WO2018105001A1 - 軟性マニピュレータ - Google Patents

軟性マニピュレータ Download PDF

Info

Publication number
WO2018105001A1
WO2018105001A1 PCT/JP2016/086054 JP2016086054W WO2018105001A1 WO 2018105001 A1 WO2018105001 A1 WO 2018105001A1 JP 2016086054 W JP2016086054 W JP 2016086054W WO 2018105001 A1 WO2018105001 A1 WO 2018105001A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
long member
bending
bending length
unit
Prior art date
Application number
PCT/JP2016/086054
Other languages
English (en)
French (fr)
Inventor
満彰 長谷川
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/086054 priority Critical patent/WO2018105001A1/ja
Priority to JP2018555335A priority patent/JP6715949B2/ja
Publication of WO2018105001A1 publication Critical patent/WO2018105001A1/ja
Priority to US16/171,430 priority patent/US10987180B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • A61B2017/00327Cables or rods with actuating members moving in opposite directions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2902Details of shaft characterized by features of the actuating rod
    • A61B2017/2903Details of shaft characterized by features of the actuating rod transferring rotary motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • A61B2034/715Cable tensioning mechanisms for removing slack
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires

Definitions

  • the present invention relates to a soft manipulator.
  • Patent Document 1 it is possible to reduce the path length difference by keeping the twisting pitch of the spiral lumen within a predetermined range, and to prevent the movable part from moving in an unintended direction.
  • the above-mentioned disadvantage is sought by a helical lumen having a predetermined twisting pitch for every bending length. In some cases, it is necessary to twist the lumen at a sufficiently short pitch. However, if the twist pitch is shortened, there is a disadvantage that the friction with the wire arranged inside becomes large and the controllability of the movable part is lowered.
  • the present invention has been made in view of the above-described circumstances, and is capable of suppressing the occurrence of path length differences among a plurality of power transmission members with respect to any bending length of the insertion portion, and friction applied to the power transmission members.
  • An object of the present invention is to provide a soft manipulator that can reduce the controllability of the movable part by reducing the controllability.
  • a long member that is formed in an elongated flexible tube shape and includes two or more paths that penetrate in a longitudinal direction radially outward with respect to a central axis is disposed at a distal end of the long member.
  • Two or more elongated members that are disposed through the path of the elongate member and transmit the power of the drive unit to the movable unit.
  • the distal end of the insertion unit is generated by the power transmission member through which the generated power passes through the path formed by the power transmission member. Is transmitted to the movable part, and the movable part is operated.
  • the elongated flexible insertion portion is bent, the shape of the path in the long member that penetrates the power transmission member is changed along with the bending.
  • the curved length of the insertion portion is determined by the counterpart to be inserted, for example, the shape of the body cavity to the target organ in the patient's body, the curved length is not constant.
  • the curved length of the long member is measured by the curved length measuring unit, and the vicinity of the proximal end of the long member is curved by the curved length adjusting unit, thereby reducing the path length difference. It can be adjusted to a predetermined bending length to be eliminated.
  • the path length difference caused by the elongate member bending in one direction causes the other part of the elongate member to be reversed.
  • the path length difference caused by the long member bending in one direction is the total bending length. This can be solved by bending the other part of the long member so that the length becomes an integral multiple of the pitch.
  • the bending length adjusting portion is provided near the proximal end of the long member, even if the distal end of the long member is inserted into the body, the vicinity of the proximal end disposed outside the body.
  • the controllability of the movable part can be prevented from being lowered.
  • the path may be formed in a spiral shape around the central axis, and the predetermined length may be an integral multiple of the pitch of the path.
  • the bending length is adjusted so that the total bending length is an integral multiple of the pitch of the spiral path while the pitch of the spiral path formed on the long member is fixed. It is possible to easily adjust, and it is possible to suppress the occurrence of a difference in path length of the plurality of power transmission members, and it is possible to reduce the friction applied to the power transmission members and prevent the controllability of the movable part from being lowered.
  • the predetermined length may be a length that minimizes a difference from the bending length measured by the bending length measurement unit.
  • the said bending length adjustment part makes the vicinity of the base end of the said elongate member the press member made to contact from the radial direction outer side of this elongate member, and this press member of the said elongate member
  • a pressing member driving mechanism that moves in the radial direction may be provided.
  • the said press member may have a cylindrical outer peripheral surface of the predetermined radius arrange
  • the pressing member may be a pulley.
  • the pressing member having a cylindrical outer peripheral surface with a predetermined radius can be easily configured by the pulley, and the friction between the pressing member pressed against the long member and the long member is released by the rotation of the pulley. Can do.
  • the present invention it is possible to suppress the occurrence of path length differences among a plurality of power transmission members with respect to any bending length of the insertion portion, and to reduce the friction applied to the power transmission members, thereby reducing the controllability of the movable portion. There is an effect that can be prevented.
  • the flexible manipulator 1 according to an embodiment of the present invention will be described below with reference to the drawings.
  • the flexible manipulator 1 according to the present embodiment includes a plurality of inner holes that are inserted into a patient's body cavity via a forceps channel of an endoscope that is inserted into the patient's body cavity.
  • (Path) 2a provided with an insertion portion (long member) 2a, a movable portion 4 having a treatment portion 3 such as a joint and a grasping forceps arranged at the distal end of the insertion portion 2, and a proximal end of the insertion portion 2
  • a drive unit 5 that operates the movable unit 4, a wire (power transmission member) 6 that transmits the power generated by the drive unit 5 through the inner hole 2 a in the longitudinal direction, and the insertion unit 2.
  • a bending length measurement unit 7 that measures the total bending length (bending length) and a bending length adjustment unit 8 that adjusts the total bending length of the insertion unit 2 are provided.
  • the insertion portion 2 is configured in a flexible tube shape that can bend the entire length in the longitudinal direction or a part thereof.
  • the drive unit 5 includes a motor (not shown) and pulls the wire 6 toward the proximal end side.
  • the inner holes 2 a provided in the insertion portion 2 for the sake of simplification are provided in a spiral shape at a predetermined pitch, thereby being displaced radially outward from the central axis of the insertion portion 2.
  • the insertion portion 2 is penetrated in the longitudinal direction at a certain position.
  • the tension of one wire 6 is increased by the power of the motor of the drive unit 5 and the tension of the wire 6 on the other side is decreased, and the tension difference between the two wires 6 is used as the power to be arranged at the distal end of the insertion unit 2. This is transmitted to the movable part 4 so that the joint of the movable part 4 can be swung.
  • the bending length measurement unit (hereinafter also referred to as an optical fiber sensor) 7 is, for example, an optical fiber sensor, and can measure the total bending length of the insertion unit 2.
  • the optical fiber sensor 7 is arranged over the entire length along the longitudinal direction of the insertion portion 2, and is bent by the same bending length following the bending of the insertion portion 2.
  • the total bending length given to the insertion portion 2 can be measured by the difference between the light incident from the base end side of the optical fiber sensor 7 and the light detected returning to the base end side of the optical fiber sensor 7. It has become.
  • the bending length adjusting unit 8 is disposed in the vicinity of the proximal end of the insertion unit 2 and moves the pressing member 9 in a direction in which the insertion unit 2 is pressed in contact with the outer surface of the insertion unit 2 from the outside in the radial direction.
  • the control unit 11 that controls the pressing member driving mechanism 10, and the pressing member driving mechanism 10 the driving unit 5 is moved in the longitudinal axis direction of the insertion unit 2.
  • the linear motion mechanism 12 is provided.
  • a pressing member (hereinafter also referred to as a pulley) 9 is a pulley that is provided so as to be rotatable around an axis perpendicular to a plane including the longitudinal axis of the insertion portion 2 and has a cylindrical outer peripheral surface with a predetermined outer diameter. .
  • the outer diameter of the outer peripheral surface of the pulley 9 is set to be larger than the minimum bending radius of the insertion portion 2 in which the optical fiber sensor 7 is inserted.
  • the pressing member driving mechanism 10 includes a slider 13 that rotatably supports the pulley 9 and is supported so as to be linearly movable in a direction along the plane, a guide rail 14 that guides the linear movement of the slider 13, and the slider 13.
  • a driving motor 15 and a ball screw 16 are provided. When the motor 15 and the ball screw 16 are operated to linearly move the slider 13 in one direction, the insertion portion 2 is pressed in the radial direction by the outer peripheral surface of the pulley 9 mounted on the slider 13. The outer peripheral surface is curved along the circumferential direction.
  • a guide member 17 having an arcuate guide surface having an outer diameter dimension substantially equal to that of the pulley 9 is spaced on both sides of the movement range of the slider 13. It is arranged with a gap.
  • the linear motion mechanism 12 includes a slider 18 on which the driving unit 5 is mounted, and a guide rail 19 that supports the slider 18 so as to be linearly movable in the longitudinal direction of the insertion unit 2.
  • the control unit 11 controls the motor 15 of the pressing member driving mechanism 10 so that the total bending length of the insertion unit 2 measured by the optical fiber sensor 7 is an integral multiple of the pitch of the inner holes 2 a in the insertion unit 2. It is supposed to be. As shown in FIG. 3, the control unit 11 stores the memory 20 that stores the pitch of the inner holes 2 a in the insertion unit 2, the pitch read from the memory 20, and the total bending length measured by the optical fiber sensor 7.
  • a bending length adjustment amount calculation unit 21 that calculates the amount of movement of the pulley 9 by the pressing member drive mechanism 10 is provided to generate a drive command for the motor 15.
  • the insertion section 2 is moved to the movable section 4 side. Is inserted into the patient's body, and the proximal end side is exposed outside the patient's body.
  • the insertion part 2 is curved following the shape of the body cavity of the patient, and the movable part 4 at the distal end is arranged at a position suitable for treating the affected part.
  • detection light is supplied to the optical fiber sensor 7 which is a bending length measurement unit, and the total bending length L 0 of the insertion unit 2 is measured by detecting light returning at the tip.
  • the bending length adjustment amount calculation unit 21 in the control unit 11 calculates the total bending length L 0 of the insertion unit 2 measured by the bending length measurement unit 7 and the pitch P of the inner holes 2 a stored in the memory 20. Is calculated, and a command signal corresponding to the movement amount S is output to the motor 15 of the pressing member driving mechanism 10. That is, the amount of movement S of the pulley 9 is such that the newly generated bending length ⁇ L is changed to the total bending length L 0 measured by the optical fiber sensor 7 when the insertion portion 2 is pushed in the radial direction by the moved pulley 9. in addition the new total curved length are calculated (the predetermined length) L 1 is, to be an integral multiple of the pitch P, is calculated based on the following equation.
  • f ( ⁇ L) is a function of ⁇ L
  • k is a positive integer
  • the newly generated bending length ⁇ L includes both a portion that curves along the outer peripheral surface of the pulley 9 and a portion that curves along the guide surface of the guide member 17.
  • the movement amount S of the pulley 9 is stored in the bending length adjustment amount calculation unit 21 as a new function f ( ⁇ L) of the bending length ⁇ L.
  • ⁇ L may be stored in association with each other.
  • the newly generated bending length ⁇ L is set to be the smallest. Therefore, an excessive increase in the total bending length can be prevented, and an excessive increase in friction between the wire 6 and the inner wall of the inner hole 2a can be suppressed.
  • the total bending length detected by the optical fiber sensor 7 becomes an integral multiple of the pitch of the inner holes 2a. Thereby, the path length difference of the inner hole 2a is eliminated, and the occurrence of a tension difference due to the bending of the insertion part 2 in the wire 6 penetrating through the inner hole 2a of the insertion part 2 can be prevented.
  • the occurrence of the path length difference due to the bending of the insertion portion 2 is prevented, so that the movable portion 4 can be prevented from moving in an unexpected direction.
  • the path length difference of the inner hole 2a can be easily eliminated simply by curving the vicinity of the proximal end of the insertion portion 2 exposed outside the body.
  • the control unit 11 may include a reading unit 22 that reads identification information.
  • the memory 20 only needs to store the pitch of the inner holes 2a and the identification information of the insertion portion 2 in association with each other. By doing in this way, when the insertion part 2 is replaced
  • the drive unit 5 is mounted on the slider 18 and supported so as to be movable in the longitudinal direction of the insertion unit 2 along the guide rail 19.
  • a movable pulley 23, a guide member 24, and an elastic member 25 that biases the movable pulley 23 may be provided in the vicinity of the proximal end of the insertion portion 2.
  • the movable pulley 23 is provided so as to be movable in the radial direction of the insertion portion 2.
  • the elastic member 25 biases the movable pulley 23 away from the guide member 24.
  • the movable pulley 23 and the guide member 24 are wound around the insertion portion 2 in a curved state, and a portion where the insertion portion 2 extends linearly between the movable pulley 23 and the guide member 24 is shown in FIG.
  • the bending length can be prevented from changing only by changing the length of the linear portion.
  • Each pulley set 26, 27 includes two pulleys 26a, 26b, 27a, 27b supported by sliders (not shown) so as to be rotatable about substantially parallel axes, and outer peripheral surfaces of both pulleys 26a, 26b, 27a, 27b.
  • the insertion portion 2 is sandwiched in the radial direction.
  • the direction in which the insertion portion 2 is sandwiched by the pulley sets 26 and 27 is made different, and the moving plane of the slider that supports the pulley sets 26 and 27 is made different as shown by arrows in FIG. Can be bent in different directions at different positions.
  • the optical fiber sensor 7 serving as a bending length measuring unit can detect the bending length of the insertion unit 2 in association with a three-dimensional bending direction. Further, when the inner hole 2a is linear, the optical fiber sensor 7 preferably detects the bending in one direction of the insertion portion 2 as positive and the bending in the opposite direction as negative.
  • the optical fiber sensor 7 can also bend the reverse direction. Are preferably detected with different signs. Further, by sandwiching the insertion portion 2 between the two pulleys 26a, 26b, 27a, 27b, the pulley set 26, 27 moves toward one pulley 26a, 27a and the pulley set 26 toward the other pulley 26b, 27b. , 27 can change the bending direction of the insertion portion 2 in the reverse direction.
  • the total bending length obtained by adding a sign to the bending direction and being integrated is detected for each bending direction, the total bending length for each bending direction is decomposed into components in the bending direction by the pulley sets 26 and 27, By obtaining the movement amounts of the pulley sets 26 and 27 for adjusting the bending length, the path length difference due to the three-dimensional bending can be eliminated.
  • Three or more pulley sets 26 and 27 may be provided. Further, as shown in FIG. 10, a single pulley set (curved length adjusting portion) 28 is provided, and the insertion portion 2 that extends straight from the drive portion 5 in the moving direction of a slider (not shown) that supports the pulley set 28. It may be possible to rotate around the longitudinal axis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Manipulator (AREA)
  • Endoscopes (AREA)

Abstract

挿入部のあらゆる湾曲長さに対して、複数の動力伝達部材の経路長差の発生を抑制できるとともに、動力伝達部材にかかる摩擦を低減して可動部の制御性の低下を防止することを目的として、本発明に係る軟性マニピュレータ(1)は、細長い軟性のチューブ状に形成され、中心軸に対して径方向外側に長手方向に貫通する2以上の経路を備える長尺部材(2)と、長尺部材の先端に配置された可動部(4)と、長尺部材の基端に配置された駆動部(5)と、長尺部材の経路を貫通して配置され、駆動部の動力を可動部に伝達する2以上の細長い動力伝達部材(6)と、長尺部材の湾曲長さを測定する湾曲長測定部(7)と、湾曲長測定部により測定された長尺部材の湾曲長さが所定の長さとなるように長尺部材の基端近傍を湾曲させる湾曲長調整部(8)とを備える。

Description

軟性マニピュレータ
 本発明は、軟性マニピュレータに関するものである。
 軟性の挿入部の内部において、可動部を駆動するための2本のワイヤをそれぞれ案内する2つのルーメンが挿入部の長手方向に沿って真っ直ぐに形成されている場合に、挿入部が湾曲すると、2本のワイヤの経路長に差が発生し、一方のワイヤが突っ張って他方が緩むため、可動部が意図しない方向に移動してしまう。この不都合を防止するために、挿入部の長手軸回りに螺旋状に捻られた複数のルーメンを有する軟性マニピュレータが提案されている(例えば、特許文献1参照。)。
 特許文献1によれば、螺旋状のルーメンの捻りのピッチを所定の範囲に収めることで、経路長差を軽減し、可動部が意図しない方向に移動してしまうことを抑制することができる。
WO2015/093602号公報
 軟性マニピュレータの挿入部の湾曲長さは、挿入経路に応じて変化するので、あらゆる湾曲長さに対して、予め定められた捻りのピッチを有する螺旋状のルーメンによって、上記不都合を解消しようとする場合には、十分に短いピッチでルーメンを捻っておく必要がある。しかしながら、捻りピッチを短くすると、内部に配置されているワイヤとの摩擦が大きくなって可動部の制御性が低下するという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、挿入部のあらゆる湾曲長さに対して、複数の動力伝達部材の経路長差の発生を抑制できるとともに、動力伝達部材にかかる摩擦を低減して可動部の制御性の低下を防止することができる軟性マニピュレータを提供することを目的としている。
 本発明の一態様は、細長い軟性のチューブ状に形成され、中心軸に対して径方向外側に長手方向に貫通する2以上の経路を備える長尺部材と、該長尺部材の先端に配置された可動部と、前記長尺部材の基端に配置された駆動部と、前記長尺部材の前記経路を貫通して配置され、前記駆動部の動力を前記可動部に伝達する2以上の細長い動力伝達部材と、前記長尺部材の前記湾曲長さを測定する湾曲長測定部と、該湾曲長測定部により測定された前記長尺部材の前記湾曲長さが所定の長さとなるように前記長尺部材の基端近傍を湾曲させる湾曲長調整部とを備える軟性マニピュレータである。
 本態様によれば、長尺部材の基端に配置された駆動部を作動させると、発生した動力が動力伝達部材によって形成された経路内を貫通している動力伝達部材によって、挿入部の先端に配置されている可動部に伝達され、可動部が作動させられる。細長い軟性の挿入部を湾曲させると、その湾曲とともに動力伝達部材を貫通させる長尺部材内の経路の形状も変化させられる。
 この場合において、挿入部の湾曲形状は、挿入される相手方、例えば、患者の体内の目的臓器までの体腔の形状等によって決定されるので、その湾曲長さは一定ではない。これに対し、本態様によれば、湾曲長測定部により長尺部材の湾曲長さが測定され、湾曲長調整部により、長尺部材の基端近傍が湾曲させられることにより、経路長差を解消する所定の湾曲長さに調整することができる。
 例えば、経路が長尺部材の長手方向に沿って真っ直ぐに延びている場合には、長尺部材が一方向に湾曲することにより発生する経路長差は、長尺部材の他の部分を逆方向に同じ湾曲長さだけ湾曲させることにより解消することができる。また、例えば、経路が長尺部材の中心軸に沿って所定のピッチの螺旋状に延びている場合には、長尺部材が一方向に湾曲することにより発生する経路長差は、総湾曲長さがピッチの整数倍となるように長尺部材の他の部分を湾曲させることにより解消することができる。
 本態様によれば、湾曲長調整部が長尺部材の基端近傍に設けられているので、長尺部材の先端が体内に挿入された状態であっても、体外に配置される基端近傍において、経路長差を解消するように調整することができ、長尺部材のあらゆる湾曲長さに対して、複数の動力伝達部材の経路長差の発生を抑制できるとともに、動力伝達部材にかかる摩擦を低減して可動部の制御性の低下を防止することができる。
 上記態様においては、前記経路が、前記中心軸回りに螺旋状に形成されており、前記所定の長さが、前記経路のピッチの整数倍であってもよい。
 このようにすることで、長尺部材に形成された螺旋状の経路のピッチを固定したままの状態で、総湾曲長さが螺旋状の経路のピッチの整数倍となるように湾曲長さを簡易に調整することができ、複数の動力伝達部材の経路長差の発生を抑制できるとともに、動力伝達部材にかかる摩擦を低減して可動部の制御性の低下を防止することができる。
 また、上記態様においては、前記所定の長さが、前記湾曲長測定部により測定された前記湾曲長さとの差が最小となる長さであってもよい。
 このようにすることで、湾曲長さの調整量を最も少なくし、動力伝達部材にかかる摩擦の増大を抑制して可動部の制御性の低下を防止することができる。
 また、上記態様においては、前記湾曲長調整部が、前記長尺部材の基端近傍に、該長尺部材の径方向外方から接触させられる押圧部材と、該押圧部材を前記長尺部材の径方向に移動させる押圧部材駆動機構とを備えていてもよい。
 このようにすることで、押圧部材駆動機構の作動により押圧部材を長尺部材の径方向外方から径方向内方に押し付けることにより、長尺部材を簡易に湾曲させて、経路長差を解消することができる。
 また、上記態様においては、前記押圧部材駆動機構による前記押圧部材の移動に同期して、前記駆動部を前記長尺部材の長手軸方向に移動させる直動機構を備えていてもよい。
 このようにすることで、長尺部材の湾曲長さが増大することによる長尺部材の長手軸方向の移動を直動機構によって駆動部を移動させることにより補償することができる。これにより、長尺部材の先端に配置されている可動部を長尺部材の長手方向に移動させずに済む。
 また、上記態様においては、前記押圧部材が、前記長尺部材を周方向に沿わせるように配置された所定半径の円筒状の外周面を有していてもよい。
 このようにすることで、押圧部材が押し付けられることにより湾曲する長尺部材の湾曲半径を円筒状の外周面の半径以上にすることができ、急激に湾曲させられることを防止することができる。
 また、上記態様においては、前記押圧部材がプーリであってもよい。
 このようにすることで、プーリによって所定半径の円筒状の外周面を有する押圧部材を簡易に構成できるとともに、長尺部材に押し付けられる押圧部材と長尺部材との摩擦をプーリの回転により逃がすことができる。
 本発明によれば、挿入部のあらゆる湾曲長さに対して、複数の動力伝達部材の経路長差の発生を抑制できるとともに、動力伝達部材にかかる摩擦を低減して可動部の制御性の低下を防止することができるという効果を奏する。
本発明の一実施形態に係る軟性マニピュレータを示す全体構成図である。 図1の軟性マニピュレータの挿入部を示す側面図である。 図1の軟性マニピュレータの制御部を説明するブロック図である。 図1の軟性マニピュレータによる湾曲長の調整動作を説明する模式図である。 図3の変形例を示すブロック図である。 図4の変形例を示す模式図である。 図6の動作を説明する模式図である。 図2の変形例を示す縦断面図である。 図4の変形例を示す模式図である。 図4の変形例を示す模式図である。
 本発明の一実施形態に係る軟性マニピュレータ1について、図面を参照して以下に説明する。
 本実施形態に係る軟性マニピュレータ1は、図1および図2に示されるように、患者の体腔内に挿入される内視鏡の鉗子チャネルを介して患者の体腔内に挿入される複数の内孔(経路)2aを備える挿入部(長尺部材)2と、該挿入部2の先端に配置された関節および把持鉗子等の処置部3を有する可動部4と、挿入部2の基端に配置され、可動部4を作動させる駆動部5と、内孔2aを長手方向に貫通して駆動部5により発生した動力を可動部4に伝達するワイヤ(動力伝達部材)6と、挿入部2の総湾曲長(湾曲長さ)を測定する湾曲長測定部7と、挿入部2の総湾曲長を調整する湾曲長調整部8とを備えている。
 挿入部2は、長手方向の全長または一部を湾曲させることができる軟性のチューブ状に構成されている。
 駆動部5は、図示しないモータを備え、ワイヤ6を基端側に牽引するようになっている。
 図2に示す例では、説明を簡単にするために挿入部2に設けられた内孔2aは、所定のピッチで螺旋状に設けられることにより、挿入部2の中心軸から径方向外側にずれた位置において挿入部2を長手方向に貫通している。
 駆動部5のモータの動力により、一方のワイヤ6の張力を増大させ、他側のワイヤ6の張力を減少させて、2本のワイヤ6の張力差を動力として、挿入部2の先端に配置されている可動部4に伝達し、可動部4の関節を揺動させることができるようになっている。
 湾曲長測定部(以下、光ファイバセンサとも言う。)7は、例えば、光ファイバセンサであり、挿入部2の総湾曲長を測定することができる。光ファイバセンサ7は、挿入部2の長手方向に沿って全長にわたって配置され、挿入部2の湾曲に倣って同じ湾曲長だけ湾曲するようになっている。光ファイバセンサ7の基端側から入射した光と光ファイバセンサ7の基端側に戻って検出される光との差により、挿入部2に与えられた総湾曲長を測定することができるようになっている。
 湾曲長調整部8は、挿入部2の基端近傍に配置され、挿入部2の外面に径方向外方から接触させられる押圧部材9と、挿入部2を押圧する方向に押圧部材9を移動させる押圧部材駆動機構10と、押圧部材駆動機構10を制御する制御部11と、押圧部材駆動機構10による押圧部材9の移動に同期して、駆動部5を挿入部2の長手軸方向に移動させる直動機構12とを備えている。
 押圧部材(以下、プーリとも言う。)9は、挿入部2の長手軸を含む平面に直交する軸線回りに回転可能に設けられ、所定の外径寸法の円筒状の外周面を有するプーリである。プーリ9の外周面の外径寸法は、光ファイバセンサ7が挿入されている挿入部2の最小曲げ半径より大きく設定されている。
 押圧部材駆動機構10は、プーリ9を回転可能に支持するとともに上記平面に沿う方向に直線移動可能に支持されたスライダ13と、該スライダ13の直線移動を案内するガイドレール14と、スライダ13を駆動するモータ15およびボールネジ16とを備えている。モータ15およびボールネジ16を作動させてスライダ13を一方向に直線移動させると、スライダ13に搭載されているプーリ9の外周面によって挿入部2が径方向に押圧され、挿入部2がプーリ9の外周面に周方向に沿うように湾曲させられるようになっている。
 挿入部2を挟んでプーリ9とは反対側には、プーリ9と略同等の外径寸法を有する円弧状の案内面を有する案内部材17が、スライダ13の移動範囲を挟んで両側に間隔をあけて配置されている。挿入部2がプーリ9によって一方向に湾曲させられると、プーリ9による湾曲の両側に逆方向に湾曲させられる部分が発生するため、それらの部分が挿入部2の最小曲げ半径より小さな半径で曲げられないように案内部材17の案内面によって湾曲を案内するようになっている。
 直動機構12は、駆動部5を搭載するスライダ18と、該スライダ18を挿入部2の長手方向に直線移動可能に支持するガイドレール19とを備えている。
 制御部11は、光ファイバセンサ7により測定された挿入部2の総湾曲長が、挿入部2内の内孔2aのピッチの整数倍となるように、押圧部材駆動機構10のモータ15を制御するようになっている。制御部11は、図3に示されるように、挿入部2内の内孔2aのピッチを記憶するメモリ20と、メモリ20から読み出したピッチと光ファイバセンサ7により測定された総湾曲長とに基づいて押圧部材駆動機構10によるプーリ9の移動量を算出する湾曲長調整量算出部21とを備え、モータ15の駆動指令を生成するようになっている。
 このように構成された本実施形態に係る軟性マニピュレータ1の作用について以下に説明する
 本実施形態に係る軟性マニピュレータ1を用いて体内の患部の処置を行うには、挿入部2を可動部4側から患者の体内に挿入し、基端側を患者の体外に露出した状態に配置する。
 これにより、挿入部2は患者の体腔の形状に倣って湾曲し、先端の可動部4が患部を処置するのに適した位置に配置される。この状態で、湾曲長測定部である光ファイバセンサ7に検出光が供給され、先端において戻ってくる光を検出することにより、挿入部2の総湾曲長Lが測定される。
 そして、制御部11内の湾曲長調整量算出部21が、湾曲長測定部7により測定された挿入部2の総湾曲長Lと、メモリ20に記憶されている内孔2aのピッチPとに基づいて、プーリ9の移動量Sを算出し、該移動量Sに対応する指令信号を押圧部材駆動機構10のモータ15に出力する。
 すなわち、プーリ9の移動量Sは、移動したプーリ9によって挿入部2が径方向に押されることにより、新たに発生する湾曲長ΔLを、光ファイバセンサ7により測定された総湾曲長Lに加えて算出される新たな総湾曲長(所定の長さ)Lが、ピッチPの整数倍となるように、下式に基づいて算出される。
 L=L+ΔL=kP
 S=f(ΔL)
 ここで、f(ΔL)はΔLの関数であり、kは正の整数である。
 新たに発生する湾曲長ΔLには、プーリ9の外周面に沿って湾曲する部分と、案内部材17の案内面に沿って湾曲する部分の両方が含まれる。ここでは、プーリ9の移動量Sが、新たな湾曲長ΔLの関数f(ΔL)として、湾曲長調整量算出部21に記憶されていることとしているが、プーリ9の移動量Sと湾曲長ΔLとが対応付けられて記憶されていてもよい。
 また、本実施形態においては、新たに発生する湾曲長ΔLが最も小さくなるように設定されることが好ましい。これにより、総湾曲長の過度の増大を防止して、ワイヤ6と内孔2a内壁との摩擦の過度の増大を抑制することができる。
 図4に示されるように、モータ15の駆動によりスライダ13が直線移動させられてプーリ9が挿入部2の外面に押し付けられ、挿入部2が湾曲させられると、挿入部2に張力が発生して駆動部5が先端側に牽引されるが、駆動部5は挿入部2の長手方向に移動可能に支持されているので、ガイドレール19に沿ってスライダ18を直線移動させることで、過度の張力が挿入部2に作用することが回避される。
 そして、プーリ9に押されることによる新たな湾曲長がΔLだけ湾曲させられると、光ファイバセンサ7により検出された総湾曲長が内孔2aのピッチの整数倍となる。これにより、内孔2aの経路長差が解消され、挿入部2の内孔2a内を貫通しているワイヤ6における、挿入部2の湾曲に起因する張力差の発生を防止することができる。
 このように、本実施形態に係る軟性マニピュレータ1によれば、挿入部2の湾曲による経路長差の発生を防止するので、可動部4が予期しない方向に動いてしまうことを防止することができるという利点がある。
 特に、本実施形態によれば、体外に露出している挿入部2の基端近傍を湾曲させるだけで、内孔2aの経路長差を簡易に解消できるという利点がある。
 なお、本実施形態においては、挿入部2を内孔2aのピッチの異なる他の挿入部2に変更する場合に、各挿入部2に識別情報を記憶する図示しない記憶部を備え、図5に示されるように、制御部11に識別情報を読み取る読取部22を備えていてもよい。この場合、メモリ20には内孔2aのピッチと挿入部2の識別情報とが対応づけて記憶されていればよい。このようにすることで、挿入部2を交換した場合に、新たに設定を行うことなく、自動的に内孔2aのピッチが読み出されて、経路長差を解消することができる。
 また、上記実施形態においては、駆動部5をスライダ18に搭載し、ガイドレール19に沿って挿入部2の長手方向に移動可能に支持することとしたが、これに代えて、図6および図7に示されるように、挿入部2の基端近傍に、可動プーリ23と案内部材24と、可動プーリ23を付勢する弾性部材25とを設けることにしてもよい。可動プーリ23は、挿入部2の径方向に移動可能に設けられている。また、弾性部材25は可動プーリ23を案内部材24から離れる方向に付勢している。
 可動プーリ23および案内部材24に挿入部2を湾曲させた状態に巻き掛け、可動プーリ23と案内部材24との間に挿入部2が直線状に延びる部分を設けることにより、図7に示されるように、可動プーリ23が移動しても、直線状部分の長さが変動するだけで、湾曲長が変化しないようにすることができる。
 押圧部材駆動機構10によりプーリ9を駆動して挿入部2を湾曲させると、挿入部2に発生した張力が弾性部材25の付勢力に抗して可動プーリ23を移動させる結果、駆動部5を固定したままの状態で、挿入部2に過大な張力が作用することを防止することができる。
 また、本実施形態においては、挿入部2の内孔2aが所定のピッチで螺旋状に形成されている場合について説明したが、これに代えて、図8に示されるように、挿入部2の長手方向に沿って直線状に延びる内孔2aを有している場合に適用してもよい。
 この場合には、湾曲長調整部8として、図9に示されるように、挿入部2を異なる方向に湾曲させる2以上のプーリセット26,27を挿入部2の長手方向の異なる位置に配置すればよい。
 各プーリセット26,27は、略平行な軸線回りにそれぞれ回転可能に図示しないスライダに支持された2つのプーリ26a,26b,27a,27bを備え、両プーリ26a,26b,27a,27bの外周面の間に挿入部2を径方向に挟んでいる。各プーリセット26,27により挿入部2を挟む方向を異ならせ、各プーリセット26,27を支持するスライダの移動平面を図9に矢印で示すように異ならせることにより、挿入部2の長手方向の異なる位置において異なる方向に湾曲させることができるようになっている。
 また、この場合には、湾曲長測定部である光ファイバセンサ7は、挿入部2の湾曲長を3次元的な湾曲方向に対応づけて検出できるものであることが好ましい。
 また、内孔2aが直線状である場合には、光ファイバセンサ7は、挿入部2の一方向への湾曲をプラス、逆方向への湾曲をマイナスとして検出することが好ましい。
 この場合の内孔2aの経路長差は、挿入部2が逆方向(S次状)に同じ長さだけ湾曲させられることにより相殺されるので、光ファイバセンサ7によっても、逆方向の湾曲については符号を異ならせて検出されることが好ましい。
 さらに、2つのプーリ26a,26b,27a,27bによって挿入部2を挟むことにより、一方のプーリ26a,27a側へのプーリセット26,27の移動と他方のプーリ26b,27b側へのプーリセット26,27の移動とで挿入部2の湾曲方向を逆方向に変更することができる。
 これにより、湾曲方向に符号を付けて積算した総湾曲長が湾曲方向毎に検出されるので、これら湾曲方向毎の総湾曲長を各プーリセット26,27による湾曲方向の成分に分解して、それぞれ湾曲長を調整するためのプーリセット26,27の移動量を求めることにより、3次元的な湾曲による経路長差を解消することができる。
 プーリセット26,27は、3以上設けてもよい。
 また、図10に示されるように、単一のプーリセット(湾曲長調整部)28を設け、該プーリセット28を支持する図示しないスライダの移動方向を、駆動部5から真っ直ぐに延びる挿入部2の長手軸回りに回転可能にすることにしてもよい。
 1 軟性マニピュレータ
 2 挿入部(長尺部材)
 2a 内孔(経路)
 4 可動部
 5 駆動部
 6 ワイヤ(動力伝達部材)
 7 光ファイバセンサ(湾曲長測定部)
 8 湾曲長調整部
 9 プーリ(押圧部材)
 10 押圧部材駆動機構
 12 直動機構
 26,27,28 プーリセット(湾曲長調整部)
 L 総湾曲長(湾曲長さ)
 L 総湾曲長(所定の長さ)

Claims (7)

  1.  細長い軟性のチューブ状に形成され、中心軸に対して径方向外側に長手方向に貫通する2以上の経路を備える長尺部材と、
     該長尺部材の先端に配置された可動部と、
     前記長尺部材の基端に配置された駆動部と、
     前記長尺部材の前記経路を貫通して配置され、前記駆動部の動力を前記可動部に伝達する2以上の細長い動力伝達部材と、
     前記長尺部材の前記湾曲長さを測定する湾曲長測定部と、
     該湾曲長測定部により測定された前記長尺部材の前記湾曲長さが所定の長さとなるように前記長尺部材の基端近傍を湾曲させる湾曲長調整部とを備える軟性マニピュレータ。
  2.  前記経路が、前記中心軸回りに螺旋状に形成されており、
     前記所定の長さが、前記経路のピッチの整数倍である請求項1に記載の軟性マニピュレータ。
  3.  前記所定の長さが、前記湾曲長測定部により測定された前記湾曲長さとの差が最小となる長さである請求項2に記載の軟性マニピュレータ。
  4.  前記湾曲長調整部が、前記長尺部材の基端近傍に、該長尺部材の径方向外方から接触させられる押圧部材と、該押圧部材を前記長尺部材の径方向に移動させる押圧部材駆動機構とを備える請求項3に記載の軟性マニピュレータ。
  5.  前記押圧部材駆動機構による前記押圧部材の移動に同期して、前記駆動部を前記長尺部材の長手軸方向に移動させる直動機構を備える請求項4に記載の軟性マニピュレータ。
  6.  前記押圧部材が、前記長尺部材を周方向に沿わせるように配置された所定半径の円筒状の外周面を有する請求項4または請求項5に記載の軟性マニピュレータ。
  7.  前記押圧部材がプーリである請求項6に記載の軟性マニピュレータ。
PCT/JP2016/086054 2016-12-05 2016-12-05 軟性マニピュレータ WO2018105001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/086054 WO2018105001A1 (ja) 2016-12-05 2016-12-05 軟性マニピュレータ
JP2018555335A JP6715949B2 (ja) 2016-12-05 2016-12-05 軟性マニピュレータ
US16/171,430 US10987180B2 (en) 2016-12-05 2018-10-26 Flexible manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086054 WO2018105001A1 (ja) 2016-12-05 2016-12-05 軟性マニピュレータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/171,430 Continuation US10987180B2 (en) 2016-12-05 2018-10-26 Flexible manipulator

Publications (1)

Publication Number Publication Date
WO2018105001A1 true WO2018105001A1 (ja) 2018-06-14

Family

ID=62491046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086054 WO2018105001A1 (ja) 2016-12-05 2016-12-05 軟性マニピュレータ

Country Status (3)

Country Link
US (1) US10987180B2 (ja)
JP (1) JP6715949B2 (ja)
WO (1) WO2018105001A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013943A1 (ja) * 2015-07-17 2017-01-26 オリンパス株式会社 マニピュレータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471686A (en) * 1987-09-09 1989-03-16 Komatsu Mfg Co Ltd Flexible arm robot
JP2002200091A (ja) * 2000-12-27 2002-07-16 Mizuho Co Ltd 手術器械操作における駆動ワイヤーの緩み補正機構
JP2015024033A (ja) * 2013-07-26 2015-02-05 オリンパス株式会社 マニピュレータシステム
US9259277B2 (en) * 2011-05-13 2016-02-16 Intuitive Surgical Operations, Inc. Instrument actuation interface
WO2016136301A1 (ja) * 2015-02-25 2016-09-01 オリンパス株式会社 マニピュレータ及びマニピュレータシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046044B2 (en) 2004-02-05 2006-05-16 Texas Instruments Incorporated Differential preamplifier having balanced resistor network
US8165687B2 (en) 2008-02-26 2012-04-24 Universidad Autonoma Metropolitana, Unidad Iztapalapa Systems and methods for detecting and using an electrical cochlear response (“ECR”) in analyzing operation of a cochlear stimulation system
JP6116426B2 (ja) 2013-07-25 2017-04-19 オリンパス株式会社 マニピュレータシステム
JP6150672B2 (ja) 2013-08-26 2017-06-21 オリンパス株式会社 医療用マニピュレータ
CN105828738B (zh) 2013-12-20 2018-10-09 奥林巴斯株式会社 柔性机械手用引导部件和柔性机械手
JP6153484B2 (ja) 2014-02-24 2017-06-28 オリンパス株式会社 ワイヤ駆動装置およびマニピュレータ
JP6129114B2 (ja) 2014-05-15 2017-05-17 オリンパス株式会社 処置具用アダプタおよび手術用マニピュレータシステム
JP6169049B2 (ja) 2014-06-19 2017-07-26 オリンパス株式会社 マニピュレータの制御方法、マニピュレータ、およびマニピュレータシステム
US10226304B2 (en) * 2014-12-15 2019-03-12 The Johns Hopkins University Shape tracking of a dexterous continuum manipulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471686A (en) * 1987-09-09 1989-03-16 Komatsu Mfg Co Ltd Flexible arm robot
JP2002200091A (ja) * 2000-12-27 2002-07-16 Mizuho Co Ltd 手術器械操作における駆動ワイヤーの緩み補正機構
US9259277B2 (en) * 2011-05-13 2016-02-16 Intuitive Surgical Operations, Inc. Instrument actuation interface
JP2015024033A (ja) * 2013-07-26 2015-02-05 オリンパス株式会社 マニピュレータシステム
WO2016136301A1 (ja) * 2015-02-25 2016-09-01 オリンパス株式会社 マニピュレータ及びマニピュレータシステム

Also Published As

Publication number Publication date
JPWO2018105001A1 (ja) 2019-08-08
US10987180B2 (en) 2021-04-27
JP6715949B2 (ja) 2020-07-01
US20190060016A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
EP2007269B1 (en) Steering system tension control devices
KR102115447B1 (ko) 내시경 장치
CN107848120B (zh) 操纵器
CN114025699A (zh) 具有被动弯曲模式的主动控制可转向医疗设备
JP5443801B2 (ja) 張力検出手段及びそれを用いたマニピュレータ
WO2014157001A1 (ja) 処置具
JP2014004310A (ja) 医療器具
KR20100018487A (ko) 형상 센서를 이용하여 기계를 제어하는 시스템
JP6180679B2 (ja) 内視鏡
JP6150962B1 (ja) マニピュレータ
JP6615228B2 (ja) 可撓管挿入装置
US10619714B2 (en) Steerable medical device having a control member holding mechanism
JP2013027466A (ja) 医療装置
CN107205790B (zh) 机械手
US10582976B2 (en) Manipulator system and manipulator control method
JP2010220684A (ja) マニピュレータの関節の変位量検出機構
WO2018105001A1 (ja) 軟性マニピュレータ
JP6321159B2 (ja) 撓み動作伝動装置、内視鏡曲げコントローラ、及び内視鏡
JP6554609B2 (ja) 可撓管挿入装置
WO2017175373A1 (ja) 軟性マニピュレータ
US20210161371A1 (en) Endoscope
JP3776858B2 (ja) 内視鏡
WO2016136473A1 (ja) 医療用マニピュレータシステム
JP2004298349A (ja) 超音波プローブ
JPWO2017154172A1 (ja) 軟性処置具および医療用チューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923355

Country of ref document: EP

Kind code of ref document: A1