JP5590875B2 - Flow rate measuring device and flow velocity measuring device - Google Patents
Flow rate measuring device and flow velocity measuring device Download PDFInfo
- Publication number
- JP5590875B2 JP5590875B2 JP2009288309A JP2009288309A JP5590875B2 JP 5590875 B2 JP5590875 B2 JP 5590875B2 JP 2009288309 A JP2009288309 A JP 2009288309A JP 2009288309 A JP2009288309 A JP 2009288309A JP 5590875 B2 JP5590875 B2 JP 5590875B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- light
- tube
- measuring device
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 claims description 134
- 238000010926 purge Methods 0.000 claims description 132
- 239000012530 fluid Substances 0.000 claims description 125
- 238000004364 calculation method Methods 0.000 claims description 70
- 239000000126 substance Substances 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 179
- 238000010586 diagram Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 11
- 239000013307 optical fiber Substances 0.000 description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical group O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- 230000004043 responsiveness Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical group [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000000041 tunable diode laser absorption spectroscopy Methods 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical group CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は、流体の流量を計測する流量測定装置及び流体の流速を計測する流速測定装置に関する。 The present invention relates to a flow rate measuring device that measures the flow rate of a fluid and a flow rate measuring device that measures the flow rate of a fluid.
流路内を流れるガスの流量測定方法としては、種々の方法が提案されている。例えば、特許文献1には、管内にオリフィス板を配置し、オリフィス板前後の管内差圧により管内を流れる流体流量を計測する差圧流量計が記載されている。 Various methods have been proposed for measuring the flow rate of the gas flowing in the flow path. For example, Patent Document 1 describes a differential pressure flow meter in which an orifice plate is disposed in a pipe and the flow rate of fluid flowing in the pipe is measured by the differential pressure in the pipe before and after the orifice plate.
また、特許文献2には、流体の流動方向にある角度をもって超音波の送信素子と受信素子を相対して設置し、その超音波伝搬時間から流体の流量を計測する装置において、異なる第1の周波数と第2の周波数からなる周波数成分を有する正弦波信号の超音波を発振する手段と、流体中を伝搬した超音波の第1,第2の周波数成分の位相差を求める手段と、求めた位相差から超音波の伝搬時間を演算する手段を備え、超音波の伝搬時間から流体の流速を算出することで流量を求める流量測定装置が記載されている。
Further, in
特許文献1に記載されている差圧により流量を計測する装置では、配管の内部にオリフィスを設ける必要があるため、前後に一定の直管部分を確保する必要があるなど、使用対象に制約が生じる。また、特許文献2に記載されている超音波を用いる流量測定装置では、超音波の発信源と検出器を配管に直接取り付ける。そのため、例えば、配管に流れるガスが高温である場合は、使用することができない。または、高温でも使用可能な機構を用いる必要がある。また特許文献1及び特許文献2のいずれの方式も計測に一定の時間が必要となり、応答性の向上に限界があるという問題がる。また、配管の径と流量との関係に基づいて流速も計測することができるが、同様の問題がある。
In the apparatus for measuring the flow rate by the differential pressure described in Patent Document 1, since it is necessary to provide an orifice inside the pipe, there is a restriction on the object of use, such as the need to secure a certain straight pipe part before and after. Arise. Moreover, in the flow rate measuring apparatus using the ultrasonic wave described in
本発明は、上記に鑑みてなされたものであって、高い応答性で計測が可能であり、かつ、厳しい環境でも流量の計測が可能な流量測定装置及び流速測定装置を提供することを課題とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a flow rate measuring device and a flow velocity measuring device capable of measuring with high responsiveness and capable of measuring a flow rate even in a severe environment. To do.
上述した課題を解決し、目的を達成するために、本発明は、両端が開放され、それぞれ流体を流す流路と連結可能な主管、前記主管に連結し、前記主管と連結している側と反対側の端部に光が通過可能な窓部が形成された入射管、前記主管に連結し、前記主管と連結している側と反対側の端部に光が通過可能な窓部が形成された出射管、前記入射管と連結された第1パージ流体供給管とで構成された計測セルと、前記計測セルの前記第1パージ流体供給管にパージ流体を供給するパージ流体供給部と、前記入射管にレーザ光を入射させる発光部と、前記入射管から入射され、前記計測セルを通過し、前記出射管から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、前記受光部から出力される受光信号に基づいて、前記計測セルを流れる流体の流量を算出する算出部と、各部の動作を制御する制御部と、を有すること特徴とする。 In order to solve the above-described problems and achieve the object, the present invention includes a main pipe that is open at both ends and can be connected to a flow path for flowing a fluid, a side connected to the main pipe, and a side connected to the main pipe. An incident tube having a window portion through which light can pass at the opposite end, and a window portion through which light can pass at the end opposite to the side connected to the main tube. A measurement cell configured by a first purge fluid supply pipe connected to the incident pipe, a purge fluid supply unit for supplying a purge fluid to the first purge fluid supply pipe of the measurement cell, A light emitting unit that makes a laser beam incident on the incident tube, and a laser beam that is incident from the incident tube, passes through the measurement cell, and is emitted from the emission tube, and outputs the received light amount as a light reception signal. Based on the light receiving unit and the light receiving signal output from the light receiving unit. There are characterized by having a calculation unit for calculating the flow rate of the fluid flowing through the measuring cell, and a control unit for controlling the operation of each unit, the.
これにより、高い応答性で計測が可能であり、かつ、厳しい環境でも流量の計測が可能となる。 Thereby, it is possible to measure with high responsiveness and to measure the flow rate even in a severe environment.
また、前記算出部は、前記受光部で受光した受光信号を1つの周波数で復調し、復調した信号の変動の大きさに基づいて、前記流体の流量を算出することが好ましい。1つの周波数で復調した信号の変動を用いることで、簡単な構成で流量を計測することができる。 Further, it is preferable that the calculation unit demodulates a light reception signal received by the light reception unit at one frequency, and calculates the flow rate of the fluid based on the magnitude of fluctuation of the demodulated signal. By using the fluctuation of the signal demodulated at one frequency, the flow rate can be measured with a simple configuration.
また、前記算出部は、前記受光部で受光した受光信号を異なる2つの周波数でそれぞれ復調し、復調した2つの周波数における信号の変動の大きさに基づいて、前記流体の流量を算出することが好ましい。これにより、より高い精度で流量を計測することができる。 The calculation unit may demodulate the light reception signal received by the light reception unit at two different frequencies, and calculate the flow rate of the fluid based on the magnitude of signal fluctuation at the two demodulated frequencies. preferable. Thereby, the flow rate can be measured with higher accuracy.
また、前記算出部は、前記受光部で受光した受光信号を複数の異なる周波数でそれぞれ復調し、復調した複数の周波数における信号の変動の大きさに基づいて、前記流体の流量を算出することが好ましい。これにより、より高い精度で流量を計測することができる。 The calculating unit may demodulate the received light signal received by the light receiving unit at a plurality of different frequencies, and calculate the flow rate of the fluid based on the magnitude of signal fluctuation at the demodulated frequencies. preferable. Thereby, the flow rate can be measured with higher accuracy.
また、前記算出部は、予め算出した変動と流量との関係を記憶しており、前記関係と、前記変動の大きさとに基づいて前記流体の流量を算出することが好ましい。これにより、より簡単に流量を計測することができる。 In addition, it is preferable that the calculation unit stores a relationship between a fluctuation and a flow rate calculated in advance, and calculates the flow rate of the fluid based on the relationship and the magnitude of the fluctuation. Thereby, the flow rate can be measured more easily.
また、前記算出部は、前記入射管に流れるパージ流体の流量毎に、前記変動と前記流体の流量との関係を記憶しており、前記入射管に流れるパージ流体の流量と前記変動に基づいて前記流体の流量を算出することが好ましい。これにより、より高い精度で流量を計測することができる。 Further, the calculation unit stores a relationship between the fluctuation and the flow rate of the fluid for each flow rate of the purge fluid flowing through the incident pipe, and based on the flow rate of the purge fluid flowing through the incident pipe and the fluctuation. It is preferable to calculate the flow rate of the fluid. Thereby, the flow rate can be measured with higher accuracy.
また、前記制御部は、前記算出部で算出した前記流体の流量を含む領域で変動の変化量の大きくなる前記パージ流体の流量を算出し、算出結果に基づいて、前記パージ流体供給部から前記第1パージ流体供給管に供給するパージ流体の流量を調整することが好ましい。これにより、より高い精度で流量を計測することができる。 Further, the control unit calculates a flow rate of the purge fluid having a large variation amount in a region including the fluid flow rate calculated by the calculation unit, and based on a calculation result, the control unit calculates the purge fluid flow rate from the purge fluid supply unit. It is preferable to adjust the flow rate of the purge fluid supplied to the first purge fluid supply pipe. Thereby, the flow rate can be measured with higher accuracy.
また、前記算出部は、さらに、前記発光部から出力したレーザ光の強度と、前記受光部で受光したレーザ光の強度とに基づいて、前記計測セルを流れる排流体の測定対象の物質の濃度も算出することが好ましい。これにより、流れている流体について、より多くの情報を取得することができる。 Further, the calculation unit further includes a concentration of a substance to be measured of a waste fluid flowing through the measurement cell based on the intensity of the laser beam output from the light emitting unit and the intensity of the laser beam received by the light receiving unit. Is also preferably calculated. Thereby, more information can be acquired about the flowing fluid.
また、前記受光部は、隣接して配置された複数の受光素子を有し、各受光素子で受光した光量を受光信号として出力し、前記算出部は、各受光素子から送られた受光信号の強度の比較に基づいて、前記流体の流量を算出することが好ましい。この方法でも、高い精度で流量を計測することができる。 The light receiving unit includes a plurality of light receiving elements arranged adjacent to each other, and outputs the amount of light received by each light receiving element as a light receiving signal, and the calculating unit receives a light receiving signal transmitted from each light receiving element. It is preferable to calculate the flow rate of the fluid based on the comparison of strength. Even with this method, the flow rate can be measured with high accuracy.
また、前記算出部は、各受光素子から送られた受光信号の強度の比較に基づいて、前記レーザ光の到達位置を算出し、前記到達位置と基準位置とのずれに基づいて、前記流体の流量を算出することが好ましい。これにより、レーザ光の変位を検出することができ、流量を計測することができる。 Further, the calculation unit calculates the arrival position of the laser beam based on a comparison of the intensity of the received light signal sent from each light receiving element, and based on the deviation between the arrival position and the reference position, It is preferable to calculate the flow rate. Thereby, the displacement of the laser beam can be detected, and the flow rate can be measured.
