WO2018103258A1 - 一种收音机天线诊断电路、诊断方法及装置 - Google Patents

一种收音机天线诊断电路、诊断方法及装置 Download PDF

Info

Publication number
WO2018103258A1
WO2018103258A1 PCT/CN2017/082914 CN2017082914W WO2018103258A1 WO 2018103258 A1 WO2018103258 A1 WO 2018103258A1 CN 2017082914 W CN2017082914 W CN 2017082914W WO 2018103258 A1 WO2018103258 A1 WO 2018103258A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio
module
input
radio antenna
Prior art date
Application number
PCT/CN2017/082914
Other languages
English (en)
French (fr)
Other versions
WO2018103258A8 (zh
Inventor
王龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780029973.XA priority Critical patent/CN109155638B/zh
Publication of WO2018103258A1 publication Critical patent/WO2018103258A1/zh
Publication of WO2018103258A8 publication Critical patent/WO2018103258A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to a radio antenna diagnostic circuit, a diagnostic method, and a device.
  • Radio antenna diagnostic technology is widely used in car audio and video navigation systems.
  • the car audio and video navigation system is generally a single Tuner (radio tuner) antenna to achieve the radio function, however, due to the increased demand for radio reception, the dual tuner antenna and multi-Tunner antenna to enhance the audio quality of the radio gradually emerged, now
  • Some radio antenna diagnostic techniques only have a complete diagnostic circuit for a single Tuner antenna.
  • the radio is changed to a dual Tuner antenna or a multi-Tuner antenna, it is only a simple copy of one or more sets of single Tuner antenna diagnostic circuits to achieve Fault diagnosis function for each radio antenna.
  • the following provides a prior art, wherein the radio antenna diagnostic circuit is mainly applied to an active antenna. As shown in FIG.
  • FIG. 1 a schematic diagram of the prior art is provided, which mainly includes: an input circuit, a PTC (positive temperature coefficient, Positive temperature coefficient) resistor, ADC (analog to digital converter) module, and MCU (microcontroller unit); input circuit is connected to the power supply, and the input circuit is connected to the active antenna through the PTC resistor, active
  • the antenna is also connected to the MCU through the ADC module ADC; for each active antenna, a set of input circuit, PTC module and ADC module ADC are required; as shown in FIG. 2, taking a dual Tuner antenna as an example, a kind is shown.
  • the input circuit and the specific structure of the active antenna wherein the PTC resistor is specifically connected to the power terminal of the active antenna (ANT1_PWR_C ⁇ ANT2_PWR_C), and the ADC module ADC is connected to the input end of the RC module of the dual Tuner antenna, wherein in the first Tuner antenna Capacitors C3402 and R3402 form the RC module to form the oscillator of the first Tuner antenna, and the capacitors C3428 and R3419 in the second Tuner antenna form the RC module. An oscillator that forms the second Tuner antenna.
  • the above circuit can realize the diagnosis of the radio antenna, since each Tuner antenna needs to set a set of input circuit, PTC resistor and ADC module ADC, the circuit structure is relatively complicated.
  • Embodiments of the present application provide a radio antenna diagnostic circuit, a diagnostic method, and a device, which can simplify the structure of a radio antenna diagnostic circuit.
  • an embodiment of the present application provides a radio antenna diagnostic circuit, including: an input circuit, an MCU (microcontroller unit), and at least two PTCs (positive Temperature coefficient, positive temperature coefficient) resistor and at least two ADCs (analog to digital converter); wherein the input circuit is connected to the power supply and the MCU, and the input circuit is also connected to one end of at least two PCT resistors, each PCT resistor The other end is connected to the power end of a radio antenna, and the input of each ADC is connected to the input of a RC module (resistor capacitance) of the radio antenna; the output of at least two ADCs is connected to the MCU; wherein the MCU is used to control the on or The input circuit is closed; the input circuit is configured to input a power signal to the power terminals of at least two radio antennas through at least two PTC resistors in an open state; the PTC resistor is used to reduce the PTC resistor when the connected radio antenna is short-circuited The current
  • the radio antenna diagnostic circuit only includes a set of input circuits.
  • the input circuit is connected to each other through a PTC resistor, and each radio antenna is connected to the MCU through an ADC, respectively.
  • the input circuit supplies power to the radio antenna through the PTC resistor corresponding to each radio antenna, so the detection process of each radio antenna is independent of each other.
  • each radio antenna needs an input circuit to supply power thereto.
  • the radio antenna diagnostic circuit provided is simpler in structure.
  • the input circuit is in an on state
  • the MCU is specifically configured to determine that the voltage value of the digital signal is less than the first threshold voltage, and the radio antenna corresponding to the digital signal is in a short circuit state.
  • the MCU when the input circuit is in the off state, the MCU is specifically configured to determine that the voltage value of the digital signal is greater than or equal to the second threshold voltage, and the radio antenna corresponding to the digital signal is in an open state.
  • the present application provides a specific implementation of an input circuit, including: a first switching transistor, a second switching transistor, a first resistor, a second resistor, and a third resistor; wherein a base connection of the first switching transistor Up to the MCU, an emitter of the first switching transistor is grounded; a collector of the first switching transistor is connected to a gate of the second switching transistor through the first resistor; and a second switching transistor is a gate is connected to the power source through the second resistor, a third resistor is connected in series between a source and a drain of the second switching transistor, and a source of the second switching transistor is connected to the power source, The drain of the second switching transistor is connected to one end of the PTC resistor.
  • the input circuit may further include: a first capacitor, the first capacitor being connected in parallel to the second resistor. Since the capacitor can store the charge and maintain the voltage, the first capacitor can ensure the stability of the second switching transistor in the on state.
  • the input circuit may further include: a Zener diode having an anode connected to a drain of the second switching transistor, and a cathode of the Zener diode connected to one end of the PTC resistor. Among them, since the Zener diode has a fixed withstand voltage value, it breaks down when its branch exceeds the upper limit of its withstand voltage value, thereby protecting the back-end circuit.
  • the input circuit may further include: a capacitor group including at least one capacitor, wherein the at least one capacitor is connected in parallel and/or in series; an input end of the capacitor group is connected to one end of the PTC resistor, and the capacitor group The output is grounded.
  • the input circuit first stabilizes a certain voltage value after charging the resistor group, and the charging and discharging function of the capacitor group ensures the stability of the branch in which it is located.
  • an antenna diagnostic circuit including: an input module, an MCU module, and at least Two PTC resistor modules and at least two ADC modules; wherein the input module is connected to a power source and the MCU module, the input module is further connected to one end of the at least two PCT resistor modules, each of the PCT resistor modules The other end is connected to a power terminal of a radio antenna, and an input end of each of the ADC modules is connected to an input end of an RC module of the radio antenna; an output end of the at least two ADC modules is connected to the MCU module;
  • the MCU module is configured to control the input module to be turned on or off; the input module is configured to input a power signal to the power terminals of at least two of the radio antennas through the at least two PTC resistance modules in an open state.
  • the PTC resistor module is configured to reduce a current of a branch of the PTC resistor module to a predetermined current range when the connected radio antenna is short-circuited;
  • the ADC module is configured to input to an RC module of the radio antenna Sampling and converting the sampled signal into a digital signal;
  • the MCU module is configured to determine, according to the digital signal corresponding to each radio antenna, that the radio antenna is None is normal.
  • the antenna diagnostic circuit is configured to divide the functional module of the antenna diagnostic circuit provided by the first aspect, and the beneficial effects can be achieved by referring to the antenna diagnostic path provided in the first aspect above and the corresponding solution in the following specific embodiments. The beneficial effects will not be described here.
  • the MCU module is specifically configured to: when the input module inputs a power signal to the power terminals of the at least two radio antennas, when the voltage value of the digital signal is less than the first threshold voltage, the digital signal corresponds to The radio antenna is shorted.
  • the MCU module is specifically configured to: when the input module does not input a power signal to the power terminals of the at least two of the radio antennas, determine that the voltage value of the digital signal is greater than or equal to a second threshold voltage, The radio antenna corresponding to the digital signal is in an open state.
  • an antenna diagnostic method based on the antenna diagnostic circuit described above, comprising: inputting a power signal to a power terminal of at least two of the radio antennas; sampling an input end of the RC module of the radio antenna and sampling The signal is converted into a digital signal; whether the radio antenna is normal is determined according to a digital signal corresponding to each radio antenna.
  • the determining whether the radio antenna is normal according to the digital signal corresponding to each radio antenna includes: determining, when the power signal is input to the power terminals of the at least two radio antennas, that the voltage value of the digital signal is less than When a threshold voltage is applied, the radio antenna corresponding to the digital signal is in a short circuit state.
  • determining whether the radio antenna is normal according to a digital signal corresponding to each radio antenna comprising: determining that a voltage value of the digital signal is greater than or equal to when a power signal is not input to a power end of at least two of the radio antennas When the second threshold voltage is applied, the radio antenna corresponding to the digital signal is in an open state.
  • the present application provides a computer storage medium comprising instructions which, when run on a computer, cause the computer to perform any of the methods described above in the third aspect.
  • the present application also provides a computer program product, when executed on a computer, causing the computer to perform any of the methods described in the third aspect above.
  • the present application provides an antenna diagnostic method based on any of the antenna diagnostic circuits described above, wherein when the antenna diagnostic circuit determines that a voltage value of the digital signal is less than the second threshold voltage, the antenna diagnostic circuit And inputting a power signal to the power terminals of the at least two radio antennas; the method further includes: controlling the radio to be in a single Tuner antenna working mode, and acquiring a signal strength of the first preset number of frequencies for each radio antenna Determining whether the radio antenna is normal according to the signal strength of the first preset number of frequency points.
  • the solution provided by the first aspect determines that the voltage value of the digital signal is less than the second threshold voltage, it is necessary to further determine whether the corresponding Tuner antenna is normal, in which a plurality of frequencies are adopted for each radio antenna.
  • the sampling of the signal strength of the point determines whether the radio antenna is normal or not, and the diagnosis of the radio antenna is realized.
  • the present disclosure provides an antenna diagnostic apparatus according to any one of the antenna diagnostic circuits of the first aspect, comprising: an acquisition module and a processing module; wherein the antenna diagnostic circuit determines that a voltage value of the digital signal is smaller than the second At the threshold voltage, the antenna diagnostic circuit inputs a power signal to the power terminals of at least two of the radio antennas; the acquisition module is configured to control the radio to be in a single Tuner antenna working mode, and obtain a first for each radio antenna Predetermining the signal strength of the frequency points; the processing module determines whether the radio antenna is normal according to the signal strength of the first preset number of frequency points acquired by the acquiring module.
  • the present application provides an antenna diagnostic apparatus according to any of the antenna diagnostic circuits of the first aspect, comprising: a communication interface, a processor, and a memory, the processor configured to support antenna diagnostics
  • the processor configured to support antenna diagnostics
  • the apparatus performs the corresponding function of any of the methods described in the sixth aspect above
  • the memory is for coupling with the processor, and the instructions and data necessary for the antenna diagnostic apparatus are saved
  • the communication interface is configured to support the Communication between the antenna diagnostic device and other devices.
  • the present application provides a computer storage medium comprising instructions, when executed on a computer, causing the computer to perform any of the methods described in the sixth aspect above.
  • the present application also provides a computer program product, which when executed on a computer, causes the computer to perform any of the methods described in the sixth aspect above.
  • any of the antenna diagnostic apparatus or the computer storage medium or the computer program product provided above is used to perform the antenna diagnostic method corresponding to the sixth aspect provided above, and therefore, the beneficial effects that can be achieved can be referred to.
  • the antenna diagnostic method of the sixth aspect above and the beneficial effects of the corresponding schemes in the following specific embodiments are not described herein again.
  • FIG. 1 is a schematic structural diagram of a radio antenna diagnostic circuit provided by the prior art
  • FIG. 2 is a schematic structural diagram of another radio antenna diagnostic circuit provided by the prior art
  • FIG. 3 is a schematic structural diagram of a radio according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a radio antenna according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a radio antenna diagnostic circuit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another radio antenna diagnostic circuit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of still another computer antenna diagnostic circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another antenna diagnostic circuit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a device for diagnosing a machine antenna according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another antenna diagnostic apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another antenna diagnostic apparatus according to an embodiment of the present application.
  • Open antenna the active antenna is disconnected from the radio circuit
  • the active antenna is grounded or shorted to the power supply
  • the antenna is normal: the active antenna communicates with the radio circuit normally;
  • PTC resistor a type of thermistor, is a typical temperature-sensitive semiconductor resistor. When the temperature exceeds a certain temperature (Curie temperature), the resistance value increases stepwise with increasing temperature.
  • the radio antenna diagnostic circuit, the diagnostic method and the device provided by the embodiments of the present application are mainly applied to a dual Tuner antenna and a multi-Tuner antenna, wherein the radio mainly receives signals through a radio antenna, and a typical radio structure is shown in FIG. 3: Master controller, tuner, mixer circuit, center amplifier circuit, detector, front low drop, Tuner antenna and speaker.
  • the tuner selects one of the high frequency signals sent by the aerial radio station received by the Tuner antenna to the mixing circuit, and the mixing circuit converts the amplitude modulated signal sent by the tuner into an intermediate frequency amplitude modulation signal, and the signal is in the conversion process.
  • the effective signal carried in the signal is constant, that is, only the frequency of the amplitude modulation signal is changed to the intermediate frequency, but the law of amplitude variation does not change. Regardless of the frequency of the input high frequency signal, the frequency after mixing is fixed, for example, the Chinese regulations are 465 kHz.
  • the mid-discharge circuit then amplifies the IF amplitude modulated signal to the size required by the detector.
  • the detector intercepts the audio signal carried by the intermediate frequency amplitude modulation signal and sends it to the front low level, and pushes the speaker by the front low level, wherein the main controller is configured with a tuning circuit, a mixing circuit, a middle stage circuit, a detector, and a front Set low-level parameters and coordinate the cooperation between the various functional modules.
  • the radio structure illustrated in FIG. 3 does not constitute a definition of a radio, may include more or fewer components than illustrated, or may be combined with certain components, or different component arrangements.
  • an embodiment of the present application further provides a structure of a Tuner antenna, which is exemplified by a dual Tuner antenna, which includes a first Tuner antenna and a second Tuner antenna, and the first Tuner antenna includes resistors R3401, R3422, and R3402.
  • ANT1_PWR_C is the power supply end of the active antenna
  • ANT1_PWR_C and the common ground GND_TUN_C of the radio are connected in series with resistors R3401, R3422 and R3402, capacitor C3402 and resistor R3402 in parallel
  • the RC module of the first Tuner antenna forms the oscillator of the first Tuner antenna
  • the resistor R3401 and R3422 are connected to the cathode of the diode D3405
  • the anode of the D3405 is connected to the radiation pole GND_2LAY_C of the first Tuner antenna, and between the resistors R3401 and R3422.
  • the cathode of D3407 is connected to SI_3V3D.
  • the radiating pole GND_2LAY_C of the antenna receives the high frequency signal and transmits it to the tuning circuit through SI_3V3D.
  • the structure of the second Tuner antenna is similar to that of the first Tuner antenna and will not be described again.
  • the Tuner antenna shown in FIG. 4 is taken as an example. It can be understood that the structure of the Tuner antenna can be various and not limited to one shown in FIG. 4, as long as the Tuner antenna is an active antenna.
  • an embodiment of the present application provides a radio antenna diagnostic circuit 50, including: an input circuit 51, an MCU 52, at least two PTC resistors 53 (53-1 ... 53-n), and at least two ADCs 54 ( 54-1...54-n).
  • the input circuit 51 is connected to the power supply (as shown in FIG. 6, the port TUN_12V_C is connected to the 12V power supply) and the MCU 52.
  • the input circuit is also connected to one end of at least two PCT resistors 53 (53-1...53-n), each PCT.
  • the other end of the resistor 53 (53-1...53-n) is connected to the power supply terminal of a radio antenna 55 (55-1...55-n), and the input of each ADC 54 (54-1...54-n) Connect the input of an RC module of a radio antenna 55 (55-1...55-n) (as shown in Figure 4, TUN_ANT_CHK1_C and TUN_ANT_CHK2_C); the outputs of at least two ADCs 54 (54-1...54-n) Connect to the MCU52;
  • the MCU 52 is used to control the input circuit 51 to be turned on or off;
  • the input circuit 51 is configured to, via the at least two PTC resistors 53 (53-1 ... 53-n), at least two radio antennas 55 (55-1 ... 55-n) in the open state (herein shown in the figure) The power supply input signal of the Tuner antenna);
  • the PTC resistors 53 are used to reduce the current of the branch of the PTC resistor 53 (53-1...53-n) to a predetermined current range when the connected radio antenna is short-circuited; ADC54( 54-1...54-n) for sampling the input of the RC module of the radio antenna 55 (55-1...55-n) and converting the sampled signal into a digital signal; the MCU 52 is used for each radio antenna 55 The corresponding digital signals (55-1...55-n) determine whether the radio antennas 55 (55-1...55-n) are normal.
  • the radio antennas 55 (55-1...55-n) corresponding to the digital signals are in a short-circuit state;
  • the MCU 52 is specifically configured to determine that the voltage value of the digital signal is greater than or equal to the second threshold voltage, and the radio antennas 55 (55-1 . . . 55-n) corresponding to the digital signals are in an open state.
  • the input circuit includes:
  • the base of the first switching transistor Q3401 is connected to the MCU 52 (TUN_ANT_PWR_EN_C is connected to the MCU 52 in FIG. 6), the emitter of the first switching transistor Q3401 is grounded to GND_TUN_RF_C, and the collector of the first switching transistor Q3401 is connected to the first resistor R3406. a gate of the second switching transistor Q3403;
  • the gate of the second switching transistor Q3403 is connected to the power source TUN_12V_C through the second resistor R3435, the third resistor R3434 is connected in series between the source and the drain of the second switching transistor Q3403, and the source of the second switching transistor Q3403 is connected to the power source TUN_12V_C.
  • the drain of the second switching transistor Q3403 is connected to one end of the PTC resistors 53 (53-1 ... 53-n).
  • the first switching transistor Q3401 is a triode. Illustratively, taking an N-type transistor as an example, when the base voltage is greater than the bias bias, the collector C and the emitter E are short-circuited, and the first switching transistor Q3401 is in a conducting state. Otherwise, the second switching transistor Q3403 is a MOS transistor. For example, a P-type MOS transistor is used as an example. When the gate G voltage is lower than the source S voltage, and the absolute value of the GS voltage difference is greater than the threshold voltage, the conduction is Pass state, otherwise cut off.
  • the input circuit 51 further includes a first capacitor C3404, and the first capacitor C3404 is connected in parallel with the second resistor R3435. Since the capacitor can store the charge and maintain the voltage, the first capacitor C3404 can ensure the stability of the second switching transistor Q3403 in the on state.
  • the input circuit 51 further includes a Zener diode D3401 whose anode is connected to the drain of the second switching transistor Q3403, and the cathode of the Zener diode D3401 is connected to the PTC resistor 53 (53-1...53-n) One end. Among them, since the Zener diode has a fixed withstand voltage value, it breaks down when its branch exceeds the upper limit of its withstand voltage value, thereby protecting the back-end circuit.
  • the input circuit 51 further includes: a capacitor group Cg, the capacitor group Cg includes at least one capacitor, wherein at least one capacitor is connected in parallel and/or in series; and an input end of the capacitor group Cg is connected to the PTC resistor 53 (53-1...53-n) At one end, the output end of the capacitor group Cg is grounded.
  • the input circuit first stabilizes the voltage group after charging the resistor group, and the charging and discharging function of the capacitor group ensures the stability of the branch.
  • the capacitor bank Cg includes four capacitors C3405, C3406, C3407, C3408 connected in parallel.
  • a resistor R3433 is further connected in series between the drain D of the second switching transistor Q3403 and the anode of the Zener diode D3401, and the base B of the first switching transistor Q3401 is also connected in series.
  • Resistor R3436 resistor R3436 is connected in series between TUN_ANT_PWR_EN_C and base B of the first switching transistor Q3401), wherein resistors R3433 and R3436 are redundant designs, mainly for impedance matching of the branch.
  • the radio antennas 55 (55-1 . . . 55-n) corresponding to the digital signals are short-circuited.
  • status :
  • the MCU 52 sets TUN_ANT_PWR_EN_C to a high level, so that the transistor Q3401 and the MOS transistor Q3403 are turned on, and detects the voltage values of the digital signals corresponding to TUN_ANT_CHK1_C and TUN_ANT_CHK2_C. Due to the resistance characteristics of the PTC resistor, when the Tuner antenna 1 is short-circuited to the ground, the PTC resistor is located. The branch current increases, so the PTC resistor heat causes the resistance to increase, which causes the voltage value of the digital signal corresponding to TUN_ANT_CHK1_C to be sharply reduced, thereby protecting the back-end device.
  • the Tuner antenna 1 is short-circuited to ground. If the voltage value of the digital signal corresponding to TUN_ANT_CHK2_C is ⁇ 0.6V (0.6V is only an exemplary threshold, the first threshold is related to the specific component parameters used in the test, and the component parameters are not When the threshold is the same, other values may be used, and the Tuner antenna 2 is short-circuited to the ground. The two do not affect each other.
  • the voltage values of the digital signals corresponding to TUN_ANT_CHK3_C, TUN_ANT_CHK4_C, ..., TUN_ANT_CHKn_C are detected, and the voltage value of each digital signal corresponds to a Tuner antenna.
  • the embodiment of the present application provides a radio antenna 55 (55-1...55-n) corresponding to the digital signal when the MCU 52 determines that the voltage value of the digital signal is greater than or equal to the second threshold voltage in the closed state of the input circuit 51.
  • a radio antenna 55 55-1...55-n
  • the MCU 52 sets TUN_ANT_PWR_EN_C to a low level, so that the transistor Q3401 and the MOS transistor Q3403 are in a closed state, and detects the voltage values of the digital signals corresponding to TUN_ANT_CHK1_C and TUN_ANT_CHK2_C.
  • the PTC resistance current is zero, and the PTC resistor only causes The voltage drop of the branch circuit, so the voltage value of the digital signal corresponding to TUN_ANT_CHK1_C will be stable in a fixed range, so if the voltage value of the digital signal corresponding to TUN_ANT_CHKx_C is ⁇ 2.15V (2.15V is only an exemplary threshold, the second threshold and the test)
  • the specific component parameters used are related. When the component parameters are different, the threshold may use other values. It is determined that the Tuner antenna is open. If the voltage value of the digital signal corresponding to TUN_ANT_CHKx_C is ⁇ 2.15V, further judgment is needed. Is the corresponding Tuner antenna normal?
  • an embodiment of the present invention provides an antenna diagnostic method, including the following steps:
  • the step 103 includes the diagnosis of the short-circuit state of the radio antenna and the diagnosis of the open state.
  • Example 1 Step 103 specifically includes determining that the voltage value of the digital signal is less than the first threshold when the power signal is input to the power terminals of the at least two radio antennas. At voltage, the radio antenna corresponding to the digital signal is short-circuited.
  • Example 2 Step 103 specifically includes: when the power signal is not input to the power terminals of the at least two radio antennas, determining that the voltage value of the digital signal is greater than or equal to the second threshold voltage, the radio antenna corresponding to the digital signal is in an open state.
  • the antenna diagnostic method reference may be made to the technical effects of the corresponding solution in the specific implementation manner of the antenna diagnostic antenna, and details are not described herein again.
  • Embodiments of the present application provide an antenna diagnostic circuit for performing the antenna diagnostic method described above.
  • the embodiment of the present application may divide the function module into the antenna diagnosis circuit according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 shows a possible structural diagram of the antenna diagnostic circuit 70 involved in the foregoing embodiment.
  • the antenna diagnostic circuit 70 includes an input module 71 and an MCU module 72. At least two PTC resistor modules 73 (73-1...73-n) And at least two ADC modules 74 (74-1 ... 74-n); wherein the input module 71 is connected to the power supply and the MCU module 72, and the input module 71 is further connected to at least two PCT resistance modules 73 (73-1...73- At one end of n), the other end of each PCT resistance module 73 (73-1 ... 73-n) is connected to the power terminal of a radio antenna, and the input of each ADC module 74 (74-1 ...
  • the input module 71 is configured to input a power signal to the power terminals of at least two radio antennas through at least two PTC resistor modules 73 (73-1 . . . 73-n) in an open state; the PTC resistor module 73 (73-1... ... 73-n) for reducing the current of the branch of the PTC resistor module 73 (73-1 ...
  • the MCU module 72 is adapted to correspond to each radio antenna Determining whether the digital signal is normal radio antenna.
  • the MCU module 72 is specifically configured to determine, when the input module 71 inputs a power signal to the power terminals of the at least two radio antennas, that the voltage value of the digital signal is less than the first threshold voltage, and the radio antenna corresponding to the digital signal is in a short circuit state.
  • the MCU module 72 is specifically configured to: when the input module 71 does not input a power signal to the power terminals of the at least two radio antennas, when the voltage value of the digital signal is greater than or equal to the second threshold voltage, the radio antenna corresponding to the digital signal is an open circuit. status. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 8 shows a possible structural diagram of the antenna diagnostic circuit 80 involved in the above embodiment.
  • the antenna diagnostic circuit 80 includes a communication unit 811, a processing unit 812, and a storage unit 813.
  • the processing unit 812 is configured to control and manage the action of the antenna diagnostic circuit.
  • the processing unit 812 is configured to support the antenna diagnostic circuit to execute the MCU module 72, the at least two PTC resistance modules 73 (73-1...73-n), and at least The functions of the two ADC modules 74 (74-1 ... 74-n);
  • the communication unit 811 is for supporting the antenna diagnostic circuit to perform the functions of the input module 71.
  • the communication unit 811 may comprise or be itself a physical structure, such as a communication interface, and the communication unit 811 can communicate with a functional module or a physical structure to which it is connected, for example, with a power source.
  • the storage unit 813 is configured to store program codes and data of the antenna diagnostic circuit.
  • the antenna diagnostic circuit when the antenna diagnostic circuit determines that the voltage value of the digital signal is less than the second threshold voltage, the antenna diagnostic circuit supplies power to at least two of the radio antennas Inputting a power signal; exemplarily, when the antenna diagnostic circuit determines that the voltage value of the digital signal is less than the second threshold voltage, the antenna diagnostic circuit inputs a power signal to the power terminals of at least two of the radio antennas
  • the diagnostic method of the Tuner antenna after the voltage value of the digital signal corresponding to TUN_ANT_CHKx_C is less than the second threshold voltage includes:
  • the radio antenna diagnostic device controls the radio to be in a single radio antenna working mode, and obtains a signal strength of a first preset number of frequency points for each radio antenna;
  • the radio antenna diagnostic device determines whether the radio antenna is normal according to the signal strength of the first preset number of frequency points.
  • Step 202 specifically includes:
  • the radio antenna is normal, and the preset condition is the frequency point.
  • the signal strength is greater than the preset gain value; wherein, if it is determined that the number of frequency points satisfying the preset condition in the signal strength of the first preset number of frequency points is less than or equal to the second preset number, determining that the radio antenna is open .
  • the radio antenna diagnostic device After the MCU52 adjusts TUN_ANT_PWR_EN_C to a high level, the triode Q3401 and the MOS tube Q3403 are turned on, and the radio antenna diagnostic device first switches the radio to the single radio antenna working mode for each Tuner antenna (here: The Tuner antenna of the digital signal corresponding to the TUN_ANT_CHKx_C is smaller than the second threshold voltage.
  • the radio antenna diagnostic device continuously samples the signal at the ANT_PWR_C (for example, ANT1_PWR_C or ANT2_PWR_C) port of the Tuner antenna, for example, obtaining 15 frequency points.
  • RSSI Signal strength
  • the Tuner antenna is normal, otherwise, the Tuner antenna is open.
  • the voltage value of the digital signal is less than the second threshold voltage, it is necessary to further determine whether the corresponding Tuner antenna is normal.
  • whether the radio antenna is normal is determined by sampling the signal strength of each radio antenna at several frequency points. Achieve the diagnosis of the radio antenna.
  • Embodiments of the present application provide an antenna diagnostic apparatus for performing the antenna diagnostic method described above.
  • the antenna diagnostic device may be the radio itself or the antenna diagnostic device may be a functional entity integrated in the radio, which may be: a main controller of the radio, such as an MPU (micro processor unit), of course.
  • the main controller can also be integrated with the MCU of the antenna diagnostic circuit described above, or it can be set separately.
  • the embodiment of the present application may divide the function module into the antenna diagnostic device according to the above method example. For example, each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 is a schematic diagram showing a possible configuration of the antenna diagnostic apparatus 90 involved in the above embodiment.
  • the antenna diagnostic apparatus 90 includes an acquisition module 911 and a processing module 912. .
  • the acquisition module 911 is configured to support the antenna diagnostic device 90 to perform step 201;
  • the processing module 912 is configured to support the antenna diagnostic device 90 to perform step 202. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a possible structural diagram of the antenna diagnostic apparatus 100 involved in the above embodiment.
  • the antenna diagnostic apparatus 100 includes a communication unit 1011, a processing unit 1012, and a storage unit 1013.
  • the processing unit 1012 is configured to control and manage the action of the antenna diagnostic apparatus.
  • the processing unit 1012 is configured to support the antenna diagnostic apparatus to perform the above process 202; and the communication unit 1011 is configured to support the antenna diagnostic apparatus to perform the above process 201.
  • the communication unit 1011 may include or be itself a physical structure, such as a communication interface, and the communication unit 1011 can communicate with a functional module or a physical structure connected thereto, for example, an ANT_PWR_C (eg, ANT1_PWR_C or ANT2_PWR_C) port of the Tuner antenna, and The signal strength (RSSI) of 15 frequency points is obtained by sampling the signal by DC.
  • the storage unit 1013 is configured to store an antenna diagnostic device Program code and data.
  • the processing unit 1012 may be a processor or a controller, and may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). Integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication unit 1011 may be a communication interface or the like.
  • the storage unit 1013 may be a memory.
  • the antenna diagnostic apparatus may be an antenna diagnostic apparatus as described below.
  • the antenna diagnostic apparatus 110 includes a processor 1101, a memory 1102, a bus 1103, and a communication interface 1104.
  • the memory 1102 is configured to store computer execution instructions.
  • the communication interface 1104, the processor 1101, and the memory 1102 pass through the bus 1103.
  • the processor 1101 executes a computer-executed instruction stored in the memory 1102 to cause the antenna diagnostic device to perform the device identification method as described above.
  • the bus 1103 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus 1103 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application further provides a storage medium, which may include a memory 1102.
  • the antenna diagnosing device provided by the embodiment of the present application can be used to perform the foregoing device identification method. Therefore, the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例公开了一种收音机天线诊断电路、诊断方法及装置,该电路包括:输入电路、MCU、至少两个PTC电阻以及至少两个ADC;其中,所述输入电路连接电源以及所述MCU,所述输入电路还连接所述至少两个PCT电阻的一端,每个所述PCT电阻的另一端连接一个收音机天线的电源端,每个所述ADC的输入端连接一个所述收音机天线的RC模块的输入端;所述至少两个ADC的输出端连接所述MCU。

Description

一种收音机天线诊断电路、诊断方法及装置
本申请要求于2016年12月08日提交中国专利局、申请号为201611122540.2、发明名称为“一种依据信号强度实现多路收音机天线诊断的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种收音机天线诊断电路、诊断方法及装置。
背景技术
收音机天线诊断技术被广泛应用到车载影音导航系统中。车载影音导航系统一般都是单Tuner(收音机的调谐器)天线实现收音机功能,然而由于对收音机接收效果的要求提高,通过双Tuner天线以及多Tuner天线来提升收音机的音频质量的方案逐步出现,现有的收音机天线诊断技术仅针对单Tuner天线有一套完整的诊断电路,当收音机变更成双Tuner天线或者多Tuner天线后,只是进行简单的复制一套或多套单Tuner天线的诊断电路来实现对每个收音机天线的故障诊断功能。以下提供一种现有技术,其中这种收音机天线诊断电路主要应用于有源天线,如图1所示,提供一种现有技术的原理图,主要包括:输入电路、PTC(positive temperature coefficient,正温度系数)电阻、ADC(analog to digital converter,模数转换)模块、以及MCU(microcontrol ler unit,微控制单元);输入电路连接电源,此外输入电路通过PTC电阻连接至有源天线,有源天线还通过ADC模块ADC连接至MCU;其中针对每个有源天线,均需要一组输入电路、PTC模块以及ADC模块ADC;具体如图2所示,以双Tuner天线为例,示出一种输入电路以及有源天线的具体结构,其中PTC电阻具体连接至有源天线的电源端(ANT1_PWR_C\ANT2_PWR_C),ADC模块ADC连接双Tuner天线的RC模块的输入端,其中在第一个Tuner天线中电容C3402和R3402构成RC模块形成第一个Tuner天线的振荡器,第二个Tuner天线中电容C3428和R3419构成RC模块形成第二个Tuner天线的振荡器。上述电路虽然能够实现对收音机天线的诊断,但是由于每个Tuner天线均需要设置一组输入电路、PTC电阻以及ADC模块ADC,电路结构比较复杂。
发明内容
本申请的实施例提供一种收音机天线诊断电路、诊断方法及设备,能够简化收音机天线诊断电路的结构。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供了一种收音机天线诊断电路,包括:输入电路、MCU(microcontroller unit,微控制单元)、至少两个PTC(positive  temperature coefficient,正温度系数)电阻以及至少两个ADC(analog to digital converter,模数转换器);其中,输入电路连接电源以及MCU,输入电路还连接至少两个PCT电阻的一端,每个PCT电阻的另一端连接一个收音机天线的电源端,每个ADC的输入端连接一个收音机天线的RC模块(resistor capacitance)的输入端;至少两个ADC的输出端连接MCU;其中,MCU用于控制开启或关闭输入电路;输入电路用于在开启状态下,通过至少两个PTC电阻向至少两个收音机天线的电源端输入电源信号;PTC电阻用于在连接的收音机天线短路时,减小PTC电阻所在支路的电流至预定电流范围;ADC用于对收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;MCU用于依据每个收音机天线对应的数字信号判断收音机天线是否正常。在该方案中,收音机天线诊断电路仅包含一组输入电路,针对每个收音机天线,通过输入电路分别通过一个PTC电阻与其连接,并且每个收音机天线分别通过一个ADC连接至MCU,在进行检测时,输入电路分别通过与每个收音机天线对应的PTC电阻为收音机天线供电,因此各个收音机天线的检测过程相互独立,相对于现有技术,每个收音机天线均需一个输入电路为其供电,本申请提供的收音机天线诊断电路结构更加简单。
在一种情况下,输入电路为开启状态,MCU具体用于确定数字信号的电压值小于第一阈值电压时,数字信号对应的收音机天线为短路状态。
在另一种情况下,输入电路为关闭状态下,MCU具体用于确定数字信号的电压值大于或等于第二阈值电压时,数字信号对应的收音机天线为开路状态。
其中本申请提供一种输入电路的具体实现方式,其包括:第一开关晶体管、第二开关晶体管、第一电阻、第二电阻、第三电阻;其中,所述第一开关晶体管的基极连接至所述MCU,所述第一开关晶体管的发射极接地;所述第一开关晶体管的集电极通过所述第一电阻连接至所述第二开关晶体管的栅极;所述第二开关晶体管的栅极通过所述第二电阻连接至所述电源,所述第二开关晶体管的源极和漏极之间串联有所述第三电阻,所述第二开关晶体管的源极连接所述电源,所述第二开关晶体管的漏极连接至所述PTC电阻的一端。所述输入电路还可以包括:第一电容,所述第一电容于所述第二电阻并联。由于电容能够存储电荷,保持电压,因此第一电容能够保证第二开关晶体管导通状态的稳定性。输入电路还可以包括:稳压二极管,所述稳压二极管的阳极连接至所述第二开关晶体管的漏极,所述稳压二极管的阴极连接至所述PTC电阻的一端。其中由于稳压二极管存在固定的耐压值,当其所在支路超过其耐压值上限时击穿,从而起到保护后端电路的作用。输入电路还可以包括:电容组,所述电容组包括至少一个电容,其中所述至少一个电容并联和/或串联;所述电容组的输入端连接所述PTC电阻的一端,所述电容组的输出端接地。其中,在初始阶段,输入电路首先对电阻组充电之后稳定在一定的电压值,电容组的充放电功能保证了其所在支路的稳定性。
第二方面,提供一种天线诊断电路,包括:输入模块、MCU模块、至少 两个PTC电阻模块以及至少两个ADC模块;其中,所述输入模块连接电源以及所述MCU模块,所述输入模块还连接所述至少两个PCT电阻模块的一端,每个所述PCT电阻模块的另一端连接一个收音机天线的电源端,每个所述ADC模块的输入端连接一个所述收音机天线的RC模块的输入端;所述至少两个ADC模块的输出端连接所述MCU模块;其中,所述MCU模块用于控制开启或关闭所述输入模块;所述输入模块用于在开启状态下,通过所述至少两个PTC电阻模块向至少两个所述收音机天线的电源端输入电源信号;所述PTC电阻模块用于在连接的收音机天线短路时,减小所述PTC电阻模块所在支路的电流至预定电流范围;所述ADC模块用于对所述收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;所述MCU模块用于依据每个收音机天线对应的数字信号判断所述收音机天线是否正常。
该天线诊断电路为对第一方面提供的天线诊断电路进行功能模块的划分,其所能达到的有益效果可参考上文第一方面提供的天线诊断天路以及下文具体实施方式中对应的方案的有益效果,此处不再赘述。
此外,所述MCU模块具体用于在所述输入模块向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值小于第一阈值电压时,所述数字信号对应的收音机天线为短路状态。
或者,所述MCU模块具体用于在所述输入模块未向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值大于或等于第二阈值电压时,所述数字信号对应的收音机天线为开路状态。
第三方面,提供一种基于上述的天线诊断电路的天线诊断方法,包括:向至少两个所述收音机天线的电源端输入电源信号;对所述收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;依据每个收音机天线对应的数字信号判断所述收音机天线是否正常。
上述提供的任一种天线诊断方法所能达到的有益效果可参考上文天线诊断天路以及下文具体实施方式中对应的方案的有益效果,此处不再赘述。
其中,所述依据每个收音机天线对应的数字信号判断所述收音机天线是否正常,包括:在向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值小于第一阈值电压时,所述数字信号对应的收音机天线为短路状态。
或者,依据每个收音机天线对应的数字信号判断所述收音机天线是否正常,包括:在未向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值大于或等于第二阈值电压时,所述数字信号对应的收音机天线为开路状态。
第四方面,本申请提供一种计算机存储介质,包括指令,当其在计算机上运行时,使得所述计算机执行上述第三方面所述的任一方法。
第五方面,本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面所述的任一方法。
可以理解地,上述提供的计算机存储介质或计算机程序产品均用于执行上文所 提供的对应的天线诊断方法,因此,其所能达到的有益效果可参考上文第三方面提供的天线诊断方法以及下文具体实施方式中对应的方案的有益效果,此处不再赘述。
第六方面,本申请提供一种基于上述任一天线诊断电路的天线诊断方法,在所述天线诊断电路确定所述数字信号的电压值小于所述第二阈值电压时,所述天线诊断电路向至少两个所述收音机天线的电源端输入电源信号;所述方法还包括:控制所述收音机处于单Tuner天线工作模式下,针对每个收音机天线获取第一预设个数的频点的信号强度;依据所述第一预设个数的频点的信号强度判断所述收音机天线是否正常。其中在通过第一方面提供的方案确定所述数字信号的电压值小于所述第二阈值电压时,则需要进一步判断对应的Tuner天线是否正常,在该方案中通过对每个收音机天线在若干频点的信号强度的采样,判断收音机天线是否正常,实现了对收音机天线的诊断。
其中,所述依据所述第一预设个数的频点的信号强度判断所述收音机天线是否正常;若确定所述第一预设个数的频点的信号强度中满足预设条件的频点的个数大于第二预设个数,则确定所述收音机天线正常,所述预设条件为所述频点的信号强度大于预设增益值。此外,若确定所述第一预设个数的频点的信号强度中满足预设条件的频点的个数小于或等于第二预设个数,则确定所述收音机天线开路。
第七方面,本申请提供一种基于第一方面任一天线诊断电路的天线诊断装置,包括:获取模块和处理模块;在所述天线诊断电路确定所述数字信号的电压值小于所述第二阈值电压时,所述天线诊断电路向至少两个所述收音机天线的电源端输入电源信号;所述获取模块用于控制所述收音机处于单Tuner天线工作模式下,针对每个收音机天线获取第一预设个数的频点的信号强度;所述处理模块依据所述获取模块获取的所述第一预设个数的频点的信号强度判断所述收音机天线是否正常。
第八方面,本申请提供一种基于第一方面所述的任一天线诊断电路的天线诊断装置,其特征在于,包括:通信接口、处理器和存储器,所述处理器被配置为支持天线诊断装置执行上述第六方面所述的任一方法中相应的功能,所述存储器用于与所述处理器耦合,保存所述天线诊断装置必要的指令和数据,所述通信接口用于支持所述天线诊断装置与其他设备之间的通信。
第九方面,本申请提供一种计算机存储介质,包括指令,当其在计算机上运行时,使得所述计算机执行上述第六方面所述的任一方法。
第十方面,本申请还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第六方面所述的任一方法。
可以理解地,上述提供的任一种天线诊断装置或计算机存储介质或计算机程序产品均用于执行上文所提供的第六方面对应的天线诊断方法,因此,其所能达到的有益效果可参考上文第六方面的天线诊断方法以及下文具体实施方式中对应的方案的有益效果,此处不再赘述。
附图说明
图1为现有技术提供的一种收音机天线诊断电路的结构示意图;
图2为现有技术提供的另一种收音机天线诊断电路的结构示意图;
图3为本申请实施例提供的一种收音机的结构示意图;
图4为本申请实施例提供的一种收音机天线的结构示意图;
图5为本申请实施例提供的一种收音机天线诊断电路的结构示意图;
图6为本申请实施例提供的另一种收音机天线诊断电路的结构示意图;
图7为本申请实施例提供的再一种机天线诊断电路的结构示意图;
图8为本申请实施例提供的又一种天线诊断电路的结构示意图;
图9为本申请实施例提供的一种机天线诊断装置的结构示意图;
图10为本申请实施例提供的另一种天线诊断装置的结构示意图;
图11为本申请实施例提供的再一种天线诊断装置的结构示意图。
具体实施方式
首先对本申请的实施例应用到的技术术语进行说明:
天线开路:有源天线与收音机电路断开;
天线短路:有源天线对地或者对电源短路;
天线正常:有源天线与收音机电路通信正常;
PTC电阻,一种热敏电阻,是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时电阻值随着温度的升高呈阶跃性的增高。
下面结合附图,对本申请的实施例进行描述。
本申请的实施例提供的收音机天线诊断电路、诊断方法及设备主要应用于双Tuner天线以及多Tuner天线,其中收音机主要通过收音机天线进行信号的接收,一种典型收音机结构如图3所示:包括:主控制器、调谐器、混频电路、中放电路、检波器、前置低放、Tuner天线以及扬声器。其中调谐器把Tuner天线接收到的空中无线广播电台发出的高频信号选择其中的一个发送至给混频电路,混频电路将调谐器送来的调幅信号变为中频调幅信号,信号在转换过程中所携带的有效信号是不变的,即只将调幅信号频率变为中频,但其幅值变化规律不改变。不管输入的高频信号的频率如何,混频后的频率是固定的,例如中国规定为465千赫。然后中放电路将中频调幅信号放大到检波器所要求的大小。由检波器将中频调幅信号所携带的音频信号取下来,送给前置低放,由前置低放推动扬声器,其中主控制器配置调谐电路、混频电路、中放电路、检波器、前置低放的参数以及协调各个功能模块之间的配合。本领域技术人员可以理解,图3中示出的收音机结构并不构成对收音机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
参照图4所示,本申请的实施例还提供一种Tuner天线的结构,以双Tuner天线为例:其包括第一Tuner天线和第二Tuner天线,第一Tuner天线包括电阻R3401、R3422以及R3402,电容C3402,二极管D3405以及D3407;其中ANT1_PWR_C为有源天线的电源端,ANT1_PWR_C与收音机的公共地GND_TUN_C之间串联有电阻R3401、R3422以及R3402,电容C3402与电阻R3402并联形 成第一Tuner天线的RC模块形成第一个Tuner天线的振荡器,电阻R3401和R3422之间连接二极管D3405的阴极,D3405的阳极连接第一个Tuner天线的辐射极GND_2LAY_C,电阻R3401和R3422之间还连接二极管D3407的阳极,D3407的阴极连接SI_3V3D。天线的辐射极GND_2LAY_C接收高频信号,并通过SI_3V3D传输至调谐电路。第二Tuner天线与第一Tuner天线的结构类似不再赘述。以下方案中以图4示出的Tuner天线为例进行说明,可以理解的是Tuner天线的结构可以有多种并不限于图4示出的一种,只要Tuner天线为有源天线即可。
参照图5所示,本申请的实施例提供一种收音机天线诊断电路50,包括:输入电路51、MCU52、至少两个PTC电阻53(53-1……53-n)以及至少两个ADC54(54-1……54-n)。
上述各结构的连接关系如下:
其中,输入电路51连接电源(如图6所示,端口TUN_12V_C接入12V电源)以及MCU52,输入电路还连接至少两个PCT电阻53(53-1……53-n)的一端,每个PCT电阻53(53-1……53-n)的另一端连接一个收音机天线55(55-1……55-n)的电源端,每个ADC54(54-1……54-n)的输入端连接一个收音机天线55(55-1……55-n)的RC模块的输入端(如图4所示,TUN_ANT_CHK1_C以及TUN_ANT_CHK2_C);至少两个ADC54(54-1……54-n)的输出端连接MCU52;
其中,MCU52用于控制开启或关闭输入电路51;
输入电路51用于在开启状态下,通过至少两个PTC电阻53(53-1……53-n)向至少两个收音机天线55(55-1……55-n)(这里指图中示出的Tuner天线)的电源端输入电源信号;
PTC电阻53(53-1……53-n)用于在连接的收音机天线短路时,减小PTC电阻53(53-1……53-n)所在支路的电流至预定电流范围;ADC54(54-1……54-n)用于对收音机天线55(55-1……55-n)的RC模块的输入端采样并将采样信号转换为数字信号;MCU52用于依据每个收音机天线55(55-1……55-n)对应的数字信号判断收音机天线55(55-1……55-n)是否正常。
其中,在输入电路51开启状态下,MCU52具体用于确定数字信号的电压值小于第一阈值电压时,数字信号对应的收音机天线55(55-1……55-n)为短路状态;在输入电路51关闭状态下,MCU52具体用于确定数字信号的电压值大于或等于第二阈值电压时,数字信号对应的收音机天线55(55-1……55-n)为开路状态。
具体的,当采用下述图6示出的输入电路时,输入电路包括:
第一开关晶体管Q3401、第二开关晶体管Q3403、第一电阻R3406、第二电阻R3435、第三电阻R3434;
其中,第一开关晶体管Q3401的基极连接至MCU52(图6中TUN_ANT_PWR_EN_C连接至MCU52),第一开关晶体管Q3401的发射极接地GND_TUN_RF_C;第一开关晶体管Q3401的集电极通过第一电阻R3406连接至 第二开关晶体管Q3403的栅极;
第二开关晶体管Q3403的栅极通过第二电阻R3435连接至电源TUN_12V_C,第二开关晶体管Q3403的源极和漏极之间串联有第三电阻R3434,第二开关晶体管Q3403的源极连接电源TUN_12V_C,第二开关晶体管Q3403的漏极连接至PTC电阻53(53-1……53-n)的一端。
其中,第一开关晶体管Q3401为三极管,示例性的,以N型三极管为例,其基极电压大于偏置偏压时,集电极C和发射极E短路,第一开关晶体管Q3401处于导通状态,否则截止;第二开关晶体管Q3403为MOS管,示例性的以P型MOS管为例,栅极G电压低于源极S电压,并接GS电压差的绝对值大于阈值电压时,处于导通状态,否则截止。
此外,输入电路51还包括:第一电容C3404,第一电容C3404与第二电阻R3435并联。由于电容能够存储电荷,保持电压,因此第一电容C3404能够保证第二开关晶体管Q3403导通状态的稳定性。输入电路51还包括:稳压二极管D3401,稳压二极管D3401的阳极连接至第二开关晶体管Q3403的漏极,稳压二极管D3401的阴极连接至PTC电阻53(53-1……53-n)的一端。其中由于稳压二极管存在固定的耐压值,当其所在支路超过其耐压值上限时击穿,从而起到保护后端电路的作用。输入电路51还包括:电容组Cg,电容组Cg包括至少一个电容,其中,至少一个电容并联和/或串联;电容组Cg的输入端连接PTC电阻53(53-1……53-n)的一端,电容组Cg的输出端接地,其中,在初始阶段,输入电路首先对电阻组充电之后稳定在一定的电压值,电容组的充放电功能保证了其所在支路的稳定性。示例性的图6中,电容组Cg包括四个并联的电容C3405、C3406、C3407、C3408。在上述方案中,此外,如图6所示,第二开关晶体管Q3403的漏极D与稳压二极管D3401的阳极之间还串联有电阻R3433,在第一开关晶体管Q3401的基极B还串联有电阻R3436(电阻R3436串联于TUN_ANT_PWR_EN_C与第一开关晶体管Q3401的基极B之间),其中,电阻R3433和R3436为冗余设计,主要用于所在支路的阻抗匹配。
结合上述的图6,提供一种在输入电路51开启状态下,MCU52确定数字信号的电压值小于第一阈值电压时,数字信号对应的收音机天线55(55-1……55-n)为短路状态的具体示例:
MCU52把TUN_ANT_PWR_EN_C调至高电平,使得三极管Q3401、MOS管Q3403处于打开状态,检测TUN_ANT_CHK1_C以及TUN_ANT_CHK2_C对应的数字信号的电压值,由于PTC电阻的电阻特性,当Tuner天线1对地短路时,PTC电阻所在支路电流升高,因此PTC电阻发热致使电阻增大,因此会导致TUN_ANT_CHK1_C对应的数字信号的电压值急剧减小,进而对后端设备进行保护,因此若TUN_ANT_CHK1_C对应的数字信号的电压值≤0.6V,则Tuner天线1对地短路,若TUN_ANT_CHK2_C对应的数字信号的电压值≤0.6V(0.6V只是一个示例性的阈值,第一阈值与测试采用的具体元器件参数有关,在元器件参数不相同时,该阈值可能采用其他值),则Tuner天线2对地短路, 二者互不影响。若是多个Tuner天线,以此类推,检测TUN_ANT_CHK3_C、TUN_ANT_CHK4_C、…、TUN_ANT_CHKn_C对应的数字信号的电压值,每个数字信号的电压值对应一个Tuner天线。
另外,本申请实施例提供一种在输入电路51关闭状态下,MCU52确定数字信号的电压值大于或等于第二阈值电压时,数字信号对应的收音机天线55(55-1……55-n)为开路状态的具体示例:
MCU52把TUN_ANT_PWR_EN_C调至低电平,使得三极管Q3401、MOS管Q3403处于关闭状态,检测TUN_ANT_CHK1_C以及TUN_ANT_CHK2_C对应的数字信号的电压值,当Tuner天线1开路时,PTC电阻电流为零,PTC电阻仅仅会造成所在支路的电压降,因此TUN_ANT_CHK1_C对应的数字信号的电压值会稳定在固定范围,所以若TUN_ANT_CHKx_C对应的数字信号的电压值≥2.15V(2.15V只是一个示例性的阈值,第二阈值与测试采用的具体元器件参数有关,在元器件参数不相同时,该阈值可能采用其他值),则判定Tuner天线都是开路状态,若TUN_ANT_CHKx_C对应的数字信号的电压值<2.15V,则需要进一步判断对应的Tuner天线是否正常。
基于图6所示的收音机天线诊断电路,本发明的实施例提供一种天线诊断方法,包括如下步骤:
101、向至少两个所述收音机天线的电源端输入电源信号;
102、对收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;
103、依据每个收音机天线对应的数字信号判断收音机天线是否正常。
其中步骤103具体包括对收音机天线短路状态的诊断以及开路状态的诊断,示例一:步骤103具体包括在向至少两个收音机天线的电源端输入电源信号时,确定数字信号的电压值小于第一阈值电压时,数字信号对应的收音机天线为短路状态。示例二:步骤103具体包括在未向至少两个收音机天线的电源端输入电源信号时,确定数字信号的电压值大于或等于第二阈值电压时,数字信号对应的收音机天线为开路状态。该天线诊断方法所能达到的技术效果可参考上文天线诊断天路的具体实施方式中对应的方案的技术效果,此处不再赘述。
本申请的实施例提供一种天线诊断电路,用于执行上述天线诊断方法。本申请实施例可以根据上述方法示例对天线诊断电路进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了上述实施例中所涉及的天线诊断电路70的一种可能的结构示意图,天线诊断电路70包括:输入模块71、MCU模块72、至少两个PTC电阻模块73(73-1……73-n) 以及至少两个ADC模块74(74-1……74-n);其中,输入模块71连接电源以及MCU模块72,输入模块71还连接至少两个PCT电阻模块73(73-1……73-n)的一端,每个PCT电阻模块73(73-1……73-n)的另一端连接一个收音机天线的电源端,每个ADC模块74(74-1……74-n)的输入端连接一个收音机天线的RC模块的输入端;至少两个ADC模块74(74-1……74-n)的输出端连接MCU模块72;其中,MCU模块72用于控制开启或关闭输入模块71;输入模块71用于在开启状态下,通过至少两个PTC电阻模块73(73-1……73-n)向至少两个收音机天线的电源端输入电源信号;PTC电阻模块73(73-1……73-n)用于在连接的收音机天线短路时,减小PTC电阻模块73(73-1……73-n)所在支路的电流至预定电流范围;ADC模块74(74-1……74-n)用于对收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;MCU模块72用于依据每个收音机天线对应的数字信号判断所述收音机天线是否正常。此外,MCU模块72具体用于在输入模块71向至少两个收音机天线的电源端输入电源信号时,确定数字信号的电压值小于第一阈值电压时,数字信号对应的收音机天线为短路状态。或者,MCU模块72具体用于在输入模块71未向至少两个收音机天线的电源端输入电源信号时,确定数字信号的电压值大于或等于第二阈值电压时,数字信号对应的收音机天线为开路状态。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的天线诊断电路80的一种可能的结构示意图。天线诊断电路80包括:通信单元811、处理单元812和存储单元813。处理单元812用于对天线诊断电路的动作进行控制管理,例如,处理单元812用于支持天线诊断电路执行MCU模块72、至少两个PTC电阻模块73(73-1……73-n)以及至少两个ADC模块74(74-1……74-n)的功能;通信单元811用于支持天线诊断电路执行输入模块71的功能。此外通信单元811可以包含或本身为一种实体结构,例如通信接口,通信单元811能够与其连接的功能模块或实体结构通信,例如,与电源连接。存储单元813,用于存储天线诊断电路的程序代码和数据。
基于图6所示的收音机天线诊断电路,在所述天线诊断电路确定所述数字信号的电压值小于所述第二阈值电压时,所述天线诊断电路向至少两个所述收音机天线的电源端输入电源信号;示例性的,在所述天线诊断电路确定所述数字信号的电压值小于所述第二阈值电压时,所述天线诊断电路向至少两个所述收音机天线的电源端输入电源信号;之后TUN_ANT_CHKx_C对应的数字信号的电压值小于第二阈值电压的Tuner天线的诊断方法包括:
201、收音机天线诊断设备控制收音机处于单收音机天线工作模式下,针对每个收音机天线获取第一预设个数的频点的信号强度;
202、收音机天线诊断设备依据第一预设个数的频点的信号强度判断收音机天线是否正常。
其中步骤202具体包括:
若确定所述第一预设个数的频点的信号强度中满足预设条件的频点的个数大于第二预设个数,则确定收音机天线正常,预设条件为所述频点的信号强度大于预设增益值;其中,若确定第一预设个数的频点的信号强度中满足预设条件的频点的个数小于或等于第二预设个数,则确定收音机天线开路。实例性的:MCU52把TUN_ANT_PWR_EN_C调至高电平后,使得三极管Q3401、MOS管Q3403处于打开状态,收音机天线诊断设备先将收音机切换至单收音机天线工作模式,分别针对每一个Tuner天线(此处指:TUN_ANT_CHKx_C对应的数字信号的电压值小于第二阈值电压的Tuner天线),收音机天线诊断设备连续在Tuner天线的ANT_PWR_C(例如ANT1_PWR_C或ANT2_PWR_C)端口隔直取信号进行采样,例如:获取15个频点的信号强度(RSSI),若其中有5个频点>-5db时,则该Tuner天线正常,反之,则该Tuner天线开路。这样确定数字信号的电压值小于第二阈值电压时,则需要进一步判断对应的Tuner天线是否正常,在该方案中通过对每个收音机天线在若干频点的信号强度的采样,判断收音机天线是否正常,实现了对收音机天线的诊断。
本申请的实施例提供一种天线诊断装置,用于执行上述天线诊断方法。该天线诊断装置可以为收音机本身或者该天线诊断装置可以为集成于收音机中的一个功能实体,可以为:收音机的主控制器,示例性的如MPU(micro processor unit,微处理器),当然该主控制器也可以与上述的天线诊断电路的MCU集成在一起实现,也可以单独设置。本申请实施例可以根据上述方法示例对天线诊断装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的天线诊断装置90的一种可能的结构示意图,天线诊断装置90包括:获取模块911、处理模块912。获取模块911用于支持天线诊断装置90执行步骤201;处理模块912用于支持天线诊断装置90执行步骤202。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的天线诊断装置100的一种可能的结构示意图。天线诊断装置100包括:通信单元1011、处理单元1012和存储单元1013。处理单元1012用于对天线诊断装置的动作进行控制管理,例如,处理单元1012用于支持天线诊断装置执行上述过程202;通信单元1011用于支持天线诊断装置执行上述过程201。此外通信单元1011可以包含或本身为一种实体结构,例如通信接口,通信单元1011能够与其连接的功能模块或实体结构通信,例如,与Tuner天线的ANT_PWR_C(例如ANT1_PWR_C或ANT2_PWR_C)端口连接,并通过隔直流取信号的方式进行采样获取15个频点的信号强度(RSSI)等。存储单元1013,用于存储天线诊断装置 的程序代码和数据。
其中,处理单元1012可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1011可以是通信接口等。存储单元1013可以是存储器。
当处理单元1012为处理器,通信单元1011为通信接口,存储单元1013为存储器时,本申请实施例所涉及的天线诊断装置可以为如下所述的天线诊断装置。
参照图11所示,该天线诊断装置110,包括:处理器1101、存储器1102、总线1103和通信接口1104;存储器1102用于存储计算机执行指令,通信接口1104、处理器1101与存储器1102通过总线1103连接,当天线诊断装置运行时,处理器1101执行存储器1102存储的计算机执行指令,以使天线诊断装置执行如上述的设备识别方法。总线1103可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线1103可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种存储介质,该存储介质可以包括存储器1102。
由于本申请实施例提供的天线诊断装置可用于执行上述设备识别方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申 请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。

Claims (22)

  1. 一种收音机天线诊断电路,其特征在于,包括:输入电路、MCU(microcontroller unit)、至少两个PTC(positive temperature coefficient)电阻以及至少两个ADC(analog to digital converter);
    其中,所述输入电路连接电源以及所述MCU,所述输入电路还连接所述至少两个PCT电阻的一端,每个所述PCT电阻的另一端连接一个收音机天线的电源端,每个所述ADC的输入端连接一个所述收音机天线的RC(resistor capacitance)模块的输入端;所述至少两个ADC的输出端连接所述MCU;
    其中,所述MCU用于控制开启或关闭所述输入电路;
    所述输入电路用于在开启状态下,通过所述至少两个PTC电阻向至少两个所述收音机天线的电源端输入电源信号;
    所述PTC电阻用于在连接的收音机天线短路时,减小所述PTC电阻所在支路的电流至预定电流范围;
    所述ADC用于对所述收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;
    所述MCU还用于依据每个收音机天线对应的数字信号判断所述收音机天线是否正常。
  2. 根据权利要求1所述的天线诊断电路,其特征在于,包括:
    在所述输入电路开启状态下,所述MCU具体用于确定所述数字信号的电压值小于第一阈值电压时,所述数字信号对应的收音机天线为短路状态。
  3. 根据权利要求1所述的天线诊断电路,其特征在于,包括:
    在所述输入电路关闭状态下,所述MCU具体用于确定所述数字信号的电压值大于或等于第二阈值电压时,所述数字信号对应的收音机天线为开路状态。
  4. 根据权利要求1所述的天线诊断电路,其特征在于,所述输入电路包括:
    第一开关晶体管、第二开关晶体管、第一电阻、第二电阻、第三电阻;
    其中,所述第一开关晶体管的基极连接至所述MCU,所述第一开关晶体管的发射极接地;所述第一开关晶体管的集电极通过所述第一电阻连接至所述第二开关晶体管的栅极;
    所述第二开关晶体管的栅极通过所述第二电阻连接至所述电源,所述第二开关晶体管的源极和漏极之间串联有所述第三电阻,所述第二开关晶体管的源极连接所述电源,所述第二开关晶体管的漏极连接至所述PTC电阻的一端。
  5. 根据权利要求4所述的天线诊断电路,其特征在于,所述输入电路还包括:
    第一电容,所述第一电容于所述第二电阻并联。
  6. 根据权利要求4所述的天线诊断电路,其特征在于,所述输入电路还包括:
    稳压二极管,所述稳压二极管的阳极连接至所述第二开关晶体管的漏极,所述稳压二极管的阴极连接至所述PTC电阻的一端。
  7. 根据权利要求4所述的天线诊断电路,其特征在于,所述输入电路还包括:电容组,所述电容组包括至少一个电容,其中所述至少一个电容并联和/或串联;
    所述电容组的输入端连接所述PTC电阻的一端,所述电容组的输出端接地。
  8. 一种天线诊断电路,其特征在于,包括:输入模块、MCU模块、至少两个PTC电阻模块以及至少两个ADC模块;
    其中,所述输入模块连接电源以及所述MCU模块,所述输入模块还连接所述至少两个PCT电阻模块的一端,每个所述PCT电阻模块的另一端连接一个收音机天线的电源端,每个所述ADC模块的输入端连接一个所述收音机天线的RC模块的输入端;所述至少两个ADC模块的输出端连接所述MCU模块;
    其中,所述MCU模块用于控制开启或关闭所述输入模块;
    所述输入模块用于在开启状态下,通过所述至少两个PTC电阻模块向至少两个所述收音机天线的电源端输入电源信号;
    所述PTC电阻模块用于在连接的收音机天线短路时,减小所述PTC电阻模块所在支路的电流至预定电流范围;
    所述ADC模块用于对所述收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;
    所述MCU模块还用于依据每个收音机天线对应的数字信号判断所述收音机天线是否正常。
  9. 根据权利要求8所述的天线诊断电路,其特征在于,所述MCU模块具体用于在所述输入模块向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值小于第一阈值电压时,所述数字信号对应的收音机天线为短路状态。
  10. 根据权利要求8所述的天线诊断电路,其特征在于,所述MCU模块具体用于在所述输入模块未向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值大于或等于第二阈值电压时,所述数字信号对应的收音机天线为开路状态。
  11. 一种基于权利要求1-10任一项所述的天线诊断电路的天线诊断方法,其特征在于,
    向至少两个所述收音机天线的电源端输入电源信号;
    对所述收音机天线的RC模块的输入端采样并将采样信号转换为数字信号;
    依据每个收音机天线对应的数字信号判断所述收音机天线是否正常。
  12. 根据权利要求11所述的方法,其特征在于,所述依据每个收音机天线对应的数字信号判断所述收音机天线是否正常,包括:
    在向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值小于第一阈值电压时,所述数字信号对应的收音机天线为短路状态。
  13. 根据权利要求11所述的方法,其特征在于,依据每个收音机天线对 应的数字信号判断所述收音机天线是否正常,包括:
    在未向至少两个所述收音机天线的电源端输入电源信号时,确定所述数字信号的电压值大于或等于第二阈值电压时,所述数字信号对应的收音机天线为开路状态。
  14. 一种基于权利要求1-10任一项所述的天线诊断电路的天线诊断方法,其特征在于,在所述天线诊断电路确定所述数字信号的电压值小于所述第二阈值电压时,所述天线诊断电路向至少两个所述收音机天线的电源端输入电源信号;
    所述方法还包括:
    控制所述收音机处于单Tuner天线工作模式下,针对每个收音机天线获取第一预设个数的频点的信号强度;
    依据所述第一预设个数的频点的信号强度判断所述收音机天线是否正常。
  15. 根据权利要求14所述的方法,其特征在于,所述依据所述第一预设个数的频点的信号强度判断所述收音机天线是否正常;
    若确定所述第一预设个数的频点的信号强度中满足预设条件的频点的个数大于第二预设个数,则确定所述收音机天线正常,所述预设条件为所述频点的信号强度大于预设增益值。
  16. 根据权利要求15所述的方法,其特征在于,若确定所述第一预设个数的频点的信号强度中满足预设条件的频点的个数小于或等于第二预设个数,则确定所述收音机天线开路。
  17. 一种基于权利要求1-10任一项所述的天线诊断电路的天线诊断装置,其特征在于,包括:获取模块和处理模块;
    在所述天线诊断电路确定所述数字信号的电压值小于所述第二阈值电压时,所述天线诊断电路向至少两个所述收音机天线的电源端输入电源信号;
    所述获取模块用于控制所述收音机处于单Tuner天线工作模式下,针对每个收音机天线获取第一预设个数的频点的信号强度;
    所述处理模块依据所述获取模块获取的所述第一预设个数的频点的信号强度判断所述收音机天线是否正常。
  18. 根据权利要求17所述的装置,其特征在于,所述处理模块具体用于若确定所述获取模块获取的第一预设个数的频点的信号强度中满足预设条件的频点的个数大于第二预设个数,则确定所述收音机天线正常,所述预设条件为所述频点的信号强度大于预设增益值。
  19. 根据权利要求18所述的装置,其特征在于,所述处理模块用于若确定所述第一预设个数的频点的信号强度中满足预设条件的频点的个数小于或等于第二预设个数,则确定所述收音机天线开路。
  20. 一种基于权利要求1-7任一项所述的天线诊断电路的天线诊断装置,其特征在于,包括:通信接口、处理器和存储器,所述处理器被配置为支持天线诊断装置执行上述14-16任一项所述的方法中相应的功能,所述存储器用于与所述处理器耦合,保存所述天线诊断装置必要的指令和数据,所述通信接口用于支持所述天 线诊断装置与其他设备之间的通信。
  21. 一种计算机存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求14-16任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求14-16任一项所述的方法。
PCT/CN2017/082914 2016-12-08 2017-05-03 一种收音机天线诊断电路、诊断方法及装置 WO2018103258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780029973.XA CN109155638B (zh) 2016-12-08 2017-05-03 一种收音机天线诊断电路、诊断方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611122540.2 2016-12-08
CN201611122540 2016-12-08

Publications (2)

Publication Number Publication Date
WO2018103258A1 true WO2018103258A1 (zh) 2018-06-14
WO2018103258A8 WO2018103258A8 (zh) 2018-11-29

Family

ID=62492178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082914 WO2018103258A1 (zh) 2016-12-08 2017-05-03 一种收音机天线诊断电路、诊断方法及装置

Country Status (2)

Country Link
CN (1) CN109155638B (zh)
WO (1) WO2018103258A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112367127B (zh) * 2020-10-26 2023-01-24 维沃移动通信有限公司 天线检测电路、电子设备和天线控制方法
CN112887950B (zh) * 2021-01-20 2023-05-23 维沃移动通信有限公司 检测电路、近场通信nfc功能控制方法和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662298A (zh) * 2008-08-29 2010-03-03 硅实验室公司 无线电装置的机械调谐
CN102832958A (zh) * 2011-06-15 2012-12-19 硅实验室股份有限公司 具有集成电感器的集成接收机和集成电路
CN103401573A (zh) * 2013-07-31 2013-11-20 北京昆腾微电子有限公司 音频接收芯片的状态调整方法和调整装置、及音频接收机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358244B (zh) * 2011-08-05 2013-08-14 惠州市德赛西威汽车电子有限公司 一种汽车收音机自诊断方法
JP2013247635A (ja) * 2012-05-29 2013-12-09 Tokai Rika Co Ltd デジタルチューナ
CN105099591B (zh) * 2015-07-31 2018-08-14 深圳市航盛电子股份有限公司 收音机pd和sad共存电路、收音机及播放电台的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662298A (zh) * 2008-08-29 2010-03-03 硅实验室公司 无线电装置的机械调谐
CN102832958A (zh) * 2011-06-15 2012-12-19 硅实验室股份有限公司 具有集成电感器的集成接收机和集成电路
CN103401573A (zh) * 2013-07-31 2013-11-20 北京昆腾微电子有限公司 音频接收芯片的状态调整方法和调整装置、及音频接收机

Also Published As

Publication number Publication date
WO2018103258A8 (zh) 2018-11-29
CN109155638A (zh) 2019-01-04
CN109155638B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
US9407335B2 (en) Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks
CN106941382B (zh) 一种射频矩阵开关的自校准实现方法及装置
US8270921B2 (en) Systems and methods for tuning an antenna for a frequency modulation transceiver
KR102264159B1 (ko) 외부 루프백 테스트를 수행하는 직렬 통신 인터페이스 회로 및 이를 포함하는 전자 장치
EP2249494B1 (en) Standing wave detection method, standing wave detection device, and base station
CN101019334B (zh) 零功率无线电
CN103546178A (zh) 移动通信装置与其阻抗匹配方法
WO2018103258A1 (zh) 一种收音机天线诊断电路、诊断方法及装置
US11442888B2 (en) Serial communication apparatus for unidirectional communication between chips of radio frequency front-end module and inside the chips
CN113189470A (zh) 测试电路、测试系统和测试方法
US9391566B2 (en) Methods and devices for testing segmented electronic assemblies
US10833691B1 (en) Signal chopping switch circuit with shared bootstrap capacitor
US8604859B2 (en) DC-offset correction circuit
CN106803776B (zh) 射频前端测试装置以及射频前端测试方法
CN113933618B (zh) 测试装置、射频装置及检测系统
US10222419B2 (en) Method, system and apparatus for tuning an integrated embedded subsystem
US12021403B2 (en) System and method for managing battery
JP2019068166A (ja) Rfidリーダライタ装置、インピーダンス調整方法、プログラム
US11374611B2 (en) Universal SMA and ferrule antenna interface for communication devices
CN117665381B (zh) 检测电路、电子设备和方法
US11201398B2 (en) Antenna device and method for determining radiation pattern
US20160232011A1 (en) Communication module, communication device capable of self-detecting operation status and detecting method thereof
CN114745770B (zh) 一种智能终端及其发射功率控制装置和方法
US20220082597A1 (en) Modular meter
US10291291B2 (en) Contactless communication device with differential receiver input voltage stabilization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878240

Country of ref document: EP

Kind code of ref document: A1