WO2018103210A1 - 高温钙循环热化学储能方法及系统 - Google Patents

高温钙循环热化学储能方法及系统 Download PDF

Info

Publication number
WO2018103210A1
WO2018103210A1 PCT/CN2017/075707 CN2017075707W WO2018103210A1 WO 2018103210 A1 WO2018103210 A1 WO 2018103210A1 CN 2017075707 W CN2017075707 W CN 2017075707W WO 2018103210 A1 WO2018103210 A1 WO 2018103210A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
reactor
heat exchanger
high temperature
storage tank
Prior art date
Application number
PCT/CN2017/075707
Other languages
English (en)
French (fr)
Inventor
凌祥
陈晓轶
王燕
靳晓刚
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to GB1909262.6A priority Critical patent/GB2573423B/en
Priority to JP2019517098A priority patent/JP6764204B2/ja
Priority to US16/467,981 priority patent/US11047601B2/en
Publication of WO2018103210A1 publication Critical patent/WO2018103210A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/20Arrangements for storing heat collected by solar heat collectors using chemical reactions, e.g. thermochemical reactions or isomerisation reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the field of solar power generation, and particularly relates to a high temperature calcium cycle thermochemical energy storage method and system.
  • thermochemical energy storage has significant advantages such as high energy storage density, high reaction temperature and low long-term heat storage loss, which can effectively solve electric energy. Conversion, storage and regeneration.
  • CaCO 3 /CaO system is an ideal thermochemical energy storage system with high energy storage density (692kWh/m 3 ), non-toxic and safe, wide source of raw materials, low cost, no side reaction and normal pressure reaction temperature.
  • the object of the present invention is to provide a high temperature calcium cycle thermochemical energy storage method and system, which effectively solves the problem of conversion, storage and regeneration of electric energy.
  • a high temperature calcium cycle thermochemical energy storage system the system consists of a solar collector, an energy storage device and a power generation device;
  • the solar heat collecting device comprises a heliostat (1), a solar absorption tower (2), a heat exchanger A (3) and a cold air storage tank (4), and the heliostat (1) is arranged in a solar absorption tower On one side of (2), the sunlight reflected by the heliostat (1) can be absorbed by the solar absorption tower (2), the solar absorption tower (2), the heat exchanger A (3) and the cold air storage tank ( 4) using a circulating line to connect in sequence;
  • the energy storage device comprises a powder heat exchanger B (5), a reactor (6), a powder heat exchanger C (7), a high temperature CaO storage tank (8), a high temperature CaCO 3 storage tank (9), and a grinding machine.
  • the inlet is connected by circulation line in sequence; the second is CO 2 storage tank (12) outlet, powder heat exchanger C (7), gate valve B (18), reactor (6), powder heat exchanger
  • the inlets of B(5), compressor A(11), and CO 2 storage tanks (12) are connected in series by a circulating line; the solid particulate material inlet of the reactor (6) is connected to a high temperature CaCO 3 storage tank (9) A powder heat exchanger B
  • the power generation device includes a powder heat exchanger B (5), a reactor (6), a powder heat exchanger C (7), a high temperature CaO storage tank (8), a high temperature CaCO 3 storage tank (9), and CO 2 .
  • the gas inlet is sequentially connected by a circulation line; the CO 2 storage tank (12) and the gas inlet of the expander (16) are connected to each other, and a powder heat exchanger C (7) is arranged between the connection lines; the expansion
  • the gas outlet of the machine (16) is connected to the reactor (6), and a heating device is arranged between the connecting pipes; the solid particulate material inlet of the reactor (6) is connected with the high temperature CaO storage tank (8)
  • the heating device comprises a heater (19), a gate valve C (20), a gate valve D (21), and the heater (19) is sequentially connected with a gate valve C (20), the gate valve D (21) It is connected in parallel with the heater (19) and the gate valve C (20).
  • the reactor (6) is preferably a bidirectional high-temperature vibrating fluidized reactor, and a high-temperature resistant conveyor belt is disposed inside the reactor, and the function is to promote sufficient fluidization of the solid particles to fully react the solid particles with the gas.
  • the two-way high-temperature vibration fluidization reactor uses Inconel 617 material.
  • thermochemical energy storage system is CaCO 3 /CaO
  • the energy storage is performed by mutual conversion between thermal energy and chemical energy.
  • the CaCO 3 solid particles are The hot air generated by solar energy undergoes the endothermic heating to generate an endothermic decomposition reaction, and the received heat is stored in the form of chemical energy in the decomposition products CaO and CO 2 ; when heat is required, the reverse thermochemistry of CaO and CO 2 occurs under normal pressure. The reaction reverses the chemical energy stored in CaO and CO 2 into heat energy and releases it.
  • the high temperature calcium cycle thermochemical reaction process is divided into a storage phase and a release phase.
  • the decomposition reaction of CaCO 3 solid particles is carried out at a temperature of 900-1100 ° C.
  • the residual heat of the CaCO 3 solid particle decomposition product CO 2 is preheated in the powder heat exchanger B (5).
  • the energy release phase CO 2 reacts with CaO solid particles to form CaCO 3 solid particles, and the reaction temperature is 500-700 ° C, releasing a large amount of heat.
  • CO 2 is in a supercritical state, and power generation is realized by combining a Rankine cycle and a Brayton cycle.
  • the CaCO 3 solid particles and the CaO solid particles are transported by a spiral feeding method to prevent the leakage of CO 2 gas.
  • the invention utilizes a thermochemical reversible reaction CaCO 3 /CaO system to realize high temperature thermal energy regeneration.
  • CO 2 acts as a heat exchange medium, a fluidization medium, and a reaction medium in the process.
  • the temperature is greater than 31 ° C
  • the pressure is greater than 7 MPa, and it is in a supercritical state.
  • the CO 2 undergoes the Rankine cycle and the Brayton cycle in the system to achieve continuous power supply of electric energy in the absence of sunlight, and smooth solar energy.
  • the power curve of a thermal power station The power curve of a thermal power station.
  • CaCO 3 is effectively utilized to decompose the CO 2 heat and pressure energy of the reaction product, and the high-temperature heat energy in the system is recovered and utilized by the heat accumulator and the heat exchanger to realize the integrated cascade utilization of energy, and the efficiency of the energy storage system is significantly improved.
  • the invention provides a novel high-temperature calcium cycle thermochemical energy storage system, solar collector driving Reversible reaction, the received energy is stored in the form of chemical energy in its decomposition products CaO and CO 2 . It has the characteristics of high energy storage density, high cycle efficiency, environmental friendliness, simple structure, flexible control of variable working conditions and reliable application. It can solve the problem of continuous and efficient operation of solar high-temperature thermal power station, and can be widely used in solar high-temperature power generation. Suitable for high temperature thermal energy storage and regeneration of other types of power stations.
  • the invention regulates the storage/release energy through temperature change, that is, the CaCO 3 solid particle decomposition/synthesis reaction; and solves the heat mismatch and non-uniformity caused by time or place through the energy-chemical-thermal energy energy conversion utilization concept. Lead to low energy efficiency.
  • FIG. 1 is a general schematic diagram of a system workflow of the present invention
  • FIG. 2 is a schematic diagram of energy storage of a system workflow of the present invention
  • FIG. 3 is a schematic diagram of the energy release of the system workflow of the present invention.
  • thermochemical energy storage system As shown in Figure 1, a high temperature calcium cycle thermochemical energy storage system, the system solar collector, energy storage device and power generation device;
  • the solar heat collecting device comprises a heliostat (1), a solar absorption tower (2), a heat exchanger A (3) and a cold air storage tank (4), and the heliostat (1) is arranged in the solar absorption tower (2) On one side, the sunlight reflected by the heliostat (1) can be absorbed by the solar absorption tower (2), the solar absorption tower (2), the heat exchanger A (3) and the cold air storage tank (4) Use a circulating line to connect in sequence;
  • the energy storage device includes a powder heat exchanger B (5), a high temperature vibration fluidization reactor (6), a powder heat exchanger C (7), a high temperature CaO storage tank (8), a high temperature CaCO 3 storage tank (9) a mill (10), a compressor A (11), a CO 2 storage tank (12) and a gate valve B (18), the CO 2 storage tank (12) outlet is provided with two CO 2 circulation lines, one of which It is the outlet of CO 2 storage tank (12), heat exchanger A (3), gate valve B (18), high temperature vibration fluidization reactor (6), powder heat exchanger B (5), compressor A (11) , CO 2 storage tank (12) inlet using a circulation line are sequentially connected; second CO 2 tank (12) outlet, the powder heat exchanger C (7), valve B (18), a vibration fluidized reactor temperature
  • the inlet of the (6), the powder heat exchanger B (5), the compressor A (11), and the CO 2 storage tank (12) are sequentially connected by a circulation line; the high temperature vibration fluidization reactor (6)
  • the power generation device includes a powder heat exchanger B (5), a high temperature vibration fluidization reactor (6), a powder heat exchanger C (7), a high temperature CaO storage tank (8), a high temperature CaCO 3 storage tank (9), CO 2 storage tank (12), turbine (13), condenser (14), compressor B (15), expander (16), gate valve A (17), gate valve B (18), said high temperature vibration fluidization Reactor (6) gas outlet, turbine (13), powder heat exchanger B (5), condenser (14), compressor B (15), gate valve A (17), heating device, gate valve B (18)
  • the two-way high-temperature fluidized reactor (6) gas inlet is connected in series by a circulation line; the CO 2 storage tank (12) and the gas inlet of the expander (16) are connected to each other, and a powder exchange is arranged between the connecting pipes.
  • the solid particulate material inlet is connected to the high temperature CaO storage tank (8), and the powder heat exchanger B (5) is sequentially arranged between the connecting pipelines, and the solid particulate material outlet of the high temperature vibration fluidized reactor (6) is sequentially disposed.
  • the heating device comprises a heater (19), a gate valve C (20), a gate valve D (21), and the heater (19) is sequentially connected with a gate valve C (20), the gate valve D (21) and the heater (19) ), the gate valve C (20) is connected in parallel with each other.
  • the two-way high-temperature vibrating fluidization reactor uses Inconel 617 material.
  • the sunlight passes through the heliostat (1), and the solar radiant heat is collected by the air in the solar absorption tower (2).
  • the original CO 2 and the high temperature hot air are present.
  • the heat exchanger A (3) is sufficiently heat exchanged, and the high temperature CO 2 then enters the bidirectional high temperature vibration fluidization reactor (6) to fluidize and decompose the CaCO 3 solid particles.
  • the decomposition product CO 2 is preheated in the powder heat exchanger B (5) to the subsequent CaCO 3 solid particles, which are then compressed and stored by the compressor A (11).
  • CO 2 is sufficiently exchanged with the decomposition product CaO in the powder heat exchanger C (7), and enters the bidirectional high-temperature vibration fluidization reactor (6), repeating the previous process, so that the heat is fully utilized.
  • the hot high temperature air is stored in the cold air storage tank (4) after passing through the heat exchanger A (3).
  • the gate valve C (20) is opened, the gate valve D (21) is closed, and the CO 2 passes through the expander (16), the heater (19), and the CO. 2
  • the temperature rises to the reaction temperature, and enters the two-way high-temperature vibration fluidization reactor (6) to fluidize and synthesize CaO, and release a large amount of heat.
  • the CO 2 temperature is greater than 31 ° C
  • the pressure is greater than 7 MPa, and is in a supercritical state, and is generated by the turbine (13).
  • the CO 2 is generated by the steam turbine (13), heat remains, and the CaO solid particles can be preheated.
  • the CaCO 3 solid particles and the CaO solid particles are transported by a spiral feeding method to prevent the leakage of CO 2 gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种高温钙循环热化学储能方法及系统,采用的热化学储能体系为CaCO 3/CaO,通过热能与化学能之间的相互转换进行储能,当太阳辐照充足时,CaCO 3固体颗粒在太阳能产生的热空气进行间壁加热发生吸热分解反应,将接受的热量以化学能的形式储存于分解产物CaO和CO 2中;当需要热量时,在常压下CaO和CO 2发生逆向热化学反应,将CaO和CO 2中所储存的化学能逆转成热能并释放出来。该方法及系统具有储能密度高、循环效率高、环境友好、结构简单、应用可靠的特点,解决太阳能高温热电站发电连续高效运行的问题,可以广泛应用于太阳能高温发电领域,也适用于其它类型电站的高温热能储存与再生。

Description

高温钙循环热化学储能方法及系统 技术领域
本发明属于太阳能发电领域,具体涉及一种高温钙循环热化学储能方法及系统。
背景技术
太阳能发电具有来源广、不污染环境等优点成为理想的替代能源。然而,由于太阳能具有间歇性、低密度和不稳定性、难以持续供应的特点,利用太阳能进行热发电仍有许多问题需要解决,其中如何实现太阳能高效、大规模的储存,保证太阳能发电持续供给是太阳能热发电的关键技术。在显热储能、潜热储能和热化学储能等主要的储热方式中,热化学储能具有储能密度高,反应温度高、长期储热损失小等显著优点,能有效地解决电能的转换、储存与再生。目前主要研究的几种化学反应储能体系包括:CaCO3/CaO体系、NH3合成分解体系、CH4/CO2和CH4/H2O重整体系、Ca(OH)2/CaO体系、Co3O4/CoO体系、MgH2/H2体系等。其中CaCO3/CaO体系是较为理想的热化学储能体系,具有储能密度大(692kWh/m3)、无毒且安全性好、原料来源广发且价廉、无副反应且常压反应温度高(700℃-1000℃)的显著优点,因此CaCO3/CaO体系用于太阳能高温热化学储能,能够很好的解决太阳能高温热电站发电连续高效运行的问题。国内目前对CaCO3/CaO体系用于热化学储能的研究还处于起步阶段,尚没有相关的专利。
发明内容
发明目的:本发明的目的是提供一种高温钙循环热化学储能方法及系统,有效地解决电能的转换、储存与再生问题。
技术方案:
一种高温钙循环热化学储能系统,该系统由太阳能集热装置、储能装置和发电装置三部分组成;
所述太阳能集热装置包括日光反射装置(1)、太阳能吸收塔(2)、换热器A(3)和冷空气储罐(4),所述日光反射装置(1)设置在太阳能吸收塔(2)的一侧,使日光反射装置(1)反射的日光能够被太阳能吸收塔(2)所吸收,所述太阳能吸收塔(2)、换热器A(3)和冷空气储罐(4)采用循环管路顺次连接;
所述储能装置包括粉体换热器B(5)、反应器(6)、粉体换热器C(7)、高温CaO储罐(8)、高温CaCO3储罐(9)、磨机(10)、压缩机A(11)、CO2储罐(12)和闸阀B(18),所述CO2储罐(12)出口设有两条CO2循环管路,其一是CO2储罐(12)出口、换热器A(3)、闸阀B(18)、反应器(6)、粉体换热器B(5)、压缩机A(11)、CO2储罐(12)进口采用循环管路顺次连接;其二是CO2储罐(12)出口、粉体换热器C(7)、闸阀B(18)、反应器(6)、粉体换热器B(5)、压缩机A(11)、CO2储罐(12)进口采用循环管路顺次连接;所述反应器(6)的固体颗粒物料进口与高温CaCO3储罐(9)相连,连接管路之间顺次设有粉体换热器B(5)、磨机(10),所述反应器(6)的固体颗粒物料出口与高温CaO储罐(8)相连,连接管路之间设有粉体换热器C(7)。
所述发电装置包括粉体换热器B(5)、反应器(6)、粉体换热器C(7),高温CaO储罐(8)、高温CaCO3储罐(9)、CO2储罐(12)、涡轮机(13)、冷凝器(14)、压缩机B(15)、膨胀机(16)、闸阀A(17)、闸阀B(18),所述反应器(6)气体出口、涡轮机(13)、粉体换热器B(5)、冷凝器(14)、压缩机B(15)、闸阀A(17)、加热装置、闸阀B(18)、反应器(6)气体进口采用循环管路顺次连接;所述CO2储罐(12)与膨胀机(16)气体进口相互连接,连接管路之间设有粉体换热器C(7);所述膨胀机(16)气体出口与反应器(6)相互连接,连接管路之间设有加热装置;所述反应器(6)的固体颗粒物料进口与高温CaO储罐(8)相连,连接管路之间顺次设有粉体换热器B(5),所述反应器(6)的固体颗粒物料出口与高温CaCO3储罐(9)相连,连接管路之间设有粉体换热器C(7)。
进一步地,所述加热装置包括加热器(19),闸阀C(20),闸阀D(21),所述加热器(19)与闸阀C(20)顺次相连,所述闸阀D(21)与加热器(19)、闸阀C(20)相互并联。
为了减少磨损与堵塞,反应器(6)优选双向高温振动流化反应器,反应器内部设置有耐高温的传送带,其作用是促进固体颗粒充分流化,使固体颗粒与气体充分反应。
考虑到高温储能的特殊性对系统的安全性、可靠性、可维护型、工艺性等要求,所述双向高温振动流化反应器采用的是Inconel 617材料。
一种高温钙循环热化学储能方法,采用的热化学储能体系为CaCO3/CaO,通过热能与化学能之间的相互转换进行储能,当太阳辐照充足时,CaCO3固体颗粒在太阳能产生的热空气进行间壁加热发生吸热分解反应,将接受的热量以化学能的形式储存于分解产物CaO和CO2中;当需要热量时,在常压下CaO和CO2发生逆向热化学反应,将CaO和CO2中所储存的化学能逆转成热能并释放出来。
高温钙循环热化学反应流程,分为储能阶段和释能阶段。在储能阶段,原存有CO2与吸收了太阳热能高温热空气在换热器A(3)换热,使CaCO3固体颗粒在双向高温振动流化反应器(6)达到反应温度和流态化,CaCO3固体颗粒发生分解反应,反应温度在900~1100℃,随着储能反应进程深入,CaCO3固体颗粒分解产物CO2反应余热在粉体换热器B(5)预热后来的参与反应的CaCO3固体颗粒;CaCO3固体颗粒分解产物CaO反应余热在粉体换热器C(7)预热CO2储罐中的CO2。在释能阶段,CO2与CaO固体颗粒反应生成CaCO3固体颗粒,反应温度在500~700℃,释放大量热量。此时CO2处于超临界状态,结合朗肯循环和布雷顿循环实现发电。在整个高温钙循环热化学储能系统中,CaCO3固体颗粒、CaO固体颗粒的输送均采用螺旋送料的方法,防止CO2气体泄漏。
有益效果:
本发明利用热化学可逆反应CaCO3/CaO体系,实现高温热能再生。CO2在流程中作为换热介质、流化介质、反应介质。CO2在释能过程中,温度大于31℃,压力大于7MPa,处于超临界状态,CO2在系统中经历朗肯循环和布雷顿循环可实现在无阳光时的电能的持续电力供应,平滑太阳能热电站的功率曲线。同时有效利用CaCO3分解反应产物CO2热量及压力能,并利用蓄热器、换热器对系统中的高温热能回收利用,实现能量的综合梯级利用,储能系统效率得到显著提高。
本发明提供的新型高温钙循环热化学储能系统,太阳能集热驱动
Figure PCTCN2017075707-appb-000001
Figure PCTCN2017075707-appb-000002
可逆反应,接受的能量以化学能的形式储存在其分解产物CaO和CO2。具有储能密度高、循环效率高、环境友好、结构简单、变工况灵活控制、应用可靠的特点,能够解决太阳能高温热电站发电连续高效运行的问题,可以广泛应用于太阳能高温发电领域,也适用于其它类型电站的高温热能储存与再生。
本发明通过温度变化调控储/释能,即CaCO3固体颗粒分解/合成反应;通过热能-化学能-热能这一能量转换利用概念,解决了时间或地点引起的用热不匹配 和不均匀性导致低能源利用率。
附图说明
图1为本发明系统工作流程总示意图;
图2为本发明系统工作流程储能示意图;
图3为本发明系统工作流程释能示意图。
具体实施方式
为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。
实施例1
如图1所示,一种高温钙循环热化学储能系统,该系统太阳能集热装置、储能装置和发电装置;
太阳能集热装置包括日光反射装置(1)、太阳能吸收塔(2)、换热器A(3)和冷空气储罐(4),所述日光反射装置(1)设置在太阳能吸收塔(2)的一侧,使日光反射装置(1)反射的日光能够被太阳能吸收塔(2)所吸收,所述太阳能吸收塔(2)、换热器A(3)和冷空气储罐(4)采用循环管路顺次连接;
储能装置包括粉体换热器B(5)、高温振动流化反应器(6)、粉体换热器C(7)、高温CaO储罐(8)、高温CaCO3储罐(9)、磨机(10)、压缩机A(11)、CO2储罐(12)和闸阀B(18),所述CO2储罐(12)出口设有两条CO2循环管路,其一是CO2储罐(12)出口、换热器A(3)、闸阀B(18)、高温振动流化反应器(6)、粉体换热器B(5)、压缩机A(11)、CO2储罐(12)进口采用循环管路顺次连接;其二是CO2储罐(12)出口、粉体换热器C(7)、闸阀B(18)、高温振动流化反应器(6)、粉体换热器B(5)、压缩机A(11)、CO2储罐(12)进口采用循环管路顺次连接;所述高温振动流化反应器(6)的固体颗粒物料进口与高温CaCO3储罐(9)相连,连接管路之间顺次设有粉体换热器B(5)、磨机(10),所述高温振动流化反应器(6)的固体颗粒物料出口与高温CaO储罐(8)相连,连接管路之间设有粉体换热器C(7)。
发电装置包括粉体换热器B(5)、高温振动流化反应器(6)、粉体换热器C(7),高温CaO储罐(8)、高温CaCO3储罐(9)、CO2储罐(12)、涡轮机(13)、冷凝器(14)、压缩机B(15)、膨胀机(16)、闸阀A(17)、闸阀B(18),所 述高温振动流化反应器(6)气体出口、涡轮机(13)、粉体换热器B(5)、冷凝器(14)、压缩机B(15)、闸阀A(17)、加热装置、闸阀B(18)、双向高温流化反应器(6)气体进口采用循环管路顺次连接;所述CO2储罐(12)与膨胀机(16)气体进口相互连接,连接管路之间设有粉体换热器C(7);所述膨胀机(16)气体出口与高温振动流化反应器(6)相互连接,连接管路之间设有加热装置;所述高温振动流化反应器(6)的固体颗粒物料进口与高温CaO储罐(8)相连,连接管路之间顺次设有粉体换热器B(5),所述高温振动流化反应器(6)的固体颗粒物料出口与高温CaCO3储罐(9)相连,连接管路之间设有粉体换热器C(7)。
加热装置包括加热器(19),闸阀C(20),闸阀D(21),所述加热器(19)与闸阀C(20)顺次相连,所述闸阀D(21)与加热器(19)、闸阀C(20)相互并联。
双向高温振动流化反应器采用的是Inconel 617材料。
高温钙循环热化学储能系统工作流程:
储能阶段,太阳辐射充足时,如图2,太阳光通过日光反射装置(1),将太阳辐射热能在太阳能吸收塔(2)中通过空气集热,原先存有CO2与高温热空气在换热器A(3)中充分换热,高温CO2随后进入双向高温振动流化反应器(6)使CaCO3固体颗粒流态化并发生分解反应。随着分解反应深入,分解产物CO2在粉体换热器B(5)预热后来的CaCO3固体颗粒,再通过压缩机A(11)压缩储存。为了充分利用反应余热,CO2在粉体换热器C(7)与分解产物CaO充分换热,在进入双向高温振动流化反应器(6),重复先前的流程,使得热量充分利用。高温热空气经过换热器A(3)后存放于冷空气储罐(4)。
释能阶段,太阳辐射不充足时,如图3,初次释能发电时,打开闸阀C(20),关闭闸阀D(21),CO2经过膨胀机(16),加热器(19),CO2升温达到反应温度,进入双向高温振动流化反应器(6)使CaO流态化并与之发生合成反应,释放大量热量。此时,CO2温度大于31℃,压力大于7MPa,处于超临界状态,经过涡轮机(13)发电。CO2经汽轮机(13)发电后,仍存有热量,可以预热CaO固体颗粒。初次释能后,关闭闸阀C(20),打开闸阀D(21),利用合成产物CaCO3固体颗粒反应余热在粉体换热器C(7)预热CO2,使其达到反应温度, 重复先前CO2流程。在释能过程中,CO2经过粉体换热器C(7)升温,膨胀机(16)膨胀,预热CaO固体颗粒后,进入冷凝器(14)降温,在进入压缩机B(15)压缩的过程实现轴承做功发电。
在整个高温钙循环热化学储能系统中,CaCO3固体颗粒、CaO固体颗粒的输送均采用螺旋送料的方法,防止CO2气体泄漏。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种高温钙循环热化学储能系统,其特征在于,该系统由太阳能集热装置、储能装置和发电装置三部分组成;
    所述太阳能集热装置包括日光反射装置(1)、太阳能吸收塔(2)、换热器A(3)和冷空气储罐(4),所述日光反射装置(1)设置在太阳能吸收塔(2)的一侧,使日光反射装置(1)反射的日光能够被太阳能吸收塔(2)所吸收,所述太阳能吸收塔(2)、换热器A(3)和冷空气储罐(4)采用循环管路顺次连接;
    所述储能装置包括粉体换热器B(5)、反应器(6)、粉体换热器C(7)、高温CaO储罐(8)、高温CaCO3储罐(9)、磨机(10)、压缩机A(11)、CO2储罐(12)和闸阀B(18),所述CO2储罐(12)出口设有两条CO2循环管路,其一是CO2储罐(12)出口、换热器A(3)、闸阀B(18)、反应器(6)、粉体换热器B(5)、压缩机A(11)、CO2储罐(12)进口采用循环管路顺次连接;其二是CO2储罐(12)出口、粉体换热器C(7)、闸阀B(18)、反应器(6)、粉体换热器B(5)、压缩机A(11)、CO2储罐(12)进口采用循环管路顺次连接;所述反应器(6)的固体颗粒物料进口与高温CaCO3储罐(9)相连,连接管路之间顺次设有粉体换热器B(5)、磨机(10),所述反应器(6)的固体颗粒物料出口与高温CaO储罐(8)相连,连接管路之间设有粉体换热器C(7)。
    所述发电装置包括粉体换热器B(5)、反应器(6)、粉体换热器C(7),高温CaO储罐(8)、高温CaCO3储罐(9)、CO2储罐(12)、涡轮机(13)、冷凝器(14)、压缩机B(15)、膨胀机(16)、闸阀A(17)、闸阀B(18),所述反应器(6)气体出口、涡轮机(13)、粉体换热器B(5)、冷凝器(14)、压缩机B(15)、闸阀A(17)、加热装置、闸阀B(18)、反应器(6)气体进口采用循环管路顺次连接;所述CO2储罐(12)与膨胀机(16)气体进口相互连接,连接管路之间设有粉体换热器C(7);所述膨胀机(16)气体出口与反应器(6)相互连接,连接管路之间设有加热装置;所述反应器(6)的固体颗粒物料进口与高温CaO储罐(8)相连,连接管路之间顺次设有粉体换热器B(5),所述反应器(6)的固体颗粒物料出口与高温CaCO3储罐(9)相连,连接管路之间设有粉体换热器C(7)。
  2. 根据权利要求2所述的高温钙循环热化学储能系统,其特征在于,所述加热装置包括加热器(19),闸阀C(20),闸阀D(21),所述加热器(19)与闸 阀C(20)顺次相连,所述闸阀D(21)与加热器(19)、闸阀C(20)相互并联。
  3. 根据权利要求1或2所述的高温钙循环热化学储能系统,其特征在于,所述反应器(6)是双向高温振动流化反应器,反应器内部设置有耐高温的传送带。
  4. 根据权利要求3所述的高温钙循环热化学储能系统,其特征在于,所述双向高温振动流化反应器采用的是Inconel617材料。
  5. 一种高温钙循环热化学储能方法,其特征在于,采用的热化学储能体系为CaCO3/CaO,通过热能与化学能之间的相互转换进行储能,当太阳辐照充足时,CaCO3固体颗粒在太阳能产生的热空气进行间壁加热发生吸热分解反应,将接受的热量以化学能的形式储存于分解产物CaO和CO2中;当需要热量时,在常压下CaO和CO2发生逆向热化学反应,将CaO和CO2中所储存的化学能逆转成热能并释放出来。
  6. 根据权利要求5所述的高温钙循环热化学储能方法,其特征在于,包括储能阶段和释能阶段,在储能阶段,原存有CO2与吸收了太阳热能高温热空气在换热器A(3)换热,使CaCO3固体颗粒在双向高温振动流化反应器(6)达到反应温度和流态化,CaCO3固体颗粒发生分解反应,反应温度在900~1100℃,随着储能反应进程深入,CaCO3固体颗粒分解产物CO2反应余热在粉体换热器B(5)预热后来的参与反应的CaCO3固体颗粒,CaCO3固体颗粒分解产物CaO反应余热在粉体换热器C(7)预热CO2储罐中的CO2;在释能阶段,CO2与CaO固体颗粒反应生成CaCO3固体颗粒,反应温度在500~700℃,释放大量热量,此时CO2处于超临界状态,结合朗肯循环和布雷顿循环实现发电。
  7. 根据权利要求6所述的高温钙循环热化学储能方法,其特征在于,CaCO3固体颗粒、CaO固体颗粒的输送均采用螺旋送料的方法。
PCT/CN2017/075707 2016-12-09 2017-03-06 高温钙循环热化学储能方法及系统 WO2018103210A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1909262.6A GB2573423B (en) 2016-12-09 2017-03-06 Method and system of high-temperature calcium looping thermochemical energy storage
JP2019517098A JP6764204B2 (ja) 2016-12-09 2017-03-06 高温カルシウムサイクルの熱化学によるエネルギー貯蔵方法及びシステム
US16/467,981 US11047601B2 (en) 2016-12-09 2017-03-06 Method and system of high-temperature calcium looping thermochemical energy storage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611126687.9A CN106595363B (zh) 2016-12-09 2016-12-09 高温钙循环热化学储能方法及系统
CN201611126687.9 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018103210A1 true WO2018103210A1 (zh) 2018-06-14

Family

ID=58597784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075707 WO2018103210A1 (zh) 2016-12-09 2017-03-06 高温钙循环热化学储能方法及系统

Country Status (5)

Country Link
US (1) US11047601B2 (zh)
JP (1) JP6764204B2 (zh)
CN (1) CN106595363B (zh)
GB (1) GB2573423B (zh)
WO (1) WO2018103210A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754501A (zh) * 2022-05-06 2022-07-15 浙江大学 用于低温环境供热的太阳能热化学吸附储热系统及其方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107514837A (zh) * 2017-09-04 2017-12-26 中国科学院工程热物理研究所 热泵与超临界二氧化碳布雷顿循环耦合的冷热电联供系统
CN110118160B (zh) * 2018-02-06 2020-10-30 浙江大学 太阳能超临界二氧化碳布雷顿循环系统
CN109269129B (zh) * 2018-08-28 2020-11-10 南京工业大学 钙循环梯级热化学储能方法及系统
CN109520346B (zh) * 2018-12-14 2020-08-07 北方民族大学 一种利用石灰石进行热化学储能的方法
CN110242522B (zh) * 2019-04-12 2024-01-30 西安热工研究院有限公司 一种基于热化学储能的太阳能光热发电系统及方法
CN110724500B (zh) * 2019-11-07 2020-12-08 中国矿业大学 一种镁修饰的小球状钙基热化学储能材料及其制备方法
SE2050076A1 (en) * 2020-01-28 2021-07-29 Saltx Tech Ab System and method for transportable energy storage and carbon capture
CN112228858B (zh) * 2020-09-24 2022-09-02 桂林电子科技大学 一种基于钙基吸附剂的高温热化学循环储能系统及方法
CN113686187B (zh) * 2021-07-24 2023-07-04 华北电力大学(保定) 一种基于化学提质蓄热的低温余热增焓储热系统
CN113587453B (zh) * 2021-07-31 2022-03-22 江苏维德锅炉有限公司 一种具有高效聚热保温功能的太阳能热水器
CN113686032B (zh) * 2021-08-31 2022-06-03 南京工业大学 一种氢氧化钙热化学储能反应器及其储能方法
CN113663636B (zh) * 2021-08-31 2022-10-14 南京工业大学 一种回转式钙基高温热化学储能反应装置及储能反应方法
CN114561292B (zh) * 2022-04-27 2022-07-19 天津长和生物技术有限公司 一种带有自鼓式二氧化碳制备装置的细胞培养箱
CN115451743A (zh) * 2022-09-09 2022-12-09 南京航空航天大学 一种热化学梯级储能系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679563A (zh) * 2012-06-21 2012-09-19 山东大学 一种多功能太阳能蓄能系统及蓄能方法
CN102801367A (zh) * 2012-08-21 2012-11-28 范志平 太阳能发电装置
CN104806311A (zh) * 2015-03-17 2015-07-29 南京工业大学 新型氨基热化学储能系统
CN105423791A (zh) * 2015-11-11 2016-03-23 上海交通大学 可调控化学蓄热系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2418422A1 (fr) * 1978-02-24 1979-09-21 Fives Cail Babcock Procede de stockage et de restitution d'energie utilisant les reactions de decarbonatation du carbonate de calcium et de carbonatation de la chaux ainsi obtenue, et unites pour la mise en oeuvre de ce procede
US4628834A (en) * 1981-10-14 1986-12-16 Mckelvie Alastair H Vibratory fluidized bed reactor
ES2192994B1 (es) * 2002-03-22 2005-02-16 Consejo Superior Investig. Cientificas Procedimiento de combustion con separacion integrada de co2 mediante carbonatacion.
US20120216536A1 (en) * 2011-02-25 2012-08-30 Alliance For Sustainable Energy, Llc Supercritical carbon dioxide power cycle configuration for use in concentrating solar power systems
CN103807009B (zh) * 2012-11-13 2016-01-06 中国科学院工程热物理研究所 太阳能与替代燃料互补的分布式内燃机冷热电系统及方法
US9829217B2 (en) * 2013-04-22 2017-11-28 The Babcock & Wilcox Company Concentrated solar power solids-based system
CN105764598B (zh) * 2013-07-11 2018-02-27 纽卡斯尔创新有限公司 用于减少乏风瓦斯的碳酸盐矿物循环反应器
WO2015048845A1 (en) * 2013-10-02 2015-04-09 Adelaide Research & Innovation Pty Ltd A hybrid solar and chemical looping combustion system
WO2015077235A1 (en) * 2013-11-20 2015-05-28 Abengoa Solar Llc Concentrated solar power systems and methods utilizing cold thermal energy storage
CN104456512A (zh) * 2014-10-23 2015-03-25 东南大学 利用CaO高温储热并捕集烟气中CO2的太阳能辅助燃煤发电系统
JP6663101B2 (ja) * 2015-06-10 2020-03-11 綜研テクニックス株式会社 溶融塩型熱媒体、溶融塩型熱媒体の使用方法および太陽熱利用システム
MX2018002550A (es) * 2015-09-01 2018-08-15 8 Rivers Capital Llc Sistemas y metodos para la produccion de energia usando ciclos de co2 anidados.
CN105651091B (zh) * 2016-02-19 2017-08-15 上海交通大学 传热增强型化学蓄热装置及应用该蓄热装置的蓄热系统
CN105927299B (zh) * 2016-04-22 2017-05-03 石家庄新华能源环保科技股份有限公司 一种二氧化碳储能及供能系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679563A (zh) * 2012-06-21 2012-09-19 山东大学 一种多功能太阳能蓄能系统及蓄能方法
CN102801367A (zh) * 2012-08-21 2012-11-28 范志平 太阳能发电装置
CN104806311A (zh) * 2015-03-17 2015-07-29 南京工业大学 新型氨基热化学储能系统
CN105423791A (zh) * 2015-11-11 2016-03-23 上海交通大学 可调控化学蓄热系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754501A (zh) * 2022-05-06 2022-07-15 浙江大学 用于低温环境供热的太阳能热化学吸附储热系统及其方法

Also Published As

Publication number Publication date
CN106595363B (zh) 2018-10-23
CN106595363A (zh) 2017-04-26
GB2573423A (en) 2019-11-06
JP6764204B2 (ja) 2020-09-30
JP2020513522A (ja) 2020-05-14
GB201909262D0 (en) 2019-08-14
GB2573423B (en) 2021-07-07
US20190331364A1 (en) 2019-10-31
US11047601B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2018103210A1 (zh) 高温钙循环热化学储能方法及系统
CN106813402B (zh) 中低温钙循环热化学储能装置及其方法
CN109269129B (zh) 钙循环梯级热化学储能方法及系统
Wu et al. Thermodynamic analysis of a novel hybrid thermochemical-compressed air energy storage system powered by wind, solar and/or off-peak electricity
CN106931657B (zh) 一种基于热化学法的太阳能高温储存及释放系统
CN104806311A (zh) 新型氨基热化学储能系统
CN106560502B (zh) 一种以太阳能和生物质驱动的冷热电三联产系统
CN105508051A (zh) 高温气冷堆氦气间接循环制氢耦合发电系统及其方法
CN110118160B (zh) 太阳能超临界二氧化碳布雷顿循环系统
Karasavvas et al. Design of an integrated CSP-calcium looping for uninterrupted power production through energy storage
CN113701368B (zh) 一种氢氧化钙热化学储能系统及其应用方法
CN113686032B (zh) 一种氢氧化钙热化学储能反应器及其储能方法
CN113090349A (zh) 光热式煤炭超临界水气化氢热电联产系统及工作方法
CN111749862A (zh) 混合物工质超临界布雷顿循环光热发电系统及发电方法
CN104456512A (zh) 利用CaO高温储热并捕集烟气中CO2的太阳能辅助燃煤发电系统
CN113446890B (zh) 一种配备密相流态化储罐的钙基热化学储放能系统及工艺
CN105674582A (zh) 一种生物质和太阳能耦合的三联产系统
CN111895836A (zh) 一种热化学储能与显热储能联合储能系统及方法
CN115978830A (zh) 一种集成氨基储能制冷的跨临界二氧化碳储能系统及方法
CN216114743U (zh) 一种中低温地热超临界二氧化碳光热发电系统
CN110242522B (zh) 一种基于热化学储能的太阳能光热发电系统及方法
Gkaroutsou et al. Thermochemical energy storage in solar power plants
Khan et al. Thermo-environmental analysis and performance comparison of solar assisted single to multi-generation systems
CN219934746U (zh) 一种氢氧化钙热化学储能系统
CN220707767U (zh) 基于固体颗粒流化床储热的槽式光热发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201909262

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170306

122 Ep: pct application non-entry in european phase

Ref document number: 17878223

Country of ref document: EP

Kind code of ref document: A1