また、前記算出部は、各受光素子から送られた受光信号の強度の総量と、前記受光部で受光したレーザ光の強度とに基づいて、前記計測セルを流れる排流体の測定対象の物質の濃度も算出することが好ましい。これにより、流れている流体について、より多くの情報を取得することができる。 Further, the calculation unit is configured to determine a substance to be measured of the exhaust fluid flowing through the measurement cell based on the total amount of the received light signal transmitted from each light receiving element and the intensity of the laser light received by the light receiving unit. It is preferable to calculate the concentration. Thereby, more information can be acquired about the flowing fluid.
また、前記計測セルは、前記主管の、前記流体の流れ方向において前記入射管の上流側、かつ、前記入射管の近傍に、前記入射管近傍の空気の流れを乱流にする乱流発生部を有することが好ましい。これにより、流量の変化に対する受光信号の変化をより大きくすることができ、より高い精度で流量を計測することができる。 In addition, the measurement cell includes a turbulent flow generation unit that turbulently flows the air in the vicinity of the incident tube on the upstream side of the incident tube in the fluid flow direction and in the vicinity of the incident tube. It is preferable to have. Thereby, the change of the received light signal with respect to the change of the flow rate can be increased, and the flow rate can be measured with higher accuracy.
さらに、前記出射管と連結された第2パージ流体供給管を有し、前記パージ流体供給部は、第2パージ流体供給管にもパージ流体を供給することが好ましい。これにより、出射管にある窓部が汚れる可能性を低減できる。 Furthermore, it is preferable that a second purge fluid supply pipe connected to the emission pipe is provided, and the purge fluid supply section supplies the purge fluid also to the second purge fluid supply pipe. Thereby, possibility that the window part in an emission tube will become dirty can be reduced.
前記算出部は、さらに、前記受光部から出力される受光信号に基づいて、前記計測セルの前記主管を流れる流体の流速を計測することが好ましい。これにより、計測セルを流れる流体の情報をより多く取得することができる。 It is preferable that the calculation unit further measures a flow velocity of the fluid flowing through the main pipe of the measurement cell based on a light reception signal output from the light reception unit. Thereby, more information on the fluid flowing through the measurement cell can be acquired.
また、前記流体は、気体であることが好ましい。 The fluid is preferably a gas.
上述した課題を解決し、目的を達成するために、本発明は、一方の端部が測定領域と向かい合う開口であり、反対側の端部に光が通過可能な窓部が形成された入射管、一方の端部が前記入射管と対向し、かつ、前記測定領域と向かい合う開口であり、反対側の端部に光が通過可能な窓部が形成された出射管、前記入射管と連結された第1パージ流体供給管とで構成された計測セルと、前記計測セルの前記第1パージ流体供給管にパージ流体を供給するパージ流体供給部と、前記入射管にレーザ光を入射させる発光部と、前記入射管から入射され、前記測定領域を通過し、前記出射管から出射されたレーザ光を受光し、受光した光量を受光信号として出力する受光部と、前記受光部から出力される受光信号に基づいて、前記測定領域を流れる流体の流速を算出する算出部と、各部の動作を制御する制御部と、を有すること特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides an incident tube in which one end portion is an opening facing a measurement region and a window portion through which light can pass is formed at the opposite end portion. An exit tube having one end facing the incident tube and facing the measurement region, and having a window portion through which light can pass at the opposite end, connected to the incident tube. A measurement cell constituted by a first purge fluid supply pipe, a purge fluid supply part for supplying a purge fluid to the first purge fluid supply pipe of the measurement cell, and a light emitting part for causing laser light to enter the incident pipe A light receiving unit that receives the laser light that is incident from the incident tube, passes through the measurement region, and is emitted from the emitting tube, and outputs the received light amount as a light reception signal; and a light reception that is output from the light receiving unit Based on the signal, the flow through the measurement area A calculation unit for calculating the flow rate, characterized by having a control unit for controlling the operation of each section.
これにより、高い応答性で計測が可能であり、かつ、厳しい環境でも流速の計測が可能となる。 Thereby, it is possible to measure with high responsiveness and to measure the flow velocity even in a severe environment.
また、前記計測セルは、前記入射管の一方の端部及び前記出射管の一方の端部とそれぞれ連結され、測定対象の流体が流れる主管を有し、前記測定領域は、前記主管の一部であることが好ましい。これにより、測定対象の流れを拘束することができより高い精度で計測することができる。 The measurement cell includes a main tube that is connected to one end of the incident tube and one end of the output tube and through which a fluid to be measured flows, and the measurement region is a part of the main tube. It is preferable that Thereby, the flow of a measuring object can be restrained and it can measure with higher precision.
また、前記流体は、気体であることが好ましい。 The fluid is preferably a gas.
本発明にかかる流量測定装置は、高い応答性で計測が可能であり、かつ、厳しい環境でも流量の計測が可能となるという効果を奏する。 The flow rate measuring apparatus according to the present invention can measure with high responsiveness, and has an effect that the flow rate can be measured even in a severe environment.
以下に、本発明にかかる流量測定装置及び流速測定装置の一実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。なお、流量測定装置は、流路を流れる種々の気体(ガス)、液体等の流体の流量、流速を計測することができる。例えば、排ガス浄化装置をディーゼルエンジンに取付、ディーゼルエンジンから排出される排ガス流量を計測してもよい。なお、排ガスを排出する機関、つまり測定対象のガスを排出(供給)する装置は、これに限定されず、ガソリンエンジンや、ガスタービン等種々の内燃機関に用いることができる。また、内燃機関を有する装置としては、車両、船舶、発電機等種々の装置が例示される。さらに、ゴミ焼却炉、ボイラ等の燃焼機器及び高温かつ流量、流速変動がある流量、流速計測対象から排出される排ガスの流量、流速を計測することもできる。なお、以下の実施形態では、配管を流れる排ガスの流量を計測する場合として説明する。また、後ほど説明するが、以下の実施形態で説明する流量測定装置の装置構成で、配管を流れる流速も計測することができる。 Hereinafter, an embodiment of a flow rate measuring device and a flow rate measuring device according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. The flow rate measuring device can measure the flow rate and flow velocity of various gases (gas) and fluid such as liquid flowing in the flow path. For example, an exhaust gas purification device may be attached to a diesel engine, and the exhaust gas flow rate discharged from the diesel engine may be measured. The engine that discharges exhaust gas, that is, a device that discharges (supplies) the gas to be measured is not limited to this, and can be used for various internal combustion engines such as a gasoline engine and a gas turbine. Examples of the device having an internal combustion engine include various devices such as vehicles, ships, and generators. Furthermore, combustion equipment such as a garbage incinerator and boiler, and a high temperature and flow rate, a flow rate with fluctuations in flow velocity, a flow rate of exhaust gas discharged from a flow velocity measurement target, and a flow velocity can also be measured. In the following embodiments, a case where the flow rate of exhaust gas flowing through a pipe is measured will be described. Moreover, although demonstrated later, the flow velocity which flows through piping is also measurable with the apparatus structure of the flow volume measuring apparatus demonstrated by the following embodiment.
図1は、本発明の流量測定装置の一実施形態の概略構成を示す模式図である。また、図2は、図1に示す流量測定装置の計測セルの一部を拡大して示す拡大模式図である。図1に示すように流量測定装置10は、計測セル12と、計測手段14と、パージガス供給手段16とを有する。ここで、流量測定装置10は、排ガスAが流れる配管6と配管8との間に設けられている。また、排ガスAは、配管6の上流側から供給され、配管6、流量測定装置10、配管8を通過し、配管8よりも下流に排出される。なお、配管6の上流側には、排ガスの発生装置(供給装置)が配置されている。
FIG. 1 is a schematic diagram showing a schematic configuration of an embodiment of a flow rate measuring device of the present invention. FIG. 2 is an enlarged schematic view showing a part of the measurement cell of the flow rate measuring device shown in FIG. As shown in FIG. 1, the flow
計測セル12は、基本的に主管20と、入射管22と、出射管24とを有する。また、入射管22には、窓26と、パージガス供給管30とが設けられており、出射管24は、窓28と、パージガス供給管32が設けられている。主管20は、筒状の管状部材であり、一方の端部が配管6と連結され、他方の端部が配管8と連結されている。つまり、主管20は、排ガスAが流れる流路の一部となる位置に配置されている。これにより、排ガスAは、配管6、主管20、配管8の順に流れる。また、配管6を流れる排ガスは、基本的に全て主管20を流れる。
The
入射管22は、管状部材であり、一方の端部が主管20に連結されている。また、主管20は、入射管22との連結部が、入射管22の開口(端部の開口)と略同一形状の開口となっている。つまり、入射管22は、主管20と、空気の流通が可能な状態で連結されている。また、入射管22の他方の端部には、窓26が設けられており、窓26により封止されている。なお、窓26は、光を透過する部材、例えば、透明なガラス、樹脂等で構成されている。これにより、入射管22は、窓26が設けられている端部が、空気が流通しない状態で、かつ、光が透過できる状態となる。
The
入射管22は、図1及び図2に示すように、窓26側の端部の開口(つまり、窓26により塞がれている開口)の面積と、主管20側の端部(つまり、主管20と連結している部分の開口)の面積とが実質的に同一の円筒形状である。なお、入射管22の形状は円筒形状に限定されず、空気及び光を通過させる筒型の形状であればよく、種々の形状とすることができる。例えば、断面が四角、多角形、楕円、非対称曲面となる形状としてもよい。また筒形状の断面の形状、径が位置によって変化する形状でもよい。なお、入射管22は、後述するパージガスが安定して流れる形状とすることが好ましい。
As shown in FIGS. 1 and 2, the
また、入射管22には、さらにパージガス供給管30が連結されている。パージガス供給管30は、図2に示すように、窓26が封止されている端部と主管20と連結されている端部との間に配置されている。パージガス供給管30は、パージガス供給手段16から供給されたパージガスを入射管22に案内する。また、パージガス供給管30は、パージガスの噴出し口となる部分が窓26側に向けて傾斜している。
Further, a purge
出射管24は、入射管22と略同一形状の管状部材であり、一方の端部が主管20に連結され、出射管24の他方の端部には、窓28が設けられている。出射管24も、主管20と空気が流通可能な状態で、窓28が設けられている端部が、空気が流通しない状態で、かつ、光が透過できる状態となる。また、出射管24は、中心軸が入射管22の中心軸と略同一となる位置に配置されている。つまり、入射管22と出射管24とは、主管20の対向する位置に配置されている。
The
また、出射管24も、窓28側の端部の開口(つまり、窓28により塞がれている開口)の面積と、主管20側の端部(つまり、主管20と連結している部分の開口)の面積とが実質的に同一の円筒形状である。なお、出射管24も形状は円筒形状に限定されず、空気及び光を通過させる筒型の形状であればよく、種々の形状とすることができる。例えば、断面が四角、多角形、楕円、非対称曲面となる形状としてもよい。また筒形状の断面の形状、径が位置によって変化する形状でもよい。なお、出射管24も、後述するパージガスが安定して流れる形状とすることが好ましい。
The
また、出射管24の、窓28が封止されている端部と主管20と連結されている端部との間には、パージガス供給管32が連結されている。パージガス供給管32は、パージガス供給手段16から供給されたパージガスを出射管24に案内する。また、パージガス供給管32も吹出し口が窓28側を向いた形状である。
A purge
次に、計測手段14は、発光部40と、光ファイバ42と、受光部44と、光源ドライバ46と、算出部48と、制御部50とを有する。
Next, the measuring
発光部40は、所定波長のレーザ光を発光させる発光素子である。光ファイバ42は、発光部40から出力されたレーザ光を案内し、窓26から計測セル12内に入射させる。
The
受光部44は、計測セル12の主管20の内部を通過し、出射管24の窓28から出力されたレーザ光を受光する受光部である。なお、受光部44は、例えば、フォトダイオード(PD、Photodiode)等の光検出器を備え、光検出器によってレーザ光を受光し、その光の強度を検出する。受光部44は、受光したレーザ光の強度(光量)を受光信号として、算出部48に送る。
The
光源ドライバ46は、発光部40の駆動を制御する機能を有し、発光部40に供給する電流、電圧を調整することで、発光部40から出力されるレーザ光の波長、強度を調整する。また、光源ドライバ46は、制御部50により制御される。
The
算出部48は、受光部44で受光したレーザ光の強度の信号(受光信号)に基づいて、計測セル20を流れる排ガスの流量を算出する。なお、算出方法については、後述する。
The
制御部50は、各部の動作を制御する制御機能を有し、必要に応じて、各部の動作を制御する。なお、制御部50は、計測手段14の制御のみならず、流量測定装置10の全体の動作を制御する。つまり、制御部50は、流量測定装置10の動作を制御する制御部である。
The
パージガス供給手段16は、配管51と、ポンプ52と、ドライヤ54と、流量計56と、を有し、計測セル12のパージガス供給管30、32に所定流量の空気を供給する。なお、本実施形態では、空気を供給しているが、ボンベ等を使用してパージガスとして窒素などを供給する構成としてもよい。
The purge gas supply means 16 includes a
配管51は、パージガス供給管30、32と連結している。また、配管51には、パージガス供給管30、32から最も遠い側(空気の流れの上流)から順に、ポンプ52、ドライヤ54、流量計56が配置されている。ポンプ52は、配管51に空気を供給することで、パージガス供給管30、32に空気を供給する。また、ポンプ52は、制御部50により動作が制御される。
The
ドライヤ54は、配管51を流れる空気を乾燥させる乾燥機構である。ドライヤ54として、空気中に含まれる水分を低減することができればよく、種々の吸湿機構、吸湿材料を用いることができる。
The
流量計56は、配管51を流れる空気の量、つまり、流量を計測する。流量計56は、計測した流量の情報を制御部50に送る。なお、配管51には、基本的にポンプ52から送られる空気が通過するため、流量が安定している。このため、通常用いる種々の流量計を使用することができる。
The
パージガス供給手段16は、制御部50が、流量計56での計測結果に基づいてパージガスの流量を制御することで、配管51を流れる空気の量を制御することができ、パージガス供給管30から入射管22に供給する空気の量、流速、パージガス供給管32から出射管24に供給する空気の量を所定の量とすることができる。また、ドライヤ54で空気を乾燥させることで、流量計56に水分が付着する可能性を低減することができる。流量測定装置10は、以上のような構成である。
The purge gas supply means 16 can control the amount of air flowing through the
次に、流量測定装置10による流量の計測方法について説明する。まず、流量測定装置10の計測手段14は、発光部40からレーザ光を出射させると、出射されたレーザ光Lは、光ファイバ42、窓26、入射管22、主管20、出射管24、窓28の順に通過し、受光部44に入射する。このとき、流量測定装置10は、パージガス供給手段16により、パージガス供給管30から入射管22にパージガスGを供給し、パージガス供給管32から出射管24にもパージガスGを供給する。これにより、入射管22と出射管24内に排ガスが進入することを抑制し、排ガスに含まれる微粒子等が、窓26、28に付着することを抑制することができる。
Next, a method for measuring the flow rate by the flow
ここで、パージガス供給手段16により供給されるパージガスGと、主管20を流れる排ガスAとは、異なる性質の空気、具体的には、ガスの温度が異なる。このため、図2に示すように、パージガス供給手段16から供給され入射管22を通り主管20に到達するパージガスGと、主管20を流れる排ガスAとが混合される領域に温度境界層80が形成されることを、本発明者らは知見した。また、温度境界層80を境界としてパージガスGと排ガスAとの温度が異なることで、屈折率が異なる値となる。
Here, the purge gas G supplied by the purge gas supply means 16 and the exhaust gas A flowing through the
このため、図3に示すように、レーザ光Lは、温度境界層80を通過することで、屈折する。ここで、図3は、レーザ光の経路を説明するための説明図である。例えば、図3に示すように、温度境界層80がレーザ光Lの進行方向に対して、θ1傾斜していると仮定できる場合、温度境界層80を通過することにより、温度境界層80とのなす角がθ2のレーザ光Lとなる。これにより、θ1とθ2との差分だけ、光の進行方向が変化し、到達位置が変化する。
Therefore, as shown in FIG. 3, the laser light L is refracted by passing through the
ここで、この温度境界層80は、不安定である。そのため、温度境界層80とみなすことができる層の角度は時間よって変化し、レーザ光Lの到達位置も、時間によって変化する。このように到達位置が変化すると、受光部がレーザ光を受光する位置が変化する。つまり計測している条件が変化する。このレーザ光Lの到達位置の変化は、受光部44の受信信号を復調した結果にノイズ(信号の変動)として現れる。なお、この信号の変動は、他の物性値を計測する場合はノイズとなるが、本発明では、この信号の変動が流量を求めるための測定対象の値となる。なお、本実施形態の説明では、便宜上、信号の変動をノイズという。
Here, the
ここで、本発明者らは、このノイズについて鋭意検討した結果、ノイズと主管20を流れる流量との間に相関関係があることを見出した。流量測定装置10は、その関係に基づいて流量を算出する。以下、詳細に説明する。
Here, as a result of intensive studies on the noise, the present inventors have found that there is a correlation between the noise and the flow rate flowing through the
まず、排ガス流量を種々の値に変化させ、それぞれの排ガス流量の場合について、受光信号を種々の周波数で復調し、復調した周波数と復調した結果のノイズとの関係を計測した。また、本計測では、排ガスの流量を0(つまり排ガスを流さない場合)とした場合、61m3/hとした場合、116m3/hとした場合、160m3/hとした場合、199m3/hとした場合、258m3/hとした場合について復調した周波数とノイズとの関係を計測した。なお、これらの計測は、排ガスの流量を変化させた点以外は、同一の条件で計測を行った。計測した結果を、図4に示す。図4は、周波数とノイズとの関係を示すグラフである。図4は、縦軸をノイズ(dB)とし、横軸を周波数(kHz)とした。なお、周波数とは、受光部で検出した受光信号を復調した周波数である。図4に示すように、発生するノイズの大きさは、排ガスの流量によって変化することがわかる。また、基本的に、排ガスの流量が大きくなれば、ノイズも大きくなることがわかる。 First, the exhaust gas flow rate was changed to various values. For each exhaust gas flow rate, the received light signal was demodulated at various frequencies, and the relationship between the demodulated frequency and the demodulated noise was measured. Further, in this measurement, when the flow rate of the exhaust gas 0 (i.e. if no flow of exhaust gas), when a 61m 3 / h, when the 116m 3 / h, when the 160m 3 / h, 199m 3 / In the case of h, the relationship between the demodulated frequency and noise in the case of 258 m 3 / h was measured. In addition, these measurements were performed on the same conditions except the point which changed the flow volume of waste gas. The measurement results are shown in FIG. FIG. 4 is a graph showing the relationship between frequency and noise. In FIG. 4, the vertical axis represents noise (dB) and the horizontal axis represents frequency (kHz). The frequency is a frequency obtained by demodulating the received light signal detected by the light receiving unit. As shown in FIG. 4, it can be seen that the magnitude of the generated noise varies with the flow rate of the exhaust gas. In addition, basically, it can be seen that the noise increases as the flow rate of the exhaust gas increases.
次に、この計測結果に基づいて、復調周波数200kHzの場合のノイズと排ガス流量との関係を算出した。算出結果を図5に示す。ここで、図5は、排ガス流量とノイズとの関係を示すグラフである。また、図5は、縦軸をノイズ(σ(A)/I(×10−6/m))とし、横軸を排ガス流量(Nm3/h)とした。図5に示すように、復調周波数200kHzでは、排ガス流量に応じて、ノイズの大きさが変化する。 Next, based on this measurement result, the relationship between the noise and the exhaust gas flow rate when the demodulation frequency was 200 kHz was calculated. The calculation results are shown in FIG. Here, FIG. 5 is a graph showing the relationship between the exhaust gas flow rate and noise. In FIG. 5, the vertical axis represents noise (σ (A) / I (× 10 −6 / m)), and the horizontal axis represents the exhaust gas flow rate (Nm 3 / h). As shown in FIG. 5, at the demodulation frequency of 200 kHz, the magnitude of noise changes according to the exhaust gas flow rate.
流量測定装置10は、上記関係を用いて、ノイズの大きさから流量を算出する。具体的には、予め実験、計測により、図5に示すようなノイズの大きさと排ガス流量との関係を算出し、算出部48に記憶させておく。算出部48は、受光部44から送られてくる受光信号を周波数200kHzで復調し、復調した結果(信号)のノイズの大きさを検出する。その後検出したノイズの大きさと、記憶しているノイズの大きさと排ガス流量との関係とに基づいて、排ガス流量を算出する。
The
このように、流量測定装置10は、発光部から発光されたレーザ光を受光した受光部の受光信号の復調の際に発生するノイズから配管の流量を算出することができる。また、測定にレーザ光を用いているため、短時間で測定することができる。具体的には、光を用いていることで、発光から受光までの時間を音波等よりも短くすることができる。また、ノイズを算出するために必要な測定時間、算出時間も短くすることができる。これにより、応答性を高くすることができる。また、連続的に流量を算出することもできる。
As described above, the flow
さらに、光は、光ファイバ等で案内することができるため、発光部、受光部を直接配管に設ける必要がない。そのため、電子部品(回路等)を厳しい条件におく必要がなくなり、種々の環境下で使用することができる。例えば高温になる配管を流れる排ガスの流量も計測することができる。 Furthermore, since light can be guided by an optical fiber or the like, it is not necessary to provide a light emitting part and a light receiving part directly in the pipe. For this reason, it is not necessary to place electronic components (circuits, etc.) under strict conditions, and the electronic components can be used in various environments. For example, it is possible to measure the flow rate of exhaust gas flowing through a high-temperature pipe.
なお、上記実施形態では、一例として、受光信号を200kHzで復調したが、本発明はこれに限定されず、復調する周波数には、任意の周波数を用いることができる。また、算出部が、受光信号を復調する方法としては、種々の構成を用いることができる。例えば、特定の周波数成分のみを通過させるバンドパスフィルタを用いて、対象となる周波数成分を抽出することで、受信信号を所定の周波数成分で復調することができる。なお、バンドパスフィルタを用いた場合は、装置構成を簡単にすることができ、装置を安価にすることができる。また流量算出のために行う演算を少なくすることができる。また、FFT(Fast Fourier Transform、高速フーリエ変換)演算装置や、スペクトラムアナライザ(Spectrum analyzer)を用いることでも復号することができる。なお、FFT演算装置や、スペクトラムアナライザを用いた場合は、受信信号を一定周波数領域に渡って復調することができる。 In the above embodiment, the received light signal is demodulated at 200 kHz as an example. However, the present invention is not limited to this, and an arbitrary frequency can be used as a frequency to be demodulated. In addition, various configurations can be used as a method for the calculation unit to demodulate the received light signal. For example, a received signal can be demodulated with a predetermined frequency component by extracting a target frequency component using a bandpass filter that passes only a specific frequency component. In addition, when a band pass filter is used, the apparatus configuration can be simplified and the apparatus can be made inexpensive. In addition, it is possible to reduce the calculation performed for the flow rate calculation. Decoding can also be performed by using an FFT (Fast Fourier Transform) computing device or a spectrum analyzer. In the case where an FFT arithmetic unit or a spectrum analyzer is used, the received signal can be demodulated over a certain frequency region.
ここで、上記実施形態では、1つの周波数(200kHz)で復調した受光信号(つまり、受光信号の復調した結果の1つの周波数成分)のノイズに基づいて、流量を算出したが、本発明はこれに限定されない。流量算出装置は、異なる2つの周波数で復調した受光信号(つまり、受光信号の復調した結果の2つの周波数成分)のノイズに基づいて、流量を算出してもよい。以下、図6を用いて説明する。なお、図6に示す例では、200kHzで受光信号を復調した際のノイズと、排ガス流量との関係と、20kHzで受光信号を復調した際のノイズと排ガス流量との関係を用いる。ここで、図6は、排ガス流量とノイズとの関係を示すグラフである。また、図6は、縦軸を200kHzで復号した場合、20kHzで復号した場合のノイズ(σ(A)/I(×10−6/m))とし、横軸を排ガス流量(Nm3/h)とした。なお、図6に示すノイズと排ガスの流量との関係も図4に示す計測結果に基づいて算出することができる。 Here, in the above embodiment, the flow rate is calculated based on the noise of the received light signal demodulated at one frequency (200 kHz) (that is, one frequency component as a result of demodulating the received light signal). It is not limited to. The flow rate calculation device may calculate the flow rate based on noise of a light reception signal demodulated at two different frequencies (that is, two frequency components resulting from demodulation of the light reception signal). Hereinafter, a description will be given with reference to FIG. In the example shown in FIG. 6, the relationship between the noise when demodulating the received light signal at 200 kHz and the exhaust gas flow rate and the relationship between the noise when demodulating the received light signal at 20 kHz and the exhaust gas flow rate are used. Here, FIG. 6 is a graph showing the relationship between the exhaust gas flow rate and noise. In FIG. 6, when the vertical axis is decoded at 200 kHz, the noise (σ (A) / I (× 10 −6 / m)) when decoded at 20 kHz is shown, and the horizontal axis is the exhaust gas flow rate (Nm 3 / h). ). The relationship between the noise and the exhaust gas flow rate shown in FIG. 6 can also be calculated based on the measurement result shown in FIG.
流量測定装置10は、予め実験、計測により、図6に示すようなノイズの大きさと排ガス流量との関係を算出し、算出部48に記憶させておく。算出部48は、受光部44から送られてくる受光信号を周波数200kHzと周波数20kHzで復調し、それぞれの周波数について、復調した結果(信号)のノイズの大きさを検出する。その後検出した2つのノイズの大きさと、記憶しているノイズの大きさと排ガス流量との関係とに基づいて、排ガス流量を算出する。このように、2つの周波数成分を用いても、排ガス流量を計測することができる。
The flow
また、図6に示すように、ノイズの大きさが大きく変化する流量は、復調する周波数によって異なる。具体的には、周波数200kHzで復調した場合は、排ガス流量が、流量40Nm3/h以下では、ノイズの大きさの大きさが変化しないが、流量50Nm3/hから90Nm3/hの範囲では、ノイズが大きく変化する。また、周波数20kHzで復調した場合は、排ガス流量が、流量60Nm3/h以下では、ノイズの大きさが大きく変化するが、流量60Nm3/hから100Nm3/hの範囲では、ノイズの大きさがほとんど変化しない。このように、周波数によって、検出しやすい流量の範囲が異なる。これにより複数の周波数で復調させ、その検出結果を用いて流量を算出することでより高い精度で流量を算出することができる。なお、流量測定装置10は、排ガス流量に応じて、算出結果を算出する復調周波数を切り替えるようにしてもよい。
Also, as shown in FIG. 6, the flow rate at which the magnitude of noise changes greatly depends on the frequency to be demodulated. Specifically, when demodulated at a frequency of 200 kHz, the magnitude of noise does not change when the exhaust gas flow rate is 40 Nm 3 / h or less, but in the range of 50 Nm 3 / h to 90 Nm 3 / h. The noise changes greatly. Also, if the demodulated at
例えば、200kHzでのノイズから算出した排ガス流量と、20kHzでのノイズから算出した排ガス流量とで、算出した流量が異なる場合は、流量の大きさに応じて、優先度を判定して、優先順位の高い計測結果を、排ガス流量とする。具体的には、算出結果の流量が60Nm3/h以下のときは、20kHzで復調した結果のノイズから算出された流量を用い、算出結果の流量が60Nm3/hより大きいときは、200kHzで復調した結果のノイズから算出された流量を用いる。なお、2つの算出結果の相関関係を用いて算出してもよい。また、平均値を算出値としてもよい。 For example, if the calculated flow rate differs between the exhaust gas flow rate calculated from noise at 200 kHz and the exhaust gas flow rate calculated from noise at 20 kHz, the priority is determined according to the magnitude of the flow rate, and the priority order The high measurement result is defined as the exhaust gas flow rate. Specifically, when the calculated flow rate is 60 Nm 3 / h or less, the flow rate calculated from the noise demodulated at 20 kHz is used, and when the calculated flow rate is greater than 60 Nm 3 / h, the calculated flow rate is 200 kHz. The flow rate calculated from the noise resulting from the demodulation is used. In addition, you may calculate using the correlation of two calculation results. The average value may be the calculated value.
また、受光信号を2つの周波数で復調させる場合は、例えばバンドパスフィルタを2つ設ければよい。 When demodulating the received light signal at two frequencies, for example, two band pass filters may be provided.
また、復調する周波数は、2つにも限定されず、その数は限定されない。また、周波数で復調した結果を2つ以上用いる場合は、計測結果の相関関係に基づいて、排ガスの流量を算出すればよい。つまり、予め、各周波数で復調した場合について、ノイズと流量との関係を算出しておき、複数の算出結果を相対的に比較することで、排ガス流量を算出する。このように、復調する周波数を多くすることで、より高い精度で排ガス流量を算出することができる。なお、このように複数の周波数で復号する場合は、復号する周波数毎にバンドパスフィルタを設けてもよいが、上述したFFT変換装置や、スペクトラムアナライザにより受光波長を一定波長域において解析することで、復調してもよい。なお、復調する周波数を切り替え(調整)できる場合は、排ガスの流量が少ない(低流量)時には、パージ流量を多くし、排ガスの流量が多い(高流量)ときには、パージ流量を少なくすることが好ましい。これにより、計測感度を高くすることができる。なお、判定するための流量は、直前の流量を用いてもよいし、概算で算出した流量を用いてもよい。 Moreover, the frequency to demodulate is not limited to two, and the number is not limited. Further, when two or more results demodulated by frequency are used, the flow rate of the exhaust gas may be calculated based on the correlation of the measurement results. That is, in the case of demodulating at each frequency, the relationship between noise and flow rate is calculated in advance, and the exhaust gas flow rate is calculated by relatively comparing a plurality of calculation results. Thus, the exhaust gas flow rate can be calculated with higher accuracy by increasing the frequency to be demodulated. When decoding at a plurality of frequencies as described above, a bandpass filter may be provided for each frequency to be decoded. However, by analyzing the received light wavelength in a certain wavelength range using the above-described FFT converter or spectrum analyzer. You may demodulate. When the frequency to be demodulated can be switched (adjusted), it is preferable to increase the purge flow rate when the exhaust gas flow rate is low (low flow rate) and to decrease the purge flow rate when the exhaust gas flow rate is high (high flow rate). . Thereby, measurement sensitivity can be made high. In addition, the flow volume for determination may use the flow volume immediately before, and may use the flow volume calculated by rough calculation.
ここで、流量測定装置10は、さらに、入射管22を流れるパージガスの流量にも基づいて、排ガス流量を算出することが好ましい。具体的には、上述したノイズの大きさと排ガス流量との関係をパージガスの流量毎に計測し、計測した関係を記憶しておき、入射管22を流れるパージガスの流量を計測し、計測結果に基づいて、使用するノイズの大きさと排ガス流量との関係を選択するようにすることが好ましい。
Here, it is preferable that the flow
以下、図7を用いて説明する。ここで、図7は、周波数とノイズとの関係を示すグラフである。図7は、縦軸をノイズ(dB)とし、横軸を周波数(kHz)とした。なお、周波数は、受光部で検出した受光信号を復調した周波数である。図7には、パージ流量を1l/min、5l/min、10l/minとした場合について、周波数とノイズとの関係を計測した結果を示している。なお、測定は、パージ流量以外は、同じ条件で行った。図7に示すように、パージ流量が変化すると、周波数とノイズとの関係も変化する。つまり、同一周波数で復調しても、パージ流量が変化するとノイズの大きさが変化する。 Hereinafter, a description will be given with reference to FIG. Here, FIG. 7 is a graph showing the relationship between frequency and noise. In FIG. 7, the vertical axis represents noise (dB), and the horizontal axis represents frequency (kHz). The frequency is a frequency obtained by demodulating the received light signal detected by the light receiving unit. FIG. 7 shows the results of measuring the relationship between frequency and noise when the purge flow rate is 1 l / min, 5 l / min, and 10 l / min. The measurement was performed under the same conditions except for the purge flow rate. As shown in FIG. 7, when the purge flow rate changes, the relationship between frequency and noise also changes. That is, even when demodulated at the same frequency, the magnitude of noise changes as the purge flow rate changes.
これに対して、入射管22を流れるパージガスの流量にも基づいて、排ガス流量を算出することで、高い精度で排ガスの流量を計測することが可能となる。つまり、パージ流量の変化により、排ガス流量の計測結果に誤差が生じることを抑制することができる。なお、パージ流量が変化しない構成の場合は、パージガスの流量に応じて、使用するノイズの大きさと排ガス流量との関係を切り替えなくとも高い精度で計測を行うことが可能となる。
On the other hand, by calculating the exhaust gas flow rate based on the flow rate of the purge gas flowing through the
また、上述では、パージ流量に応じて、使用するノイズの大きさと排ガス流量との関係を選択するようにしたが、本発明はこれに限定されない。例えば、検出されるノイズが、所定の範囲となるように、パージ流量を調整するようにしても良い。つまり、ノイズが計測を行いやすい範囲となるように積極的にパージ流量を調整するようにしてもよい。例えば、排ガスの流量が少ない(低流量)である場合には、パージ流量を多くすることで計測感度を高くすることができる。また、排ガスの流量が多い(高流量)である場合には、パージ流量を少なくすることで計測感度を高くすることができる。 In the above description, the relationship between the amount of noise to be used and the exhaust gas flow rate is selected according to the purge flow rate, but the present invention is not limited to this. For example, the purge flow rate may be adjusted so that the detected noise falls within a predetermined range. In other words, the purge flow rate may be positively adjusted so that the noise is in a range in which measurement is easy. For example, when the exhaust gas flow rate is low (low flow rate), the measurement sensitivity can be increased by increasing the purge flow rate. Further, when the exhaust gas flow rate is high (high flow rate), the measurement sensitivity can be increased by reducing the purge flow rate.
ここで、流量測定装置は、温度境界層の周辺に乱流を発生させる乱流発生機構を設けることが好ましい。以下、図8−1および図8−2を用いて説明する。図8−1は、流量測定装置の他の実施形態の一部の概略構成を示す模式図であり、図8−2は、図8−1の部分拡大図である。 Here, the flow rate measuring device is preferably provided with a turbulent flow generation mechanism that generates turbulent flow around the temperature boundary layer. Hereinafter, a description will be given with reference to FIGS. FIG. 8A is a schematic diagram illustrating a schematic configuration of a part of another embodiment of the flow rate measuring device, and FIG. 8B is a partially enlarged view of FIG.
図8−1に示す計測セル90は、乱流発生部となる突起部92を有する。突起部92は、主管20の、排ガス流れ方向において入射管22よりも上流側で、かつ、入射管22の近傍、つまり、主管20と入射管22との接続部の近傍に配置されている。突起部92は、排ガス流れの上流側に凸であり、図8−2に示すように、突起部92よりも下流側に乱流を発生させる。
A
このように乱流発生部となる突起部92を設けることで、レーザ光の通過経路に乱流(カルマン渦等)を発生させることができ、温度境界層より乱れるため、ノイズをより大きくすることができる。このように、ノイズを大きくできることで、計測しやすくできる。これにより、計測感度をより高くすることができる。このように、ノイズを計測しやすくできることで、流量も算出しやすくすることができる。また、検出値となるノイズが大きくなることで、より高い感度で計測を行うことができる。つまり、乱流発生部を設けることで、排ガスの流量の変化に対するノイズの大きさ(受光信号の特性)の変化をより大きくすることができる、これにより、より高い精度で流量を計測することができる。
Providing the
ここで、流量測定装置10は、排ガスの流量に加え、排ガスに含まれる特定の物質の濃度も測定するようにしてもよい。なお、流量測定装置10は、基本的に新たな装置を設けることなく、検出値に基づいて算出部で計算を行うことで濃度を計測することができる。
Here, the
まず、濃度を計測する場合は、発光部40を、測定対象の物質が吸収する近赤外波長域のレーザ光を発光させる発光素子とする。例えば、計測対象が一酸化窒素の場合、発光部40は、一酸化窒素を吸収する近赤外波長域のレーザ光を発光させる発光素子を有する。また、計測対象が二酸化窒素の場合、発光部40は、二酸化窒素を吸収する近赤外波長域のレーザ光を発光させる発光素子を有する。また、計測対象が亜酸化窒素の場合、発光部40は、亜酸化窒素を吸収する近赤外波長域のレーザ光を発光させる発光素子を有する。なお、測定対象が複数の物質である場合、発光部40は、夫々の物質が吸収する波長域の光を出射する発光素子を複数備えるようにしてもよい。また光源ドライバ46、制御部50は、算出部48に、発光部40から出力しているレーザ光の強度の情報を出力する。
First, when measuring a density | concentration, let the
算出部48は、受光部44から送られた信号(受光信号)と、制御部50により光源ドライバ46を駆動させている条件とに基づいて、計測対象の物質の濃度を算出する。具体的には、算出部48は、制御部50により光源ドライバ46を駆動させている条件に基づいて、発光部40から出力されるレーザ光の強度を算出し、受光部から送られた受信信号に基づいて、受光したレーザ光の強度を算出する。算出部48は、この発光したレーザ光の強度と受光したレーザ光の強度と比較し、排ガスAに含まれる測定対象の物質の濃度を算出する。
The
具体的には、発光部40から出力された近赤外の波長域のレーザ光Lは、光ファイバ42から計測セル12の所定経路、具体的には、窓26、入射管22、主管20、出射管24、窓28を通過した後、受光部44に到達する。このとき、計測セル12内の排ガスA中に測定対象の物質が含まれていると、計測セル12を通過するレーザ光が吸収される。そのため、レーザ光Lは、排ガスA中の測定対象の物質の濃度によって、受光部44に到達するレーザ光の出力が変化する。受光部44は、受光したレーザ光を受光信号に変換し、算出部48に出力する。また、制御部50及び光源ドライバ46は、発光部40から出力したレーザ光Lの強度を算出部48に出力する。算出部48は、発光部40から出力した光の強度と、受光信号から算出される強度とを比較し、その減少割合から計測セル12内を流れる排ガスAの測定対象物の濃度を算出する。このように計測手段14は、いわゆるTDLAS方式(Tunable Diode Laser Absorption Spectroscopy:可変波長ダイオードレーザー分光法)を用いることで、出力したレーザ光の強度と、受光部44で検出した受光信号とに基づいて主管20内の所定位置、つまり、測定位置を通過する排ガスA中の測定対象物質の濃度を、算出及び/または計測することができる。また、計測手段14は、連続的に測定対象物質の濃度を、算出及び/または計測することができる。
Specifically, the near-infrared wavelength laser beam L output from the
なお、流量測定装置は、ガスに含まれる特定物質の濃度も計測する場合は、装置を調整することで、具体的には、出力するレーザ光の波長を調整することで、種々の物質の濃度を計測することができる。測定対象としては種々の物質としては、窒素酸化物、硫化酸化物、一酸化炭素、二酸化炭素、アンモニア等が例示される。 In addition, when measuring the concentration of a specific substance contained in a gas, the flow rate measuring device adjusts the concentration of various substances by adjusting the device, specifically by adjusting the wavelength of the laser beam to be output. Can be measured. Examples of the measurement object include nitrogen oxides, sulfide oxides, carbon monoxide, carbon dioxide, ammonia and the like.
このように、流量測定装置は、基本的に装置構成を増加させることなく、排ガスの流量と特定物質の排ガス中の濃度を同時に計測することができる。なお、上記実施形態では、より高い精度で、かつ所望の物質のみを選択して計測できるため、TDLAS方式により濃度を計測したが、本発明はこれに限定されず、主管内を通過したレーザ光を受光して濃度を計測する種々の方法を用いることができる。 Thus, the flow rate measuring device can measure the flow rate of the exhaust gas and the concentration of the specific substance in the exhaust gas basically without increasing the device configuration. In the above embodiment, since only a desired substance can be selected and measured with higher accuracy, the concentration is measured by the TDLAS method. However, the present invention is not limited to this, and the laser beam that has passed through the main tube Various methods for measuring the concentration by receiving the light can be used.
次に、図9−1から図9−3を用いて、流量測定装置の他の実施形態を説明する。ここで、図9−1は、流量測定装置の他の実施形態の受光部の概略構成を示す模式図である。図9−2及び図9−3は、図9−1に示す流量測定装置の動作を説明するための説明図である。なお、図9−1に示す受光部を有する流量測定装置は、受光部の形状を除いて他の構成は、上述した流量測定装置10と同様である。
Next, another embodiment of the flow measuring device will be described with reference to FIGS. 9-1 to 9-3. Here, FIG. 9A is a schematic diagram illustrating a schematic configuration of a light receiving unit of another embodiment of the flow rate measuring device. 9-2 and 9-3 are explanatory diagrams for explaining the operation of the flow rate measuring device shown in FIG. 9-1. The flow measuring device having the light receiving unit shown in FIG. 9A is the same as the
図9−1に示す受光部100は、4つの受光素子102、104、106、108を有する。ここで、受光素子102、104、106、108は、それぞれフォトダイオード(PD、Photodiode)等の光検出器であり、受光したレーザ光の強度(光量)を受光信号として算出部48に送る。また、4つの受光素子102、104、106、108は、同一形状であり、隣接して配置されている。具体的には、受光素子102は、一辺が受光素子104と接し、該一辺に接する他の一辺が受光素子106と接している。また、受光素子104は、一辺が受光素子102と接し、該一辺に接する他の一辺が受光素子108と接している。また、受光素子106は、一辺が受光素子102と接し、該一辺に接する他の一辺が受光素子108と接している。また、受光素子108は、一辺が受光素子106と接し、該一辺に接する他の一辺が受光素子104と接している。つまり、受光部100は、中心を原点とし各素子の境界の辺をx軸、y軸としたxy平面とすると、第1象限に受光素子102が配置され、第2象限に受光素子106が配置され、第3象限に受光素子108が配置され、第4象限に受光素子104が配置された構成となる。
The
この受光部100は、例えば、温度境界層の通過時にレーザ光が屈折しなかったら、図9−2に示すように、上述した原点部分にレーザ光110が到達し、4つの受光素子102、104、106、108に均等に光が到達する。これに対して、レーザ光が温度境界層の通過時に屈折すると、例えば、図9−3に示すように、レーザ光110の到達位置が受光素子104側に移動し、受光素子106には、レーザ光が受光しない状態となる。このように受光部100は、レーザ光の到達位置がずれると、各受光素子が受光する光が増減し、受光信号が変動する。また、各受光素子の受光光量は、変動するが、4つの受光素子が受光した光の強度を合計することで、到達したレーザ光の総量を算出することができる。
For example, if the laser beam is not refracted when passing through the temperature boundary layer, the
これにより、受光部100を有する流量測定装置は、1つの受光素子が受光した受光信号のノイズから排ガス流量を算出することができる。また、4つの受光素子が受光した受光信号の総量から測定対象の排ガス濃度を計測することができる。これにより、レーザ光の到達位置が変化した場合でも、到達した光を全て受光し、その受光した強度から測定対象の濃度を計測できるため、より高い精度で測定対象の濃度を計測することができる。
Thereby, the flow measuring device having the
また、上記実施形態では、1つの受光素子で検出した受光信号のノイズにより上述した方法で流量を算出したが、これには限定されない。例えば、各受光素子の受光量を比較して流量を算出するようにしてもよい。つまり、ノイズとして、4つの受光素子102、104、106、108の相対変化を算出するようにしてもよい。具体的には、受光量の増減から、レーザ光の揺らぎ、変動、また、移動量を算出し、その結果から流量を算出するようにしてもよい。
In the above embodiment, the flow rate is calculated by the above-described method using the noise of the received light signal detected by one light receiving element, but the present invention is not limited to this. For example, the flow rate may be calculated by comparing the amount of light received by each light receiving element. That is, relative changes of the four
例えば、パージ流量と排ガス流量との相対関係が変化すると、温度境界層の形状も変化する。これにより、レーザ光の揺らぎの周波数は、変動速度、また、原点からの最大移動距離が変化する。算出部は、予め実験等で算出したこれらの関係を記憶しておき、受光信号に基づいて、算出した結果(各受光素子の受光量の比、変化の周波数等)と記憶している関係とから、流量を算出する。 For example, when the relative relationship between the purge flow rate and the exhaust gas flow rate changes, the shape of the temperature boundary layer also changes. Thereby, the fluctuation frequency of the fluctuation frequency of the laser beam and the maximum moving distance from the origin change. The calculation unit stores these relationships calculated in advance through experiments and the like, and based on the received light signal, the calculated results (ratio of received light amount of each light receiving element, change frequency, etc.) and the stored relationship From this, the flow rate is calculated.
また、算出部48は、4つの受光素子102、104、106、108の相対関係から、レーザ光の到達位置を算出し、その到達位置と原点との距離から、排ガス流量を算出するようにしてもよい。つまり、上述したように、レーザ光の最大移動距離(原点からの変位量)は、パージ流量と排ガス流量との相対関係から算出することができる。これにより、レーザ光の移動距離を算出することでも排ガスの流量を算出することができる。
The
なお、上記実施形態では、レーザ光の到達位置を4つの受光素子の受光量のバランスに基づいて算出したが、本発明はこれに限定されない。図10を用いて、受光部の他の一例について説明する。ここで、図10は、受光部の他の一例の概略構成を示す模式図である。図10に示す受光部130は、受光素子132がマトリックス状に配置されている。具体的には、64個の受光素子132が縦8個、横8個ずつの行列で配置されている。受光部130の64個の受光素子132は、それぞれ受光信号を算出部48に送る。
In the above embodiment, the arrival position of the laser light is calculated based on the balance of the received light amounts of the four light receiving elements, but the present invention is not limited to this. Another example of the light receiving unit will be described with reference to FIG. Here, FIG. 10 is a schematic diagram illustrating a schematic configuration of another example of the light receiving unit. In the light receiving unit 130 shown in FIG. 10,
このように、受光素子をマトリックス状に配置することで、受光した受光素子の位置に基づいて、レーザ光の到達位置を算出することもできる。例えば、8×8の中心にレーザ光140が到達した場合は、中央の4つの受光素子が光を検出する。この場合は、4つの受光素子の中心を到達位置とすればよい。また、レーザ光が移動し、レーザ光の到達位置が位置142となったときも、受光した4つの受光素子の中心を到達位置とすればよい。また、さらにレーザ光が移動して、レーザ光の到達位置が位置144となったときは、光を受光する受光素子は、1つとなる。この場合は、その1つの受光素子の位置を到達位置とすればよい。
In this way, by arranging the light receiving elements in a matrix, the arrival position of the laser beam can be calculated based on the position of the received light receiving elements. For example, when the
このように、多数の受光素子をマトリックス状に配置することで、受光量のバランスを検出しなくとも、レーザ光の到達位置を検出することができる。また、流量測定装置は、到達位置の情報から流量を算出することができる。なお、受光素子の配置順序は、本実施形態には限定されない。例えば、中心部付近は、受光素子を光に配置し、中心から離れるに従って疎になるように配置してもよい。 Thus, by arranging a large number of light receiving elements in a matrix, the arrival position of the laser light can be detected without detecting the balance of the amount of received light. Further, the flow rate measuring device can calculate the flow rate from the information on the arrival position. The arrangement order of the light receiving elements is not limited to this embodiment. For example, in the vicinity of the center portion, the light receiving element may be disposed in the light so as to become sparse as the distance from the center increases.
なお、流量測定装置は、上記実施形態にも限定されない。流量測定装置は、排ガスの流量とパージガスの流量との相対関係によりレーザ光の到達位置変動の特性が変化することを利用し、受光部の受光信号に基づいて排ガス流量を算出する種々の方法を用いることができる。つまり、本発明の流量測定装置は、受光部から送られる受光信号に基づいて、レーザ光の到達位置変動の種々の特性(ノイズ、変動位置、移動距離)を算出することで、また、必要に応じて、パージガスの流量も加味することで、排ガスの流量を算出する。 The flow measuring device is not limited to the above embodiment. The flow measuring device uses various methods for calculating the exhaust gas flow rate based on the light reception signal of the light receiving unit, utilizing the fact that the characteristics of fluctuations in the arrival position of the laser beam change depending on the relative relationship between the exhaust gas flow rate and the purge gas flow rate. Can be used. That is, the flow measurement device of the present invention calculates various characteristics (noise, fluctuation position, movement distance) of the arrival position fluctuation of the laser beam based on the light reception signal sent from the light receiving section, and is also necessary. Accordingly, the flow rate of the exhaust gas is calculated by taking the flow rate of the purge gas into consideration.
なお、上述したように、パージガス供給管30、32の吹出し口を窓26、28側に向けて配置することで、窓26、28周辺に効率よくパージガスを供給することができ、窓26、28が汚れることをより確実に防止することができる。このため、パージガス供給管30、32の吹出し口を窓26、28側に向けて配置することが好ましいが、本発明は、これに限定されない。例えば、入射管、出射管の軸に垂直な方向にパージガスを排出するようにしてもよい。
As described above, by arranging the outlets of the purge
また、上記実施形態では、入射管と出射管を同軸上に設けたがこれには限定されない。例えば、計測セル内に光学ミラーを設け、入射管の窓から入射されたレーザ光を測定セル内の光学ミラーで多重反射させた後、出射管の窓に到達させるようにしてもよい。このようにレーザ光を多重反射させることで、計測セル44内のより多くの領域を通過させることができる。これにより、計測セル44内を流れる排ガスの濃度の分布(排ガスの流量や密度のばらつき、排ガス内の濃度分布のばらつき)の影響を小さくすることができ、正確に濃度を検出することができる。
Moreover, in the said embodiment, although the incident tube and the output tube were provided coaxially, it is not limited to this. For example, an optical mirror may be provided in the measurement cell, and laser light incident from the window of the incident tube may be multiple-reflected by the optical mirror in the measurement cell before reaching the window of the emission tube. As described above, the multiple reflection of the laser light allows a larger area in the
また、上記実施形態では、いずれも計測セルの主管と、排ガスを流す配管とを別部材としたが、一体としてもよい。例えば、計測セルの主管が排ガスを排出する装置に直接連結してもよい。 Moreover, in the said embodiment, although the main pipe of the measurement cell and the piping which flows exhaust gas were made into the separate member in all, it is good also as integral. For example, the main pipe of the measurement cell may be directly connected to a device that discharges exhaust gas.
また、計測セルの主管の管形状は、レーザ光が通過できればよく、断面が円となる管としても、断面が多角形になる管としても、断面が楕円形となる管としてもよい。また、管の内周の断面と外周の断面が異なる形状となってもよい。また、入射管、出射管も上述したように形状は限定されない。 Moreover, the tube shape of the main tube of the measurement cell is not limited as long as the laser beam can pass therethrough, and may be a tube having a circular cross section, a tube having a polygonal cross section, or a tube having an elliptical cross section. Moreover, the cross section of the inner periphery and the outer periphery of the tube may have different shapes. Further, the shapes of the incident tube and the emitting tube are not limited as described above.
また、上記実施形態では、配管を流れるガスの流量を計測したが、本発明はこれに限定されず、流速の計測も可能である。例えば、上述した受光信号と流量との関係と、流量と流速との関係を用いることで流速を算出することができる。つまり、配管の径は一定であるので、算出した流量を配管の径で割ることにより流速を算出することができる。また、受光信号と流量との関係との関係のように、予め関係を算出しておくことで、受光信号の計測値から流速を算出することができる。つまり、算出部による算出方法、算出式を変更することで、流量測定装置を流速測定装置として用いることができる。また、流量測定装置に流速測定機能を持たせることもできる。このように、流速を計測する場合も上述したように、高い応答性で計測ができ、かつ、厳しい環境下での計測ができる。 Moreover, in the said embodiment, although the flow volume of the gas which flows through piping was measured, this invention is not limited to this, The measurement of a flow velocity is also possible. For example, the flow velocity can be calculated by using the relationship between the light reception signal and the flow rate described above and the relationship between the flow rate and the flow velocity. That is, since the pipe diameter is constant, the flow velocity can be calculated by dividing the calculated flow rate by the pipe diameter. Further, by calculating the relationship in advance, such as the relationship between the light reception signal and the flow rate, the flow velocity can be calculated from the measured value of the light reception signal. That is, the flow measurement device can be used as a flow velocity measurement device by changing the calculation method and calculation formula by the calculation unit. Further, the flow rate measuring device can have a flow velocity measuring function. Thus, when measuring the flow velocity, as described above, measurement can be performed with high responsiveness, and measurement can be performed in a severe environment.
また、流速を計測する場合は、配管(流路)内を流れるガス(流体)の流速を計測することに限定されず、入射管と出射管との間(レーザ光の通過経路)を測定領域とし、その測定領域を流れる流体の流速を計測することができる。つまり、閉じられた流路を流れる流体に限定されず、開放された測定領域を流れる流体の流速も計測することができる。 Further, when measuring the flow velocity, it is not limited to measuring the flow velocity of the gas (fluid) flowing in the pipe (flow path), and the measurement region is between the incident tube and the emission tube (passage path of the laser beam). And the flow velocity of the fluid flowing through the measurement region can be measured. That is, it is not limited to the fluid flowing through the closed flow path, and the flow velocity of the fluid flowing through the open measurement region can also be measured.
以下、図11、図12−1及び図12−2を用いて、流速測定装置の一例について説明する。ここで、図11は、本発明の流速測定装置の一実施形態の概略構成を示す模式図である。また、図12−1は、図11に示す流速測定装置の計測セルの一部を拡大して示す拡大模式図であり、図12−2は、図11に示す流速測定装置の計測セルを排ガス流れ方向に平行な方向から見た模式図である。なお、流速測定装置200は、排ガスを排出する排出供給装置及びその配管との関係と、算出部210の算出方法が異なるのみで、他の構成は、流量測定装置10と同様である。したがって、流速測定装置200のうち、流量測定装置10と同様の構成である部分には、同一の符号を付して、その説明を省略し、以下、流速測定装置200に特有の構成について説明する。
Hereinafter, an example of the flow velocity measuring device will be described with reference to FIGS. 11, 12-1, and 12-2. Here, FIG. 11 is a schematic diagram showing a schematic configuration of an embodiment of the flow velocity measuring apparatus of the present invention. FIG. 12-1 is an enlarged schematic diagram showing a part of the measurement cell of the flow velocity measuring device shown in FIG. 11 in an enlarged manner, and FIG. 12-2 shows the measurement cell of the flow velocity measuring device shown in FIG. It is the schematic diagram seen from the direction parallel to a flow direction. The flow
図11に示すように、流速測定装置200は、計測セル202と、計測手段204と、パージガス供給手段16とを有し、配管9から排出される排ガスAが所定の測定領域を通過する際の流速を計測する。なお、配管9から排出された排ガスは、一部の排ガスAが測定領域を通過し、一部の排ガスA´は、測定領域を通過しない。
As shown in FIG. 11, the flow
計測セル202は、基本的に、入射管22と、出射管24とを有する。また、入射管22には、窓26と、パージガス供給管30とが設けられており、出射管24は、窓28と、パージガス供給管32が設けられている。つまり、計測セル202は、主管を備えていない以外は、計測セル12と同様の構成である。次に、入射管22と出射管24の配置位置を説明する。
The
入射管22は、図11、図12−1及び図12−2に示すように排ガスAの排出方向において、配管9の終端よりも下流側で、配管9から一定距離離間した位置に配置されている。また、入射管22は、図12−2に示すように、一方の端部(パージガスが排出される端部)が、配管9の開口面の延長線で囲われた領域よりも内側に配置されている。
As shown in FIGS. 11, 12-1, and 12-2, the
また、出射管24も排ガスAの排出方向において、配管9の終端よりも下流側で、配管9から一定距離離間した位置に配置されている。また、入射管22は、図12−2に示すように、一方の端部(パージガスが排出される端部)が、配管9の開口面の延長線で囲われた領域よりも内側に配置されている。さらに、出射管24は、入射管22に対向して配置されている。具体的には、一方の端部が、入射管22の一方の端部と向かい合う位置で、かつ、入射管22と出射管24との間に排ガスAが流れる位置に配置されている。なお、入射管22と出射管24とは、任意の支持部により配置位置を固定することができる。
Further, the
計測セル202は、このような構成であり、窓26から入射管22に入射されたレーザ光は、入射管22と出射管24との間の空間(測定領域)を通過する。この測定領域を通過したレーザ光は、出射管22、窓28を通過して、受光部44で受光される。
The
次に、計測手段204は、発光部40と、光ファイバ42と、受光部44と、光源ドライバ46と、算出部210と、制御部50とを有する。なお、発光部40と、光ファイバ42と、受光部44と、光源ドライバ46と、制御部50とは、上述した計測手段14の各部と同様であるので、説明は省略する。
Next, the measuring
算出部210は、上述したように、受光信号と流速との関係が予め記憶されており、受光部44から送られた受光信号に基づいて、測定領域を流れる排ガスの流速を算出する。なお、算出については、後述する。
As described above, the
流速測定装置200は、パージガス供給手段16により入射管22及び出射管24にパージガスを供給する。また、測定領域(つまり、入射管22及び出射管24との間)には、配管9から排出される排ガスAが流れている。これにより、図12−1及び図12−2に示すように、入射管22のパージガスの出口(一方の端部)には、パージガスGと排ガスAとが混ざることで生じる温度境界層220が形成される。このように、温度境界層220が形成されることで、受光信号に(ノイズ)変動が生じる。また、この変動は、パージガスGの流速と、排ガスAの流速との関係によって変化する。
The flow
算出部210には、この流速と受光信号の変動との関係が実験等により予め算出されて記憶されており、計測時に、受光信号に基づいて流速を算出する。つまり、算出結果が流量から流速となるが、基本的に上述した方法と同様で流速を算出する。
The
このように、流速測定装置は、入射管にパージガスを供給しつつ、測定領域にレーザ光を通過させ、その受光信号を計測することで、流速を算出することができる。また、流速測定装置は、本実施形態のように、測定対象の排ガスを流す主管を設けることなく、測定を行うことができる。このため、測定領域を自由に設定することができ、計測の自由度をより高くすることができる。例えば入射管と出射管との距離を種々の距離に変化させることで、各位置での流速を計測することができる。また。排ガスの排出開口からの距離も種々の距離とすることができる。さらに、例えば、配管内の任意の位置の流速等も計測することができる。 As described above, the flow velocity measuring apparatus can calculate the flow velocity by supplying the purge gas to the incident tube while allowing the laser beam to pass through the measurement region and measuring the received light signal. Moreover, the flow velocity measuring apparatus can perform measurement without providing a main pipe through which exhaust gas to be measured flows, as in this embodiment. For this reason, a measurement region can be set freely and the degree of freedom of measurement can be further increased. For example, the flow velocity at each position can be measured by changing the distance between the entrance tube and the exit tube to various distances. Also. The distance from the exhaust gas discharge opening can also be various distances. Furthermore, for example, the flow velocity at an arbitrary position in the pipe can be measured.
なお、流速測定装置の場合も、その他各種条件に基づいて、受光信号と流速との関係を複数記憶しておき、各種条件に基づいて、使用する関係を切り替えることでより正確に算出することもできる。 In the case of a flow velocity measuring device, it is also possible to store more than one relationship between the received light signal and the flow velocity based on various other conditions, and to calculate more accurately by switching the relationship to be used based on the various conditions. it can.
また、上記実施形態は、いずれも気体のガスを測定対象としたが、液体の場合も同様に流量と流速とを計測することができる。つまり、流体であれば気体、液体を問わず計測することができる。なお、液体の流量、流速を計測する場合は、パージ流体として液体を用いることが好ましい。 Moreover, although the said embodiment made gaseous gas measurement object in all, when it is a liquid, it can measure a flow volume and a flow velocity similarly. That is, it can be measured regardless of gas or liquid as long as it is a fluid. When measuring the liquid flow rate and flow velocity, it is preferable to use a liquid as the purge fluid.
以上のように、本発明にかかる流量測定装置及び流速測定装置は、流体の流量または流速の計測に有用である。 As described above, the flow rate measuring device and the flow velocity measuring device according to the present invention are useful for measuring the flow rate or flow velocity of a fluid.
6、8 配管
10 流量測定装置
12 計測セル
14 計測手段
16 パージガス供給手段
20 主管
22 入射管
24 出射管
26、28 窓
30、32 パージガス供給管
40 発光部
42 光ファイバ
44 受光部
46 光源ドライバ
48 算出部
50 制御部
52 ポンプ
54 ドライヤ
56 流量計
200 流速測定装置
6, 8
Claims (26)
前記計測セルの前記第1パージ流体供給管にパージ流体を供給するパージ流体供給部と、
前記入射管にレーザ光を入射させる発光部と、
前記入射管から入射され、前記計測セルを通過し、前記出射管から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、
前記受光部から出力される受光信号に基づいて、前記計測セルを流れる流体の流量を算出する算出部と、
各部の動作を制御する制御部と、を有し、
前記算出部は、前記入射管に流れるパージ流体が前記流路を流れる前記流体と混合されることで生成される温度境界層を前記レーザ光が通過することで、前記レーザ光に生じる変動を検出し、検出した変動に基づいて前記流体の流量を算出すること特徴とする流量測定装置。 A main pipe that can be connected to a flow path through which fluid flows, and a window that allows light to pass through at the end opposite to the side connected to the main pipe. A pipe, an exit pipe connected to the main pipe, and an exit pipe formed with a window through which light can pass at an end opposite to the side connected to the main pipe, and a first purge fluid supply pipe connected to the incident pipe A measuring cell composed of
A purge fluid supply section for supplying a purge fluid to the first purge fluid supply pipe of the measurement cell;
A light emitting unit for making a laser beam incident on the incident tube;
A light receiving unit that is incident from the incident tube, passes through the measurement cell, receives the laser light emitted from the emission tube, and outputs the received light amount as a received light signal;
A calculation unit that calculates a flow rate of fluid flowing through the measurement cell based on a light reception signal output from the light reception unit;
Possess a control unit which controls operation of each section, and
The calculation unit detects fluctuations that occur in the laser light as the laser light passes through a temperature boundary layer generated by mixing the purge fluid flowing in the incident tube with the fluid flowing in the flow path. And a flow rate measuring device that calculates the flow rate of the fluid based on the detected fluctuation .
前記計測セルの前記第1パージ流体供給管にパージ流体を供給するパージ流体供給部と、 A purge fluid supply section for supplying a purge fluid to the first purge fluid supply pipe of the measurement cell;
前記入射管にレーザ光を入射させる発光部と、 A light emitting unit for making a laser beam incident on the incident tube;
前記入射管から入射され、前記計測セルを通過し、前記出射管から出射された前記レーザ光を受光し、受光した光量を受光信号として出力する受光部と、 A light receiving unit that is incident from the incident tube, passes through the measurement cell, receives the laser light emitted from the emission tube, and outputs the received light amount as a received light signal;
前記受光部から出力される受光信号に基づいて、前記計測セルを流れる流体の流量を算出する算出部と、 A calculation unit that calculates a flow rate of the fluid flowing through the measurement cell based on a light reception signal output from the light reception unit;
各部の動作を制御する制御部と、を有し、 A control unit for controlling the operation of each unit,
前記算出部は、前記受光部で受光した受光信号を少なくとも1つの周波数で復調し、復調した信号の変動の大きさと前記入射管に流れるパージ流体の流量とに基づいて、前記流体の流量を算出すること特徴とする流量測定装置。 The calculation unit demodulates the received light signal received by the light receiving unit at at least one frequency, and calculates the flow rate of the fluid based on the magnitude of fluctuation of the demodulated signal and the flow rate of the purge fluid flowing in the incident tube. A flow rate measuring device characterized by:
前記入射管に流れるパージ流体の流量と前記変動に基づいて前記流体の流量を算出することを特徴とする請求項2から5のいずれか1項に記載の流量測定装置。 The calculation unit stores the relationship between the fluctuation and the flow rate of the fluid for each flow rate of the purge fluid flowing through the incident tube,
Flow measuring device according to any one of claims 2 to 5, characterized in that to calculate the flow rate of the fluid based on the flow rate and the fluctuation of the purge fluid flowing through the incident tube.
前記算出部は、各受光素子から送られた受光信号の強度の比較に基づいて、前記流体の流量を算出することを特徴とする請求項1から9のいずれか1項に記載の流量測定装置。 The light receiving unit has a plurality of light receiving elements arranged adjacent to each other, and outputs the amount of light received by each light receiving element as a light receiving signal,
The flow rate measuring device according to any one of claims 1 to 9 , wherein the calculation unit calculates the flow rate of the fluid based on a comparison of the intensity of a light reception signal sent from each light receiving element. .
前記パージ流体供給部は、第2パージ流体供給管にもパージ流体を供給することを特徴とする請求項1から13のいずれか1項に記載の流量測定装置。 And a second purge fluid supply pipe connected to the emission pipe,
The flow rate measuring device according to any one of claims 1 to 13 , wherein the purge fluid supply unit also supplies a purge fluid to a second purge fluid supply pipe.
前記計測セルの前記第1パージ流体供給管にパージ流体を供給するパージ流体供給部と、
前記入射管にレーザ光を入射させる発光部と、
前記入射管から入射され、前記測定領域を通過し、前記出射管から出射されたレーザ光を受光し、受光した光量を受光信号として出力する受光部と、
前記受光部から出力される受光信号に基づいて、前記測定領域を流れる流体の流速を算出する算出部と、
各部の動作を制御する制御部と、を有し、
前記算出部は、前記入射管に流れるパージ流体が前記流路を流れる前記流体と混合されることで生成される温度境界層を前記レーザ光が通過することで、前記レーザ光に生じる変動を検出し、検出した変動に基づいて前記流体の流速を算出すること特徴とする流速測定装置。 One end is an opening facing the measurement region, an incident tube having a window portion through which light can pass at the opposite end, one end facing the incident tube, and the measurement region A measurement cell composed of an exit tube formed with a window portion through which light can pass at the opposite end, a first purge fluid supply tube connected to the incident tube,
A purge fluid supply section for supplying a purge fluid to the first purge fluid supply pipe of the measurement cell;
A light emitting unit for making a laser beam incident on the incident tube;
A light receiving unit that is incident from the incident tube, passes through the measurement region, receives laser light emitted from the emission tube, and outputs the received light amount as a light reception signal;
Based on the light reception signal output from the light receiving unit, a calculation unit that calculates the flow velocity of the fluid flowing through the measurement region;
Possess a control unit which controls operation of each section, and
The calculation unit detects fluctuations that occur in the laser light as the laser light passes through a temperature boundary layer generated by mixing the purge fluid flowing in the incident tube with the fluid flowing in the flow path. And calculating the flow velocity of the fluid based on the detected fluctuation .
前記計測セルの前記第1パージ流体供給管にパージ流体を供給するパージ流体供給部と、 A purge fluid supply section for supplying a purge fluid to the first purge fluid supply pipe of the measurement cell;
前記入射管にレーザ光を入射させる発光部と、 A light emitting unit for making a laser beam incident on the incident tube;
前記入射管から入射され、前記測定領域を通過し、前記出射管から出射されたレーザ光を受光し、受光した光量を受光信号として出力する受光部と、 A light receiving unit that is incident from the incident tube, passes through the measurement region, receives laser light emitted from the emission tube, and outputs the received light amount as a light reception signal;
前記受光部から出力される受光信号に基づいて、前記測定領域を流れる流体の流速を算出する算出部と、 Based on the light reception signal output from the light receiving unit, a calculation unit that calculates the flow velocity of the fluid flowing through the measurement region;
各部の動作を制御する制御部と、を有し、 A control unit for controlling the operation of each unit,
前記算出部は、前記受光部で受光した受光信号を少なくとも1つの周波数で復調し、復調した信号の変動の大きさと前記入射管に流れるパージ流体の流量とに基づいて、前記流体の流速を算出すること特徴とする流量測定装置。 The calculation unit demodulates the received light signal received by the light receiving unit at at least one frequency, and calculates the flow velocity of the fluid based on the magnitude of fluctuation of the demodulated signal and the flow rate of the purge fluid flowing in the incident tube. A flow rate measuring device characterized by:
前記入射管に流れるパージ流体の流量と前記変動に基づいて前記流体の流速を算出することを特徴とする請求項18から21のいずれか1項に記載の流速測定装置。 The flow velocity measuring device according to any one of claims 18 to 21, wherein the flow velocity of the fluid is calculated based on a flow rate of the purge fluid flowing in the incident tube and the fluctuation.
前記測定領域は、前記主管の一部であることを特徴とする請求項17から24のいずれか1項に記載の流速測定装置。 The measurement cell is connected to one end of the incident tube and one end of the exit tube, respectively, and has a main tube through which a fluid to be measured flows.
The flow velocity measuring device according to any one of claims 17 to 24, wherein the measurement region is a part of the main pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009288309A JP5590875B2 (en) | 2009-12-18 | 2009-12-18 | Flow rate measuring device and flow velocity measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009288309A JP5590875B2 (en) | 2009-12-18 | 2009-12-18 | Flow rate measuring device and flow velocity measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011128079A JP2011128079A (en) | 2011-06-30 |
JP5590875B2 true JP5590875B2 (en) | 2014-09-17 |
Family
ID=44290816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009288309A Expired - Fee Related JP5590875B2 (en) | 2009-12-18 | 2009-12-18 | Flow rate measuring device and flow velocity measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5590875B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106771349B (en) * | 2016-12-26 | 2019-06-11 | 浙江科聪智能科技有限公司 | Contactless water speed measurement sensor, Intelligent pipe net, the intelligent network of rivers |
JP6496341B2 (en) * | 2017-03-22 | 2019-04-03 | スチールプランテック株式会社 | Gas component measuring device |
CN111693107B (en) * | 2019-03-12 | 2022-08-12 | 上海梅山钢铁股份有限公司 | Multifunctional probe combination device of power bar flowmeter |
CN115280165A (en) * | 2020-03-26 | 2022-11-01 | 京瓷株式会社 | Measurement system, measurement module, measurement processing device, and measurement method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS603616B2 (en) * | 1979-06-21 | 1985-01-29 | 横河電機株式会社 | speed measuring device |
JP2007333655A (en) * | 2006-06-16 | 2007-12-27 | Ono Sokki Co Ltd | Gas analyzer |
JP2009168688A (en) * | 2008-01-17 | 2009-07-30 | Mitsubishi Heavy Ind Ltd | Fluid measuring device |
-
2009
- 2009-12-18 JP JP2009288309A patent/JP5590875B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011128079A (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5523908B2 (en) | Flow rate measuring device and flow velocity measuring device | |
US8208143B2 (en) | Exhaust gas analyzer | |
US7926332B2 (en) | Exhaust gas analyzer and exhaust gas analyzing method | |
JP5606056B2 (en) | Gas measuring cell and gas concentration measuring device using the same | |
US7936460B2 (en) | Sensor unit in exhaust gas analyzer | |
CN109959591B (en) | Sensor combining dust sensor and gas sensor | |
JP5590875B2 (en) | Flow rate measuring device and flow velocity measuring device | |
JP2012137429A (en) | Laser measuring device | |
JPWO2012161067A1 (en) | Measuring unit and gas analyzer | |
US20080231860A1 (en) | Optical Device and Method for Sensing Multiphase Flow | |
EP3435068A1 (en) | Gas concentration measurement device | |
CN107941276A (en) | Gas flow and methane content laser measuring apparatus and measuring method | |
JP2018025499A (en) | Concentration measuring device | |
CN207487747U (en) | Laser-Doppler gas flowmeter | |
JP2012237684A (en) | Concentration measurement device | |
CN106500951B (en) | Measure measuring probe, measuring system and the method for hypersonic flow parameter | |
JP2004347374A (en) | Ultrasonic fluid sensor | |
CN110470631A (en) | Laser gas analyzer | |
TWI734226B (en) | The method of measuring the concentration of NO₂ and the method of measuring the concentration of TiCl₄ | |
JP4490333B2 (en) | Exhaust gas analyzer | |
CN207816816U (en) | A kind of laser-correlation device realized multi-method and measured | |
JP2012167652A (en) | Exhaust gas recirculation apparatus and internal combustion engine system | |
US20140240709A1 (en) | Advanced mass gauge sensor | |
JP4878981B2 (en) | Gas analyzer | |
CN115436291A (en) | Optical path modulation absorption pool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140701 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140729 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5590875 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |