WO2018103004A1 - 一种波长锁定方法及激光器 - Google Patents

一种波长锁定方法及激光器 Download PDF

Info

Publication number
WO2018103004A1
WO2018103004A1 PCT/CN2016/108830 CN2016108830W WO2018103004A1 WO 2018103004 A1 WO2018103004 A1 WO 2018103004A1 CN 2016108830 W CN2016108830 W CN 2016108830W WO 2018103004 A1 WO2018103004 A1 WO 2018103004A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical power
laser
target
power difference
Prior art date
Application number
PCT/CN2016/108830
Other languages
English (en)
French (fr)
Inventor
王涛
刘宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/108830 priority Critical patent/WO2018103004A1/zh
Priority to CN201680089608.3A priority patent/CN109792131B/zh
Publication of WO2018103004A1 publication Critical patent/WO2018103004A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature

Definitions

  • the present invention relates to the field of optics, and in particular to a wavelength locking method and a laser.
  • Next-generation data centers or carrier-side optical modules require greater integration and capacity, which requires more wavelengths in the same width band and smaller spacing between wavelength channels.
  • the wavelength of the light wave generated by the laser changes with temperature, so ensuring the wavelength locking of the laser is a research hotspot in the development of optical modules in recent years.
  • the Peltier effect of semiconductor coolers currently eliminates the problem of wavelength variation with temperature, but semiconductor materials are accompanied by increased costs and increased energy consumption, so many non-cooling schemes have been proposed.
  • a more extensive method is to use a negative thermal coefficient material, such as a polymer, a metal oxide, etc., to form an external cavity to cancel the positive thermal coefficient of the III-V laser itself, to achieve an overall thermal balance, and achieve a locking wavelength.
  • the existing external cavity laser (English full name: External Cavity Laser, English abbreviation: ECL) wavelength locking scheme technical solution proposes to use fiber Bragg grating (English full name: Fiber Bragg Grating, English abbreviation: FBG) as both a transmitter and a filter;
  • FBG Fiber Bragg Grating
  • a high thermal polymer with a negative thermal coefficient is plated on the FBG to offset the influence of the positive thermo-optic coefficient of the FBG.
  • a polymer polymer waveguide of a certain thickness is added to the cavity to offset the semiconductor light.
  • the length of the cavity caused by the positive thermal coefficient of the amplifier (English name: Semiconductor Optical Amplifier, English abbreviation: SOA).
  • the equivalent cavity length of the ECL (including the III-V gain medium, the FBG, and the resonant cavity) does not change, and thus the corresponding resonant wavelength does not change, thereby implementing the wavelength locking function.
  • Embodiments of the present invention provide a wavelength locking method and a laser for realizing a wavelength locking function without using a polymer having a negative thermal coefficient, thereby simplifying the ECL preparation process, thereby improving the yield of the ECL.
  • a first aspect of the embodiments of the present invention provides a wavelength locking method, including:
  • the wavelength locking reference component by properly designing the wavelength locking reference component, its periodic spectrum does not change with temperature, and the wavelength locking reference component has a unique reference point; when entering the wavelength locking reference component wavelength and the reference point When aligning, the laser outputs the maximum optical power difference; when the actual optical power difference is not the maximum value, it indicates that the wavelength is not aligned with the reference point, and the above wavelength needs to be adjusted; when adjusting, the actual optical power difference is first adopted. The difference between the maximum value and the maximum value is used to determine the wavelength offset between the output wavelength and the target wavelength, and then the output wavelength is corrected to the target wavelength by the wavelength offset, thereby finally implementing the wavelength locking function.
  • the embodiments of the present invention have the following advantages:
  • the laser detects the optical power of the output wavelength to determine the actual optical power difference and the wavelength offset. Finally, the laser adjusts the output wavelength to the target wavelength according to the wavelength offset, thereby locking the output wavelength to the target wavelength.
  • the wavelength locking function can be realized without using a polymer having a negative thermal coefficient, and the plating process is not needed, thereby simplifying the preparation process of the laser and avoiding the influence of the coating thickness on the performance of the laser. .
  • the determining, by the laser, the actual optical power difference by detecting the output wavelength includes:
  • the laser has two optical power output ports respectively outputting a first optical power value and a second optical power value, and the laser obtains the two optical power values by detecting the output wavelength, the first optical power value and the second light
  • the power values are respectively the optical power values detected by the two different detection ports of the laser; after the two optical power values are obtained, the actual optical power difference is obtained by subtraction calculation.
  • the laser realizes the actual optical power difference detection function through reasonable overall structure design, and uses the relationship between wavelength and energy to obtain the actual optical power difference more accurately.
  • the laser determines the wavelength offset according to the difference between the actual optical power difference and the maximum optical power.
  • the laser After detecting the actual optical power difference, the laser compares the actual optical power difference with the known maximum optical power difference to obtain a difference between the two values, that is, the target optical power difference; and then substitutes the target optical power difference into the target
  • the correspondence between the target optical power difference and the wavelength offset is the wavelength offset derived from the first correspondence.
  • the laser further uses the target optical power difference and the first correspondence to derive the wavelength offset.
  • the relationship between energy and wavelength is used again to derive the wavelength offset, so that the wavelength offset is more accurate and the wavelength locking effect can be further improved.
  • the laser correcting the output wavelength to the target wavelength according to the wavelength offset includes:
  • the laser first calculates the target voltage value according to the wavelength offset pair, and then controls the laser to increase the voltage value of the target voltage value by itself, and corrects the output wavelength to the target wavelength by the electro-optic effect.
  • the laser generates a function of correcting the output wavelength to the target wavelength by applying a voltage to itself, thereby realizing the function of correcting the output wavelength to the target wavelength.
  • the electro-optical effect is a relatively mature and mature technology, so that the error can be effectively corrected and the wavelength locking efficiency can be improved.
  • the method further includes:
  • the laser determines that the output wavelength is equal to the target wavelength, and no wavelength adjustment is required.
  • the laser determines that the output wavelength is equal to the target wavelength
  • the laser determines that the wavelength does not change substantially with temperature, and does not need to perform wavelength adjustment, so that the laser can be adjusted without determining the adjustment, and the function is more perfect.
  • a second aspect of the embodiments of the present invention provides a laser, including:
  • Laser gain chip distributed Bragg reflector, wavelength locking standard, feedback control system and correction unit
  • the distributed Bragg reflector is coupled to the wavelength locking standard, the feedback control system is coupled to the wavelength locking standard, and the correction unit is coupled to the feedback control system;
  • the laser gain chip is coupled to the distributed Bragg reflector for acquiring a target wavelength aligned with a reference point as an output wavelength, wherein the reference point is unique within the periodic spectrum of the wavelength-locked standard and the target a valley point corresponding to a wavelength, wherein the periodic spectrum is a spectrum that is not affected by temperature changes;
  • the wavelength calibration component is configured to determine an actual optical power difference by detecting the output wavelength
  • the feedback control system is configured to determine a wavelength offset according to the difference between the actual optical power difference and the maximum optical power when the actual optical power difference is not equal to a maximum optical power difference, the wavelength
  • the offset is a deviation value between the output wavelength and the target wavelength that is affected by the temperature change, and the maximum optical power difference is a power difference when the target wavelength is aligned with the reference point;
  • the correction unit is configured to correct the output wavelength to the target wave according to the wavelength offset.
  • the embodiments of the present invention have the following advantages:
  • the first determining module determines the actual optical power difference by performing optical power detection on the output wavelength.
  • the second determining module is configured according to the actual optical power difference.
  • the maximum optical power difference determines the wavelength offset
  • the correction module adjusts the output wavelength to the target wavelength according to the wavelength offset, thereby realizing the function of the laser locking the output wavelength to the target wavelength.
  • the wavelength calibration component comprises a Mach-Zehnder interferometer, a first optical power detector, and a second optical power detector.
  • the periodic spectrum in the Mach-Zehnder interferometer does not change with temperature, making wavelength locking possible using the Mach-Zehnder interferometer as a wavelength calibration.
  • the laser further includes:
  • a power splitter connected between the distributed Bragg reflector and the Mach-Zehnder interferometer
  • the power splitter is configured to divide the light wave of the target wavelength into a first path light wave and a second path light wave, and input the first path light wave to the Mach-Zehnder interferometer.
  • the power splitter divides the light wave of the target wavelength into the first light wave and the second light wave, and inputs the first light wave to the Mach-Zehnder interferometer to detect the target wavelength.
  • the laser further includes:
  • grating coupler being connected to the power splitter
  • the grating coupler is configured to output the second path light wave.
  • the grating grating coupler can accurately output the second light wave of the target wavelength.
  • the laser further includes:
  • An electronic subtractor wherein the two input ends of the electronic subtractor are respectively connected to the first optical power detector and the second optical power detector, and an output end of the electronic subtractor is connected to the feedback control system;
  • the electronic subtractor is configured to calculate the first optical power value and the second optical power value to obtain the actual optical power value, where the first optical power value corresponds to the first optical power detector, The second optical power value corresponds to the second optical power detector.
  • the electronic subtractor subtracts the second optical power value from the first optical power value to obtain the actual optical power difference, so that the laser can more accurately detect the actual optical power difference and improve the wavelength locking capability of the laser.
  • 1 is a schematic view showing the basic structure of a laser
  • FIG. 2 is a schematic diagram of an embodiment of a laser in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a laser in an embodiment of the present invention.
  • FIG. 4(a) is a schematic view showing a working principle of a laser in an embodiment of the present invention.
  • FIG. 4(b) is a schematic view showing another working principle of the laser in the embodiment of the present invention.
  • Figure 5 (a) is a schematic structural view of a Mach-Zehnder interferometer according to an embodiment of the present invention.
  • FIG. 5(b) is a schematic diagram of an optical spectrum of a Mach-Zehnder interferometer according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a wavelength locking method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a wavelength locking method according to an embodiment of the present invention.
  • Embodiments of the present invention provide a wavelength locking method and a laser for realizing a wavelength locking function without using a polymer having a negative thermal coefficient, thereby simplifying the ECL preparation process, thereby improving the yield of the ECL.
  • the structure of the current laser is as shown in FIG. 1.
  • the laser includes a resonant cavity 101, a controller 102, a semiconductor cooler 103, and a transmitter 104.
  • the resonant cavity 101 is used to generate light waves of different wavelengths by a resonance phenomenon, and the controller 102 is used for The ideal light wave whose wavelength meets the needs is selected from the light waves of different wavelengths generated by the cavity 101, and the transmitter 104 is used to output the ideal light wave selected by the controller 102 to the outside of the laser, because the ambient temperature of the laser occurs.
  • the change thus affects the wavelength of the light wave
  • the semiconductor refrigerator 103 has a cooling function for compensating for the environmental temperature change to ensure that the wavelength of the light wave generated by the resonant cavity 101 does not substantially change, thereby ensuring that the controller 102 selects and is output by the transmitter 104.
  • the wavelength shift of the ideal light wave is kept within a preset range.
  • the obtaining module 201 is configured to obtain a target wavelength aligned with the reference point as an output wavelength, where the reference point is a unique valley in the periodic spectrum of the wavelength locking standard corresponding to the target wavelength, and the periodic spectrum is not subject to temperature change. Affected spectrum;
  • the first determining module 202 is configured to determine an actual optical power difference by detecting the output wavelength
  • the determining module 203 is configured to determine whether the actual optical power difference is equal to a maximum optical power difference, where the maximum optical power difference is a power value corresponding to the target wavelength;
  • the second determining module 204 is configured to: if not equal to, determine a wavelength offset according to the difference between the actual optical power difference and the maximum optical power, the wavelength offset being the output wavelength affected by the temperature change The deviation between the target wavelengths;
  • the correction module 205 is configured to correct the output wavelength to the target wavelength according to the wavelength offset.
  • the acquisition module 201 includes a laser gain chip and a distributed Bragg reflector, which are connected by a laser gain chip and a distributed Bragg reflector;
  • the first determining module 202 may specifically include a wavelength calibration component;
  • the functions of the determining module 203 and the second determining module 204 may be specifically implemented by a feedback control system;
  • the correcting module 205 may specifically include a phase shifter, a micro ring, and a micro heater.
  • the first determining module 202 outputs a wavelength for optical power detection to determine an actual optical power difference.
  • the second determining module 204 determines the actual optical power difference.
  • the maximum optical power difference determines the wavelength offset, and the correction module 205 offset adjusts the output wavelength to the target wavelength, thereby achieving the function of the laser locking the output wavelength to the target wavelength.
  • the method includes:
  • Laser gain chip 301 Electronic subtractor 312, feedback control system 313 and passive integrated chip 30;
  • the passive integrated chip 30 includes a first micro-heater 302, a phase shifter 303, a micro-ring 304, a second micro-heater 305, a distributed Bragg reflector 306, a power splitter 307, a grating coupler 308, and Machzen a delta interferometer 309, a first optical power detector 310 and a second optical power detector 311;
  • the laser gain chip 301 and the passive integrated chip 30 are coupled by a waveguide;
  • composition connection relationship in the passive integrated chip 30 is as follows:
  • the first microheater 302 is coupled to a phase shifter 303, the microring 304 is coupled to a second microheater 305, the distributed Bragg reflector 306 is coupled to a power splitter 307, and the splitter 307 is coupled to a grating coupler 308 and Mach, respectively.
  • the Zender interferometer 309 is connected, and the Mach-Zehnder interferometer 309 is connected to the first optical power detector 310 and the second optical power detector 311, respectively;
  • the electronic subtractor 312 is connected to the first optical power detector 310 and the second optical power detector 311, respectively, and the electronic subtractor 312 is connected to the feedback control system 313;
  • Feedback control system 313 is coupled to first microheater 302 and second microheater 305, respectively.
  • the laser gain chip 301 may be a quantum well structure or a quantum dot structure
  • the passive integrated chip 30 may be based on a silicon platform or a silicon nitride platform; one end of the laser gain chip 301 is plated.
  • the reflective film achieves 100% total reflection, and the other end of the laser gain chip 301 is passive
  • the integrated chip 30 is connected by a waveguide coupling; wherein, in the passive integrated chip 30, the distributed Bragg reflector 306 is used to provide a preset proportion of the reflective end face, and the preset ratio can be varied between 0 and 1, the distributed Bragg reflection
  • the 306 forms a resonant cavity together with the total reflection port of the laser gain chip 301, and a plurality of longitudinal modes are generated in the resonant cavity.
  • the envelope of the multi-longitudinal film is the gain spectrum of the laser gain chip 301, and the phase shifter 303 passes the first micro
  • the heater 302 is heated to realize the function of controlling the equivalent cavity length of the resonant cavity.
  • the microring 304 is heated by the second micro-heater 305 to select a light wave of a target wavelength from the plurality of longitudinal modes, the first micro-heater 302 and the second micro-heater.
  • the power consumption of the heater 305 is all in the ⁇ W level, and the light wave of the target wavelength is reflected by the distributed Bragg reflector 306 to the power divider 307.
  • the power splitter 307 divides the light wave into two paths, and one path serves as an output light wave through the grating coupler 308. As a final output, the other input to the Mach-Zehnder interferometer 309 achieves optical power detection.
  • the acquisition module in the embodiment shown in FIG. 3 may specifically include a laser gain chip 301, a first micro-heater 302, a phase shifter 303, a micro-ring 304, a second micro-heater 305, a distributed Bragg reflector 306, and work.
  • the first determining module may specifically include a Mach-Zehnder interferometer 309, a first optical power detector 310, a second optical power detector 311, and an electronic subtractor 312;
  • the second determining module may be specifically a feedback control system 313;
  • the correcting module may specifically include a feedback control system 313, a first micro-heater 302, a phase shifter 303, a micro-ring 304, and a second micro-heater 305.
  • Figure 4(a) shows the relationship between the wavelength and power of the laser when the ambient temperature does not change
  • Figure 4(b) shows the relationship between the ambient temperature and the temperature.
  • the cavity when the total reflection end face of the laser gain chip 301 and the reflection end face of the distributed Bragg reflector 306 are not affected by the bandwidth, the cavity generates a plurality of multi-longitudinal modes and the plurality of multi-longitudinal modes
  • the envelope is the gain spectrum of the laser gain chip 301.
  • the laser selects a single wavelength from a plurality of multiple longitudinal modes by selective reflection of the distributed Bragg reflector 306 (curve 1 in the figure) and precise mode selection of the microring resonance peak (curve 2 in the figure).
  • a part of the light wave of the target wavelength is output by the power divider 307 and the grating coupler 308, and another part of the light wave of the target wavelength enters the Mach-Zehnder interferometer 309 through the power divider 307, the target wavelength and the first optical power.
  • the valleys of the output spectrum of the detector 310 coincide, and the first optical power value P1 output by the first optical power detector 310 is minimum, and the target wavelength and the second optical power detector 311 of The peak points of the output spectrum (curve 4 in the figure) coincide, and at this time, the second optical power value P2 output by the second optical power detector 311 is the largest, so the first optical power detector 310 and the second optical power detector
  • the power difference of the 311 output is at most the maximum optical power difference (P1-P2).
  • FIG. 4(b) only shows a schematic diagram when the ambient temperature rises, and the schematic diagram when the ambient temperature drops is similar to FIG. 4(b), and details are not described herein again.
  • the gain spectrum of the laser gain chip 301 shifts to the right/left, and the resonance spectrum of the microring microring 304 and the reflection spectrum of the distributed Bragg reflector 306 also shifts to the right/left, so The single wavelength deviates from the target wavelength, and there is a wavelength shift between the two wavelengths.
  • the single wavelength entered by the power divider 307 into the Mach-Zehnder interferometer 309 deviates from the valley point in the output spectrum of the first optical-optical power detector 310.
  • An optical power value P1 becomes larger, and the single wavelength also deviates from the peak point in the output spectrum of the second optical power detector 311, so that the second optical power value P2 becomes smaller. Therefore, the first optical power detection is performed at this time.
  • the actual optical power difference output by the controller 310 and the second optical power detector 311 is less than the maximum optical power difference.
  • the laser calculates the power difference between the actual optical power difference and the maximum optical power difference, that is, the target, by using the electronic subtractor 312 according to the change of the optical power value output by the first optical power detector 310 and the second optical power detector 311.
  • the optical power difference, the feedback control system 313 passes the correspondence between the target optical power difference and the wavelength offset (the corresponding wavelength shift step is 0.001 nm when the voltage power consumption is 0.2 ⁇ W), and the target wavelength and the single wavelength, that is, the output wavelength.
  • the wavelength offset between the two is calculated.
  • the feedback control system 313 passes the correspondence between the wavelength offset and the target voltage value (the corresponding voltage consumption is 0.2 ⁇ W when the wavelength shift step is 0.001 nm, and then passes
  • the resistance value of the first micro-heater 302 or the second micro-heater 305 calculates a step voltage) respectively corresponding to the first target voltage value of the first micro-heater 302 and the second target voltage corresponding to the second micro-heater 305
  • the value is derived, and the feedback control system 313 adjusts the resonance peak of the micro-ring 304 by applying a voltage of a first target voltage value to the first micro-heater 302 and the feedback control system 313 passes the second micro-
  • the heater 305 applies a phase of the voltage adjustment phase shifter 303 of a second target voltage value such that the single wavelength selected by the microring 304 is re-outputted with the reference point of the Mach-Zehnder interferometer 309, that is, the first optical power detector 310.
  • the Mach-Zehnder interferometer 309 is used as a wavelength locking standard in the embodiment of the present invention.
  • the spectrum does not change with temperature, and the structure of the Mach-Zehnder interferometer 309 is shown in Fig. 5(a).
  • the length and width of the two-armed waveguide are different, and the arm length of the wide waveguide is greater than the arm length of the narrow waveguide.
  • the bias value of the equivalent refractive index of the wide waveguide with temperature changes is smaller than the corresponding value of the narrow waveguide.
  • the phase change of the two arms is equal to the partial derivative value multiplied by the arm length. By reasonable design, the phase changes of the two arms with temperature can be made equal, and the periodic spectrum of the Mach-Zehnder interferometer 309 does not substantially change with temperature.
  • the Mach-Zehnder interferometer 309 is designed to have two output ports, defined as a first port and a second port, respectively.
  • the desired target wavelength is selected by applying a voltage control phase shifter 303 to the first microheater 302 and by applying a voltage control microring 304 to the second microheater 305, and the target wavelength pair is selected.
  • the destructive port of the quasi-Mach-Zehnder interferometer 309 outputs the valley point of the spectrum.
  • the 3 dB bandwidth of the reflected spectrum is less than or equal to a free spectral range (FSR) of the spectrum of the Mach-Zehnder interferometer 309, and when the free spectral range moves left and right with temperature changes (+/-) At 2.8 nm, corresponding to a 0-70 degree temperature change, the reflected spectral bandwidth (> 5.6 nm) of the distributed Bragg reflector 306 can still cover the valley point.
  • FSR free spectral range
  • the reflected spectral bandwidth (> 5.6 nm) of the distributed Bragg reflector 306 can still cover the valley point.
  • the first port of the Mach-Zehnder interferometer 309 When the target wavelength of the laser is aligned with the reference point, the first port of the Mach-Zehnder interferometer 309 has the highest output power and the second port has the lowest output power.
  • the first port and the second port are respectively connected to the corresponding first optical power detector 310 and second optical power detector 311.
  • the power difference between the two monitoring detectors is the largest, the target wavelength is aligned with the reference point to complete the wavelength locking.
  • the laser performs optical power detection on the output wavelength through the Mach-Zehnder interferometer 309, the first optical power detector 310 and the second optical power detector 311, and the electronic subtractor 312 determines the actual optical power difference.
  • the wavelength offset the final feedback control system 313 adjusts the output wavelength to the target wavelength based on the wavelength offset such that the laser locks the output wavelength to the target wavelength.
  • the wavelength locking function can be realized without using a polymer having a negative thermal coefficient, and the plating process is not needed, thereby simplifying the preparation process of the laser and avoiding the influence of the coating thickness on the performance of the laser. .
  • the above embodiment describes the laser in the embodiment of the present invention, and the following is an embodiment of the present invention.
  • the medium wavelength locking method is explained.
  • the laser acquires a target wavelength aligned with the reference point as an output wavelength.
  • the laser first determines the target wavelength, and then the laser aligns the target wavelength with a reference point, which is the only valley in the periodic spectrum of the wavelength-locking standard corresponding to the target wavelength.
  • a reference point which is the only valley in the periodic spectrum of the wavelength-locking standard corresponding to the target wavelength.
  • the wavelength locking standard is used in the wavelength locking standard.
  • the periodic spectrum of the component does not change with temperature. This feature lays the foundation for the wavelength locking function.
  • the laser can use the target wavelength aligned with the reference point as the output wavelength output.
  • the laser determines an actual optical power difference by detecting an output wavelength.
  • the laser detects the output wavelength of the output light wave, and the laser determines the actual optical power difference corresponding to the output wavelength.
  • step 606 determines whether the actual optical power difference is equal to the maximum optical power difference. If yes, step 606 is performed; if not, step 604 is performed.
  • the target wavelength corresponding to the reference point is corresponding to the maximum optical power difference
  • the laser performs the actual optical power difference and the maximum optical power difference.
  • the laser performs step 606; when the actual optical power difference is not equal to the maximum optical power difference, the laser performs step 604.
  • the laser determines a wavelength offset according to a difference between the actual optical power difference and the maximum optical power.
  • the laser determines the wavelength offset between the output wavelength and the target wavelength according to the actual optical power difference and the maximum optical power difference.
  • the laser corrects the output wavelength to the target wavelength according to the wavelength offset.
  • the laser compensates the wavelength offset by corresponding adjustment so that the output wavelength becomes equal to the target wavelength.
  • the laser determines that the output wavelength is equal to the target wavelength.
  • the laser determines that the output wavelength is equal to the target wavelength, and the output wavelength is already the target wavelength, and there is no need to supplement the output wavelength. Reimbursement.
  • the laser selects the target wavelength aligned with the reference point by a reasonable design, and the spectrum of the reference point does not change with the temperature change, so that the reference point does not change with temperature; by determining the actual light corresponding to the output wavelength After the difference between the power difference and the maximum optical power corresponding to the target wavelength, when the actual optical power difference is not equal to the maximum optical power difference, the laser determines the output wavelength and the target wavelength according to the difference between the two optical power differences. The wavelength offset between the two, finally, the laser compensates the output wavelength according to the wavelength offset so that the output wavelength is equal to the target wavelength, thereby achieving the function of locking the output wavelength to the target wavelength.
  • the wavelength locking method in the embodiment of the present invention can realize the wavelength locking function without using a polymer having a negative thermal coefficient, and does not require a plating process, thereby simplifying the laser preparation process and avoiding the thickness of the plating layer. The impact of performance.
  • FIG. 7 Please refer to FIG. 7 for a detailed description of the wavelength locking method in the embodiment of the present invention, including:
  • the laser acquires a target wavelength aligned with the reference point as an output wavelength.
  • this step is similar to step 101 above, and details are not described herein again.
  • the laser obtains a first optical power value and a second optical power value by detecting an output wavelength.
  • a part of the output wavelength of the laser is used as the final output, and another part is detected by the laser, and the laser obtains the first optical power value and the second optical power value after detecting the output wavelength.
  • the laser calculates a first optical power value and a second optical power value to obtain an actual optical power difference.
  • the laser when the laser acquires the first optical power value and the second optical power value, the laser uses the first optical power value minus the second optical power value to obtain an actual optical power difference, and the actual optical power difference is The output wavelength corresponds.
  • step 705 determines whether the actual optical power difference is equal to the maximum optical power difference. If yes, step 705 is performed; if not, step 709 is performed.
  • this step is similar to step 103 above, and details are not described herein again.
  • the laser obtains a target optical power difference by calculating an actual optical power difference and a maximum optical power difference.
  • the laser after the laser obtains the actual optical power difference, the laser again obtains the target optical power difference by using the maximum optical power difference minus the actual optical power difference, and the maximum optical power difference is obtained.
  • the value corresponds to the target wavelength.
  • the laser estimates a wavelength offset by using a target optical power difference and a first correspondence.
  • the first correspondence relationship is a correspondence between the target optical power difference value and the wavelength offset amount, and the first correspondence relationship may be obtained by performing a large number of experiments on the laser and performing statistical calculation on the experimental data result;
  • the optical power difference is estimated according to the first correspondence relationship to obtain a wavelength offset, which is a deviation value between the output wavelength and the target wavelength.
  • the laser estimates a target voltage value according to the wavelength offset and the second correspondence.
  • the second correspondence relationship is a correspondence relationship between the wavelength offset and the target voltage value, and the second correspondence relationship and the first correspondence relationship are both obtained by a large amount of experimental data; the laser offsets the wavelength according to the wavelength The second correspondence is estimated to obtain a target voltage value.
  • the laser corrects the output wavelength to the target wavelength by the target voltage value.
  • the laser when the laser determines the target voltage value, the laser changes the output wavelength to the target wavelength by the target voltage value based on the electro-optic effect.
  • the laser determines that the output wavelength is equal to the target wavelength.
  • this step is similar to step 106 above, and details are not described herein again.
  • the laser determines the wavelength offset by the target optical power difference and the first correspondence, and then the laser obtains the target voltage according to the wavelength offset and the second correspondence, and finally, based on the electro-optic effect.
  • the laser corrects the output wavelength to the target wavelength using the target voltage value, so that the embodiment of the present invention implements a wavelength locking function that locks the output wavelength to the target wavelength.
  • the wavelength locking method in the embodiment of the present invention can realize the wavelength locking function without using a polymer having a negative thermal coefficient, and does not require a plating process, thereby simplifying the laser preparation process and avoiding the thickness of the plating layer. The impact of performance.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or Some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种波长锁定方法及激光器,用于无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能。波长锁定方法包括:激光器获取与基准点对齐的目标波长作为输出波长(601),基准点为波长锁定标准件的周期性频谱内唯一与目标波长对应的波谷点,周期性频谱为不受温度变化影响的频谱;激光器通过检测输出波长确定实际光功率差值(602);激光器判断实际光功率差值是否等于最大光功率差值(603),最大光功率差值为与目标波长对应的功率值;若不等于,则激光器根据实际光功率差值与最大光功率差值确定波长偏移量(604),波长偏移量为受到温度变化影响的输出波长与目标波长之间的偏差值;激光器根据波长偏移量将输出波长修正至目标波长(605)。

Description

一种波长锁定方法及激光器 技术领域
本发明涉及光学领域,尤其涉及一种波长锁定方法及激光器。
背景技术
下一代数据中心或者运营商客户侧光模块需要的集成度更高、容量更大,这就要求同样宽度的波带内能容纳的波长数更多,波长通道之间的间隔更小。激光器产生的光波波长会随着温度变化而变化,因此保证激光器波长锁定是近年来光模块开发的研究热点。目前使用半导体制冷器的珀尔帖效应能消除波长随温度变化而变化的问题,但半导体材料伴随着成本升高和能耗增加,因此许多无致冷的方案被提出。其中较为广泛的方法是采用负热光系数材料,如聚合物、金属氧化物等,形成外腔抵消III-V激光器本身的正热光系数,达到总体的热平衡,实现锁定波长。
现有外腔激光器(英文全称:External Cavity Laser,英文简称:ECL)波长锁定方案技术方案中提出利用光纤布拉格光栅(英文全称:Fiber Bragg Grating,英文简称:FBG)同时作为发射器和滤波器;为保证激光器波长稳定,在FBG上镀一层负热光系数的高分子聚合物,抵消FBG本身正热光系数的影响;此外,在腔内加入一定厚度的高分子聚合物波导,抵消半导体光放大器(英文全称:Semiconductor Optical Amplifier,英文缩写:SOA)的正热光系数引起的腔长变化。通过这种方式,当温度变化时,ECL(包括III-V增益介质、FBG、以及谐振腔)的等效腔长没有变化,因此对应的谐振波长也不会变化,从而实现波长锁定功能。
在现有技术中,ECL中需要热光系数为负数的高分子聚合物,在ECL中的FBG上镀该高分子聚合物的工艺较为复杂,并且在该工艺中镀层的厚度难以精确控制,从而导致ECL的良品率低。
发明内容
本发明实施例提供了一种波长锁定方法及激光器,用于无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,简化ECL制备工艺,因此提高ECL的良品率。
本发明实施例的第一方面提供一种波长锁定方法,包括:
本发明实施例通过合理设计波长锁定基准件使得其周期性频谱不会随温度的变化而变化,该波长锁定基准件存在一个唯一的基准点;当进入该波长锁定基准件的波长与该基准点对齐时,激光器输出最大光功率差值;当上述实际光功率差值不是最大值时,则表明波长未对准该基准点,便需要对上述波长进行调节;调节时先通过实际光功率差值与最大值之间的差值来确定输出波长与目标波长之间的波长偏移量,进而再通过波长偏移量来将输出波长修正至目标波长,最终实现波长锁定功能。
从以上技术方案中可以看出,本发明实施例具有如下优点:
本发明实施例激光器通过对输出波长进行光功率检测,进而确定实际光功率差值和波长偏移量,最后激光器根据波长偏移量将输出波长调整至目标波长,从而将输出波长锁定为目标波长。可以理解的是,本发明实施例中无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,也无需镀层工艺因此简化了激光器的制备工艺,避免了镀层厚度对激光器性能的影响。
结合本发明实施例的第一方面,在本发明实施例的第一方面的第一种实现方式中,激光器通过检测所述输出波长确定实际光功率差值包括:
激光器有两个光功率输出端口分别输出第一光功率值和第二光功率值,该激光器通过对输出波长进行检测获取到上述两个光功率值,该第一光功率值和该第二光功率值分别为所述激光器两个不同检测端口检测到的光功率值;在获取到上述两个光功率值后进行减法计算得到实际光功率差值。
激光器通过合理的整体结构设计实现实际光功率差值检测功能,利用波长与能量之间的关系来获取实际光功率差值更加准确。
结合本发明实施例的第一方面的第一种实现方式,本发明实施例的第一方面的第二种实现方式中,激光器根据实际光功率差值与最大光功率差值确定波长偏移量包括:
激光器在检测出实际光功率差值后,将该实际光功率差值与已知的最大光功率差值进行比较得到两数值之差即目标光功率差值;再将该目标光功率差值代入到目标光功率差值与波长偏移量之间的对应关系即第一对应关系进行推导到的波长偏移量。
激光器进一步利用目标光功率差值以及第一对应关系推导出波长偏移量, 再次利用能量与波长之间的关系来对波长偏移量进行推导,使得该波长偏移量更加准确能进一步提高波长锁定效果。
结合本发明实施例的第一方面的第二种实现方式,在本发明实施例的第一方面的第三种实现方式中,激光器根据波长偏移量将输出波长修正至目标波长包括:
激光器首先根据波长偏移量对算出目标电压值,然后控制该激光器给自身增加电压值为该目标电压值大小的电压,通过电光效应来将输出波长修正至目标波长。
激光器通过对自身施加电压导致发生电光效应,从而实现修正输出波长至目标波长的功能,电光效应是目前使用较多、较为成熟的技术,因此可以有效地较少修正误差,提高波长锁定效率。
结合本发明实施例的第一方面、本发明实施例的第一方面的第一种实现方式至本发明实施例的第一方面的第三种实现方式中任一项,在本发明实施例的第一方面的第四种实现方式中,在激光器判断实际光功率差值是否等于最大光功率差值之后还包括:
若实际光功率差值是等于最大光功率差值,则激光器确定输出波长与目标波长相等,无需进行波长调节。
当激光器确定输出波长与目标波长相等时,则激光器确定波长随温度基本没有变化无需进行波长调节,使得激光器可以在确定不需要调节的时候就不调节,功能更加完善。
本发明实施例的第二方面提供了一种激光器,包括:
激光增益芯片、分布式布拉格反射器、波长锁定标准件、反馈控制系统和修正单元;
所述分布式布拉格反射器与所述波长锁定标准件相连接,所述反馈控制系统与所述波长锁定标准件相连接,所述修正单元与所述反馈控制系统相连接;
所述激光增益芯片和所述分布式布拉格反射器连接,用于获取与基准点对齐的目标波长作为输出波长,所述基准点为所述波长锁定标准件的周期性频谱内唯一与所述目标波长对应的波谷点,所述周期性频谱为不受温度变化影响的频谱;
所述波长校准件,用于通过检测所述输出波长确定实际光功率差值;
所述反馈控制系统,用于当所述实际光功率差值不等于最大光功率差值时,根据所述实际光功率差值与所述最大光功率差值确定波长偏移量,所述波长偏移量为受到温度变化影响的所述输出波长与目标波长之间的偏差值,所述所述最大光功率差值为当所述目标波长与所述基准点对齐时的功率差值;
所述修正单元,用于根据所述波长偏移量将所述输出波长修正至所述目标波。
从以上技术方案中可以看出,本发明实施例具有如下优点:
本发明实施例第一确定模块通过对输出波长进行光功率检测确定实际光功率差值,当实际光功率差值与最大光功率差不相等时,第二确定模块根据该实际光功率差值与该最大光功率差值确定波长偏移量,修正模块根据波长偏移量将输出波长调整至目标波长,从而实现激光器对输出波长锁定为目标波长的功能。可以理解的是,本发明实施例中无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,也无需镀层工艺因此简化了激光器的制备工艺,避免了镀层厚度对激光器性能的影响。
结合本发明实施例的第二方面,在本发明实施例的第二方面的第一种实现方式中,波长校准件包括马赫曾德尔干涉仪、第一光功率探测器和第二光功率探测器。
通过合理的设计,马赫曾德尔干涉仪中的周期性频谱不会随温度变化,使得使用马赫曾德尔干涉仪作为波长校准件可以实现波长锁定。
结合本发明实施例的第二方面的第一种实现方式,在本发明实施例的第二方面的第二种实现方式中,激光器还包括:
功分器,所述功分器连接于所述分布式布拉格反射器和所述马赫曾德尔干涉仪之间;
所述功分器,用于将所述目标波长的光波分为第一路光波和第二路光波,并将所述第一路光波输入至所述马赫曾德尔干涉仪。
功分器将目标波长的光波分为第一路光波和第二路光波,并将第一路光波输入至马赫曾德尔干涉仪进行对目标波长的检测。
结合本发明实施例的第二方面的第二种实现方式,在本发明实施例的第二 方面的第三种实现方式中,激光器还包括:
光栅耦合器,所述光栅耦合器与所述功分器相连接;
所述光栅耦合器,用于输出所述第二路光波。
光栅光栅耦合器能将目标波长的第二路光波准确的输出。
结合本发明实施例的第二方面的第一种实现方式,在本发明实施例的第二方面的第四种实现方式中,激光器还包括:
电子减法器,所述电子减法器的两输入端分别连接于所述第一光功率探测器和所述第二光功率探测器,所述电子减法器的输出端连接于所述反馈控制系统;
所述电子减法器,用于对第一光功率值和第二光功率值进行计算得到所述实际光功率值,所述第一光功率值与所述第一光功率探测器对应,所述第二光功率值与所述第二光功率探测器对应。
电子减法器将第一光功率值减去第二光功率值得到实际光功率差值,使得激光器能够更加准确的检测出实际光功率差值,提高激光器的波长锁定能力。
附图说明
图1为激光器的基本结构示意图;
图2为本发明实施例中激光器的一个实施例示意图;
图3为本发明实施例中激光器的另一个实施例示意图;
图4(a)为本发明实施例中激光器的一个工作原理示意图;
图4(b)为本发明实施例中激光器的另一个工作原理示意图;
图5(a)为本发明实施例中马赫曾德尔干涉仪的结构示意图;
图5(b)为本发明实施例中马赫曾德尔干涉仪的光频谱示意图;
图6为本发明实施例中波长锁定方法的一个实施例示意图;
图7为本发明实施例中波长锁定方法的另一个实施例示意图。
具体实施方式
本发明实施例提供了一种波长锁定方法及激光器,用于无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,简化ECL制备工艺,因此提高ECL的良品率。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第 三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前激光器的结构如图1所示,激光器包括谐振腔101、控制器102、半导体致冷器103和发射器104;其中谐振腔101用于通过谐振现象产生不同波长的光波,控制器102用于从谐振腔101产生的不同波长的光波中选择出波长满足需要的理想光波,发射器104用于将控制器102选择出的理想光波输出至该激光器之外,由于激光器所处的环境温度会发生变化从而影响光波的波长发生变化,半导体致冷器103具有致冷功能用于补偿环境温度变化保证谐振腔101产生的光波的波长基本不发生变化,从而保证控制器102选择并由发射器104输出的理想光波的波长偏移量保持在预设范围内。
为了便于更好地理解本发明实施例,下面从以下方面来对本发明实施例中激光器进行描述。
请参阅图2对本发明实施例中一种激光器进行详细说明,包括:
获取模块201、第一确定模块202、判断模块203、第二确定模块204和修正模块205;
上述各模块分别用于执行以下功能:
获取模块201,用于获取与基准点对齐的目标波长作为输出波长,该基准点为波长锁定标准件的周期性频谱内唯一与该目标波长对应的波谷点,该周期性频谱为不受温度变化影响的频谱;
第一确定模块202,用于通过检测所述输出波长确定实际光功率差值;
判断模块203,用于判断该实际光功率差值是否等于最大光功率差值,该最大光功率差值为与该目标波长对应的功率值;
第二确定模块204,用于若不等于,则根据该实际光功率差值与该最大光功率差值确定波长偏移量,该波长偏移量为受到温度变化影响的该输出波长与 目标波长之间的偏差值;
修正模块205,用于根据该波长偏移量将该输出波长修正至该目标波长。
本实施例中,需要说明的是,获取模块201包括激光增益芯片和分布式布拉格反射器,由激光增益芯片和分布式布拉格反射器连接而成;第一确定模块202具体可包括波长校准件;判断模块203和第二确定模块204的功能具体可由反馈控制系统实现;修正模块205具体可包括移相器、微环和微加热器。
本实施例中,第一确定模块202输出波长进行光功率检测确定实际光功率差值,当实际光功率差值与最大光功率差不相等时,第二确定模块204实际光功率差值与该最大光功率差值确定波长偏移量,修正模块205偏移量将输出波长调整至目标波长,从而实现激光器对输出波长锁定为目标波长的功能。
上述实施例对本发明实施例中激光器进行了说明,下面对本发明实施例中激光器的一种最优选的实施例进行详细说明,请参阅图3,包括:
激光增益芯片301、电子减法器312、反馈控制系统313和无源集成芯片30;
其中,无源集成芯片30包括第一微加热器302、移相器303、微环304、第二微加热器305、分布式布拉格反射器306、功分器307、光栅耦合器308、马赫曾德尔干涉仪309、第一光光功率探测器310和第二光光功率探测器311;
激光增益芯片301与无源集成芯片30通过波导耦合连接;
其中,无源集成芯片30中的组成连接关系如下:
第一微加热器302与移相器303相连,微环304与第二微加热器305相连,分布式布拉格反射器306与功分器307相连,功分器307分别与光栅耦合器308和马赫曾德尔干涉仪309相连,马赫曾德尔干涉仪309分别与第一光光功率探测器310和第二光光功率探测器311相连;
电子减法器312分别与第一光光功率探测器310和第二光光功率探测器311相连,电子减法器312与反馈控制系统313相连;
反馈控制系统313分别与第一微加热器302和第二微加热器305相连。
此外,本发明实施例中,激光增益芯片301可以是量子阱结构或是量子点结构,无源集成芯片30可以是基于硅平台或是氮化硅平台;激光增益芯片301的一端镀上一层反射膜实现100%全反射,激光增益芯片301的另一端与无源 集成芯片30通过波导耦合连接;其中,无源集成芯片30中,分布式布拉格反射器306用于提供预设比例的反射端面,上述预设比例可以在0~1之间变动,分布式布拉格反射器306与激光增益芯片301的全反射端口一起形成谐振腔,谐振腔中会产生多纵模,该多纵膜的包络线为激光增益芯片301的增益谱,移相器303通过第一微加热器302加热实现控制谐振腔的等效腔长的功能,微环304通过第二微加热器305加热实现从多纵模中选择出目标波长的光波,第一微加热器302和第二微加热器305的功耗均在μW级,目标波长的光波经分布式布拉格反射器306反射至功分器307,功分器307将上述光波分为两路,一路作为输出光波经光栅耦合器308作为最终输出,另一路输入至马赫曾德尔干涉仪309实现光功率检测。
如图3所示的实施例中获取模块可具体包括激光增益芯片301、第一微加热器302、移相器303、微环304、第二微加热器305、分布式布拉格反射器306、功分器307和光栅耦合器308;第一确定模块可具体包括马赫曾德尔干涉仪309、第一光光功率探测器310、第二光光功率探测器311和电子减法器312;判断模块和第二确定模块均可具体为反馈控制系统313;修正模块可具体包括反馈控制系统313、第一微加热器302、移相器303、微环304和第二微加热器305。
激光器的具体工作原理图如图4(a)和图4(b)所示,图4(a)为环境温度不变化时激光器的波长与功率关系图,图4(b)为环境温度变化时激光器的波长与功率关系图。
如图4(a)所示,当激光增益芯片301的全反射端面和分布式布拉格反射器306的反射端面不受带宽影响时,谐振腔产生多个多纵模并且该多多个多纵模的包络为激光增益芯片301的增益谱。激光器通过分布式布拉格反射器306的选择性反射(图中曲线1)以及微环谐振峰的精确选模(图中曲线2)将单个波长从多个多纵模中选出,当选出的单个波长等于目标波长时,目标波长的一部分光波由功分器307和光栅耦合器308输出,目标波长的另一部分光波通过功分器307进入马赫曾德尔干涉仪309,目标波长与第一光光功率探测器310的输出频谱(图中曲线3)的波谷点重合,此时第一光光功率探测器310输出的第一光功率值P1最小,同时该目标波长与第二光光功率探测器311的 输出频谱(图中曲线4)的波峰点重合,此时第二光光功率探测器311输出的第二光功率值P2最大,因此第一光光功率探测器310和第二光光功率探测器311输出的功率差值最大为最大光功率差值(P1-P2)。
如图4(b)所示,需要说明的是图4(b)只表示出环境温度上升时的示意图,而环境温度下降时的示意图与图4(b)类似,此处不再赘述。当环境温度上升/下降时,激光增益芯片301的增益谱右移/左移,微环微环304的谐振峰与分布式布拉格反射器306的反射谱也右移/左移,因此,选出的单个波长与目标波长发生了偏离,两者波长之间存在波长偏移量。由于马赫曾德尔干涉仪309的频谱曲线不随温度的变化而变化,由功分器307进入马赫曾德尔干涉仪309的单个波长与第一光光功率探测器310输出频谱中的波谷点偏离导致第一光功率值P1变大,同时该单个波长与第二光光功率探测器311输出频谱中的波峰点也发生偏离导致第二光功率值P2变小,因此,此时第一光光功率探测器310和第二光功率探测器311输出的实际光功率差值小于最大光功率差值。激光器根据第一光功率探测器310和第二光功率探测器311输出的光功率值的变化利用电子减法器312计算出实际光功率差值和最大光功率差值之间的功率差值即目标光功率差值,反馈控制系统313通过目标光功率差值和波长偏移量的对应关系(电压功耗为0.2μW时对应的波长移动步长为0.001nm)将目标波长和单个波长即输出波长之间的波长偏移量推算出来,然后,反馈控制系统313通过波长偏移量和目标电压值之间的对应关系(波长移动步长为0.001nm时对应的电压功耗为0.2μW,然后通过第一微加热器302或第二微加热器305的电阻值计算出步长电压)分别将第一微加热器302对应的第一目标电压值和第二微加热器305对应的第二目标电压值推算出来,反馈控制系统313通过给第一微加热器302施加大小为第一目标电压值的电压调节微环304的谐振峰以及反馈控制系统313通过给第二微加热器305施加大小为第二目标电压值的电压调节移相器303的相位,从而微环304选出的单个波长重新与马赫曾德尔干涉仪309的基准点即第一光功率探测器310输出频谱的波谷点对齐使得单个波长等于目标波长,最终实现将输出波长即单个波长锁定为目标波长的波长锁定功能。
需要说明的是,本发明实施例中马赫曾德尔干涉仪309作为波长锁定标准 件,其频谱不随温度的变化而变化,马赫曾德尔干涉仪309的结构如图5(a)所示。两臂波导的长度和宽度都不相同,宽波导的臂长大于窄波导的臂长。当温度变化时,宽波导的等效折射率随温度变化的偏导值小于窄波导的对应值。两臂的相位变化等于该偏导值乘以臂长。通过合理设计,可以使得两臂的相位随温度变化的改变值相等,马赫曾德尔干涉仪309的周期性频谱就基本不会随温度变化。
另外,马赫曾德尔干涉仪309的光谱示意图如图5(b)所示。本实施例中,马赫曾德尔干涉仪309设计成具有两个输出端口,分别为定义为第一端口和第二端口。当激光器开始工作时,通过给第一微加热器302加电压控制移相器303和通过给第二微加热器305加电压控制微环304来选择想要的目标波长,并使该目标波长对准马赫曾德尔干涉仪309的destructive端口输出频谱的波谷点。通过设计分布式布拉格反射器306的结构,使其反射频谱3dB带宽小于等于马赫曾德尔干涉仪309频谱的一个自由频谱范围(FSR),并且当该自由频谱范围随温度变化左右移动(+/-2.8nm,对应0-70度温度变化)时,分布式布拉格反射器306的反射频谱带宽(>5.6nm)依然可以覆盖该波谷点。这样,该反射频谱的3dB带宽内包含的马赫曾德尔干涉仪309波谷点只有一个,该波谷点作为波长锁定的基准点。当激光器的目标波长对准该基准点时,马赫曾德尔干涉仪309的第一端口输出功率最大,第二端口输出功率最小。第一端口和第二端口分别接相应的第一光功率探测器310和第二光功率探测器311。当两个监控探测器的功率差值最大时,说明目标波长对准基准点,完成波长锁定。
本发明实施例中激光器通过马赫曾德尔干涉仪309、第一光光功率探测器310和第二光光功率探测器311对输出波长进行光功率检测,进而电子减法器312确定实际光功率差值和波长偏移量,最后反馈控制系统313根据波长偏移量将输出波长调整至目标波长,从而激光器将输出波长锁定为目标波长。可以理解的是,本发明实施例中无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,也无需镀层工艺因此简化了激光器的制备工艺,避免了镀层厚度对激光器性能的影响。
上述实施例对本发明实施例中激光器进行了说明,下面将对本发明实施例 中波长锁定方法进行说明。
请参阅图6对本发明实施例中一种波长锁定方法进行详细描述,包括:
601、激光器获取与基准点对齐的目标波长作为输出波长。
本实施例中,激光器先确定目标波长,然后激光器将该目标波长与基准点对齐,该基准点为波长锁定标准件的周期性频谱内唯一与该目标波长对应的波谷点。如图5(a)所示,根据臂长与偏导值之积等于相位变化这一对应关系对臂1和臂2的臂长关系进行合理设计后,在波长锁定标准件中,波长锁定标准件的周期性频谱不随温度的变化而变化,这一特性为实现波长锁定功能奠定了基础,激光器可以将与基准点对齐的目标波长做为输出波长输出。
602、激光器通过检测输出波长确定实际光功率差值。
本实施例中,激光器通过对输出光波的输出波长进行检测,进而激光器确定输出波长对应的实际光功率差值。
603、激光器判断实际光功率差值是否等于最大光功率差值,若等于,则执行步骤606;若不等于,则执行步骤604。
本实施例中,与基准点对应的目标波长是与最大光功率差值对应的,在激光器确定输出波长对应的实际光功率差值之后,激光器将实际光功率差值和最大光功率差值进行比较,当实际光功率差值等于最大光功率差值时,激光器执行步骤606;当实际光功率差值不等于最大光功率差值时,激光器执行步骤604。
604、激光器根据实际光功率差值与最大光功率差值确定波长偏移量。
本实施例中,当实际光功率差值不等于最大光功率差值时,激光器根据实际光功率差值与最大光功率差值确定输出波长与目标波长之间的波长偏移量。
605、激光器根据波长偏移量将输出波长修正至目标波长。
本实施例中,在激光器确定出输出波长与目标波长之间的波长偏移量之后,激光器通过相应的调节对波长偏移量进行补偿使得输出波长变为与目标波长相等。
606、激光器确定输出波长与目标波长相等。
本实施例中,当实际光功率差值等于最大光功率差值时,激光器确定输出波长与目标波长相等,此时输出波长已为目标波长,无需对输出波长在进行补 偿。
本实施例中,激光器通过合理设计选择出与基准点对齐的目标波长,基准点所在的频谱不会随着温度的变化而变化从而基准点不会随温度变化;通过确定输出波长对应的实际光功率差值和目标波长对应的最大光功率差值之后,当实际光功率差值不等于最大光功率差值时,激光器根据上述两光功率差值之间的差值确定出输出波长与目标波长之间的波长偏移量,最后,激光器按照波长偏移量对输出波长进行补偿使得输出波长等于目标波长,从而实现将输出波长锁定至目标波长的功能。可以理解的是,本发明实施例中波长锁定方法无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,也无需镀层工艺因此简化了激光器的制备工艺,避免了镀层厚度对激光器性能的影响。
请参阅图7对本发明实施例中波长锁定方法进行详细描述,包括:
701、激光器获取与基准点对齐的目标波长作为输出波长。
本实施例中,此步骤与上述步骤101类似,此处不再赘述。
702、激光器通过检测输出波长获取第一光功率值和第二光功率值。
本发明实施例中,激光器的输出波长一部分作为最终输出,另一部分经过激光器的检测,激光器通过对输出波长进行检测之后获取到第一光功率值和第二光功率值。
703、激光器对第一光功率值和第二光功率值进行计算得到实际光功率差值。
本实施例中,当激光器获取到第一光功率值和第二光功率值时,激光器使用第一光功率值减去第二光功率值得到实际光功率差值,该实际光功率差值与输出波长相对应。
704、激光器判断实际光功率差值是否等于最大光功率差值,若等于,则执行步骤705;若不等于,则执行步骤709。
本实施例中,此步骤与上述步骤103类似,此处不再赘述。
705、激光器通过对实际光功率差值和最大光功率差值进行计算得到目标光功率差值。
本实施例中,当激光器通过计算得到实际光功率差值之后,激光器再次利用最大光功率差值减去实际光功率差值得到目标光功率差值,该最大光功率差 值与目标波长相对应。
706、激光器通过目标光功率差值和第一对应关系推算出波长偏移量。
本实施例中,第一对应关系为目标光功率差值与波长偏移量之间的对应关系,第一对应关系可以通过对激光器进行大量实验并对实验数据结果进行统计得出;激光器将目标光功率差值按照第一对应关系进行推算得到波长偏移量,该波长偏移量为输出波长与目标波长之间的偏差值。
707、激光器根据波长偏移量和第二对应关系推算出目标电压值。
本实施例中,第二对应关系为波长偏移量至目标电压值的对应关系,第二对应关系与上述第一对应关系两种均可以通过大量的实验数据得到;激光器将波长偏移量按照第二对应关系进行推算得到目标电压值。
708、激光器通过目标电压值将输出波长修正至目标波长。
本实施例中,当激光器确定出目标电压值时,在电光效应的基础上,激光器通过目标电压值将输出波长改变至目标波长。
709、激光器确定输出波长与目标波长相等。
本实施例中,此步骤与上述步骤106类似,此处不再赘述。
本发明实施例中,激光器通过目标光功率差值和第一对应关系确定波长偏移量,然后,激光器根据波长偏移量和第二对应关系得到目标电压值,最后,在电光效应的基础上,激光器利用目标电压值将输出波长修正至目标波长,从而本发明实施例实现了将输出波长锁定为目标波长的波长锁定功能。可以理解的是,本发明实施例中波长锁定方法无需使用热光系数为负数的高分子聚合物便能实现波长锁定功能,也无需镀层工艺因此简化了激光器的制备工艺,避免了镀层厚度对激光器性能的影响。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或 一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种波长锁定方法,其特征在于,包括:
    激光器获取与基准点对齐的目标波长作为输出波长,所述基准点为波长锁定标准件的周期性频谱内唯一与所述目标波长对应的波谷点,所述周期性频谱为不受温度变化影响的频谱;
    所述激光器通过检测所述输出波长确定实际光功率差值;
    所述激光器判断所述实际光功率差值是否等于最大光功率差值,所述最大光功率差值为当所述目标波长与所述基准点对齐时的功率差值;
    若不等于,则所述激光器根据所述实际光功率差值与所述最大光功率差值确定波长偏移量,所述波长偏移量为受到温度变化影响的所述输出波长与目标波长之间的偏差值;
    所述激光器根据所述波长偏移量将所述输出波长修正至所述目标波长。
  2. 根据权利要求1所述的波长锁定方法,其特征在于,所述激光器通过检测所述输出波长确定实际光功率差值包括:
    所述激光器通过检测所述输出波长获取第一光功率值和第二光功率值,所述第一光功率值和所述第二光功率值分别为所述激光器两个不同检测端口检测到的光功率值;
    所述激光器对所述第一光功率值与所述第二光功率值进行计算得到所述实际光功率差值。
  3. 根据权利要求2中所述的波长锁定方法,其特征在于,所述激光器根据所述实际光功率差值与所述最大光功率差值确定波长偏移量包括:
    所述激光器通过对所述实际光功率差值和所述最大光功率差值进行计算得到目标光功率差值;
    所述激光器通过所述目标光功率差值和第一对应关系推算出所述波长偏移量,所述第一对应关系为所述目标光功率差值和所述波长偏移量的对应关系。
  4. 根据权利要求3所述的波长锁定方法,其特征在于,所述激光器根据所述波长偏移量将所述输出波长修正至所述目标波长包括:
    所述激光器根据所述波长偏移量和第二对应关系推算出目标电压值,所述 第二对应关系为波长偏移量和目标电压值的对应关系;
    所述激光器通过所述目标电压值将所述输出波长修正至所述目标波长。
  5. 根据权利要求1至4中任一项所述的波长锁定方法,其特征在于,在所述激光器判断所述实际光功率差值是否等于最大光功率差值之后还包括:
    若等于,则所述激光器确定所述输出波长与所述目标波长相等。
  6. 一种激光器,其特征在于,包括:
    激光增益芯片、分布式布拉格反射器、波长锁定标准件、反馈控制系统和修正单元;
    所述分布式布拉格反射器与所述波长锁定标准件相连接,所述反馈控制系统与所述波长锁定标准件相连接,所述修正单元与所述反馈控制系统相连接;
    所述激光增益芯片和所述分布式布拉格反射器连接,用于获取与基准点对齐的目标波长作为输出波长,所述基准点为所述波长锁定标准件的周期性频谱内唯一与所述目标波长对应的波谷点,所述周期性频谱为不受温度变化影响的频谱;
    所述波长校准件,用于通过检测所述输出波长确定实际光功率差值;
    所述反馈控制系统,用于当所述实际光功率差值不等于最大光功率差值时,根据所述实际光功率差值与所述最大光功率差值确定波长偏移量,所述波长偏移量为受到温度变化影响的所述输出波长与目标波长之间的偏差值,所述所述最大光功率差值为当所述目标波长与所述基准点对齐时的功率差值;
    所述修正单元,于根据所述波长偏移量将所述输出波长修正至所述目标波。
  7. 根据权利要求6所述的的激光器,其特征在于,所述波长校准件包括马赫曾德尔干涉仪、第一光功率探测器和第二光功率探测器。
  8. 根据权利要求7所述的激光器,其特征在于,所述激光器还包括:
    功分器,所述功分器连接于所述分布式布拉格反射器和所述马赫曾德尔干涉仪之间;
    所述功分器,用于将所述目标波长的光波分为第一路光波和第二路光波,并将所述第一路光波输入至所述马赫曾德尔干涉仪。
  9. 根据权利要求8所述的激光器,其特征在于,所述激光器还包括:
    光栅耦合器,所述光栅耦合器与所述功分器相连接;
    所述光栅耦合器,用于输出所述第二路光波。
  10. 根据权利要求7所述的激光器,其特征在于,所述激光器还包括:
    电子减法器,所述电子减法器的两输入端分别连接于所述第一光功率探测器和所述第二光功率探测器,所述电子减法器的输出端连接于所述反馈控制系统;
    所述电子减法器,用于对第一光功率值和第二光功率值进行计算得到所述实际光功率值,所述第一光功率值与所述第一光功率探测器对应,所述第二光功率值与所述第二光功率探测器对应。
PCT/CN2016/108830 2016-12-07 2016-12-07 一种波长锁定方法及激光器 WO2018103004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/108830 WO2018103004A1 (zh) 2016-12-07 2016-12-07 一种波长锁定方法及激光器
CN201680089608.3A CN109792131B (zh) 2016-12-07 2016-12-07 一种波长锁定方法及激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108830 WO2018103004A1 (zh) 2016-12-07 2016-12-07 一种波长锁定方法及激光器

Publications (1)

Publication Number Publication Date
WO2018103004A1 true WO2018103004A1 (zh) 2018-06-14

Family

ID=62490756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108830 WO2018103004A1 (zh) 2016-12-07 2016-12-07 一种波长锁定方法及激光器

Country Status (2)

Country Link
CN (1) CN109792131B (zh)
WO (1) WO2018103004A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220085575A1 (en) * 2020-09-17 2022-03-17 Inphi Corporation Silicon-photonics-based semiconductor optical amplifier with n-doped active layer
WO2024031764A1 (zh) * 2022-08-12 2024-02-15 武汉光迅科技股份有限公司 波的偏移量的确定方法、装置、设备和存储介质
WO2024103573A1 (zh) * 2022-11-18 2024-05-23 青岛海信宽带多媒体技术有限公司 光模块

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448758B (zh) * 2019-09-03 2024-04-12 华为技术有限公司 一种波长调节方法以及相关设备
CN113922915B (zh) * 2021-09-03 2023-05-23 烽火通信科技股份有限公司 Dml光模块波长自动纠偏方法、dml光模块及dwdm系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039421A1 (en) * 2004-08-11 2006-02-23 Rong Huang Thermally Tunable Laser with Single Solid Etalon Wavelength Locker
CN101247199A (zh) * 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
CN101282179A (zh) * 2008-05-27 2008-10-08 中兴通讯股份有限公司 光发射机输出波长锁定方法及系统
CN101888269A (zh) * 2010-04-15 2010-11-17 烽火通信科技股份有限公司 Wdm-tdma混合pon系统中光发送机在突发模式下稳定波长的方法
US20130182729A1 (en) * 2012-01-12 2013-07-18 Mars Technology Wavelength locker design for precise channel locking of a widely tunable laser
CN103954354A (zh) * 2014-04-03 2014-07-30 北京大学 量子标准激光功率计及激光功率测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611750B2 (en) * 2009-10-14 2013-12-17 Futurewei Technologies, Inc. Wavelength locker for simultaneous control of multiple dense wavelength division multiplexing transmitters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039421A1 (en) * 2004-08-11 2006-02-23 Rong Huang Thermally Tunable Laser with Single Solid Etalon Wavelength Locker
CN101247199A (zh) * 2007-02-13 2008-08-20 华为技术有限公司 波长漂移检测装置、波长锁定系统及其方法
CN101282179A (zh) * 2008-05-27 2008-10-08 中兴通讯股份有限公司 光发射机输出波长锁定方法及系统
CN101888269A (zh) * 2010-04-15 2010-11-17 烽火通信科技股份有限公司 Wdm-tdma混合pon系统中光发送机在突发模式下稳定波长的方法
US20130182729A1 (en) * 2012-01-12 2013-07-18 Mars Technology Wavelength locker design for precise channel locking of a widely tunable laser
CN103954354A (zh) * 2014-04-03 2014-07-30 北京大学 量子标准激光功率计及激光功率测量方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220085575A1 (en) * 2020-09-17 2022-03-17 Inphi Corporation Silicon-photonics-based semiconductor optical amplifier with n-doped active layer
US11929592B2 (en) * 2020-09-17 2024-03-12 Marvell Asia Pte Ltd. Silicon-photonics-based semiconductor optical amplifier with N-doped active layer
WO2024031764A1 (zh) * 2022-08-12 2024-02-15 武汉光迅科技股份有限公司 波的偏移量的确定方法、装置、设备和存储介质
WO2024103573A1 (zh) * 2022-11-18 2024-05-23 青岛海信宽带多媒体技术有限公司 光模块

Also Published As

Publication number Publication date
CN109792131A (zh) 2019-05-21
CN109792131B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2018103004A1 (zh) 一种波长锁定方法及激光器
US9653882B1 (en) Wavelength control of an external cavity laser
US10224695B2 (en) Method and system for producing wavelength-stabilized light
KR20210125102A (ko) 실리콘 포토닉 외부 캐비티 가변 레이저의 파장 제어 방법
US8670470B2 (en) Tunable Laser
US20110085572A1 (en) Method and system for hybrid integration of a tunable laser
Lee et al. Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/III-V hybrid laser
US20170324218A1 (en) External cavity laser with reduced optical mode-hopping
JP2019503080A (ja) デュアルリングレーザの波長制御
US20180172907A1 (en) Arrayed waveguide grating based hybrid integrated laser having adjustable external cavity
US9509119B2 (en) Tunable laser with a cascaded filter and comb reflector
CN103633547B (zh) 波长可调谐外腔激光器
WO2005099421A2 (en) Monolithic wavelength stabilized asymmetric laser
CN105762635B (zh) 一种可调光模块的波长控制装置及方法
US10003173B2 (en) Widely tunable laser control
JP5258505B2 (ja) 縦続接続エタロンを使用した連続的に同調可能な光学分散補償合成装置
JP2019140304A (ja) 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法
CN103682978A (zh) 光调制器的制造方法以及光调制器
WO2016169007A1 (zh) 一种波长锁定器、波长锁定方法和装置
US20190052054A1 (en) Laser arrangement, method for controlling laser and measuring method
WO2018103104A1 (zh) 跟踪光波长的装置和方法
WO2017121358A1 (zh) 一种可调激光器及其控制方法
Hu et al. High power, high SMSR and wide tuning range silicon micro-ring tunable laser
US9407061B2 (en) Tunable light source
JP7433958B2 (ja) レーザ装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923495

Country of ref document: EP

Kind code of ref document: A1