
 図15は実施の形態5における他の成分センサ110Aの模式図である。図15において図10から図14に示す成分センサ110と同じ部分には同じ参照番号を付す。図10から図14に示す成分センサ110では、流路101、103のそれぞれと迂路102は接続口119、219において90度の鋭い稜を成す。また、迂路102のコの字形状の角は90度の鋭い稜をなす。図15に示す成分センサ110Aでは、接続口119、219の角1102、2102は滑らかに丸められており、迂路102の角3102~6102も滑らかに丸められている。この構成により、流路101、103と迂路102内で流体191の流れが阻害されず好ましい。 FIG. 15 is a schematic diagram of another component sensor 110A according to the fifth embodiment. In FIG. 15, the same reference numerals are given to the same portions as those of the component sensor 110 shown in FIGS. 10 to 14. In the component sensor 110 shown in FIGS. 10 to 14, each of the flow paths 101 and 103 and the detour 102 form a sharp ridge of 90 degrees at the connection ports 119 and 219. Further, the U-shaped corner of the detour 102 forms a sharp ridge of 90 degrees. In the component sensor 110A shown in FIG. 15, the corners 1102 and 2102 of the connection ports 119 and 219 are smoothly rounded, and the corners 3102 to 6102 of the detour 102 are also smoothly rounded. This configuration is preferable because the flow of the fluid 191 is not hindered in the flow paths 101 and 103 and the bypass 102.
 図16は実施の形態5におけるさらに他の成分センサ110Bの模式図である。図16において図10から図14に示す成分センサ110と同じ部分には同じ参照番号を付す。成分センサ110Bは図10から図14に示す成分センサ110の迂路102の代わりに、迂路102と同様に検出用流路107を迂回して流路101、103に接続された複数の迂路102A、102Bを備える。迂路102A、102Bは迂路102と同様の効果を有する。迂路102Aには流体191の一部191Bのうちの部分191B1が流れ、迂路120Bには流体191の一部191Bの残りの部分191B2が流れる。迂路102A、102Bの流体191の一部191Bの部分191B1、191B2が流れる方向に直角の断面の断面積の合計は、図10から図14に示す成分センサ110の迂路102の断面積S4に等しく、流路101の断面積S1と流路103の断面積S2と検出用流路107の断面積S3と上述の関係を満たす。複数の迂路102A、102Bにより、部材の大きさや、設計上の問題、成分センサ110が取り付けられる対象の形状に応じて設計上の多様性が得られる。 FIG. 16 is a schematic diagram of still another component sensor 110B in the fifth embodiment. In FIG. 16, the same reference numerals are assigned to the same parts as those of the component sensor 110 shown in FIGS. Instead of the bypass 102 of the component sensor 110 shown in FIGS. 10 to 14, the component sensor 110 </ b> B bypasses the detection flow path 107 in the same manner as the bypass 102 and is connected to the flow paths 101 and 103. Is provided. The detours 102A and 102B have the same effect as the detour 102. A portion 191B1 of the portion 191B of the fluid 191 flows through the detour 102A, and the remaining portion 191B2 of the portion 191B of the fluid 191 flows through the detour 120B. The sum of the cross-sectional areas of the cross sections perpendicular to the flow direction of the portions 191B1 and 191B2 of the part 191B of the fluid 191 of the detours 102A and 102B is equal to the cross-sectional area S4 of the detour 102 of the component sensor 110 shown in FIGS. The cross-sectional area S1 of the flow channel 101, the cross-sectional area S2 of the flow channel 103, and the cross-sectional area S3 of the detection flow channel 107 satisfy the above relationship. The plurality of detours 102A and 102B provide design diversity according to the size of the member, design problems, and the shape of the target to which the component sensor 110 is attached.
 図17は実施の形態5におけるさらに他の成分センサ110Cの模式図である。図17において図10から図14に示す成分センサ110と同じ部分には同じ参照番号を付す。成分センサ110Cでは、流路101、103が途中で曲がっている。ただし、成分センサ110Cでは、流路101の接続口116に繋がる部分は延在方向D101に延び、流路103の接続口121に繋がる部分は延在方向D101に延びている。 FIG. 17 is a schematic diagram of still another component sensor 110C according to the fifth embodiment. In FIG. 17, the same reference numerals are given to the same portions as those of the component sensor 110 shown in FIGS. 10 to 14. In the component sensor 110C, the flow paths 101 and 103 are bent halfway. However, in the component sensor 110C, the portion connected to the connection port 116 of the flow channel 101 extends in the extending direction D101, and the portion connected to the connection port 121 of the flow channel 103 extends in the extending direction D101.
 図18は実施の形態5におけるさらに他の成分センサ110Dの模式図である。図18において図15に示す成分センサ110Aと同じ部分には同じ参照番号を付す。図18に示す成分センサ110Dでは、迂路102は図15に示す成分センサ110Aの角3102~6102を有しておらず、C字形状を有する。この構成により、流体191はスムースに迂路102を流れる。 FIG. 18 is a schematic diagram of still another component sensor 110D according to the fifth embodiment. In FIG. 18, the same reference numerals are assigned to the same portions as those of the component sensor 110A shown in FIG. In the component sensor 110D shown in FIG. 18, the detour 102 does not have the corners 3102 to 6102 of the component sensor 110A shown in FIG. 15, but has a C shape. With this configuration, the fluid 191 flows through the detour 102 smoothly.
 (実施の形態6)
 図19は実施の形態6における成分センサ110Eの模式図である。図19において図10から図14に示す実施の形態5における成分センサ110と同じ部分には同じ参照番号を付す。図19に示す成分センサ110Eでは、検出用流路107がY軸の正の方向に平行にずれており、Y軸の方向において、流路101の内部空間と迂路102の内部空間との最も離れた部分の距離L101は、検出用流路107の内部空間と迂路102の内部空間との最もは離れた部分の距離L102より大きい。すなわち、Y軸の方向で検出用流路107が流路101、103から迂路102に向って平行にずれている。接続口116に繋がりかつ流路101の流体191が流れる内部空間に面する内壁面にはテーパ120が設けられている。テーパ120は、検出用流路107と迂路102とに向かってX軸と平行な延在方向D101に対して傾斜している。テーパ120により、流体191が流路101から検出用流路107と迂路102へ直接移動するので、検出用流路107への流体191(191A)の流入が促進される。
(Embodiment 6)
FIG. 19 is a schematic diagram of a component sensor 110E according to the sixth embodiment. In FIG. 19, the same reference numerals are assigned to the same portions as those of the component sensor 110 in the fifth embodiment shown in FIGS. In the component sensor 110E shown in FIG. 19, the detection flow path 107 is displaced in parallel to the positive direction of the Y axis, and the inner space of the flow path 101 and the internal space of the detour 102 are farthest apart in the Y axis direction. The distance L101 of the left portion is larger than the distance L102 of the farthest portion between the internal space of the detection flow path 107 and the internal space of the detour 102. That is, the detection flow path 107 is displaced in parallel from the flow paths 101 and 103 toward the detour 102 in the Y-axis direction. A taper 120 is provided on the inner wall surface that is connected to the connection port 116 and faces the internal space through which the fluid 191 of the flow path 101 flows. The taper 120 is inclined with respect to the extending direction D101 parallel to the X axis toward the detection flow path 107 and the bypass path 102. The taper 120 moves the fluid 191 directly from the flow channel 101 to the detection flow channel 107 and the detour 102, thereby facilitating the inflow of the fluid 191 (191 </ b> A) into the detection flow channel 107.
 図20は比較例の成分センサ110Pの模式図である。図20において図19に示す成分センサ110Eと同じ部分には同じ参照番号を付す。図20に示す成分センサ110Pでは、流路101の内壁面にテーパが設けられていない。成分センサ110Pでは、接続口116の周囲で流体191の流れが妨げられ、流体191が検出用流路107と迂路102にスムースには流入しない。 FIG. 20 is a schematic diagram of a component sensor 110P of a comparative example. 20, the same reference numerals are assigned to the same portions as those of the component sensor 110E shown in FIG. In the component sensor 110P shown in FIG. 20, the inner wall surface of the flow path 101 is not provided with a taper. In the component sensor 110 </ b> P, the flow of the fluid 191 is hindered around the connection port 116, and the fluid 191 does not smoothly flow into the detection flow path 107 and the bypass 102.
 図21Aと図21Bは、それぞれ成分センサ110Eと成分センサ110の流体191の流れを示す模式図である。図21Aに示す検出用流路107が迂路102に向って平行にずれている成分センサ110Eでは、流路101の端部から流入してきた流体191は、検出用流路107に向かって流れ111として直進した後、検出用流路107へと続くテーパ120に従い流れ112として接続口116へと至る。検出用流路107は流路101に比して容積が遥かに小さいため、検出用流路107に流入しきらない流体191の一部191Bは流れ113として迂路102に流入する。 21A and 21B are schematic diagrams showing the flow of the fluid 191 of the component sensor 110E and the component sensor 110, respectively. In the component sensor 110E in which the detection flow path 107 shown in FIG. 21A is shifted in parallel toward the detour 102, the fluid 191 flowing in from the end of the flow path 101 flows as a flow 111 toward the detection flow path 107. After going straight, the flow 112 reaches the connection port 116 as a flow 112 following the taper 120 leading to the detection flow path 107. Since the detection flow path 107 has a much smaller volume than the flow path 101, a part 191 </ b> B of the fluid 191 that does not flow into the detection flow path 107 flows into the detour 102 as the flow 113.
 これに対して、図21Bに示す成分センサ110では、流体191が流れ111として検出用流路107へと直進し、流体191の一部191Bが流れ112として検出用流路107に流入する。検出用流路107に流入しきらない流体191の一部191Bが流れ115として迂路102へと流入する。ただし、成分センサ110においては図21Bに示すように、流路101と検出用流路107との間で滞留114が発生する場合がある。 21B, in the component sensor 110 shown in FIG. 21B, the fluid 191 goes straight to the detection flow path 107 as the flow 111, and a part 191B of the fluid 191 flows into the detection flow path 107 as the flow 112. A part 191B of the fluid 191 that does not flow into the detection flow path 107 flows into the detour 102 as a flow 115. However, in the component sensor 110, as shown in FIG. 21B, a stagnation 114 may occur between the flow channel 101 and the detection flow channel 107.
 このように、実施の形態6における成分センサ110Eでは、検出用流路107が迂路102に向って平行にずれていることで、流体191の滞留114を減少させ、流体191の移動効率を向上させることで、検出用流路107へ流体191の一部191Aが流入する流入効率を良くしている。 As described above, in the component sensor 110E according to the sixth embodiment, the detection flow path 107 is shifted in parallel toward the bypass path 102, thereby reducing the retention 114 of the fluid 191 and improving the movement efficiency of the fluid 191. As a result, the inflow efficiency in which a part 191A of the fluid 191 flows into the detection channel 107 is improved.
 (実施の形態7)
 図22は実施の形態7における成分センサ110Fの模式図である。図22において図10から図14に示す実施の形態5における成分センサ110と同じ部分には同じ参照番号を付す。図22に示す成分センサ110Fでは、実施の形態5における成分センサ110の検出用流路107の流体191の一部191Aが流れる内部空間に面する内壁面の迂路102に最も近い部分が迂路102に向ってずれている。流路101との接続口116が迂路102の内部まで延びている。これによって検出用流路107の容積が大きくなるとともに、接続口116の面積が広がり、流体191の一部191Aの検出用流路107への流入効率が上昇する。
(Embodiment 7)
FIG. 22 is a schematic diagram of a component sensor 110F according to the seventh embodiment. In FIG. 22, the same reference numerals are assigned to the same portions as those of the component sensor 110 in the fifth embodiment shown in FIGS. In the component sensor 110F shown in FIG. 22, the portion closest to the detour 102 on the inner wall surface facing the internal space through which a part 191A of the fluid 191 of the detection flow path 107 of the component sensor 110 in the fifth embodiment flows is the detour 102. It's shifted away. A connection port 116 with the channel 101 extends to the inside of the detour 102. As a result, the volume of the detection channel 107 increases, the area of the connection port 116 increases, and the inflow efficiency of the part 191A of the fluid 191 into the detection channel 107 increases.
 図23は実施の形態7における他の成分センサ110Gの模式図である。図23において、図22に示す成分センサ110Fと同じ部分には同じ参照番号を付す。図23に示す成分センサ110Gでは、図22に示す成分センサ110Fの検出用流路107が迂路102に向かって平行に流路101からずれている。部材同士の大きさや、設計上の必要に応じ検出用流路107の形状を変えてもよい。 FIG. 23 is a schematic diagram of another component sensor 110G according to the seventh embodiment. In FIG. 23, the same parts as those of the component sensor 110F shown in FIG. In the component sensor 110 </ b> G shown in FIG. 23, the detection flow path 107 of the component sensor 110 </ b> F shown in FIG. 22 is shifted from the flow path 101 in parallel toward the detour 102. The size of the members and the shape of the detection flow path 107 may be changed according to design requirements.
 図24と図25はそれぞれ実施の形態7におけるさらに他の成分センサ110H、110Iの模式図である。図24と図25において、図22と図23に示す成分センサ110F、110Gと同じ部分には同じ参照番号を付す。図24と図25に示す成分センサ110H、110Iでは、検出用流路107は接続口116から接続口121に向かって窄まっている。 FIGS. 24 and 25 are schematic diagrams of still other component sensors 110H and 110I in the seventh embodiment, respectively. 24 and 25, the same reference numerals are assigned to the same parts as those of the component sensors 110F and 110G shown in FIGS. In the component sensors 110H and 110I shown in FIGS. 24 and 25, the detection flow path 107 is narrowed from the connection port 116 toward the connection port 121.
 (実施の形態8)
 図26は実施の形態8における成分センサ110Jの模式図である。図26において、図10から図14に示す成分センサ110と同じ部分には同じ参照番号を付す。成分センサ110Jでは、迂路102が流路103に接続される接続口122が存在する平面と直交する方向に、すなわちY軸の方向に流路103が延びており、流体191は流路103にY軸の方向に流れる。これによって、流量の多い主に迂路102からの排出流れ117が流路103の端部に向かって直進するので、流路103内を通過する流体191の通過速度が上昇する。流路103内の流体191の通過速度が上昇すれば、検出用流路107より排出される排出流れ118も、流体191体の表面張力の作用から排出流れ117に引き込まれ、流れの速度が上昇する。排出水流118の速度が上昇すれば、流体191の表面張力の作用から検出用流路107へと流入する流体191の一部191Aの流入速度も上昇する。このように、流路103がY軸の方向に延びていることで、流体191全体の排出効率が上昇し、結果として検出用流路107に流体191の一部191Aが流入する流入速度が上昇するため、検出用流路107への流体191の一部191Aの流入を促進させることができる。
(Embodiment 8)
FIG. 26 is a schematic diagram of a component sensor 110J according to the eighth embodiment. In FIG. 26, the same reference numerals are given to the same portions as those of the component sensor 110 shown in FIGS. In the component sensor 110 </ b> J, the flow path 103 extends in a direction orthogonal to the plane where the bypass 102 is connected to the flow path 103, that is, in the Y-axis direction. It flows in the direction of the axis. As a result, the discharge flow 117 mainly from the detour 102 having a large flow rate goes straight toward the end of the flow path 103, so that the passage speed of the fluid 191 passing through the flow path 103 increases. If the passage speed of the fluid 191 in the flow path 103 increases, the discharge flow 118 discharged from the detection flow path 107 is also drawn into the discharge flow 117 due to the surface tension of the fluid 191 body, and the flow speed increases. To do. If the speed of the discharged water stream 118 increases, the inflow speed of the part 191A of the fluid 191 that flows into the detection channel 107 from the action of the surface tension of the fluid 191 also increases. As described above, the flow path 103 extends in the Y-axis direction, so that the discharge efficiency of the entire fluid 191 increases, and as a result, the inflow speed at which a part 191A of the fluid 191 flows into the detection flow path 107 increases. Therefore, the inflow of a part 191A of the fluid 191 into the detection channel 107 can be promoted.
 実施の形態5~8における成分センサ110.110A~110Jは、安価で、省スペースかつ、高感度であり検出精度が安定する。流体191が液体で自動車の燃料である場合には、燃料の成分の濃度を検出することができ、例えば、内燃機関の燃費向上、排気エミッション低減などが可能となる。流体191が水や清涼飲料水であれば、他の成分の混入の検知などに用いて、品質保持に役立てることができる。 The component sensors 110.110A to 110J in Embodiments 5 to 8 are inexpensive, space-saving and highly sensitive, and the detection accuracy is stable. When the fluid 191 is liquid and is a fuel for an automobile, the concentration of the fuel component can be detected. For example, the fuel consumption of the internal combustion engine can be improved and the exhaust emission can be reduced. If the fluid 191 is water or a soft drink, it can be used for detection of mixing of other components, etc., to help maintain quality.
1,31,41,51  成分センサ
2  側面
3  管部(流路)
4  開口部
5  基板
6  凸部(第1の凸部)
7  凸部(第2の凸部)
9  発光部
10,32  受光部
11  平坦部
12  主面(第1の主面)
13  主面(第2の主面)
14  傾斜面
15  傾斜面
16  受光素子(第1の受光素子)
17  受光素子(第2の受光素子)
18  受光素子(第3の受光素子)
19  光学フィルタ(第1の光学フィルタ)
20  光学フィルタ(第2の光学フィルタ)
21  光学フィルタ(第3の光学フィルタ)
22  筐体
23  支持基板
43  側端面
44  凸部
45  傾斜面
53  封止材
101  流路(第1の流路)
102  迂路
103  流路(第2の流路)
104  発光部
105  受光部
106  筐体
107  検出用流路
109  処理部
110,110A~110J  成分センサ
116  接続口
119  接続口
120  テーパ
121  接続口
122  接続口
1, 31, 41, 51 Component sensor 2 Side surface 3 Tube (flow path)
4 Opening 5 Substrate 6 Convex (First Convex)
7 convex part (second convex part)
9 Light emitting part 10, 32 Light receiving part 11 Flat part 12 Main surface (first main surface)
13 Main surface (second main surface)
14 Inclined surface 15 Inclined surface 16 Light receiving element (first light receiving element)
17 Light receiving element (second light receiving element)
18 Light receiving element (third light receiving element)
19 Optical filter (first optical filter)
20 Optical filter (second optical filter)
21 Optical filter (third optical filter)
22 Housing 23 Support substrate 43 Side end surface 44 Protruding portion 45 Inclined surface 53 Sealing material 101 Channel (first channel)
102 detour 103 flow path (second flow path)
104 Light-Emitting Unit 105 Light-Receiving Unit 106 Housing 107 Detection Channel 109 Processing Units 110, 110A to 110J Component Sensor 116 Connection Port 119 Connection Port 120 Taper 121 Connection Port 122 Connection Port

Claims (20)

  1. 流体の成分を検出するように構成された成分センサであって、
    前記流体が流れるように構成された内部空間に面する側壁を有しており、前記側壁に開口部が設けられている流路と、
    前記流体に接するように構成されて前記内部空間に面する第1の主面と、前記第1の主面の反対側の第2の主面とを有し、前記開口部を覆う基板と、
    前記基板の前記第2の主面に設けられた第1の凸部と、
    前記第1の凸部と離間して前記基板の前記第2の主面に設けられた第2の凸部と、
    赤外線を前記第1の凸部に入射させ、前記入射した赤外線を前記基板内で全反射させて前記第2の凸部を出射させるように前記赤外線を発する発光部と、
    前記第2の凸部を出射した前記赤外線を検出する受光部と、
    を備えた成分センサ。
    A component sensor configured to detect a component of a fluid comprising:
    A flow path having a side wall facing the internal space configured to allow the fluid to flow; and an opening provided in the side wall;
    A first main surface configured to contact the fluid and facing the internal space; and a second main surface opposite to the first main surface, the substrate covering the opening;
    A first protrusion provided on the second main surface of the substrate;
    A second protrusion provided on the second main surface of the substrate apart from the first protrusion;
    A light emitting unit that emits the infrared rays so that the infrared rays are incident on the first convex portion, the incident infrared rays are totally reflected in the substrate, and the second convex portion is emitted;
    A light receiving portion for detecting the infrared light emitted from the second convex portion;
    Component sensor equipped with.
  2. 前記基板はシリコンで形成され、
    前記第1の凸部と前記第2の凸部とは前記基板と一体に形成されている、請求項1に記載の成分センサ。
    The substrate is formed of silicon;
    The component sensor according to claim 1, wherein the first convex portion and the second convex portion are formed integrally with the substrate.
  3. 前記第1の凸部は前記赤外線が入射する第1の傾斜面を有し、
    前記第1の傾斜面の面方位は(111)面である、請求項2に記載の成分センサ。
    The first convex portion has a first inclined surface on which the infrared ray is incident,
    The component sensor according to claim 2, wherein a plane orientation of the first inclined surface is a (111) plane.
  4. 前記第2の凸部は前記赤外線が出射する第2の傾斜面を有し、
    前記第2の傾斜面の面方位は(111)面である、請求項2または3に記載の成分センサ。
    The second convex portion has a second inclined surface from which the infrared rays are emitted,
    The component sensor according to claim 2 or 3, wherein a plane orientation of the second inclined surface is a (111) plane.
  5. 前記発光部は、前記第1の凸部に対して前記基板の前記第2の主面の法線方向の位置に配置されている、請求項1から4のいずれか一項に記載の成分センサ。 5. The component sensor according to claim 1, wherein the light emitting portion is disposed at a position in a normal direction of the second main surface of the substrate with respect to the first convex portion. .
  6. 前記受光部は、前記第2の凸部に対して前記基板の前記第2の主面の法線方向の位置に配置されている請求項1から5のいずれか一項に記載の成分センサ。 The component sensor according to claim 1, wherein the light receiving unit is disposed at a position in a normal direction of the second main surface of the substrate with respect to the second convex portion.
  7. 前記受光部は前記赤外線を検出する第1の受光素子と第2の受光素子を有する、請求項1から6のいずれか一項に記載の成分センサ。 The component sensor according to any one of claims 1 to 6, wherein the light receiving unit includes a first light receiving element and a second light receiving element that detect the infrared rays.
  8. 前記受光部は、
       前記第1の受光素子に設けられた第1の光学フィルタと、
       前記第2の受光素子に設けられた第2の光学フィルタと、
    をさらに有する、請求項7に記載の成分センサ。
    The light receiving unit is
    A first optical filter provided in the first light receiving element;
    A second optical filter provided in the second light receiving element;
    The component sensor according to claim 7, further comprising:
  9. 前記第1の受光素子と前記第2の受光素子とは前記赤外線を受ける第1の受光面と第2の受光面とをそれぞれ有し、
    前記第1の受光面と前記第2の受光面とは一平面上配置されている、請求項7または8に記載の成分センサ。
    The first light receiving element and the second light receiving element each have a first light receiving surface and a second light receiving surface that receive the infrared rays,
    The component sensor according to claim 7 or 8, wherein the first light receiving surface and the second light receiving surface are arranged on a single plane.
  10. 前記第1の受光素子と前記第2の受光素子は、前記第2の主面と平行でかつ前記流路が延びる方向と直角の方向に配列されている、請求項9に記載の成分センサ。 The component sensor according to claim 9, wherein the first light receiving element and the second light receiving element are arranged in a direction parallel to the second main surface and perpendicular to a direction in which the flow path extends.
  11. 前記受光部は前記赤外線を検出する第3の受光素子をさらに有する、請求項7から9のいずれか一項に記載の成分センサ。 The component sensor according to any one of claims 7 to 9, wherein the light receiving unit further includes a third light receiving element that detects the infrared light.
  12. 前記基板の屈折率は前記流体の屈折率よりも大きい、請求項1から11のいずれか一項に記載の成分センサ。 The component sensor according to claim 1, wherein a refractive index of the substrate is larger than a refractive index of the fluid.
  13. 前記流路の前記側壁は平坦部を有する、請求項1から12のいずれか一項に記載の成分センサ。 The component sensor according to claim 1, wherein the side wall of the flow path has a flat portion.
  14. 前記基板は、前記第1の主面と前記第2の主面との間を繋ぐ側端面をさらに有し、
    前記基板の前記側端面に設けられた反射膜をさらに備え、
    前記第1の凸部から入射した赤外線が前記側端面で反射した後に前記第2の凸部を出射する、請求項1から13のいずれか一項に記載の成分センサ。
    The substrate further includes a side end surface connecting the first main surface and the second main surface;
    A reflective film provided on the side end surface of the substrate;
    The component sensor according to any one of claims 1 to 13, wherein infrared light incident from the first convex portion is emitted from the second convex portion after being reflected by the side end face.
  15. 前記流路の前記開口部に前記基板を封止する封止材をさらに備え、
    前記基板の前記封止材が設けられている部分は前記基板の中央部分より厚い、請求項1から14のいずれか一項に記載の成分センサ。
    A sealant for sealing the substrate at the opening of the flow path;
    The component sensor according to any one of claims 1 to 14, wherein a portion of the substrate on which the sealing material is provided is thicker than a central portion of the substrate.
  16. 流体の成分を検出する成分センサであって、
    流体が流れるように構成されて前記延在方向に延びる第1の流路と、
    前記第1の流路から前記延在方向に位置して前記第1の流路に接続されて、前記流体が流れるように構成された検出用流路と、
    前記検出用流路に接続されて、前記流体が流れるように構成された第2の流路と、
    前記検出用流路を迂回するように前記第1の流路と前記第2の流路とに接続されて、前記流体が流れるように構成された迂路と、
    前記検出用流路を通過する光を放射するように構成された発光部と、
    前記検出用流路を通過した光を受光するように構成された受光部と、
    を備え、
    前記検出用流路を前記流体が流れる方向に直角の方向での前記検出用流路の断面積は、前記第1の流路を前記流体が流れる方向に直角の方向での前記第1の流路の断面積より小さく、
    前記迂路を前記流体が流れる方向に直角の方向での前記迂路の断面積は、前記検出用流路の前記断面積より大きく、
    前記第2の流路を前記流体が流れる方向に直角の方向での前記第2の流路の断面積は、前記検出用流路の前記断面積より大きい、成分センサ。
    A component sensor for detecting a component of a fluid,
    A first flow path configured to flow fluid and extending in the extending direction;
    A flow path for detection that is connected to the first flow path and is located in the extending direction from the first flow path, and configured to flow the fluid;
    A second channel connected to the detection channel and configured to flow the fluid;
    A detour connected to the first flow path and the second flow path so as to bypass the detection flow path, and configured to allow the fluid to flow;
    A light emitting unit configured to emit light passing through the detection flow path;
    A light receiving portion configured to receive light that has passed through the detection flow path;
    With
    The cross-sectional area of the detection flow path in a direction perpendicular to the direction in which the fluid flows through the detection flow path is such that the first flow in the direction perpendicular to the direction in which the fluid flows in the first flow path. Smaller than the cross-sectional area of the road,
    The cross-sectional area of the detour in a direction perpendicular to the direction in which the fluid flows through the detour is larger than the cross-sectional area of the detection flow path,
    A component sensor in which a cross-sectional area of the second flow path in a direction perpendicular to a direction in which the fluid flows through the second flow path is larger than the cross-sectional area of the detection flow path.
  17. 前記検出用流路が前記第1の流路と接続されている接続口は、前記第1の流路に前記迂路が接続される方向に細長く延びる形状を有する、請求項16に記載の成分センサ。 17. The component sensor according to claim 16, wherein a connection port where the detection flow path is connected to the first flow path has a shape extending elongated in a direction in which the detour is connected to the first flow path. .
  18. 前記検出用流路が前記第1の流路と接続されている前記接続口の面積は、前記検出用流路が前記第2の流路と接続されている接続口の面積と異なる、請求項17に記載の成分センサ。 The area of the connection port where the detection channel is connected to the first channel is different from the area of the connection port where the detection channel is connected to the second channel. The component sensor according to 17.
  19. 前記迂路が前記第1の流路と接続されている接続口は、前記検出用流路が前記第1の流路と接続されている前記接続口に直角である、請求項17または18に記載の成分センサ。 The connection port where the detour is connected to the first flow channel is at right angles to the connection port where the detection flow channel is connected to the first flow channel. Component sensor.
  20. 前記検出用流路が前記第1の流路に接続されている前記接続口は前記迂路の内部まで延びている、請求項19に記載の成分センサ。 The component sensor according to claim 19, wherein the connection port where the detection channel is connected to the first channel extends to the inside of the detour.
PCT/JP2017/042717 2016-12-07 2017-11-29 Component sensor WO2018105455A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016237244 2016-12-07
JP2016-237244 2016-12-07
JP2017-010909 2017-01-25
JP2017010909 2017-01-25

Publications (1)

Publication Number Publication Date
WO2018105455A1 true WO2018105455A1 (en) 2018-06-14

Family

ID=62491911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042717 WO2018105455A1 (en) 2016-12-07 2017-11-29 Component sensor

Country Status (1)

Country Link
WO (1) WO2018105455A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717917Y1 (en) * 1966-04-18 1972-06-21
JPS62161041A (en) * 1986-01-10 1987-07-17 Hitachi Ltd Method for measuring total reflection infrared spectrum
JPS63274840A (en) * 1987-05-06 1988-11-11 Hamamatsu Photonics Kk Process supervisory and controlling equipment
JPH0720046A (en) * 1993-07-06 1995-01-24 Canon Inc Infrared spectroscopic cell for liquid chromatography
JPH0875639A (en) * 1994-09-09 1996-03-22 Agency Of Ind Science & Technol Light-absorption-spectrum measuring apparatus making use of slab optical waveguide
JPH09113439A (en) * 1995-10-20 1997-05-02 Kdk Corp Method and apparatus for measuring organic component
JP2001108611A (en) * 1999-10-12 2001-04-20 System Instruments Kk Light-coupling method for optical waveguide spectrograph, and measurement method light-coupling method
WO2003021239A1 (en) * 2001-08-28 2003-03-13 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring information on particular component
JP2005077246A (en) * 2003-08-29 2005-03-24 Dainippon Printing Co Ltd Method and apparatus for analyzing material for forming organic electronic element
JP2005077245A (en) * 2003-08-29 2005-03-24 Dainippon Printing Co Ltd Method for selecting composition of material for use in forming organic electronic element
JP2005106712A (en) * 2003-09-30 2005-04-21 Dainippon Printing Co Ltd Organic material ink, its selecting method and organic device
JP2005106711A (en) * 2003-09-30 2005-04-21 Dainippon Printing Co Ltd Organic laminate and organic device
JP2005530986A (en) * 2002-04-03 2005-10-13 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト アム マイン Infrared measuring device for spectroscopic methods, especially aqueous systems, preferably multicomponent systems
WO2014018002A1 (en) * 2012-07-23 2014-01-30 Halliburton Energy Services, Inc. Method and apparatus for analyzing multiphase fluid flow using a multivariate optical element calculation device
WO2016121338A1 (en) * 2015-01-29 2016-08-04 パナソニックIpマネジメント株式会社 Sensor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717917Y1 (en) * 1966-04-18 1972-06-21
JPS62161041A (en) * 1986-01-10 1987-07-17 Hitachi Ltd Method for measuring total reflection infrared spectrum
JPS63274840A (en) * 1987-05-06 1988-11-11 Hamamatsu Photonics Kk Process supervisory and controlling equipment
JPH0720046A (en) * 1993-07-06 1995-01-24 Canon Inc Infrared spectroscopic cell for liquid chromatography
JPH0875639A (en) * 1994-09-09 1996-03-22 Agency Of Ind Science & Technol Light-absorption-spectrum measuring apparatus making use of slab optical waveguide
JPH09113439A (en) * 1995-10-20 1997-05-02 Kdk Corp Method and apparatus for measuring organic component
JP2001108611A (en) * 1999-10-12 2001-04-20 System Instruments Kk Light-coupling method for optical waveguide spectrograph, and measurement method light-coupling method
WO2003021239A1 (en) * 2001-08-28 2003-03-13 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring information on particular component
JP2005530986A (en) * 2002-04-03 2005-10-13 ヨハン ヴォルフガング ゲーテ−ウニヴェルジテート フランクフルト アム マイン Infrared measuring device for spectroscopic methods, especially aqueous systems, preferably multicomponent systems
JP2005077246A (en) * 2003-08-29 2005-03-24 Dainippon Printing Co Ltd Method and apparatus for analyzing material for forming organic electronic element
JP2005077245A (en) * 2003-08-29 2005-03-24 Dainippon Printing Co Ltd Method for selecting composition of material for use in forming organic electronic element
JP2005106712A (en) * 2003-09-30 2005-04-21 Dainippon Printing Co Ltd Organic material ink, its selecting method and organic device
JP2005106711A (en) * 2003-09-30 2005-04-21 Dainippon Printing Co Ltd Organic laminate and organic device
WO2014018002A1 (en) * 2012-07-23 2014-01-30 Halliburton Energy Services, Inc. Method and apparatus for analyzing multiphase fluid flow using a multivariate optical element calculation device
WO2016121338A1 (en) * 2015-01-29 2016-08-04 パナソニックIpマネジメント株式会社 Sensor

Similar Documents

Publication Publication Date Title
JP5523908B2 (en) Flow rate measuring device and flow velocity measuring device
TWI651529B (en) Concentration measuring device
RU2466359C2 (en) Measuring system for determining and/or monitoring flow of measured medium through measuring tube
US20140183380A1 (en) Measuring unit and gas analyzing apparatus
JP5870270B2 (en) Detector
WO2017221986A1 (en) Fine particle measuring instrument
JP6626281B2 (en) Gas sensor
WO2018105455A1 (en) Component sensor
JP7223956B2 (en) ultrasonic flow meter
US10948405B2 (en) Gas sensor
JP5590875B2 (en) Flow rate measuring device and flow velocity measuring device
WO2016121338A1 (en) Sensor
WO2019093143A1 (en) Component sensor
JP5199083B2 (en) Flow path sensor and tube fixture used therefor
JP2005091093A (en) Microchip for measuring absorbance
WO2021131574A1 (en) Infrared detector and gas analyzer
US20180088038A1 (en) Gas detection device
JP2018013349A (en) Flow cell, and sensor including flow cell
TW201908712A (en) Gas detection device
JP2019027895A (en) Flow channel member and particulate measuring instrument
WO2016092679A1 (en) Blood flow sensor
JPH08247933A (en) Detection device of particle concentration in liquid
JP2017026547A (en) Light receiving/emitting device and concentration measurement device
JP2022093934A (en) Flow meter
CN102735655B (en) Surface plasma resonance optical waveguide sensor based on dual reflectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP