WO2017121358A1 - 一种可调激光器及其控制方法 - Google Patents

一种可调激光器及其控制方法 Download PDF

Info

Publication number
WO2017121358A1
WO2017121358A1 PCT/CN2017/070997 CN2017070997W WO2017121358A1 WO 2017121358 A1 WO2017121358 A1 WO 2017121358A1 CN 2017070997 W CN2017070997 W CN 2017070997W WO 2017121358 A1 WO2017121358 A1 WO 2017121358A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
electrical signal
semiconductor material
driving condition
doped semiconductor
Prior art date
Application number
PCT/CN2017/070997
Other languages
English (en)
French (fr)
Inventor
贺继方
陈宏民
雷红兵
沈晓安
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17738171.2A priority Critical patent/EP3392986B1/en
Publication of WO2017121358A1 publication Critical patent/WO2017121358A1/zh
Priority to US16/034,471 priority patent/US10581222B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1209Sampled grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures

Definitions

  • Embodiments of the present invention relate to the field of optoelectronic products, and in particular, to a tunable laser and a control method thereof.
  • a tunable laser refers to a laser that can continuously change the wavelength of the laser output within a certain range.
  • the tunable laser is mainly used for coherent modulated optical transmission, and coherent modulated optical transmission has become the mainstream scheme for long-distance optical transmission at 100G and above.
  • the tunable semiconductor laser based on semiconductor technology has the advantages of small size and high integration.
  • the tunable semiconductor laser is a mainstream product in the field of tunable lasers.
  • the reflectivity of the mirror of the tunable semiconductor laser is adjustable, and the reflectivity of the mirror can be changed by adjusting the driving condition of the mirror, and the driving condition of the mirror is fixedly set according to the target wavelength, but with the working years or work
  • the change in the environment, the relationship between the driving conditions of the mirror and the reflectivity of the mirror may vary, resulting in degradation of the performance of the tunable laser.
  • Embodiments of the present invention provide a tunable laser and a control method thereof for solving the performance degradation problem of the tunable laser in the prior art.
  • an embodiment of the present invention provides a tunable laser, including a first mirror, a second mirror, a phase adjustment area, a gain area, a first detector, a second detector, and a controller, wherein: a phase adjustment region is located between the first mirror and the gain region, the gain region is located between the phase adjustment region and the second mirror, and a reflectivity of the first mirror is adjustable, The reflectivity of the second mirror is adjustable; the first detector is configured to convert an optical signal of the first mirror into a first electrical signal; and the second detector is configured to use the second mirror Converting the optical signal into a second electrical signal; the controller is configured to adjust a reflectivity of the first mirror and a reflectivity of the second mirror according to the first electrical signal and the second electrical signal At least one of them.
  • the controller is specifically configured to adjust the first mirror according to a comparison result of the first electrical signal and the second electrical signal At least one of a reflectance and a reflectance of the second mirror.
  • the controller is specifically configured to use, according to the current value of the first electrical signal, the second A ratio of current values of the signals adjusts at least one of a reflectivity of the first mirror and a reflectivity of the second mirror.
  • the reflectance of the mirror can be adjusted quickly and easily by the ratio of the current values.
  • the controller is specifically configured to use, according to the voltage value of the first electrical signal, the second A ratio of voltage values of the signals adjusts at least one of a reflectivity of the first mirror and a reflectance of the second mirror.
  • the ratio of the voltage values can be Adjust the reflectivity of the mirror quickly and easily.
  • the controller is further configured to control at least one of a phase of the phase adjustment region and a gain of the gain region.
  • the controller is further configured to control at least one of a phase of the phase adjustment region and a gain of the gain region.
  • the tunable laser is a tunable semiconductor laser
  • the first mirror comprises: an N-type doped semiconductor material layer; intrinsic doping a layer of semiconductor material overlying the layer of N-doped semiconductor material; a layer of P-type doped semiconductor material overlying the layer of intrinsically doped semiconductor material.
  • the mirror structure realized by the N-type doped semiconductor material layer, the intrinsic doped semiconductor material layer, and the P-type doped semiconductor material layer is simple and easy to implement.
  • the intrinsically doped semiconductor material layer comprises a waveguide
  • the P-type doped semiconductor material layer comprises a grating structure.
  • the transmission of light can be restricted by the waveguide of the intrinsically doped semiconductor material layer, and the reflection function of the mirror can be effectively realized by the grating structure of the P-type doped semiconductor material layer.
  • the first detector comprises: an N-type doped semiconductor material layer; intrinsic doping a layer of hetero semiconductor material on top of the N-type doped semiconductor material layer; a P-type doped semiconductor material layer on top of the intrinsically doped semiconductor material layer; a metal layer on the P-type doped semiconductor Above the layer of material, the first detector converts the optical signal of the intrinsically doped semiconductor material layer into a first electrical signal of the metal layer.
  • the N-type doped semiconductor material layer, the intrinsically doped semiconductor material layer, the P-type doped semiconductor material layer and the metal layer can form a photodiode, so that the first point signal can be output through the metal layer, thereby detecting the intrinsic doping
  • the first mirror and the first detector share the same N-type doped semiconductor material layer An intrinsically doped semiconductor material layer and a P-type doped semiconductor material layer.
  • the first mirror and the first detector share the same PN junction, the process is simple, the difficulty of the manufacturing process is greatly reduced, and the laser chip area is not increased, which is in line with the high integration trend of the optical device.
  • the first mirror further includes an insulating dielectric layer and a heating layer, where the insulating dielectric layer is located Above the metal layer, the heating layer is located above the insulating dielectric layer, and the heating layer is used to control the reflectivity of the first mirror.
  • the reflection rate of the first mirror can be precisely controlled by the heating layer, and the insulating dielectric layer between the metal layer and the heating layer can effectively avoid signal crosstalk and ensure stable operation of the detector.
  • the first optical splitter is further included between the first detector and the first mirror.
  • the splitting is realized by the beam splitter so that the laser output from the first mirror end can be prevented.
  • an embodiment of the present invention provides a method for controlling a tunable laser, comprising: setting a driving condition of a first mirror and a driving condition of a second mirror according to a target wavelength, driving conditions of the first mirror and The reflectivity of the first mirror is related, the driving condition of the first mirror is related to the reflectivity of the second mirror; and the optical signal of the first mirror is converted into a first electrical signal, Converting an optical signal of the second mirror into a second electrical signal; adjusting a driving condition of the first mirror and a driving condition of the second mirror according to the first electrical signal and the second electrical signal At least one of them.
  • the Adjusting, by the second electrical signal, at least one of a driving condition of the first mirror and a driving condition of the second mirror specifically, according to: a comparison result of the first electrical signal and the second electrical signal At least one of a driving condition of the first mirror and a driving condition of the second mirror is adjusted.
  • the adjusting, according to a comparison result of the first electrical signal and the second electrical signal, At least one of a driving condition of a mirror and a driving condition of the second mirror specifically includes: adjusting the first according to a ratio of a current value of the first electrical signal and a current value of the second electrical signal At least one of a driving condition of the mirror and a driving condition of the second mirror.
  • the reflectance of the mirror can be adjusted quickly and easily by the ratio of the current values.
  • the adjusting, according to a comparison result of the first electrical signal and the second electrical signal, At least one of a driving condition of a mirror and a driving condition of the second mirror specifically includes: adjusting the first according to a ratio of a voltage value of the first electrical signal and a voltage value of the second electrical signal At least one of a driving condition of the mirror and a driving condition of the second mirror.
  • the reflectance of the mirror can be adjusted quickly and easily by the ratio of the voltage values.
  • the method further includes: setting at least one of a gain and a phase of the tunable laser according to the target wavelength. By controlling the phase so that the mode of the resonant cavity of the tunable laser can be aligned with the target wavelength, the intensity of the output light can be varied by controlling the gain.
  • the tunable laser provided by the embodiment of the invention includes a first detector, a second detector and a controller, wherein the first detector is configured to convert an optical signal of the first mirror into a first electrical signal; a second detector for converting an optical signal of the second mirror into a second electrical signal, the controller for adjusting a reflectivity of the first mirror according to the first electrical signal and the second electrical signal And at least one of reflectances of the second mirror, the reflectances of the first mirror and the second mirror may be adjusted by the first electrical signal and the second electrical signal to Prevents performance degradation of tunable lasers.
  • FIG. 1 is a schematic diagram of a tunable laser provided by an embodiment of the present invention.
  • FIG. 2.1 is a schematic structural diagram of a tunable laser according to an embodiment of the present invention.
  • FIG. 2.2 is a schematic diagram showing changes in reflection peaks of a first mirror and a second mirror with driving power according to an embodiment of the present invention.
  • FIG. 2.3 is a schematic diagram of a reflection peak of a first mirror, a reflection peak of the second mirror, and a mode of the cavity and a target wavelength alignment according to an embodiment of the present invention.
  • FIG. 3.1 is a schematic structural diagram of another tunable laser according to an embodiment of the present invention.
  • Figure 3.2 is a cross-sectional view of a tunable laser provided by an embodiment of the present invention.
  • FIG. 4.1 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention.
  • FIG. 4.2 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention.
  • Figure 4.3 is a cross-sectional view of another tunable laser provided by an embodiment of the present invention.
  • FIG. 5.1 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention.
  • FIG. 5.2 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for controlling a tunable laser according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing a relationship between a current ratio and a driving condition of a tunable laser according to an embodiment of the present invention.
  • the three conditions for generating a laser are: achieving particle number inversion, satisfying threshold conditions, and resonance conditions.
  • the first condition for generating laser light is the inversion of the number of particles.
  • the electrons in the valence band are pumped to the conduction band.
  • the heavily doped P-type and N-type materials are usually used to form the PN junction.
  • particle number inversion occurs near the junction region, electrons are stored in the high Fermi level, and holes are stored in the low Fermi level, and of course there are many others.
  • a method of generating a population inversion Realizing the inversion of the number of particles is a necessary condition for generating laser light, but it is not a sufficient condition.
  • the resonance condition refers to the fact that after the length L and the refractive index N of the cavity are determined, only light of a specific frequency can form a light oscillation, and a stable laser is output, which indicates that the cavity has a certain frequency selection effect on the output laser.
  • a Distributed Bragg Reflection (DBR) tunable laser is usually formed by docking a gain region and an inactive region on an Indium Phosphide (InP) substrate.
  • the forbidden band width of the gain region is low.
  • the electric energy is converted into light energy to provide gain;
  • the forbidden band width of the passive region is higher than the photon energy of the laser wavelength, and the absorption of the laser is small, so Provides very low absorption loss;
  • the passive region is mainly composed of a mirror and an optical waveguide.
  • both mirrors have a comb-like reflection spectrum with multiple reflection peaks, and the reflection peak is Adjusted.
  • the reflection peaks of the two mirrors are simultaneously aligned to the target wavelength, the target wavelength has the highest reflectance in the reflective cavity.
  • the two mirrors are usually located in front of and behind the gain zone, they are generally referred to as front mirror (FM) and back mirror (BM), and distributed Bragg reflection mirror (distributed Bragg reflection mirror, respectively).
  • DBR mirror is the most typical comb mirror.
  • a schematic diagram of a DBR tunable laser 100 includes an FM 110, a gain section 120, a phase or passive section 130, and a BM 140.
  • Both FM 110 and BM 140 may be sampled gratings 150 and sampled gratings 160 having comb-like reflectance spectra but different comb-like spacing, wherein the gratings are fabricated in semiconductor material under FM 110 and BM 140, gratings in FM 110 and BM 140 Waveguides are fabricated between the gratings for light transmission, typically in an intrinsically doped semiconductor material layer.
  • a grating may refer to an optical component having a periodic structure that splits and diffracts light into different beams that travel in different directions.
  • a sampled grating can refer to a grating in which the grating elements are removed in a periodic manner.
  • the components of laser 100 can define a chamber.
  • Gain section 120 can generate light and a particular wavelength can The chamber oscillates while other wavelengths may be suppressed.
  • the laser 100 can emit a laser beam from the left side of the laser 100 along the plane of the page.
  • Embodiments of the present invention provide a tunable laser comprising two mirrors on both sides of a tunable laser to form a resonant cavity to satisfy a threshold condition, and a gain region and a gain region between the two mirrors
  • the population number inversion can be realized, and the phase adjustment area is further included between the two mirrors, and the phase adjustment area can change the resonance condition of the tunable laser, thereby changing the wavelength of the output light of the tunable laser, thereby realizing the output of the target wavelength laser.
  • the reflectivity of the mirror of the tunable laser provided by the embodiment of the invention is adjustable, and the reflectivity of the mirror is different for different wavelengths of laser under different driving conditions, and the peak of the reflectivity of the mirror is also aimed at the target.
  • the target wavelength laser is more likely to satisfy the threshold condition in the cavity, and the performance of the output laser is better. If the peak of the reflectance of the mirror is not aligned with the target wavelength, the reflectance of the light of other wavelengths is larger. It is equivalent to increasing the noise, increasing the line width of the laser and reducing the side mode suppression ratio of the laser.
  • the relationship between the driving condition of the mirror and the reflectivity of the mirror may change with the change of working years or the working environment. If the driving condition of the mirror is still fixed according to the target wavelength, the reflectance of the light of other wavelengths is better than the target.
  • the reflectance of the wavelength light is large, which is equivalent to an increase in noise, which increases the line width of the laser and reduces the side mode suppression ratio of the laser. Therefore, in the laser product manual, the specifications such as the line width and side mode suppression ratio of the laser need to be rated at the end of the working life or when the working environment is bad. This performance is better than the initial working life and the working environment. Performance will degrade, so this means ensuring the authenticity of the product's specifications by sacrificing the performance of the product.
  • the tunable laser provided by the embodiment of the present invention further includes a first detector, a second detector, and a controller, wherein the first detector is configured to convert an optical signal of the first mirror into a first electrical signal; a second detector for converting an optical signal of the second mirror into a second electrical signal, the controller for adjusting a reflection of the first mirror according to the first electrical signal and the second electrical signal At least one of a rate and a reflectance of the second mirror.
  • the reflectivity of the mirror of the tunable semiconductor laser is adjustable, the reflectivity of the mirror can be changed by adjusting the driving condition of the mirror, and the laser output of the tunable semiconductor laser can be adjusted.
  • the wavelength is related to the reflectivity of the mirror
  • the reflectivity of the mirror is related to the refractive index of the mirror
  • the adjustment of the refractive index of the mirror can be achieved by adjusting the carrier concentration of the mirror or adjusting the temperature of the mirror.
  • the driving condition of the mirror can be a mirror. Injection current or voltage.
  • the temperature of the mirror can be adjusted by a heater (resistance). In this way, the driving condition of the mirror can be the current, voltage or Power, etc.
  • a schematic structural diagram of a tunable laser includes a first mirror 11, a second mirror 12, a phase adjustment area 13, a gain area 14, a first detector 15, and a second detector 16, wherein:
  • the phase adjustment area 13 is located between the first mirror 11 and the gain area 14, and the reflectivity of the first mirror is adjustable;
  • the gain region 14 is located between the phase adjustment region 13 and the second mirror 12, and the reflectance of the second mirror is adjustable;
  • the first detector is configured to convert an optical signal of the first mirror into a first electrical signal
  • the second detector is configured to convert an optical signal of the second mirror into a second electrical signal.
  • the reflectivity of the first mirror and/or the second mirror in the embodiment of the invention is adjustable, for example, the first mirror and the second mirror are comb mirrors.
  • the comb-shaped reflection spectrum of the comb mirror has a plurality of reflection peaks, and the position of the reflection peak changes as the driving condition of the comb mirror changes.
  • the reflection peaks of the first mirror and the second mirror are changed according to the driving power, wherein the hollow point is a curve of the reflection peak of the first mirror with the driving power, and the solid dotted line is the second.
  • the curve of the reflection peak of the mirror as a function of the driving power.
  • the driving condition of the comb mirror may be an electric injection adjustment, or other adjustment manners such as thermal adjustment.
  • the temperature of the first mirror may be changed by changing the heating electric power of the first mirror, thereby being able to change The position of the reflection peak of the first mirror.
  • the working point of the ideal tunable laser is: the reflection peak of the first mirror, the reflection peak of the second mirror and the mode of the cavity are all consistent with the target wavelength.
  • the line width and side mode of the output laser of the tunable laser The performance of the Suppression Suppression Ratio (SMSR) is good.
  • SMSR Suppression Suppression Ratio
  • FIG. 2.3 the reflection peak of the first mirror, the reflection peak of the second mirror, and the mode of the resonant cavity are provided by the embodiment of the present invention. Schematic diagram of alignment with the target wavelength.
  • the reflection peak of the first mirror and the reflection peak of the second mirror of the embodiment of the present invention may be changed by adjusting driving conditions of the first mirror and the second mirror, and the mode of the cavity may be changed by adjusting the phase adjustment area .
  • the relationship between the driving conditions of the mirror and the reflectivity of the mirror may change, resulting in degradation of the performance of the tunable laser.
  • the tunable laser further includes a first detector and a second detector, the first detector converts the optical signal of the first mirror into a first electrical signal; and the second detector converts the light of the second mirror Converting the signal to a second electrical signal such that at least one of a reflectivity of the first mirror and a reflectivity of the second mirror can be adjusted according to the first electrical signal and the second electrical signal, for example It can be adjusted by a controller, wherein the optical signal of the mirror can be an optical signal at the output end of the mirror, or a part of the signal coupled out from the optical signal outputted from the output end, if the mirror is a mirror of a semiconductor structure, for example
  • the optical signal of the mirror may also be the optical signal of the light transmitted by the intrinsically doped semiconductor material layer by a mirror formed by the N-type doped semiconductor material layer, the intrinsically doped semiconductor material layer, and the P-type doped semiconductor material layer.
  • FIG. 3.1 it is another structural schematic diagram of a tunable laser, which is a tunable semiconductor laser, a first mirror 11, a second mirror 12, a phase adjustment region 13, a gain region 14, and a A detector 15 and a second detector 16 are integrated on a semiconductor chip, and the first mirror 11 and the first detector 15 are fabricated together, connected through an optical waveguide and a phase adjustment region 13, and the phase adjustment region 13 passes through the optical waveguide and The gain region 14 is connected, the gain region 14 is connected by the optical waveguide and the second mirror 12, the second mirror 12 and the second detector 16 are fabricated together, and the first detector 15 and the second detector 16 are not added with additional Chip area.
  • a tunable laser which is a tunable semiconductor laser, a first mirror 11, a second mirror 12, a phase adjustment region 13, a gain region 14, and a
  • a detector 15 and a second detector 16 are integrated on a semiconductor chip, and the first mirror 11 and the first detector 15 are fabricated together, connected through an optical waveguide and a phase adjustment region 13,
  • the first optical interface 31 is further included at an end of the first mirror away from the gain region
  • the second optical interface 32 is further included at an end of the second mirror away from the gain region
  • the first optical interface 31 and the second optical interface 32 are used for output.
  • the laser on both sides of course, in practical applications, one of the optical interfaces can be selectively closed by adding an absorption zone or a coating, leaving only one light output port. If the second optical interface is selected to emit light, the second mirror may also be called a front mirror, and the first mirror may also be called a rear mirror.
  • a semiconductor amplifier may also be disposed between the mirror and the optical port for amplifying the optical signal output from the mirror.
  • a semiconductor amplifier can be disposed between the second mirror 12 and the second optical interface 32.
  • a mirror 11 or the first optical interface 31 reduces the intensity of the light output from the first optical interface 31 by increasing the absorption region or plating, or even reduces the light to near zero.
  • a cross-sectional view of a tunable laser corresponds to the intermediate portion of FIG. 3.1.
  • the first mirror 11, the second mirror 12, the phase adjustment region 13, the gain region 14, the first detector 15, and the second detector 16 all include an N-type doped semiconductor material layer 301, intrinsic a doped semiconductor material layer 302 and a P-type doped semiconductor material layer 303, wherein an intrinsic doped semiconductor material layer 302 is located above the N-type doped semiconductor material layer 301, and a P-type doped semiconductor material layer 303 is located The upper surface of the semiconductor material layer 302 is intrinsically doped.
  • the N-type doped semiconductor material layer 301 may also be referred to as an under cladding layer, and the doping material may be InP; the intrinsically doped semiconductor material layer 302 may also be referred to as an active layer, and the doping material may be indium gallium arsenide phosphide (Indium Gallium Arsenide Phosphide, InGaAsP), the intrinsically doped semiconductor material layer of the gain region 14 may comprise a plurality of quantum wells, the quantum well having an emission wavelength covering the operating wavelength range of the laser; and the P-type doped semiconductor material layer 303
  • the upper cladding layer may be called, and the refractive index of the P-type doped semiconductor material layer 303 and the N-type doped semiconductor material layer 301 is lower than that of the intrinsically doped semiconductor material layer 302, and the light can be confined to the intrinsically doped semiconductor.
  • the forbidden band width of the gain region 14 is lower than the photon energy of the target output wavelength of the laser.
  • the electrical energy is converted into light energy to provide gain;
  • the forbidden band width of the passive region is larger than the target output wavelength of the laser. The energy is higher, the absorption of the laser is small, and therefore the absorption loss is very low.
  • the passive region mainly includes the first mirror 11, the second mirror 12, the phase adjustment region 13, and the like.
  • the first mirror 11 and the first detector 15 share the same N-type doped semiconductor material layer, intrinsic doped semiconductor material layer and P-type doped semiconductor material layer.
  • the first detector 15 further includes a metal layer 311 on top of the P-type doped semiconductor material layer 303 as a PiN photodiode composed of P-InP/i-InGaAsP/N-InP in the region.
  • An electrode contact layer for supplying a bias voltage to the PiN or collecting a photocurrent signal.
  • a PiN photodiode composed of P-InP/i-InGaAsP/N-InP is provided with a certain reverse bias voltage, and light passing through the i-InGaAsP region is absorbed to generate a photocurrent, and the photocurrent passes through the metal.
  • the layer is output such that the optical signal of the first mirror 11 can be converted to a first electrical signal, ie the first detector converts the optical signal of the intrinsically doped semiconductor material layer into a first electrical signal of the metal layer.
  • a layer of heavy P-type doped semiconductor material may be added between the metal layer 311 and the P-type doped semiconductor material layer 303, which may improve the ohmic contact connection of the metal layer 311.
  • the first mirror 11 further includes an insulating dielectric layer 312 and a heating layer 313.
  • the insulating dielectric layer 312 is located above the metal layer 311, and the heating layer 313 is located above the insulating dielectric layer 312.
  • the heating layer is used to control the reflectivity of the first mirror.
  • the insulating dielectric layer is used to isolate the signal crosstalk between the metal layer and the heating layer.
  • the heating layer may be a resistor. By applying a current to the resistor, the temperature of the resistor, the temperature of the first mirror, and the first mirror may be changed. As the reflectance changes, the wavelength of the reflection peak of the first mirror also changes.
  • the intrinsic doped semiconductor material layer corresponding to the first mirror 11 may include a waveguide for limiting the transmission of light, and the corresponding P-type doped semiconductor material layer of the first mirror 11 may include a grating structure for generating a comb reflection spectrum. .
  • the second mirror 12 and the second detector 16 share the same N-type doped semiconductor material layer, intrinsic doped semiconductor material layer and P-type doped semiconductor material layer.
  • the second detector 16 further includes a metal layer 321 which is located above the P-type doped semiconductor material layer 303 as a PiN photodiode of P-InP/i-InGaAsP/N-InP in the region.
  • An electrode contact layer for supplying a bias voltage to the PiN or collecting a photocurrent signal.
  • the photodiode provides a certain reverse bias voltage, and the light passing through the i-InGaAsP region is absorbed to generate a photocurrent, and the photocurrent is output through the metal layer, so that the optical signal of the second mirror 12 can be detected and converted into the second electric
  • the signal, ie the second detector converts the optical signal of the intrinsically doped semiconductor material layer into a second electrical signal of the metal layer.
  • the second mirror 12 further includes an insulating dielectric layer 322 and a heating layer 323.
  • the insulating dielectric layer 322 is located above the metal layer 321
  • the heating layer 323 is located above the insulating dielectric layer 322 .
  • the heating layer is used to control the reflectivity of the second mirror.
  • the insulating dielectric layer is used to isolate the signal crosstalk between the metal layer and the heating layer.
  • the heating layer may be a resistor. By applying a current to the resistor, the temperature of the resistor, the temperature of the second mirror, and the second mirror may be changed. As the reflectance changes, the wavelength of the reflection peak of the second mirror also changes.
  • the intrinsic doped semiconductor material layer corresponding to the second mirror 12 may include a waveguide for limiting the transmission of light, and the corresponding P-type doped semiconductor material layer of the second mirror 12 may include a grating structure for generating a comb-like reflection spectrum. .
  • the phase adjustment region 13 further includes an insulating dielectric layer 331 and a heating layer 332.
  • the insulating dielectric layer 331 is located on the P-type doped semiconductor material layer 303, and the heating layer 332 is located on the insulating dielectric layer 331.
  • the heating layer 332 adjusts the mode of the resonant cavity by controlling the temperature.
  • the gain region 14 in this embodiment further includes a metal layer 341 which is located above the P-type doped semiconductor material layer 303, and the metal layer 341 is used to provide an injection current required for the gain region.
  • FIG. 4.1 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention, a first mirror 11, a second mirror 12, a phase adjustment area 13, a gain area 14, and a first detector 15.
  • the second detector 16 is integrated on a semiconductor chip.
  • the first detector and the first mirror are independent of each other, the light of the first mirror passes through the beam splitter 43, and a certain proportion of light enters the first detector 15 for photoelectric conversion, and the remaining Light is output through the first optical port 41, where the beam splitter 43 can be a directional coupled waveguide or other integrated device with a splitting function.
  • the second detector and the second mirror are independent of each other, and the structure is similar, and details are not described herein again.
  • FIG. 4.2 a schematic structural diagram of still another tunable laser according to an embodiment of the present invention, a first mirror 11, a second mirror 12, a phase adjustment area 13, a gain area 14, and a semiconductor chip are integrated. on.
  • the light output from the first optical port 41 passes through the beam splitter 43, and a certain proportion of the light enters the first detector 15 for photoelectric conversion.
  • the second detector and the second mirror are independent of each other, and the structure is similar, and details are not described herein again.
  • a cross-sectional view of a tunable laser provided in accordance with an embodiment of the present invention corresponds to the intermediate portion of FIGS. 4.1 and 4.2.
  • the first mirror portion and the second mirror portion do not include a metal layer as compared to the tunable laser provided in Fig. 3.2 because the first detector and the first mirror are independent of each other in this embodiment.
  • FIG. 5.1 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention, including a first mirror 11, a second mirror 12, a phase adjustment area 13, a gain area 14, and a first detector 15. And a second detector 16, further comprising a controller 50 for adjusting the first mirror according to the first electrical signal and the second electrical signal, compared to the tunable laser provided in FIG. The reflectivity of 11 and/or the reflectivity of the second mirror 12. Specifically, the controller 50 may receive a current value of the first electrical signal from the first detector 15 and receive a current value of the second electrical signal from the second detector 16 according to the first electrical signal.
  • a ratio of the current value to the current value of the second electrical signal adjusts at least one of a reflectivity of the first mirror and a reflectance of the second mirror.
  • the controller 50 can also receive the voltage value of the first electrical signal from the first detector 15, receive the voltage value of the second electrical signal from the second detector 16, according to the voltage of the first electrical signal Value and power of the second electrical signal The ratio of the pressure values adjusts at least one of a reflectance of the first mirror and a reflectance of the second mirror.
  • the controller can also use the first electrical signal and other physical quantities of the second electrical signal to adjust the reflectivity of the mirror as long as the physical quantity can characterize the optical power of the optical signal of the mirror.
  • controller 50 can also control the phase of the phase adjustment area, the gain of the gain section, and the like.
  • FIG. 5.2 is a schematic structural diagram of still another tunable laser according to an embodiment of the present invention, which corresponds to the tunable laser provided in FIG. 3.1.
  • the first mirror 11, the second mirror 12, the phase adjustment area 13, the gain area 14, the first detector 15, and the second detector 16 provided in this embodiment are integrated on the first chip, and the controller is integrated in the first On the two chips, they are connected by their respective electrical interfaces and optical interfaces.
  • the electrical interface of the first chip is connected to the heating layer of the first mirror for controlling the reflectivity of the first mirror; the electrical interface of the first chip a metal layer connected to the first detector for outputting the first electrical signal; an electrical interface of the first chip is connected to the heating layer of the phase adjustment region for controlling the cavity film of the resonant cavity; and the electrical interface of the first chip is four connected a metal layer of the gain region for providing gain; the electrical interface of the first chip is connected to the heating layer of the second mirror for controlling the reflectivity of the second mirror; the electrical interface of the first chip is connected to the second detector a metal layer for outputting a second electrical signal.
  • the electrical interfaces one to six of the second chip and the electrical interfaces one to six of the second chip correspond to each other.
  • the wavelength meter of the second chip can receive the output light of the second optical interface and detect the wavelength of the output light.
  • FIG. 6 is a flowchart of a method for controlling a tunable laser according to an embodiment of the present invention, including:
  • S601 setting a driving condition of the first mirror and a driving condition of the second mirror according to the target wavelength, wherein a driving condition of the first mirror is related to a reflectivity of the first mirror, and the first mirror is The driving condition is related to the reflectance of the second mirror.
  • S602. Convert an optical signal of the first mirror into a first electrical signal, and convert an optical signal of the second mirror into a second electrical signal.
  • the S603 may specifically include: adjusting at least one of a driving condition of the first mirror and a driving condition of the second mirror according to a comparison result of the first electrical signal and the second electrical signal. More specifically, the method further includes: adjusting a driving condition of the first mirror and a driving condition of the second mirror according to a ratio of a current value of the first electrical signal and a current value of the second electrical signal at least one. More specifically, the method further includes: adjusting a driving condition of the first mirror and a driving condition of the second mirror according to a ratio of a voltage value of the first electrical signal and a voltage value of the second electrical signal At least one of them.
  • the gain and phase of the tunable laser can also be set according to the target wavelength.
  • the following is specifically described for adjusting at least one of the driving condition of the first mirror and the driving condition of the second mirror in accordance with the first electrical signal and the second electrical signal.
  • the ratio P 1 /P 2 between the optical power P 1 of the first mirror and the optical power P 2 of the second mirror is related to the reflectivity.
  • the light of the first mirror the ratio between the power P P 1 and the second mirror optical power P 2 1 / P 2 is t 1 2 * r 2 / t 2 2 * r 1, wherein, r 1 is the reflectivity of the mirror of the end face, t 1 is the transmittance of the end face of the mirror 1; r 2 is the reflectance of the end face of the mirror 2, and t 2 is the transmittance of the end face of the mirror 2.
  • P 1 /P 2 can be simplified to (1/r 1 -r 1 )/(1/r 2 -r 2 ). Since both r 1 and r 2 are greater than 0 and less than 1, when the fixed r 1 changes r 2 , the value of P 1 /P 2 will reach a maximum value as r 2 increases; fixed r 2 changes When r 1 , the value of P 1 /P 2 will reach a minimum value as r 1 increases.
  • the process of changing r 1 and r 2 is the process of adjusting the mirror. If both the first mirror and the second mirror are aligned with the target wavelength, then r 1 and r 2 simultaneously reach a maximum.
  • At least one of the reflectance of the first mirror and the reflectance of the second mirror may be adjusted according to a ratio of a current value of the first electrical signal to a current value of the second electrical signal.
  • the ratio of the voltage value V 1 of the first electrical signal to the voltage value V 2 of the second electrical signal and the optical power P 1 of the optical signal of the first mirror and the optical power P of the optical signal of the second mirror may also be proportional, that is, the driving condition of the first mirror and the second mirror may be adjusted according to a ratio of a voltage value of the first electrical signal and a voltage value of the second electrical signal. At least one of the driving conditions.
  • other physical quantities of the first electrical signal and the second electrical signal may be used to adjust the reflectivity of the mirror as long as the physical quantity can characterize the optical power of the optical signal of the mirror.
  • a driving condition of the first mirror and a driving condition of the second mirror may be used for adjusting at least one of a driving condition of the first mirror and a driving condition of the second mirror according to the first electrical signal and the second electrical signal, for example, searching for a first Target driving condition of the two mirrors: fixedly setting the driving condition of the first mirror, changing the driving condition of the second mirror, monitoring I 1 /I 2 (or P 1 /P 2 ), when the value of I 1 /I 2 When the maximum value is reached, the driving condition of the second mirror is the target driving condition of the second mirror; then the target driving condition of the first mirror is sought: the driving condition of the second mirror is fixedly set to the second mirror Target driving condition, changing the driving condition of the first mirror, monitoring I 1 /I 2 (or P 1 /P 2 ), when the value of I 1 /I 2 reaches the minimum value, the driving condition of the first mirror at this time
  • the target driving condition of the first mirror; then the tunable laser can be set to operate according to the target driving
  • the reflectivity of the mirror can be described using a Gaussian function, for example:
  • r 1 0.5*exp(-x 2 ), where x is the difference between the driving conditions (driving voltage, driving current, driving power, etc.) of the first mirror and the ideal driving condition (target driving condition) of the first mirror; 1 is the reflectance of the first mirror (here, the highest reflectance is assumed to be 0.5).
  • r 2 0.5*exp(-y 2 ), y is the difference between the driving conditions (driving voltage, driving current, driving power, etc.) of the second mirror and the ideal driving condition (target driving condition) of the second mirror; r2 It is the reflectance of the second mirror (here, the highest reflectance is assumed to be 0.5).
  • the relationship between I 1 /I 2 and x, y can be obtained.
  • the main problem solved by this patent is to ensure that the reflection peak of the mirror can be aligned with the target wavelength, that is, r 1 and r 2 are simultaneously maximized. Therefore, the extreme point of I 1 /I 2 is the ideal operating point of the first mirror and the second mirror.
  • the ratio of the light output power of the first mirror and the second mirror may be detected by using the value of I 1 /I 2 as a feedback during the driving condition of the first mirror and the driving condition adjustment of the second mirror. Further, it is determined whether the first mirror reflectance and the second mirror reflectance are ideal, and the reflectance of the first mirror and the reflectance of the second mirror are closed-loop adjusted.
  • ⁇ (x, y) I 1 /I 2 , where x is the driving power of the first mirror and y is the driving power of the second mirror. Since the power can be expressed by the polynomial of the current. Therefore x or y can also be expressed by the drive current of the first mirror or the second mirror.
  • ⁇ (x, y) A*(d ⁇ /dx) 2 +B*(d ⁇ /dy) 2 +C, where the constant coefficient A and B are the same symbol, that is, both positive or negative at the same time. C is also a constant coefficient.
  • a and B are the same symbol, that is, both positive or negative at the same time.
  • C is also a constant coefficient.
  • the specific values of A, B and C are based on the actual test results of the laser.
  • the differentiation of a data point can be approximated by the slope of several adjacent data points.
  • a data point is at the extreme point, which means that the slope of this point is the smallest with the surrounding data points (theoretical behavior is 0), or the difference between this data point and the surrounding data points is the smallest.
  • a specific method of adjusting at least one of a driving condition of the first mirror and a driving condition of the second mirror according to the first electrical signal and the second electrical signal may be to find an extreme value of I1/I2
  • the point method can use various mathematical methods such as “climbing method” and "cross coordinate method” to judge whether I1/I2 is an extreme point. The following is a detailed description of a method for finding extreme points:
  • the ratio of the current value of the first electrical signal to the current value of the second electrical signal when the eight points are recorded separately is ⁇ 1 , ⁇ 2 , . . . ⁇ 8 .
  • the next working point closer to the ideal operating point is selected. According to the actual result, it is determined whether or not a smaller f is obtained. This cycle, until the working point corresponding to the f minimum is found, is the ideal working point.
  • the difference P 1 -P 2 between the optical power P 1 of the first mirror and the optical power P 2 of the second mirror is related to the reflectivity, according to the laser principle, for the tunable laser, the light of the first mirror power P 1 and the difference between the second mirror optical power is P P 1 -P 2 (t 1 2 * r 2 -t 2 2 * r 1) / (t 1 2 * r 2 + t 2 2 * r 1 ), where r 1 is the reflectance of the end face of the mirror 1 , t 1 is the transmittance of the end face of the mirror 1; r 2 is the reflectance of the end face of the mirror 2, and t 2 is the transmission of the end face of the mirror 2 rate.
  • P 1 -P 2 can be simplified to 1-2/(1+(1/r 1 -r 1 )/(1/r 2 -r 2 )). Since both r 1 and r 2 are greater than 0 and less than 1, when the fixed r 1 changes r 2 , the value of P 1 -P 2 reaches a maximum value as r 2 increases; fixed r 2 changes When r 1 , the value of P 1 /P 2 will reach a minimum value as r 1 increases.
  • the process of changing r 1 and r 2 is the process of adjusting the mirror. If both the first mirror and the second mirror are aligned with the target wavelength, then r 1 and r 2 simultaneously reach a maximum.
  • the driving conditions of the mirror can be adjusted using a method similar to the adjustment method mentioned above.
  • the relationship between the difference between the current value I 1 of the first electrical signal and the current value I 2 of the second electrical signal I 1 -I 2 and x, y is also in the shape of a saddle face.
  • a specific method of adjusting at least one of a driving condition of the first mirror and a driving condition of the second mirror according to the first electrical signal and the second electrical signal may be searching for I 1 -I 2
  • the method of extreme points can be determined by various mathematical methods such as “climbing method” and "cross coordinate method” to determine whether I 1 -I 2 is an extreme point.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种可调激光器,包括第一反射镜(11)、第二反射镜(12)、相位调节区(13),增益区(14)、第一探测器(15)、第二探测器(16)和控制器(50),其中:相位调节区(13)位于第一反射镜(11)和增益区(14)之间,增益区(14)位于相位调节区(13)和第二反射镜(12)之间,第一反射镜(11)的反射率可调,第二反射镜(12)的反射率可调;第一探测器(15)用于将第一反射镜(11)的光信号转换为第一电信号;第二探测器(16)用于将第二反射镜(12)的光信号转换为第二电信号;控制器(50)用于根据第一电信号和第二电信号调整第一反射镜(11)的反射率和第二反射镜(12)的反射率中的至少一个。可以调整反射镜(11、12)的反射率进而可以防止可调激光器的性能劣化。

Description

一种可调激光器及其控制方法
本申请要求了2016年1月15日提交的,申请号为201610029003.7,名称为“一种可调激光器及其控制方法”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及光电子产品领域,尤其涉及一种可调激光器及其控制方法。
背景技术
可调激光器(tunable laser,TL)指的是一定范围内可以连续改变激光输出波长的激光器。可调激光器主要应用于相干调制光传输,而相干调制光传输已经成为100G及以上速率长途光传输的主流方案。随着技术的进步,对可调激光器的要求也越来越高。基于半导体技术的可调半导体激光器具有体积小、集成度高等优点,可调半导体激光器是可调激光器领域的一种主流产品。
现有技术中可调半导体激光器的反射镜的反射率可调,通过调整反射镜的驱动条件可以改变反射镜的反射率,根据目标波长固定设置反射镜的驱动条件,但是随着工作年限或者工作环境的改变,反射镜的驱动条件和反射镜的反射率的关系可能发生变化,从而导致可调激光器的性能劣化。
发明内容
本发明实施例提供一种可调激光器及其控制方法,用于解决现有技术中可调激光器的性能劣化问题。
第一方面,本发明实施例提供一种可调激光器,包括第一反射镜、第二反射镜、相位调节区,增益区、第一探测器、第二探测器和控制器,其中:所述相位调节区位于所述第一反射镜和所述增益区之间,所述增益区位于所述相位调节区和所述第二反射镜之间,所述第一反射镜的反射率可调,所述第二反射镜的反射率可调;所述第一探测器用于将所述第一反射镜的光信号转换为第一电信号;所述第二探测器用于将所述第二反射镜的光信号转换为第二电信号;所述控制器用于根据所述第一电信号和所述第二电信号调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
结合第一方面,在第一方面的第一种可能的实现方式中,所述控制器具体用于根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述控制器具体用于根据所述第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。通过电流值的比值可以方便快捷地调整反射镜的反射率。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述控制器具体用于根据所述第一电信号的电压值和所述第二电信号的电压值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。通过电压值的比值可 以方便快捷地调整反射镜的反射率。
结合第一方面,在第一方面的第四种可能的实现方式中,所述控制器还用于控制相位调节区的相位和增益区的增益中的至少一个。通过控制相位调节区的相位从而使可调激光器的谐振腔的模式能够和目标波长对准,通过控制增益区的增益可以改变输出光的强度。
结合第一方面,在第一方面的第五种可能的实现方式中,所述可调激光器为可调半导体激光器,所述第一反射镜包括:N型掺杂半导体材料层;本征掺杂半导体材料层,位于所述N型掺杂半导体材料层的上面;P型掺杂半导体材料层,位于所述本征掺杂半导体材料层的上面。通过N型掺杂半导体材料层、本征掺杂半导体材料层以及P型掺杂半导体材料层实现的反射镜结构简单,容易实现。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述本征掺杂半导体材料层包括波导,所述P型掺杂半导体材料层包括光栅结构。通过本征掺杂半导体材料层的波导可以限制光的传输,通过P型掺杂半导体材料层的光栅结构可以有效实现反射镜的反射功能。
结合第一方面或者第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第一探测器包括:N型掺杂半导体材料层;本征掺杂半导体材料层,位于所述N型掺杂半导体材料层的上面;P型掺杂半导体材料层,位于所述本征掺杂半导体材料层的上面;金属层,位于所述P型掺杂半导体材料层的上面,所述第一探测器将本征掺杂半导体材料层的光信号转换为金属层的第一电信号。通过N型掺杂半导体材料层、本征掺杂半导体材料层、P型掺杂半导体材料层以及金属层可以组成一个光电二极管,从而可以通过金属层输出第一点信号,从而可以检测本征掺杂半导体材料层传输的光的功率。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述第一反射镜和所述第一探测器共用相同的N型掺杂半导体材料层、本征掺杂半导体材料层和P型掺杂半导体材料层。第一反射镜和第一探测器共用相同的PN结,工艺简单,大大降低了制作工艺的难度,并且不增加激光器芯片面积,符合光器件的高集成度趋势。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述第一反射镜还包括绝缘介质层和加热层,所述绝缘介质层位于所述金属层的上面,所述加热层位于所述绝缘介质层的上面,所述加热层用于控制所述第一反射镜的反射率。通过加热层可以精准控制所述第一反射镜的反射率,金属层和加热层之间的绝缘介质层可以有效避免信号串扰,保证探测器的稳定工作。
结合第一方面,在第一方面的第十种可能的实现方式中,所述第一探测器和所述第一反射镜之间还包括第一分光器。通过分光器实现分光,从而可以不影响第一反射镜端输出激光。
第二方面,本发明实施例提供一种可调激光器的控制方法,包括:根据目标波长设置第一反射镜的驱动条件和第二反射镜的驱动条件,所述第一反射镜的驱动条件和所述第一反射镜的反射率相关,所述第一反射镜的驱动条件和所述第二反射镜的反射率相关;将所述第一反射镜的光信号转换为第一电信号,将所述第二反射镜的光信号转换为第二电信号;根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
结合第二方面,在第二方面的第一种可能的实现方式中,所述根据所述第一电信号和 所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个具体包括:根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
结合第二方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个具体包括:根据所述第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。通过电流值的比值可以方便快捷地调整反射镜的反射率。
结合第二方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个具体包括:根据所述第一电信号的电压值和所述第二电信号的电压值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。通过电压值的比值可以方便快捷地调整反射镜的反射率。
结合第二方面,在第二方面的第六种可能的实现方式中,还包括:根据所述目标波长设置可调激光器的增益和相位中的至少一个。通过控制相位从而使可调激光器的谐振腔的模式能够和目标波长对准,通过控制增益可以改变输出光的强度。
本发明实施例提供的可调激光器包括第一探测器,第二探测器和控制器,所述第一探测器用于将所述第一反射镜的光信号转换为第一电信号;所述第二探测器用于将所述第二反射镜的光信号转换为第二电信号,所述控制器用于根据所述第一电信号和所述第二电信号调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个,可以通过所述第一电信号和所述第二电信号来调整所述第一反射镜和所述第二反射镜的反射率进而可以防止可调激光器的性能劣化。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种可调激光器的示意图。
图2.1是本发明实施例提供的一种可调激光器的结构示意图。
图2.2是本发明实施例提供的一种第一反射镜和第二反射镜的反射峰随驱动功率的变化示意图。
图2.3是本发明实施例提供的一种第一反射镜的反射峰,第二反射镜的反射峰以及谐振腔的模式和目标波长对准的示意图。
图3.1是本发明实施例提供的另一种可调激光器的结构示意图。
图3.2是本发明实施例提供的一种可调激光器的剖面图。
图4.1是本发明实施例提供的再一种可调激光器的结构示意图。
图4.2是本发明实施例提供的再一种可调激光器的结构示意图。
图4.3是本发明实施例提供的另一种可调激光器的剖面图。
图5.1是本发明实施例提供的再一种可调激光器的结构示意图。
图5.2是本发明实施例提供的再一种可调激光器的结构示意图。
图6是本发明实施例提供的一种可调激光器的控制方法流程图。
图7是本发明实施例提供的一种可调激光器的电流比值和驱动条件的关系图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生激光的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带,为了获得粒子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了粒子数反转,在高费米能级中贮存着电子,而在低费米能级中贮存着空穴,当然还有很多其它产生粒子数反转的方法。实现粒子数反转是产生激光的必要条件,但不是充分条件,要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使受激辐射光不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件才能在输出端产生加强干涉,输出稳定激光。谐振条件指的是谐振腔的长度L和折射率N确定以后,只有特定频率的光才能形成光振荡,输出稳定的激光,这说明谐振腔对输出的激光有一定的选频作用。
分布式布拉格反射(Distributed Bragg Reflection,DBR)可调激光器通常由磷化铟(Indium Phosphide,InP)衬底上的增益区和无源区对接而成。增益区的禁带宽度较低,当受到电注入时,将电能转化为光能,从而提供增益;无源区的禁带宽度比激光波长的光子能量更高,对激光的吸收小,因此能提供很低的吸收损耗;无源区在结构上主要包括反射镜和光波导。为了覆盖整个C波段(约35nm范围),通常会利用两个反射镜的“瓦尼尔效应”组成反射腔:两个反射镜都有梳状反射光谱,具有多个反射峰,反射峰是可以调节的。当两个反射镜的反射峰同时对准目标波长时,目标波长在反射腔内的反射率最高。由于两个反射镜通常位于增益区的前面和后面,所以通常被分别被称为前镜(front mirror,FM)和后镜(back mirror,BM),分布式布拉格反射镜(distributed Bragg reflection mirror,DBR mirror)是最典型的梳状反射镜。此外,无源部分还可以包含一个相位调节区(phase,PH),用于对谐振腔内的有效光程进行细调从而改变激光器输出波长。如图1所示,为一种DBR可调激光器100的示意图,其中包括FM 110、增益区段120、相位或无源区段130以及BM 140。FM 110和BM 140可以都是具有梳状反射光谱但是不同梳状间隔的取样光栅150和取样光栅160,其中光栅制作在FM 110和BM 140下面的半导体材料中,在FM 110的光栅和BM 140的光栅之间制作有波导用于光的传输,通常可以制作在本征掺杂半导体材料层。光栅可以指具有将光分割且衍射成在不同方向上行进的不同光束的周期性结构的光学组件。取样光栅可以指其中光栅元件以周期性方式移除的光栅。激光器100的组件可以界定腔室。增益区段120可以生成光,并且特定波长可以在 所述腔室内振荡而其它波长可能被抑制。最终,激光器100可以从激光器100的左侧沿着页面的平面发出激光束。
本发明实施例提供一种可调激光器,包括两个反射镜,这两个反射镜位于可调激光器的两侧,形成谐振腔以满足阈值条件,两个反射镜之间包括增益区,增益区可以实现粒子数反转,两个反射镜之间还包括相位调节区,相位调节区可以改变可调激光器的谐振条件,从而改变可调激光器的输出光的波长,进而实现目标波长激光的输出。此外,本发明实施例提供的可调激光器的反射镜的反射率可调,在不同的驱动条件下,反射镜对不同波长激光的反射率不同,如果反射镜的反射率的峰值也对准目标波长的话,那么目标波长激光在谐振腔内更容易满足阈值条件,并且输出激光的性能较优,如果反射镜的反射率的峰值没有对准目标波长,那么其他波长的光的反射率较大,相当于增加了噪声,增大了激光器的线宽,降低了激光器的边模抑制比。
随着工作年限或者工作环境的改变,反射镜的驱动条件和反射镜的反射率的关系可能发生变化,如果仍然根据目标波长固定设置反射镜的驱动条件,那么其他波长的光的反射率比目标波长的光的反射率大,相当于增加了噪声,增大了激光器的线宽,降低了激光器的边模抑制比。因此,在激光器的产品手册中,激光器的线宽、边模抑制比等技术指标需要以工作寿命末期或者工作环境恶劣时的性能来标称,这个性能相比工作寿命初期和工作环境良好时的性能会有一定劣化,因此这意味着通过牺牲产品的性能来保证产品技术指标的真实性。
本发明实施例提供的可调激光器还包括第一探测器、第二探测器和控制器,所述第一探测器用于将所述第一反射镜的光信号转换为第一电信号;所述第二探测器用于将所述第二反射镜的光信号转换为第二电信号,所述控制器用于根据所述第一电信号和所述第二电信号调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
以可调半导体激光器为例说明反射镜的驱动条件,可调半导体激光器的反射镜的反射率可调,通过调整反射镜的驱动条件可以改变反射镜的反射率,可调半导体激光器输出的激光的波长与反射镜的反射率相关,反射镜的反射率与反射镜的折射率相关,反射镜的折射率的调节可以通过调节反射镜的载流子浓度或者调节反射镜的温度来实现。如果通过调节反射镜的载流子浓度来改变反射镜的反射率,可以为反射镜注入电子,从而改变反射镜的载流子浓度,在这种方式下,反射镜的驱动条件可以为反射镜的注入电流或电压。如果通过调节反射镜的温度来改变反射镜的反射率,可以通过一个加热器(电阻)来调节反射镜的温度,在这种方式下,反射镜的驱动条件可以为加热器的电流、电压或功率等。
如图2.1所示,为本发明实施例提供的一种可调激光器的结构示意图,包括第一反射镜11、第二反射镜12、相位调节区13,增益区14、第一探测器15和第二探测器16,其中:
所述相位调节区13位于所述第一反射镜11和所述增益区14之间,所述第一反射镜的反射率可调;
所述增益区14位于所述相位调节区13和所述第二反射镜12之间,所述第二反射镜的反射率可调;
所述第一探测器用于将所述第一反射镜的光信号转换为第一电信号;
所述第二探测器用于将所述第二反射镜的光信号转换为第二电信号。
本发明实施例中的第一反射镜和/或第二反射镜的反射率可调,例如第一反射镜和第二反射镜为梳状反射镜。梳状反射镜的梳状反射光谱具有多个反射峰,反射峰的位置随着梳状反射镜的驱动条件变化而变化。如图2.2所示,为第一反射镜和第二反射镜的反射峰随驱动功率的变化示意图,其中空心点为第一反射镜的反射峰随驱动功率的变化曲线,实心点线为第二反射镜的反射峰随驱动功率的变化曲线。当调整第一反射镜和第二反射镜的驱动条件使得第一反射镜的反射峰和第二反射镜的反射峰都对准目标波长的时候,目标波长的光在可调激光器的反射腔内的反射率最高。
梳状反射镜的驱动条件可以为电注入调节,也可以为热调节等其它调节方式,以热调节为例,通过改变第一反射镜的加热电功率可以改变第一反射镜的温度,从而可以改变第一反射镜的反射峰的位置。
理想的可调激光器的工作点为:第一反射镜的反射峰,第二反射镜的反射峰以及谐振腔的模式都和目标波长一致,此时可调激光器的输出激光的线宽、边模抑制比(Side Mode Suppression Ratio,SMSR)等性能好,如图2.3所示,为本发明实施例提供的一种第一反射镜的反射峰,第二反射镜的反射峰以及谐振腔的模式都和目标波长对准的示意图。
本发明实施例的第一反射镜的反射峰和第二反射镜的反射峰可以通过调节第一反射镜和第二反射镜的驱动条件而改变,谐振腔的模式可以通过调节相位调节区而改变。随着工作年限或者工作环境的改变,反射镜的驱动条件和反射镜的反射率的关系可能发生变化,从而导致可调激光器的性能劣化。本发明实施例中可调激光器还包括第一探测器和第二探测器,第一探测器将第一反射镜的光信号转换为第一电信号;第二探测器将第二反射镜的光信号转换为第二电信号,从而可以根据所述第一电信号和所述第二电信号调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个,例如可以通过控制器来调整,其中反射镜的光信号可以是反射镜输出端的光信号,也可以是从输出端输出的光信号中耦合出的一部分信号,如果反射镜是半导体结构的反射镜,例如通过N型掺杂半导体材料层、本征掺杂半导体材料层、P型掺杂半导体材料层形成的反射镜,反射镜的光信号也可以是本征掺杂半导体材料层传输的光的光信号。
下面给出几种实施例对可调激光器进行具体说明。如图3.1所示,为可调激光器的另一种结构示意图图,该可调激光器为可调半导体激光器,第一反射镜11、第二反射镜12、相位调节区13,增益区14、第一探测器15和第二探测器16集成在一块半导体芯片上,第一反射镜11和第一探测器15制作在一起,通过光学波导和相位调节区13连接,相位调节区13通过光学波导和增益区14连接,增益区14通过光学波导和第二反射镜12连接,第二反射镜12和第二探测器16制作在一起,第一探测器15和第二探测器16并不增加额外的芯片面积。在第一反射镜远离增益区的一端还包括第一光学接口31,在第二反射镜远离增益区的一端还包括第二光学接口32,第一光学接口31和第二光学接口32用于输出两侧的激光,当然,在实际应用中,可以选择性地通过增加吸收区或者镀膜等方法关闭其中一个光学接口,仅保留一个光输出端口。如果选择第二光学接口出光,第二反射镜也可以叫做前镜,第一反射镜也可以叫做后镜。
本发明实施例中还可以在反射镜和光学端口之间设置半导体放大器,用于放大从反射镜输出的光信号。例如设置第二光学接口32为出光端口,设置第一光学接口31为不出光端口的话,则可以在第二反射镜12和第二光学接口32之间设置一个半导体放大器,在第 一反射镜11或第一光学接口31采用增加吸收区或者镀膜等方法降低从第一光学接口31输出的光的强度,甚至降为接近零出光。
如图3.2所示,为本发明实施例提供的一种可调激光器的剖面图,其和图3.1的中间部分相对应。该实施例中,第一反射镜11、第二反射镜12、相位调节区13,增益区14、第一探测器15和第二探测器16都包括N型掺杂半导体材料层301,本征掺杂半导体材料层302和P型掺杂半导体材料层303,其中本征掺杂半导体材料层302位于所述N型掺杂半导体材料层301的上面,P型掺杂半导体材料层303位于所述本征掺杂半导体材料层302的上面。其中N型掺杂半导体材料层301也可以叫做下包层,其掺杂材料可以为InP;本征掺杂半导体材料层302也可以叫做有源层,其掺杂材料可以为磷化铟镓砷(Indium Gallium Arsenide Phosphide,InGaAsP),增益区14的本征掺杂半导体材料层可以包含有多个量子阱,量子阱的发光波长能够覆盖激光器的工作波长范围;P型掺杂半导体材料层303也可以叫做上包层,P型掺杂半导体材料层303和N型掺杂半导体材料层301的折射率比本征掺杂半导体材料层302的折射率低,能够将光限制在本征掺杂半导体材料层内传播。增益区14的禁带宽度比激光器的目标输出波长的光子能量低,当受到电注入时,将电能转化为光能,从而提供增益;无源区的禁带宽度比激光器的目标输出波长的光子能量更高,对激光的吸收小,因此能提供很低的吸收损耗,无源区在结构上主要包括第一反射镜11,第二反射镜12和相位调节区13等。
本实施例中第一反射镜11和第一探测器15共用相同的N型掺杂半导体材料层、本征掺杂半导体材料层和P型掺杂半导体材料层。第一探测器15还包括金属层311,金属层311位于P型掺杂半导体材料层303的上面,该金属层作为该区域的P-InP/i-InGaAsP/N-InP组成的P-i-N光电二极管的电极接触层,用于给该P-i-N提供偏置电压,或者收集光电流信号。通过该金属层,为P-InP/i-InGaAsP/N-InP组成的P-i-N光电二极管提供一定的反向偏置电压,通过i-InGaAsP区域的光被吸收后产生光电流,光电流通过该金属层被输出,从而可以将第一反射镜11的光信号转换为第一电信号,即第一探测器将本征掺杂半导体材料层的光信号转换为金属层的第一电信号。此外,在金属层311和P型掺杂半导体材料层303之间还可以加入一层重P型掺杂半导体材料层,这样可以改善金属层311的欧姆接触连接。
本实施例中第一反射镜11还包括绝缘介质层312和加热层313,所述绝缘介质层312位于所述金属层311的上面,所述加热层313位于所述绝缘介质层312的上面,所述加热层用于控制所述第一反射镜的反射率。其中绝缘介质层用来隔离金属层和加热层之间的信号串扰,加热层可以是一个电阻,通过给电阻加电流,就可以改变电阻的温度,第一反射镜的温度,第一反射镜的反射率的改变,第一反射镜的反射峰波长也会因此改变。第一反射镜11对应的本征掺杂半导体材料层可以包括波导用以限制光的传输,第一反射镜11对应的P型掺杂半导体材料层可以包括光栅结构用以实现产生梳状反射谱。
本实施例中第二反射镜12和第二探测器16共用相同的N型掺杂半导体材料层、本征掺杂半导体材料层和P型掺杂半导体材料层。第二探测器16还包括金属层321,金属层321位于P型掺杂半导体材料层303的上面,该金属层作为该区域的P-InP/i-InGaAsP/N-InP组成的P-i-N光电二极管的电极接触层,用于给该P-i-N提供偏置电压,或者收集光电流信号。通过该金属层,为P-InP/i-InGaAsP/N-InP组成的P-i-N 光电二极管提供一定的反向偏置电压,通过i-InGaAsP区域的光被吸收后产生光电流,光电流通过该金属层被输出,从而可以检测第二反射镜12的光信号转换为第二电信号,即第二探测器将本征掺杂半导体材料层的光信号转换为金属层的第二电信号。
本实施例中第二反射镜12还包括绝缘介质层322和加热层323,所述绝缘介质层322位于所述金属层321的上面,所述加热层323位于所述绝缘介质层322的上面,所述加热层用于控制所述第二反射镜的反射率。其中绝缘介质层用来隔离金属层和加热层之间的信号串扰,加热层可以是一个电阻,通过给电阻加电流,就可以改变电阻的温度,第二反射镜的温度,第二反射镜的反射率的改变,第二反射镜的反射峰波长也会因此改变。第二反射镜12对应的本征掺杂半导体材料层可以包括波导用以限制光的传输,第二反射镜12对应的P型掺杂半导体材料层可以包括光栅结构用以实现产生梳状反射谱。
本实施例中相位调节区13还包括绝缘介质层331和加热层332,所述绝缘介质层331位于P型掺杂半导体材料层303的上面,所述加热层332位于所述绝缘介质层331的上面,加热层332通过控制温度调整谐振腔的模式。
本实施例中增益区14还包括金属层341,所述绝缘介质层341位于P型掺杂半导体材料层303的上面,金属层341用于提供增益区所需的注入电流。
如图4.1所示,为本发明实施例提供的再一种可调激光器的结构示意图图,第一反射镜11、第二反射镜12、相位调节区13,增益区14、第一探测器15和第二探测器16集成在一块半导体芯片上。和图3.1提供的可调激光器相比,第一探测器和第一反射镜相互独立,第一反射镜的光经过分光器43,一定比例的光进入第一探测器15进行光电转换,剩余的光经过第一光学端口41输出,这里的分光器43可以是定向耦合波导,也可以是其他具有分光功能的可集成的器件。同样的,第二探测器和第二反射镜相互独立,结构类似,在此不再赘述。
如图4.2所示,为本发明实施例提供的再一种可调激光器的结构示意图图,第一反射镜11、第二反射镜12、相位调节区13,增益区14、集成在一块半导体芯片上。和图4.1提供的可调激光器相比,从第一光学端口41输出的光经过经过分光器43,一定比例的光进入第一探测器15进行光电转换。同样的,第二探测器和第二反射镜相互独立,结构类似,在此不再赘述。
如图4.3所示,为本发明实施例提供的一种可调激光器的剖面图,其和图4.1和4.2的中间部分相对应。和图3.2提供的可调激光器相比,第一反射镜部分和第二反射镜部分都不包括金属层,因为在此实施例中第一探测器和第一反射镜相互独立。
如图5.1所示,为本发明实施例提供的再一种可调激光器的结构示意图,包括第一反射镜11、第二反射镜12、相位调节区13,增益区14、第一探测器15和第二探测器16,和图1提供的可调激光器相比,还包括控制器50,控制器50用于根据所述第一电信号和所述第二电信号调整所述第一反射镜11的反射率和/或所述第二反射镜12的反射率。具体的,控制器50可以接收来自第一探测器15的所述第一电信号的电流值,接收来自第二探测器16的所述第二电信号的电流值,根据所述第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。控制器50也可以接收来自第一探测器15的所述第一电信号的电压值,接收来自第二探测器16的所述第二电信号的电压值,根据所述第一电信号的电压值和所述第二电信号的电 压值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。当然,控制器也可以使用第一电信号和第二电信号的其它物理量来调整反射镜的反射率,只要该物理量能够表征反射镜的光信号的光功率即可。
此外控制器50还可以控制控制相位调节区的相位和增益区的增益等。
如图5.2所示,为本发明实施例提供的再一种可调激光器的结构示意图,其和图3.1提供的可调激光器对应。本实施例提供的第一反射镜11、第二反射镜12、相位调节区13,增益区14、第一探测器15和第二探测器16等集成在第一芯片上,控制器集成在第二芯片上,他们之间通过各自的电学接口和光学接口相连,第一芯片的电学接口一连接第一反射镜的加热层,用于控制第一反射镜的反射率;第一芯片的电学接口二连接第一探测器的金属层,用于输出第一电信号;第一芯片的电学接口三连接相位调节区的加热层,用于控制谐振腔的腔膜;第一芯片的电学接口四连接增益区的金属层,用于提供增益;第一芯片的电学接口五连接第二反射镜的加热层,用于控制第二反射镜的反射率;第一芯片的电学接口六连接第二探测器的金属层,用于输出第二电信号。第二芯片的电学接口一至六和第二芯片的电学接口一至六相互对应。第二芯片的波长计可以接收第二光学接口的输出光,对输出光的波长进行检测。
如图6所示,为本发明实施例提供的一种可调激光器的控制方法流程图,包括:
S601,根据目标波长设置第一反射镜的驱动条件和第二反射镜的驱动条件,所述第一反射镜的驱动条件和所述第一反射镜的反射率相关,所述第一反射镜的驱动条件和所述第二反射镜的反射率相关。
S602,将所述第一反射镜的光信号转换为第一电信号,将所述第二反射镜的光信号转换为第二电信号。
S603,根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
其中,S603可以具体包括:根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。可以更具体的包括:根据所述第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。也可以更具体的包括:根据所述第一电信号的电压值和所述第二电信号的电压值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
此外,还可以根据所述目标波长设置可调激光器的增益和相位。
下面针对根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个进行具体说明。
首先第一反射镜的光功率P1与第二反射镜的光功率P2之间的比值P1/P2与反射率具有关系,根据激光原理,对于可调激光器,第一反射镜的光功率P1与第二反射镜的光功率P2之间的比值P1/P2为t1 2*r2/t2 2*r1,其中,r1是反射镜1端面的反射率,t1是反射镜1端面的透射率;r2是反射镜2端面的反射率,t2是反射镜2端面的透射率。对于热调谐的可调激光器而言,上述公式可以做一个合理的简化:反射镜是没有吸收损耗的,那么t1 2+r1 2=1,t2 2+r2 2=1。于是,P1/P2可以简化为(1/r1-r1)/(1/r2-r2)。由于r1和r2都是大于0而小于1的,所以,固定r1改变r2时,P1/P2的值会随着r2的增大而达到极大值;固定r2改变r1时, P1/P2的值会随着r1的增大而达到极小值。r1和r2的改变过程,就是调节反射镜的过程。如果第一反射镜和第二反射镜都和目标波长对准,那么r1和r2同时达到最大。
对于将第一反射镜的光信号转换为第一电信号,将第二反射镜的光信号转换为第二电信号,第一电信号的电流值I1和所述第二电信号的电流值I2的比值和第一反射镜的光信号的光功率P1与第二反射镜的光信号的光功率P2的比值成正比,即I1/I2=A*P1/P2=A*(1/r1-r1)/(1/r2-r2),其中A为大于0的常数。也就是说,可以根据第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。当然,第一电信号的电压值V1和所述第二电信号的电压值V2的比值和第一反射镜的光信号的光功率P1与第二反射镜的光信号的光功率P2的比值也可以成正比,即可以根据所述第一电信号的电压值和所述第二电信号的电压值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。此外也可以使用第一电信号和第二电信号的其它物理量来调整反射镜的反射率,只要该物理量能够表征反射镜的光信号的光功率即可。
根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个的具体方法可以有很多,例如可以先寻找第二反射镜的目标驱动条件:固定设置第一反射镜的驱动条件,改变第二反射镜的驱动条件,监控I1/I2(或P1/P2),当I1/I2的值达到最大值时,此时第二反射镜的驱动条件为第二反射镜的目标驱动条件;然后寻找第一反射镜的目标驱动条件:固定设置第二反射镜的驱动条件为第二反射镜的目标驱动条件,改变第一反射镜的驱动条件,监控I1/I2(或P1/P2),当I1/I2的值达到最小值时,此时第一反射镜的驱动条件为第一反射镜的目标驱动条件;然后可以根据第一反射镜的目标驱动条件和第二反射镜的目标驱动条件设置可调激光器进行工作。当然也可以对该方法进行变形,只要是根据所述第一电信号和所述第二电信号的比较结果进行调整即可。
对于反射镜,特别是对于分布式布拉格反射镜,反射镜的反射率可以使用高斯函数来描述,例如:
r1=0.5*exp(-x2),x是第一反射镜的驱动条件(驱动电压、驱动电流、驱动功率等)与第一反射镜的理想驱动条件(目标驱动条件)之差;r1是第一反射镜的反射率(这里假设最高反射率为0.5)。
r2=0.5*exp(-y2),y是第二反射镜的驱动条件(驱动电压、驱动电流、驱动功率等)与第二反射镜的理想驱动条件(目标驱动条件)之差;r2是第二反射镜的反射率(这里假设最高反射率为0.5)。
将r1和r2的上述表达式带入到公式I1/I2=A*P1/P2=A*(1/r1-r1)/(1/r2-r2),可以得到I1/I2和x、y的关系式,如图7所示,为I1/I2和x、y的关系图,可以看出曲面呈现马鞍面形状,当x=0且y=0时,r1和r2同时达到最大值,I1/I2位于马鞍面的极值点(最平坦的点)。
前面已经提到过,本专利解决的主要问题,是保证反射镜的反射峰能够与目标波长对准,即r1和r2同时达到最大。所以,I1/I2的极值点就是第一反射镜和第二反射镜的理想工作点。可以在第一反射镜的驱动条件和第二反射镜的驱动条件调节过程中,以I1/I2的值来作为反馈,来检测第一反射镜和第二反射镜的出光功率之比,进而判断第一反射镜反射率 和第二反射镜的反射率是否理想,对第一反射镜的反射率和第二反射镜的反射率进行闭环调节。
假设:ε(x,y)=I1/I2,其中x为第一反射镜的驱动功率,y为第二反射镜的驱动功率。由于功率可以用电流的多项式来表示。因此x或y也可以用第一反射镜或第二反射镜的驱动电流来表达。
ε(x,y)和理想工作点的差值Error Signal可以表示为:f(x,y)=A*(dε/dx)2+B*(dε/dy)2+C,其中,常数系数A和B是同符号的,即同时为正或者同时为负。C也为常数系数。A、B和C的具体数值根据激光器的实际测试结果而定。当位于理想工作点时,dε/dx=0,dε/dy=0。微分项df/dx=0且微分项df/dy同时为0。常数C可以为0。因此f(x,y)=0。
严格意义上来讲,f(x,y)严格为0时,才能认为激光器工作在理想工作点。但在实际工作中,当f(x,y)非常接近于0(-D<f(x,y)<D,其中D为非常小的正数)时,就可以认为激光器处于理想工作点了。Error Signal f(x,y)与0的差的绝对值(即为D)可以根据激光器的实际测试结果而定。具体判断标准:为f(x,y)=D时,对激光器的性能的负面影响可被忽略。
实际处理中,某个数据点的微分可以用相邻几个数据点的斜率来近似。某个数据点位于极值点,也就意味着这点与周围的数据点的斜率最小(理论行为0),或者说这个数据点与周围的数据点的差值最小。
根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个的具体方法可以为寻找I1/I2的极值点的方法,可以采用“爬山法”、“十字坐标法”等多种数学方法来判断I1/I2是否为极值点。下面具体说明一种寻找极值点的方法:
以工作点(x,y)为中心,此时第一电信号的电流值和第二电信号的电流值的比值ε(x,y)记录为ε0。分别设定8个微小偏离(x方向δ1和y方向δ2)的点,如:(x+δ1,y),(x-δ1,y),(x,y+δ2),(x,y-δ2),(x,y-δ2),(x+δ1,y-δ2),(x+δ1,y+δ2),(x-δ1,y-δ2),(x-δ1,y+δ2)。分别记录这8个点时第一电信号的电流值和第二电信号的电流值的比值为ε1,ε2,…ε8。计算中心点ε0与周围8个点的差值的绝对值之和(也可以取绝对值的平方之和,或者差值的绝对值的平均数等)作为f(x,y),即f(x,y)=(ε01)2+(ε02)2+(ε03)2+…+(ε08)2
接下来,取一个与工作点(x,y)有一定偏离的点(x2,y2),与工作点(x,y)类似计算其f(x2,y2).如果f(x,y)>f(x2,y2),说明工作点(x2,y2)比工作点(x,y)更接近理想工作点。
根据(x2,y2)和(x,y)的偏移量,来选取下一个更接近理想工作点的工作点。根据实际结果判定是否更得到更小的f。如此循环,直到找到f最小值对应的工作点,即为理想工作点。
第一反射镜的光功率P1与第二反射镜的光功率P2之间的差值P1-P2与反射率具有关系,根据激光原理,对于可调激光器,第一反射镜的光功率P1与第二反射镜的光功率P2之间的差值P1-P2为(t1 2*r2-t2 2*r1)/(t1 2*r2+t2 2*r1),其中,r1是反射镜1端面的反射率,t1是反射镜1端面的透射率;r2是反射镜2端面的反射率,t2是反射镜2端面的透射率。对于热调谐的可调激光器而言,上述公式可以做一个合理的简化:反射镜是没有吸收损耗的,那么t1 2+r1 2=1,t2 2+r2 2=1。于是,P1-P2可以简化为1-2/(1+(1/r1-r1)/(1/r2-r2))。由于r1和r2都 是大于0而小于1的,所以,固定r1改变r2时,P1-P2的值会随着r2的增大而达到极大值;固定r2改变r1时,P1/P2的值会随着r1的增大而达到极小值。r1和r2的改变过程,就是调节反射镜的过程。如果第一反射镜和第二反射镜都和目标波长对准,那么r1和r2同时达到最大。可以使用和上面提到的调整方法类似的方法对反射镜的驱动条件进行调整。
同上面提到的比值类似,第一电信号的电流值I1和所述第二电信号的电流值I2的差值I1-I2和x、y的关系图也是呈现马鞍面形状的曲面,当x=0且y=0时,r1和r2同时达到最大值,I1-I2位于马鞍面的极值点(最平坦的点)。
因此根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个的具体方法可以为寻找I1-I2的极值点的方法,可以采用“爬山法”、“十字坐标法”等多种数学方法来判断I1-I2是否为极值点。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种可调激光器,包括第一反射镜、第二反射镜、相位调节区,增益区、第一探测器、第二探测器和控制器,其中:
    所述相位调节区位于所述第一反射镜和所述增益区之间,所述增益区位于所述相位调节区和所述第二反射镜之间,所述第一反射镜的反射率可调,所述第二反射镜的反射率可调;
    所述第一探测器用于将所述第一反射镜的光信号转换为第一电信号;
    所述第二探测器用于将所述第二反射镜的光信号转换为第二电信号;
    所述控制器用于根据所述第一电信号和所述第二电信号调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
  2. 根据权利要求1所述的可调激光器,所述控制器具体用于根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
  3. 根据权利要求2所述的可调激光器,所述控制器具体用于根据所述第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
  4. 根据权利要求2所述的可调激光器,所述控制器具体用于根据所述第一电信号的电压值和所述第二电信号的电压值的比值调整所述第一反射镜的反射率和所述第二反射镜的反射率中的至少一个。
  5. 根据权利要求1所述的可调激光器,所述控制器还用于控制相位调节区的相位和增益区的增益中的至少一个。
  6. 根据权利要求1所述的可调激光器,所述可调激光器为可调半导体激光器,所述第一反射镜包括:
    N型掺杂半导体材料层;
    本征掺杂半导体材料层,位于所述N型掺杂半导体材料层的上面;
    P型掺杂半导体材料层,位于所述本征掺杂半导体材料层的上面。
  7. 根据权利要求6所述的可调激光器,所述本征掺杂半导体材料层包括波导,所述P型掺杂半导体材料层包括光栅结构。
  8. 根据权利要求1或5所述的可调激光器,所述第一探测器包括:
    N型掺杂半导体材料层;
    本征掺杂半导体材料层,位于所述N型掺杂半导体材料层的上面;
    P型掺杂半导体材料层,位于所述本征掺杂半导体材料层的上面;
    金属层,位于所述P型掺杂半导体材料层的上面,所述第一探测器将本征掺杂半导体材料层的光信号转换为金属层的第一电信号。
  9. 根据权利要求8所述的可调激光器,所述第一反射镜和所述第一探测器共用相同的N型掺杂半导体材料层、本征掺杂半导体材料层和P型掺杂半导体材料层。
  10. 根据权利要求9所述的可调激光器,所述第一反射镜还包括绝缘介质层和加热层,所述绝缘介质层位于所述金属层的上面,所述加热层位于所述绝缘介质层的上面,所述加热层用于控制所述第一反射镜的反射率。
  11. 根据权利要求1所述的可调激光器,所述第一探测器和所述第一反射镜之间还包括 第一分光器。
  12. 一种可调激光器的控制方法,包括:
    根据目标波长设置第一反射镜的驱动条件和第二反射镜的驱动条件,所述第一反射镜的驱动条件和所述第一反射镜的反射率相关,所述第一反射镜的驱动条件和所述第二反射镜的反射率相关;
    将所述第一反射镜的光信号转换为第一电信号,将所述第二反射镜的光信号转换为第二电信号;
    根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
  13. 根据权利要求12所述的方法,所述根据所述第一电信号和所述第二电信号调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个具体包括:根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
  14. 根据权利要求13所述的方法,所述根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个具体包括:根据所述第一电信号的电流值和所述第二电信号的电流值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
  15. 根据权利要求13所述的方法,所述根据所述第一电信号和所述第二电信号的比较结果调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个具体包括:根据所述第一电信号的电压值和所述第二电信号的电压值的比值调整所述第一反射镜的驱动条件和所述第二反射镜的驱动条件中的至少一个。
  16. 根据权利要求12所述的方法,其特征在于,还包括:
    根据所述目标波长设置可调激光器的增益和相位。
PCT/CN2017/070997 2016-01-15 2017-01-12 一种可调激光器及其控制方法 WO2017121358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17738171.2A EP3392986B1 (en) 2016-01-15 2017-01-12 Tunable laser and controlling method therefor
US16/034,471 US10581222B2 (en) 2016-01-15 2018-07-13 Tunable laser and control method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029003.7A CN106981819B (zh) 2016-01-15 2016-01-15 一种可调激光器及其控制方法
CN201610029003.7 2016-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/034,471 Continuation US10581222B2 (en) 2016-01-15 2018-07-13 Tunable laser and control method for same

Publications (1)

Publication Number Publication Date
WO2017121358A1 true WO2017121358A1 (zh) 2017-07-20

Family

ID=59310841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070997 WO2017121358A1 (zh) 2016-01-15 2017-01-12 一种可调激光器及其控制方法

Country Status (4)

Country Link
US (1) US10581222B2 (zh)
EP (1) EP3392986B1 (zh)
CN (1) CN106981819B (zh)
WO (1) WO2017121358A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018474B2 (en) * 2018-11-30 2021-05-25 Optella Inc. Laser temperature compensation system and driving method thereof
EP3936884A4 (en) * 2019-03-28 2022-03-16 Huawei Technologies Co., Ltd. RADAR POWER CONTROL METHOD AND DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428018A (zh) * 2000-05-04 2003-07-02 艾吉利提通信公司 用于取样光栅分布型布拉格反射激光器的改进反射镜和腔
US20050025419A1 (en) * 2003-07-31 2005-02-03 Fish Gregory A. Tunable laser source with monolithically integrated interferometric optical modulator
CN1774845A (zh) * 2004-03-23 2006-05-17 日本电信电话株式会社 Dbr型波长可变光源
CN102725926A (zh) * 2010-01-25 2012-10-10 索尼公司 光源单元和通信装置
CN103066494A (zh) * 2013-01-05 2013-04-24 华中科技大学 一种可调谐半导体激光器
US20150333475A1 (en) * 2013-01-02 2015-11-19 Packet Photonics, Inc. Tunable U-Laser Transmitter With Integrated Mach-Zehnder Modulator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515435C2 (sv) * 1999-02-17 2001-08-06 Altitun Ab Metod för att våglängdslåsa och modkontrollera en avstämbar laser
US6714566B1 (en) * 1999-03-01 2004-03-30 The Regents Of The University Of California Tunable laser source with an integrated wavelength monitor and method of operating same
US6359915B1 (en) * 1999-09-23 2002-03-19 Agere Systems Wavelength-stabilized Bragg laser
US20020051472A1 (en) * 2000-07-11 2002-05-02 Geert Morthier Method and apparatus for controlling a laser structure
US6735224B2 (en) * 2001-03-01 2004-05-11 Applied Optoelectronics, Inc. Planar lightwave circuit for conditioning tunable laser output
US20040076199A1 (en) * 2002-08-22 2004-04-22 Agility Communications, Inc. Chirp control of integrated laser-modulators having multiple sections
US7778295B2 (en) * 2007-05-14 2010-08-17 Finisar Corporation DBR laser with improved thermal tuning efficiency
CN100546135C (zh) * 2007-12-28 2009-09-30 武汉光迅科技股份有限公司 可调谐半导体激光器的制作方法及可调谐半导体激光器
JP5239898B2 (ja) * 2009-01-26 2013-07-17 住友電気工業株式会社 波長可変レーザ
US8121169B2 (en) * 2009-04-14 2012-02-21 Corning Incorporated Split control of front and rear DBR grating portions
US8457165B2 (en) * 2010-05-26 2013-06-04 Google Inc. Tunable multi-wavelength semiconductor laser array for optical communications based on wavelength division multiplexing
CN102074892B (zh) * 2010-12-07 2012-02-22 北京邮电大学 可调谐半导体激光器的制作方法
US20130094527A1 (en) * 2011-10-13 2013-04-18 Sumitomo Electric Industries, Ltd. Wavelength monitor, wavelength lockable laser diode and method for locking emission wavelength of laser diode
US10122149B2 (en) * 2016-01-04 2018-11-06 Infinera Corporation Tunable waveguide devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428018A (zh) * 2000-05-04 2003-07-02 艾吉利提通信公司 用于取样光栅分布型布拉格反射激光器的改进反射镜和腔
US20050025419A1 (en) * 2003-07-31 2005-02-03 Fish Gregory A. Tunable laser source with monolithically integrated interferometric optical modulator
CN1774845A (zh) * 2004-03-23 2006-05-17 日本电信电话株式会社 Dbr型波长可变光源
CN102725926A (zh) * 2010-01-25 2012-10-10 索尼公司 光源单元和通信装置
US20150333475A1 (en) * 2013-01-02 2015-11-19 Packet Photonics, Inc. Tunable U-Laser Transmitter With Integrated Mach-Zehnder Modulator
CN103066494A (zh) * 2013-01-05 2013-04-24 华中科技大学 一种可调谐半导体激光器

Also Published As

Publication number Publication date
US10581222B2 (en) 2020-03-03
EP3392986B1 (en) 2020-05-13
EP3392986A1 (en) 2018-10-24
EP3392986A4 (en) 2019-02-27
CN106981819B (zh) 2019-05-28
CN106981819A (zh) 2017-07-25
US20180323578A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
Michalzik et al. Operating principles of VCSELs
US5299045A (en) Light detecting apparatus having a diffraction grating
US20060165363A1 (en) Semiconductor optical amplifier and optical module using the same
US20050018732A1 (en) Uncooled and high temperature long reach transmitters, and high power short reach transmitters
US11050215B2 (en) Variable wavelength laser device and variable wavelength laser device production method
Bjorlin et al. Long wavelength vertical-cavity semiconductor optical amplifiers
Faugeron et al. High Power Three-Section Integrated Master Oscillator Power Amplifier at 1.5$\mu\text {m} $
US9762025B2 (en) Temperature insensitive integrated electro-absorption modulator and laser
JP2010232424A (ja) 半導体光増幅装置及び光モジュール
JP2019083351A (ja) 半導体光増幅器、半導体レーザモジュール、および波長可変レーザアセンブリ
Hassan et al. High-power operations of single-mode surface grating long oxide aperture VCSELs
US20060034576A1 (en) Superluminescent diodes having high output power and reduced internal reflections
WO2017121358A1 (zh) 一种可调激光器及其控制方法
JP2011523209A (ja) ダイオードレーザ、複合ダイオードレーザ、および複合半導体光増幅器
JP2017103455A (ja) 波長可変レーザ装置および波長可変レーザの制御方法
Jain et al. Design optimization for semiconductor lasers with high-order surface gratings having multiple periods
US12009636B2 (en) Wavelength-variable laser
JP6810671B2 (ja) 半導体光集積素子
RU2540233C1 (ru) Инжекционный лазер с многоволновым модулированным излучением
JP6730868B2 (ja) 波長可変半導体レーザ
Madison et al. Limits to maximum absorption length in waveguide photodiodes
Djordjev et al. Two-segment spectrally inhomogeneous traveling wave semiconductor optical amplifiers applied to spectral equalization
Hasler et al. Improving the modulation efficiency of high-power distributed Bragg reflector tapered diode lasers
JPH11317564A (ja) 分布帰還型半導体レーザ及び単一モード光源
KR20060092647A (ko) 광대역 이득을 갖는 양자우물 레이저 다이오드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738171

Country of ref document: EP

Effective date: 20180717