WO2018102971A1 - 一种波束跟踪装置、方法及天线系统 - Google Patents

一种波束跟踪装置、方法及天线系统 Download PDF

Info

Publication number
WO2018102971A1
WO2018102971A1 PCT/CN2016/108609 CN2016108609W WO2018102971A1 WO 2018102971 A1 WO2018102971 A1 WO 2018102971A1 CN 2016108609 W CN2016108609 W CN 2016108609W WO 2018102971 A1 WO2018102971 A1 WO 2018102971A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
preset
received signal
beam tracking
feed array
Prior art date
Application number
PCT/CN2016/108609
Other languages
English (en)
French (fr)
Inventor
骆彦行
�龙昊
汤富生
曾卓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680087953.3A priority Critical patent/CN109565110B/zh
Priority to EP16923146.1A priority patent/EP3531505B1/en
Priority to PCT/CN2016/108609 priority patent/WO2018102971A1/zh
Publication of WO2018102971A1 publication Critical patent/WO2018102971A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the present application relates to the field of communications, and in particular, to a beam tracking apparatus, method, and antenna system.
  • the antenna In long-haul microwave communications, high gain antennas are typically used to ensure network performance.
  • the installation of the high-gain antenna in engineering is very time-consuming and labor-intensive, and it is easy to break the business in the windy environment due to tower shaking. Therefore, the antenna is required to automatically determine the direction of the incoming wave (English name: Direction Of Arrival, DOA) for automatic beam tracking for installation alignment and wind-shaking.
  • DOA Direction Of Arrival
  • the array antenna uses multiple channels, resulting in an overall high cost and power consumption of the antenna, and it is difficult to satisfy the antenna template.
  • the antenna array is designed by using a RF switch switching channel connected feed array plus a paraboloid to achieve a compromise between cost and performance to overcome the deficiencies caused by the array antenna.
  • the direction of the incoming wave is determined by means of periodic detection to achieve beam tracking. That is, the signal strength in the beam direction corresponding to all working states of the feed array is detected by using a certain idle time slice, and the direction of the signal strength is considered to be the mode direction of the incoming wave direction. Since the number of feeds included in the feed array is large, and the working state is different combinations of the feeds included in the feed array, the number of working states is more, which leads to a long process of judging the direction of the incoming wave, and the detection is slow, and further Beam tracking takes a long time and is inconvenient to use. And periodic detection brings a lot of training costs, which takes up a lot of antenna resources.
  • the embodiment of the present invention provides a beam tracking device, a method, and an antenna system, which solve the problem that the beam tracking takes a long time and occupies resources.
  • a beam tracking apparatus comprising N probe points, a detector coupled to the N probe points, a processor coupled to the detector, and N greater than one.
  • the detector is configured to detect the received signal strengths of the N preset positions in the antenna through the N detection points, and send the detected N received signal strength values to the processor;
  • the processor is configured to use the N received signal strengths sent by the detector.
  • the working state is the connection relationship between the channel and the feed in the antenna.
  • the beam tracking device provided by the present application detects the received signal strength of the N preset positions by setting a detection point, and implements beam tracking according to the detected strength relationship of the N received signal strength values and a preset switching rule. That is to say, the beam tracking device provided by the present application performs beam tracking, only needs to detect the signal strength of the preset position, and can achieve accurate beam tracking; since the signal strength of detecting the preset position is simple, the time is short, and it is unnecessary A large amount of antenna resources are occupied. Therefore, the beam tracking device provided by the present application implements fast and less resource-intensive antenna beam tracking.
  • the antenna may include a switch switching feed array plus a parabolic antenna.
  • the switch-switching feed array plus parabolic antenna includes M channels, M single-pole multi-throw switches, and a feed array.
  • the M channels are respectively connected with the fixed ends of the M single-pole multi-throw switches, and the moving ends of the M single-pole multi-throw switches select different feed array groups in the feed array; M is greater than 1.
  • the N preset positions may be N channels in the antenna.
  • the N preset positions may be N different positions of the feed array included by the antenna.
  • the N preset positions are N different positions of the feed array of the switch switching feed array plus the parabolic antenna, if the feed array is a quadrilateral distribution, N is 4; N preset positions are respectively distributed on four sides of the feed array, or N preset positions include four tops of the feed array point.
  • the detector is specifically configured to: through the N detection points, detect the switch switching feed array plus the parabolic antenna under a specific working state
  • the received signal strengths of the N preset positions, and the detected N received signal strength values are sent to the processor.
  • the specific working state includes a switch switching feed array and a parabolic antenna in the parabolic antenna to connect the feed of the periphery of the feed array.
  • the signal strength detected by the detection point is higher, and the strength relationship between the obtained N received signal strength values is more obvious and easier to distinguish, which makes the beam tracking more accurate.
  • the specific working state may include: switching the feed array plus the parabolic surface of the N channels through the N single-pole multi-throw switches, and connecting and feeding The feed of the four sides of the source array.
  • N channels pass N single-pole multi-throw switches and connect the feeds of the four sides of the feed array, the paraboloid has the largest partial focus and the widest beam scanning range, which makes the signal intensity detected by the detection points higher.
  • the beam tracking device provided by the present application further includes a single-pole N-throw switch, and the fixed-end connection detector of the single-pole N-throw switch The moving end of the single-pole N-throw switch is connected to N detecting points.
  • the detector is specifically configured to sequentially turn on N detection points by turning on the single-pole N-throw switch to detect the received signal strength of the N preset positions in the antenna. That is to say, the received signal strengths of the N preset positions in the antenna are sequentially detected.
  • only one detector is needed in the beam tracking device provided by the present application, which greatly saves cost.
  • the beam tracking device provided by the present application includes N detectors, which are respectively connected to N detection points.
  • the N detectors are specifically configured to detect the received signal strengths of the N preset positions in the antenna through the detection points connected to the respective detectors. That is to say, the received signal strength of N preset positions in the antenna is simultaneously detected.
  • the number of detectors in the beam tracking device provided by the present application is the same as the number of detection points.
  • the strong and weak relationship may include a difference value or a ratio. Any measure that can be used to embody the strength and weakness of signal strength can be used to represent strong and weak relationships. This application does not specifically limit this.
  • the processor may be further configured to: according to the strength and weak relationship of the N received signal strength values sent by the detector, and preset The switching rule determines the direction of the incoming wave of the switch switching feed array plus the parabolic antenna received signal, and the preset switching rule includes the correspondence between the strength and weakness of the received signal strength value and the incoming wave direction. It realizes the direction of the wave that is fast and does not occupy resources.
  • a second aspect of the present application provides a beam tracking method, where the method may include: detecting a received signal strength of N preset positions in an antenna; N is greater than 1; and determining a strength relationship between the received signal strength values of the N received signals And a preset switching rule, switching the working state of the antenna to switch, and performing beam tracking; wherein the preset switching rule includes a correspondence relationship between the strength and weakness of the received signal strength values of the N preset positions and the working state of the antenna; The connection relationship between the channel and the feed in the antenna.
  • the beam tracking method provided in the foregoing second aspect is the same as the beam tracking device provided in the foregoing first aspect, and thus can achieve the same beneficial effects as the first aspect, and details are not described herein again.
  • the specific implementation of the beam tracking method provided by the second aspect may refer to the specific implementation of the beam tracking device provided by the first aspect, and details are not described herein again.
  • the present application provides another beam tracking device, which can implement the functions in the foregoing method examples, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the beam tracking device includes a processor and a transceiver configured to support the beam tracking device to perform a corresponding function in the foregoing method.
  • the transceiver is used to support communication between the beam tracking device and other devices.
  • the beam tracking device can also include a memory for coupling with the processor that holds the program instructions and data necessary for the beam tracking device.
  • the present application provides a computer storage medium for storing computer software instructions for use in the beam tracking device described above, including a program designed to perform the above aspects.
  • the present application further provides an antenna system, where the antenna system may include the beam tracking device according to any one of the foregoing aspects or any possible implementation manner.
  • FIG. 1 is a schematic structural diagram of a switch switching feed array plus a parabolic antenna according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of a feed array of a switch switching feed array plus a parabolic antenna according to an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a beam tracking apparatus according to an embodiment of the present disclosure.
  • FIG. 3A is a schematic diagram of a preset location distribution according to an embodiment of the present application.
  • FIG. 3B is a schematic diagram of another preset location distribution according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another beam tracking apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of still another beam tracking device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of still another preset location distribution according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another switch switching feed array plus parabolic antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another beam tracking device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another beam tracking device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of a beam tracking method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of another beam tracking method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an antenna system according to an embodiment of the present application.
  • the industry proposes to design an antenna by means of a feed array and a paraboloid of a RF switch switching channel connection (referred to herein as a switch-switching feed array plus a parabolic antenna).
  • a switch-switching feed array plus a parabolic antenna The architecture of the switch-switched feed array plus parabolic antenna is shown in Figure 1. The architecture of the switch switching feed array plus parabolic antenna will be described below with reference to FIG.
  • the distribution profile of the feed array is shown in Figure 2.
  • Each channel includes a duplexer, an uplink path (TX), and a downlink path (RX).
  • TX uplink path
  • RX downlink path
  • the N channels in the switch switching feed array plus the parabolic antenna select different feed groups from the feed array through the single-pole multi-throw switch connected thereto, which is equivalent to the para-focus antenna focusing to form a beam scan.
  • mapping between the N channels and the feed group in the feed array can be configured according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the 16 feeds included in the feed array in the switch-switched feed array plus parabolic antenna illustrated in FIG. 1 are recorded as: feed 1 - feed 16. It is assumed that the channel 1 is connected to any one of the feeds 1, 5, 9, and 13 through the switch 1; the channel 2 is connected to any one of the feeds 2, 6, 10, and 14 by the switch 2 being turned on. ; channel 3 By means of the switch 3 being switched on, any one of the feeds 3, 7, 11, 15 is connected; the channel 4 is connected via the switch 4 to connect any of the feeds 4, 8, 12, 16.
  • the working state is the mapping connection relationship between the channel and the feed in the feed array, that is, the connection relationship with the single-pole multi-throw switch connected to the channel.
  • the working state is the connection relationship between the channels and the feeds in the antenna. The manner of connecting the channels to the feeds is not specifically limited in this application.
  • the channel 1 to the channel 4 are illustrated in FIG. 1, and the feed 1, the feed 2, the feed 3, and the feed 4 are connected by the switch 1 to 4, and the antenna is illustrated in FIG.
  • the working state is to connect the feeds 1, 2, 3, 4.
  • the ON position of the single-pole multi-throw switch in FIG. 1 changes, for example, if the channel 1 to the channel 4 illustrated in FIG. 1 are turned on, the switch is connected to the feed source 5 and the feed source 10 through the switching of the switches 1 to 4.
  • the feed source 11 and the feed source 16 are also switched to the connected feeds 5, 10, 11, and 16. Others are no longer listed one by one.
  • beam tracking adjusts the working state of the antenna so that the working state of the antenna matches the direction of the incoming signal of the received signal to achieve the optimal performance of the antenna.
  • the antenna has a lot of working states, which is determined by the arrangement of X and M. If the direction of the incoming wave is judged by the existing periodic detection method, the polling determines the incoming wave. Beam tracking after the direction takes a long time.
  • the basic principle of the present application is: preset a preset switching rule including a correspondence between a strong and weak relationship of a received signal strength value and an antenna working state, and set N detection points at N preset positions in the antenna, The received signal strength of the preset position is detected, and after the working state corresponding to the received signal is obtained according to the detected result and the preset switching rule, the working state of the antenna is switched to perform beam tracking. Since the process of signal strength detection takes a short time and takes up less resources, beam tracking with fast and low resource consumption can be realized.
  • FIG. 3 is a schematic structural diagram of a beam tracking device 30 according to an embodiment of the present application.
  • the beam tracking device 30 can be used to switch the switch shown in FIG. 1.
  • the feed array plus a parabolic antenna performs beam tracking.
  • the beam tracking device 30 can also be used for beam tracking of other types of antennas, which is not specifically limited in this embodiment of the present application.
  • the beam tracking device 30 may include N detection points 301, a detector 302 connected to the N detection points 301, and a processor 303 connected to the detector 302.
  • the components of the beam tracking device 30 will be specifically described below with reference to FIG. 3:
  • the detecting point 301 can be a device for obtaining a sampling signal, such as a sampling resistor, a coupler, etc., for sampling and acquiring a signal of a preset position. Any device that can be used for sampling signals can be used as the probe point 301. The present application does not specifically limit the type of the probe point 301.
  • the detection point 301 may be distributed in the vicinity of the N preset positions in the antenna, and may be coupled to the received signals of the preset position, or may be connected to the N preset positions in the antenna, which is not specifically limited in this application.
  • the specific position of the N preset positions in the antenna may be configured according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the N preset positions may be N channels in the antenna.
  • the N preset positions may be other locations than the channels in the antenna.
  • N preset positions may be set according to the actual requirements in the actual application, which is not specifically limited in this embodiment of the present application. Any position in the antenna that can be used for beam tracking by detecting the received intensity of the signal can be used as the preset position.
  • the N preset positions may be N different positions of the feed array of the switch switching feed array plus the parabolic antenna.
  • N is 4.
  • the N preset positions are N different positions of the feed array of the switch switching feed array plus the parabolic antenna
  • the N preset positions include four sides of the feed array.
  • N preset positions include four of the feed array Vertices.
  • FIG. 3A a schematic representation of the distribution of four preset positions on four sides of the feed array is illustrated.
  • FIG. 3B a schematic representation of the distribution of four preset positions at the vertices of the feed array is illustrated.
  • FIG. 3A and FIG. 3B are only schematic representations of the distribution of N preset positions when the feed array is quadrangular, and are not specifically limited thereto.
  • the N preset positions include the four sides of the feed array
  • the specific position of each preset position on each side of the feed array may be set according to actual requirements, and the embodiment of the present application does not specifically limited.
  • the detector 302 detects the received signal strengths of the N preset positions in the antenna through the N detection points 301, and transmits the detected N received signal strength values to the processor 303.
  • the detector 302 can be a detector tube or a detection circuit or the like. Any device that can acquire the signal from the detection point 301 to the preset position and detect the intensity value thereof can be used as the detector 302.
  • the detector 302 is specifically configured to: through the N detection points 301, detect the received signal strength of the switch switching source array and the parabolic antenna in a specific working state, N preset positions, and send the signal strength to the processor 303. Send the detected N received signal strength values.
  • the specific working state includes a switch switching feed array and a parabolic antenna in the parabolic antenna to connect the feed of the periphery of the feed array.
  • the connection relationship between the channel and the feed in a specific working state may be set according to actual requirements, which is not specifically limited in this embodiment of the present application.
  • the particular operational state of the switch-switched feed array plus parabolic antenna can include a channel-connected feed that is a feed to the periphery of the feed array.
  • the specific working state of the switch switching feed array plus parabolic antenna shown in FIG. 1 may include: four channels respectively mapping connection feeds 1, 6, 11, 16; or, four channels respectively mapping connection feeds 3, 5, 12, 14 and so on, no more details will be made here.
  • the number of detectors 302 can be various. The present application does not specifically limit this.
  • the detector 302 may be only one.
  • the detector 302 has multiple channels, and the input N signals may be processed in parallel to obtain the received intensity values of the N signals.
  • the structure of the beam tracking device 30 is as shown in FIG.
  • the detector 302 may be one, the detector 302 may process an input signal, and the detector 302 is sequentially connected to the N detection points 301 through a single-pole N-throw switch 304, and sequentially processes each.
  • the signal acquired by the detection point 301 sequentially obtains the received intensity values of the N signals.
  • the fixed end of the single-pole N-throw switch 304 is connected to the detector 302, and the movable end of the single-pole N-throw switch 304 is connected to the N probe points 301.
  • the detector 302 may be N, each detector 302 may process one input signal, and the N detectors 302 obtain the received intensity values of the N signals.
  • the structure of the beam tracking device 30 is as shown in FIG.
  • the processor 303 is a control center of the beam tracking device 30, and may be a central processing unit (English name: central processing unit, CPU), or may be a specific integrated circuit (English name: Application Specific Integrated Circuit, ASIC), or One or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital singnal processor, DSP), or one or more field programmable gate arrays (English full name: Field Programmable Gate Array, FPGA).
  • the processor 303 can perform various functions of the beam tracking device 30 by running or executing software programs and/or modules, as well as invoking data.
  • the processor 303 is configured to switch the working state of the antenna according to the strength and weak relationship of the N received signal strength values sent by the detector 302 and the preset switching rule, and perform beam tracking.
  • the working state of the antenna is switched, and beam tracking is performed, including: The working state of the antenna is switched to the working state corresponding to the strength and weak relationship of the N received signal strength values sent by the detector 302 in the preset switching rule, and the beam tracking is completed.
  • the strong and weak relationship includes a difference or a ratio.
  • the received signal strength values of the four preset positions are recorded as D1, D2, D3, and D4, respectively, and the strong and weak relationship may include that D1 is higher in power than D3 by a first preset threshold, D2 The second preset threshold is higher in power than D4.
  • the strong and weak relationship may include that the power ratio of D1 and D3 is greater than the first ratio, and the power ratio of D2 to D4 is greater than the second ratio.
  • first preset threshold the second preset threshold
  • first ratio the first ratio
  • second ratio the second ratio
  • the preset switching rule includes a correspondence between a strong and weak relationship of the received signal strength values of the N preset positions and an antenna working state.
  • the correspondence between the strength and weakness of the received signal strength values of the N preset positions included in the preset switching rule and the working state of the antenna may be simulated by performing performance on the antenna.
  • the antenna is simulated to receive different beam signals in an actual application, and the antenna state of the beam tracking under different beam signals is recorded; under the different beam signals, the antenna is pre-N Set the strength of the received signal strength of the position and record it.
  • the antenna state of the beam tracking performed under different beam signals recorded is matched with the received signal of the N preset positions of the antenna under different beam signals, and a preset switching rule is established.
  • the correspondence between the strength and weakness of the received signal strength values of the N preset positions included in the preset switching rule and the working state of the antenna may also be obtained according to the positional relationship of the N preset positions.
  • the direction of the incoming wave of the antenna received signal may be determined; if the direction of the incoming wave uniquely corresponds to a working state, then A corresponding relationship in the preset switching rule can be obtained.
  • the antenna is a switch-switched feed array plus a parabolic antenna
  • N 4,4
  • the preset positions are as shown in Fig. 6.
  • the received signal strength values of the four preset positions are recorded as D1, D2, D3, and D4, respectively.
  • the working state corresponding to the incoming wave direction is 4 channels connecting the feeds 4, 7, 10, 13, then the difference between the strong and weak relationship D1, D2, D3, D4 is less than or equal to X, the corresponding working state is: 4 channel mapping connection feeds 4, 7, 10, 13 .
  • X is the threshold value for which the defined power is close.
  • D1 is higher than D3 and D2 is higher than D4
  • the working state corresponding to the incoming direction is 4 channels connected to the feed 5 6, 6, 7, and 8
  • the power of the strong and weak relationship D1 is higher than the power of D3 by a first preset threshold
  • the power of D2 is higher than D4 by a second preset threshold
  • the corresponding working state is: 4 channel mapping connections. Feeds 5, 6, 7, 8.
  • Table 1 illustrates a preset switching rule.
  • the default switching rule illustrated in Table 1 is represented by an example in which the antenna is a switch switching feed array and a parabolic antenna as shown in FIG. 1 , and the content and form of the preset switching rule are schematically illustrated.
  • Table 1 exemplifies the preset switching rule by way of example, and is not specifically limited to the content and format of the preset switching specification.
  • the preset switching rule can be obtained through simulation, and the form of the preset switching rule can be other forms than the tabular form. This embodiment of the present application does not specifically limit this.
  • the preset strong-wet relationship that the N-received signal strength value satisfies may include a preset strong-wet relationship that is completely equal to the strength of the N received signal strength values, and may also include N receiving
  • the preset strength and weakness relationship of the strength and the weakness of the signal strength value is not specifically limited in the embodiment of the present application.
  • the following describes the working process of the beam tracking device 30 provided by the present application by taking the switch switching feed array plus parabolic antenna and the preset switching rule shown in FIG. 1 as an example.
  • the current working state of the antenna is the four channel mapping connection feeds 1, 2, 3, and 4 illustrated in the figure.
  • the beam tracking device 30 detects that the received signal strength values of the four preset positions are recorded as D1, D2, D3, and D4 through the four detection points, and the strength and weak relationship satisfy the power ratio of D1 and D3 is greater than the first. For a ratio, the power ratio of D2 to D4 is greater than the second ratio. Therefore, the beam tracking device 30 switches the operating state of the antenna to the operating state shown in FIG. 7 according to the preset switching rule shown in Table 1, that is, the four channels map the connected feeds 4, 7, 10, and 13.
  • the beam tracking device 30 may perform a beam tracking process periodically, or may perform a beam tracking process periodically, or may perform a beam tracking process in an idle time slice.
  • the embodiment does not specifically limit the operating time of the beam tracking device 30.
  • the beam tracking device 30 may further include a converter 306 for connecting the detector 302 and the processor 303. .
  • converter 306 can be an analog to digital converter, or the like.
  • the type of the converter 306 is not specifically limited in the present application.
  • FIG. 8 only includes the converter 306 on the basis of FIG. 3, and the beam tracking device 30 illustrated in FIG. 4 and FIG. 5 may also include the converter 306 according to actual needs, and will not be further described or illustrated.
  • the beam tracking device 30 may further include a memory 307, which may be a volatile memory (English name: volatile memory), such as a random access memory (English name: random-access memory, RAM); Or non-volatile memory (English name: non-volatile memory), such as read-only memory (English full name: read-only memory, ROM), flash memory (English full name: flash memory), hard disk (English full name: hard disk Drive, HDD) or solid state drive (SSD); or a combination of the above types of memory for storing related applications that implement the functions of the beam tracking device 30, and configuration files.
  • the processor 303 can perform various functions of the beam tracking device 30 by running or executing software programs and/or modules stored in the memory 307, as well as invoking data stored in the memory 307.
  • FIG. 9 only includes the memory 307 on the basis of FIG. 3, and the beam tracking device 30 illustrated in FIG. 4, FIG. 5 and FIG. 8 may also include the memory 307, which will not be further described or illustrated.
  • the preset switching rule may further include a correspondence relationship between the strength and weakness of the received signal strength value and the direction of the incoming wave.
  • the processor 303 is further configured to determine the direction of the incoming wave of the received signal of the antenna according to the strength and weak relationship of the N received signal strength values sent by the detector 302 and the preset switching rule. Specifically, according to the strength and weak relationship of the N received signal strength values sent by the detector 302 and the preset switching rule, the direction of the incoming wave of the antenna received signal may be determined as a preset switching rule, and the N received signal strength values are The direction of the incoming wave corresponding to the strong and weak relationship
  • the beam tracking device 30 provided by the present application detects the received signal strength of the N preset positions by setting the detection point, and performs beam tracking according to the detected strength relationship of the N received signal strength values and the preset switching rule. That is to say, the beam tracking device 30 provided by the present application performs automatic beam tracking of the antenna, and only needs to detect the signal strength of the preset position, and can achieve accurate beam tracking; the signal strength of the preset position is simple and time-consuming.
  • the beam tracking device provided by the present application implements beam tracking with fast and low resource consumption.
  • the embodiment of the present application provides a beam tracking method, as shown in FIG. 10,
  • the method can include:
  • N is greater than 1.
  • S1002 Switch the working state of the antenna according to the strength and weak relationship of the detected N received signal strength values and the preset switching rule, and perform beam tracking.
  • the preset switching rule includes a correspondence between a strong and weak relationship of the received signal strength values of the N preset positions and an antenna working state.
  • S1002 is the same as that in the function description of the beam tracking device 30 described above, and details are not described herein.
  • the beam tracking method provided by the present application implements beam tracking by detecting the received signal strengths of the N preset positions, and then according to the strength and weakness of the detected N received signal strength values and the preset switching rule. That is to say, the beam tracking is performed by using the solution provided by the present application, and only the signal strength of the preset position is detected, and accurate beam tracking can be realized; since the signal strength of the preset position is simple to implement, the time is short, and no need to occupy a large amount.
  • the antenna resource is provided. Therefore, the beam tracking method provided by the present application implements beam tracking with fast and low resource consumption.
  • the method may further include:
  • the preset switching rule may further include a correspondence between a strong and weak relationship of the received signal strength values of the N preset positions and a direction of the incoming wave.
  • execution order of S1003 and S1002 can be set according to actual needs, and can be performed simultaneously or sequentially.
  • S1003 and S1002 are sequentially executed, the sequence of the present application is not specifically limited.
  • the beam tracking method provided by the embodiment of the present application can be weekly.
  • the beam tracking process may be performed periodically, or the beam tracking process may be performed periodically, or the beam tracking process may be performed in the idle time slice.
  • the execution time of the beam tracking method is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application is only a specific description of performing a beam tracking method, and the beam tracking method is performed multiple times, which is also within the protection scope of the present application.
  • the beam tracking device includes corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, Erasable Programmable ROM (EPROM), and electrically erasable programmable read only memory (Electrically EPROM).
  • EEPROM electrically erasable programmable read only memory
  • registers hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the embodiment of the present application provides an antenna system 120.
  • the antenna system 120 can include:
  • the antenna system 120 performs beam tracking on the switch switching feed array plus the parabolic antenna through the beam tracking device 30, which can achieve the same beneficial effects as the antenna beam tracking 30, and details are not described herein.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment. of.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本申请实施例提供一种波束跟踪装置、方法及天线系统,涉及通信领域,实现快速且占用资源少的天线波束跟踪。本申请实施例提供的方案包括:检测器用于通过N个探测点,检测天线中N个预设位置的接收信号强度;处理器根据检测器发送的N个接收信号强度值的强弱关系、及预设切换规则,切换天线的工作状态,进行波束跟踪。本申请用于波束跟踪。

Description

一种波束跟踪装置、方法及天线系统 技术领域
本申请涉及通信领域,尤其涉及一种波束跟踪装置、方法及天线系统。
背景技术
在长距离微波通信中,通常使用高增益天线以保证网络性能。而高增益天线在工程上的安装对准非常费时费力,并且在大风环境容易因为塔摇晃导致业务中断。因此要求天线能够自动判断来波方向(英文全称:Direction Of Arrival,DOA)进行波束自动跟踪,以便安装对准和抗风摇晃。
通常,通过阵列天线实现波束扫描,但在长距离微波通信应用场景下,阵列天线由于使用多个通道,导致天线整体成本及功耗过高,并且难以满足天线模板。当前,采用射频开关切换通道连接的馈源阵列加抛物面的方式设计天线,来实现成本和性能的折中,以克服阵列天线所带来的不足。
而在射频开关切换通道连接的馈源阵列加抛物面的方式设计的天线中,采用周期性探测的方式判断来波方向以实现波束跟踪。即利用某个空闲时间片轮循检测馈源阵列所有工作状态对应的波束方向上的信号强度,信号强度大的方向认为是来波方向进行模式跟踪。由于馈源阵列中包括的馈源数量较多,其工作状态是馈源阵列包括的馈源的不同组合,所以工作状态的数量更多,导致判断来波方向的过程耗时长,检测缓慢,进而导致工程使用时波束跟踪耗时长,使用不便。并且周期性探测带来了大量的轮训开销,大量占用了天线的资源。
发明内容
本申请实施例提供一种波束跟踪装置、方法及天线系统,解决了波束跟踪耗时长、占用资源的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
本申请的第一方面,提供一种波束跟踪装置,该装置包括N个探测点、与N个探测点连接的检测器、与检测器连接的处理器;N大于1。检测器用于通过N个探测点,检测天线中N个预设位置的接收信号强度,并向处理器发送检测到的N个接收信号强度值;处理器用于根据检测器发送的N个接收信号强度值的强弱关系、及预设切换规则,切换天线的工作状态,进行波束跟踪;其中,预设切换规则包括N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系;工作状态为天线中通道与馈源的连接关系。
本申请提供的波束跟踪装置,通过设置探测点检测N个预设位置的接收信号强度,再根据检测的N个接收信号强度值的强弱关系及预设切换规则实现波束跟踪。也就是说,通过本申请提供的波束跟踪装置进行波束跟踪,只需探测预设位置的信号强度,及可以实现准确的波束跟踪;由于探测预设位置的信号强度实现简单、用时短,且无需占用大量的天线资源,因此,本申请提供的波束跟踪装置实现了快速且占用资源少的天线波束跟踪。
结合第一方面,在一种可能的实现方式中,上述天线可以包括开关切换馈源阵列加抛物面天线。开关切换馈源阵列加抛物面天线包括M个通道、M个单刀多掷开关及馈源阵列。M个通道分别与M个单刀多掷开关的不动端连接,M个单刀多掷开关的动端选择馈源阵列中不同的馈源阵列组;M大于1。
结合第一方面或上述任一种可能的实现方式,在一种可能的实现方式中,N个预设位置可以为天线中的N个通道。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,N个预设位置可以为所述天线包括的馈源阵列的N个不同位置。当天线为开关切换馈源阵列加抛物面天线,N个预设位置为开关切换馈源阵列加抛物面天线中馈源阵列的N个不同位置时,若馈源阵列为四边形分布时,N为4;N个预设位置分别分布在馈源阵列的四个边上,或者,N个预设位置包括馈源阵列的四个顶 点。通过将预设位置部署在馈源阵列四周,以实现精确检测馈源阵列的接收信号强度,进而精确实现波束跟踪。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,检测器具体用于,通过N个探测点,检测开关切换馈源阵列加抛物面天线在特定工作状态下,N个预设位置的接收信号强度,并向处理器发送检测到的N个接收信号强度值。其中,特定工作状态包括开关切换馈源阵列加抛物面天线中的通道连接馈源阵列外围的馈源。在特定工作状态下,探测点检测到的信号强度辨识度更高,得到的N个接收信号强度值的强弱关系更明显更易分辨,进而使得波束跟踪更准确。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,特定工作状态可以包括开关切换馈源阵列加抛物面中N个通道通过N个单刀多掷开关,连接馈源阵列的四个边的馈源。当N个通道通过N个单刀多掷开关,连接馈源阵列的四个边的馈源时,抛物面的偏焦最大,波束扫描范围最宽,使得探测点检测到的信号强度辨识度更高。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,本申请提供的波束跟踪装置还包括单刀N掷开关,该单刀N掷开关的不动端连接检测器,单刀N掷开关的动端连接N个探测点。在此架构下,检测器具体用于,通过单刀N掷开关的接通,依次接通N个探测点,检测天线中N个预设位置的接收信号强度。也就是说,依次检测天线中N个预设位置的接收信号强度。在该架构下,本申请提供的波束跟踪装置中只需一个检测器,大大节约了成本。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,本申请提供的波束跟踪装置包括N个检测器,分别连接N个探测点。在此架构下,N个检测器具体用于,分别通过与各自连接的探测点,检测天线中N个预设位置的接收信号强度。也就是说,同时检测天线中N个预设位置的接收信号强度。在该架构下, 本申请提供的波束跟踪装置中的检测器数量与探测点数量相同,虽然增加了成本,但是检测过程用时缩短,相当于提高了波束跟踪的速度,进一步缩短了波束跟踪的时长。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,强弱关系可以包括差值或者比值。凡是可以用来体现信号强度之间的强弱关系的计量方式,均可以用于表示强弱关系。本申请对此不进行具体限定。
结合第一方面或上述任一种可能的实现方式,在另一种可能的实现方式中,处理器还可以用于,根据检测器发送的N个接收信号强度值的强弱关系、及预设切换规则,确定开关切换馈源阵列加抛物面天线接收信号的来波方向,预设切换规则包括接收信号强度值的强弱关系与来波方向的对应关系。实现了快速且不占用资源的判断来波方向。
本申请的第二方面,提供一种波束跟踪方法,该方法可以包括:检测天线中N个预设位置的接收信号强度;N大于1;根据检测得到的N个接收信号强度值的强弱关系、及预设切换规则,切换天线的工作状态切换,进行波束跟踪;其中,预设切换规则包括N个预设位置的接收信号强度值的强弱关系与天线工作状态的对应关系;工作状态为天线中通道与馈源的连接关系。
上述第二方面提供的波束跟踪方法,与上述第一方面提供的波束跟踪装置的原理相同,因此可以与第一方面达到相同的有益效果,此处不再进行赘述。
需要说明的是,第二方面提供的波束跟踪方法的具体实现方式,可以参考第一方面提供的波束跟踪装置的具体实现,此处不再一一赘述。
第三方面,本申请提供另一种波束跟踪装置,该波束跟踪装置可以实现上述方法示例中的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
结合第三方面,在一种可能的实现方式中,该波束跟踪装置的结构中包括处理器和收发器,该处理器被配置为支持该波束跟踪装置执行上述方法中相应的功能。该收发器用于支持该波束跟踪装置与其他设备之间的通信。该波束跟踪装置还可以包括存储器,该存储器用于与处理器耦合,其保存该波束跟踪装置必要的程序指令和数据。
第四方面,本申请提供了一种计算机存储介质,用于储存为上述波束跟踪装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第五方面,本申请还提供了一种天线系统,该天线系统可以包括:上述任一方面或任一种可能的实现方式所述的波束跟踪装置。
上述第三方面及第五物方面提供的方案,与上述第一方面提供的波束跟踪装置的原理相同,因此可以与第一方面达到相同的有益效果,此处不再进行赘述。
附图说明
图1为本申请实施例提供的一种开关切换馈源阵列加抛物面天线的架构示意图;
图2为本申请实施例提供的一种开关切换馈源阵列加抛物面天线的馈源阵列的剖面图示意图;
图3为本申请实施例提供的一种波束跟踪装置的结构示意图;
图3A为本申请实施例提供的一种预设位置分布示意图;
图3B为本申请实施例提供的另一种预设位置分布示意图;
图4为本申请实施例提供的另一种波束跟踪装置的结构示意图;
图5为本申请实施例提供的再一种波束跟踪装置的结构示意图;
图6为本申请实施例提供的再一种预设位置分布示意图;
图7为本申请实施例提供的另一种开关切换馈源阵列加抛物面天线的架构示意图;
图8为本申请实施例提供的再一种波束跟踪装置的结构示意图;
图9为本申请实施例提供的再一种波束跟踪装置的结构示意图;
图10为本申请实施例提供的一种波束跟踪方法的流程示意图;
图11为本申请实施例提供的另一种波束跟踪方法的流程示意图;
图12为本申请实施例提供的一种天线系统的结构示意图。
具体实施方式
当前,为了折中阵列天线带来的成本与性能的不足,业界提出了采用射频开关切换通道连接的馈源阵列加抛物面的方式设计天线(本文中称之为开关切换馈源阵列加抛物面天线)。开关切换馈源阵列加抛物面天线的架构如图1所示。下面结合图1对开关切换馈源阵列加抛物面天线的架构进行描述。
如图1所示,开关切换馈源阵列加抛物面天线包括至少一个抛物面(图1中示意了两个抛物面),包含M个馈源的馈源阵列(图1中示意M=16),X个通道(图1中示意了4个通道),以及用于映射连接通道与馈源阵列的X个单刀多掷开关,M大于1。馈源阵列的分布剖面如图2所示。
其中,每个通道包括双工器、上行通路(TX)及下行通路(RX)。4个通道的TX分别记录为TX1、TX2、TX3、TX4,4个通道的RX分别记录为RX1、RX2、RX3、RX4。
需要说明的是,X及M的取值,以及抛物面的数量,可以根据实际需求配置,本申请实施例对此不进行具体限定。图1中只是示意,并不是对其数量的具体限定。
其中,开关切换馈源阵列加抛物面天线中的N个通道通过与其连接的单刀多掷开关,从馈源阵列中选择不同馈源组,等效于抛物面天线偏焦形成波束扫描。
需要说明的是,N个通道与馈源阵列中馈源组的映射连接对应关系,可以根据实际需求配置,本申请实施例对此不进行具体限定。
示例性的,将图1中示意的开关切换馈源阵列加抛物面天线中的馈源阵列中包括的16个馈源记录为:馈源1~馈源16。假设通道1通过开关1的接通,连接馈源1、5、9、13中任一个馈源;通道2通过开关2的接通,连接馈源2、6、10、14中任一个馈源;通道3 通过开关3的接通,连接馈源3、7、11、15中任一个馈源;通道4通过开关4的接通,连接馈源4、8、12、16中任一个馈源。
在开关切换馈源阵列加抛物面天线中,工作状态为通道与馈源阵列中的馈源的映射连接关系,也即与通道连接的单刀多掷开关的连接关系。对于其他类型的天线,其工作状态则为天线中的通道与馈源的连接关系,对于通道与馈源的连接方式,本申请不进行具体限定。
示例性的,图1中示意了通道1至通道4,通过开关1至4的接通,连接馈源1、馈源2、馈源3、馈源4,则图1中示意了该天线的工作状态为连接馈源1、2、3、4。当图1中的单刀多掷开关的接通位置变化时,例如,若图1中示意的通道1至通道4,通过开关1至4的接通,切换连接至馈源5、馈源10、馈源11、馈源16,则该天线的工作状态也随之切换为连接馈源5、10、11、16。其他不再一一列举。
因此,波束追踪即调整天线的工作状态,使得天线的工作状态与接收信号的来波方向相匹配,以发挥天线最优的性能。图1所示的开关切换馈源阵列加抛物面天线中,天线的工作状态很多,由X及M的排列组合决定,若通过现有的周期性探测的方式判断来波方向,轮询确定来波方向后进行波束跟踪,耗时很长。
基于此,本申请的基本原理是:预设包括接收信号强度值的强弱关系与天线工作状态的对应关系的预设切换规则,并在天线中的N个预设位置设置N个探测点,检测预设位置的接收信号强度,根据检测的结果与预设切换规则得到与接收信号对应的工作状态后,切换天线的工作状态进行波束跟踪。由于信号强度检测的过程用时短,占用资源少,因此可以实现快速且占用资源少的波束跟踪。
下面结合附图,对本申请的实施例进行具体阐述。
一方面,本申请实施例提供一种波束跟踪装置30,图3示出的是本申请实施例提供的一种波束跟踪装置30的结构示意图。
可选的,该波束跟踪装置30,可以用于对图1所示的开关切换 馈源阵列加抛物面天线进行波束跟踪。当然,该波束跟踪装置30,也可以用于对其他类型的天线进行波束跟踪,本申请实施例对此不进行具体限定。
如图3所示,波束跟踪装置30可以包括:N个探测点301、与N个探测点301连接的检测器302、与检测器302连接的处理器303。
下面结合图3对波束跟踪装置30的各个构成部件进行具体的介绍:
探测点301可以为采样电阻、耦合器等获取采样信号的器件,用于采样获取预设位置的信号。凡是可以用于采样信号器件,均可以作为探测点301。本申请对于探测点301的类型不进行具体限定。探测点301可以分布在天线中的N个预设位置的附近,耦合获取预设位置的接收信号,也可以与天线中N个预设位置连接,本申请对此不进行具体限定。
其中,N个预设位置在天线中的具体位置,可以根据实际需求配置,本申请实施例对此不进行具体限定。
可选的,N个预设位置可以为天线中的N个通道。或者,N个预设位置可以为天线中通道之外的其他位置。
需要说明的是,N个预设位置的具体内容,在实际应用中,可以根据实际需求设定,本申请实施例对此不进行具体限定。天线中凡是可以通过检测信号接收强度用来进行波束跟踪的位置,均可以作为预设位置。
可选的,N个预设位置可以为开关切换馈源阵列加抛物面天线中馈源阵列的N个不同位置。
进一步的,当N个预设位置为开关切换馈源阵列加抛物面天线中馈源阵列的N个不同位置时,若馈源阵列为四边形分布(如图2示例),N为4。
可选的,当N个预设位置为开关切换馈源阵列加抛物面天线中馈源阵列的N个不同位置时,馈源阵列为四边形分布时,N个预设位置包括馈源阵列的四边,或者,N个预设位置包括馈源阵列的四 个顶点。
如图3A所示,示意了一种4个预设位置位于馈源阵列的四边的分布示意。如图3B所示,示意了一种4个预设位置位于馈源阵列的顶点的分布示意。
需要说明的是,图3A及图3B只是对馈源阵列为四边形分布时,N个预设位置的分布示意,并不是对此的具体限定。
进一步的,当N个预设位置包括馈源阵列的四边时,每个预设位置在馈源阵列每个边上的具体位置,可以根据实际需求设定,本申请实施例对此不进行具体限定。
检测器302通过N个探测点301,检测天线中N个预设位置的接收信号强度,并向处理器303发送检测到的N个接收信号强度值。检测器302可以为检波管或者检波电路等,凡是可以将探测点301获取到预设位置的信号,检测得到其强度值的器件,均可以用来作为检测器302。
进一步可选的,检测器302具体可以用于,通过N个探测点301,检测开关切换馈源阵列加抛物面天线在特定工作状态下,N个预设位置的接收信号强度,并向处理器303发送检测到的N个接收信号强度值。
其中,特定工作状态包括开关切换馈源阵列加抛物面天线中的通道连接馈源阵列外围的馈源。具体的,特定工作状态下通道与馈源的连接关系,可以根据实际需求设定,本申请实施例对此不进行具体限定。天线在特定工作状态下时,检测器302通过N个探测点301,检测得到的N个预设位置的接收信号强度辨识度更高。
示例性的,开关切换馈源阵列加抛物面天线的特定工作状态可以包括通道连接馈源,为馈源阵列中外围的馈源。例如,图1所示的开关切换馈源阵列加抛物面天线的特定工作状态可以包括:四个通道分别映射连接馈源1、6、11、16;或者,四个通道分别映射连接馈源3、5、12、14等等,此处不再进行一一赘述。
具体的,在波束跟踪装置30中,检测器302的数量可以有多种 方案,本申请对此不进行具体限定。
可选的,在波束跟踪装置30中,检测器302可以只为一个,检测器302具有多个通道,可以并行处理输入的N个信号,以得到N个信号的接收强度值。当检测器302为一个,且与探测点301直接连接时,波束跟踪装置30的结构如图1所示。
可选的,在波束跟踪装置30中,检测器302可以为一个,检测器302可以处理输入的一个信号,检测器302通过单刀N掷开关304与N个探测点301依次连接,依次处理每个探测点301获取的信号,依次得到N个信号的接收强度值。单刀N掷开关304的不动端连接检测器302,单刀N掷开关304的动端连接N个探测点301。当检测器302为一个,且与探测点301通过单刀N掷开关304连接时,波束跟踪装置30的结构如图4所示。
可选的,在波束跟踪装置30中,检测器302可以为N个,每个检测器302可以处理输入的一个信号,N个检测器302以得到N个信号的接收强度值。当检测器302为N个时,波束跟踪装置30的结构如图5所示。
处理器303是波束跟踪装置30的控制中心,可以是一个中央处理器(英文全称:central processing unit,CPU),也可以是特定集成电路(英文全称:Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(英文全称:digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(英文全称:Field Programmable Gate Array,FPGA)。处理器303可以通过运行或执行软件程序和/或模块,以及调用数据,执行波束跟踪装置30的各种功能。
具体的,处理器303用于,根据检测器302发送的N个接收信号强度值的强弱关系、及预设切换规则,切换天线的工作状态,进行波束跟踪。
进一步的,根据检测器302发送的N个接收信号强度值的强弱关系、及预设切换规则,切换天线的工作状态,进行波束跟踪,包括: 将天线的工作状态,切换为预设切换规则中,与检测器302发送的N个接收信号强度值的强弱关系对应的工作状态,完成波束跟踪。
可选的,强弱关系包括差值或者比值。示例性的,假设N=4,4个预设位置的接收信号强度值分别记录为D1、D2、D3、D4,其强弱关系可以包括D1在功率上较D3高第一预设阈值,D2在功率上较D4高第二预设阈值。或者,其强弱关系可以包括D1与D3的功率比值大于第一比值,D2与D4的功率比值大于第二比值。
需要说明的是,上述示例只是对于强弱关系的示例性说明,并不是对强弱关系的具体限定。其中的第一预设阈值、第二预设阈值、第一比值、第二比值的具体取值,均可以根据实际需求设定,本申请实施例对此不进行具体限定。
其中,预设切换规则包括N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系。
可选的,预设切换规则中包括的N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系,可以对天线进行性能仿真得到。示例性的,通过枚举的方式,模拟该天线在实际应用中接收不同的波束信号,将不同的波束信号下实现波束跟踪的天线状态进行记录;测试在不同波束信号下,该天线N个预设位置的接收信号强度的强弱关系并记录。将记录的不同波束信号下实现波束跟踪的天线状态,与记录的不同波束信号下天线N个预设位置的接收信号强弱关系,建立得到预设切换规则。
可选的,预设切换规则中包括的N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系,也可以根据N个预设位置的位置关系得到。具体的,根据N个预设位置的位置关系及N个预设位置的接收信号强度值的强弱关系,可以确定天线接收信号的来波方向;一个来波方向唯一对应一种工作状态,则可以得到预设切换规则中的一个对应关系。通过枚举方式,则可以得到预设切换规则。
示例性的,假设天线为开关切换馈源阵列加抛物面天线,N=4,4 个预设位置如图6所示,4个预设位置的接收信号强度值分别记录为D1、D2、D3、D4。当D1、D2、D3、D4的接收信号强度值功率接近时,则确定信号的来波方向为垂直于馈源阵列,该来波方向对应的工作状态为4个通道连接馈源4、7、10、13,则可以得到强弱关系D1、D2、D3、D4之间两两之间的差值小于或等于X,对应工作状态为:4个通道映射连接馈源4、7、10、13。其中,X为定义的功率接近的门限值。再例如,当D1比D3功率高、D2比D4功率高时,则确定信号的来波方向为右上方(D1-D2方向),该来波方向对应的工作状态为4个通道连接馈源5、6、7、8,则可以得到强弱关系D1的功率比D3的功率高第一预设阈值,且D2的功率比D4高第二预设阈值,对应工作状态为:4个通道映射连接馈源5、6、7、8。
需要说明的是,上述两种得到预设切换规则的方式,均为示例性说明,并不是对得到预设切换规则的过程的限定。在实际应用中,可以根据实际需求确定预设切换规则的内容。
示例性的,表1示意了一种预设切换规则。表1示意的预设切换规则,以N为4,天线为图1所示意的开关切换馈源阵列加抛物面天线为例,对预设切换规则的内容及形式进行示意性说明。
表1
Figure PCTCN2016108609-appb-000001
需要说明的是,表1只是通过举例的形式,对预设切换规则进行示例说明,并不是对预设切换规格内容及形式的具体限定。在实 际应用中,预设切换规则可以通过仿真得出,预设切换规则的形式可以为表格形式之外的其他形式。本申请实施例对此并不进行具体限定。
具体的,N个接收信号强度值的强弱关系所满足的预设强弱关系,可以包括与N个接收信号强度值的强弱关系完全相等的预设强弱关系,也可以包括N个接收信号强度值的强弱关系落入的预设强弱关系,本申请实施例对此不进行具体限定。
下面以图1所示开关切换馈源阵列加抛物面天线以及表1所示的预设切换规则为例,对本申请提供的波束跟踪装置30的工作过程进行示例说明。
示例性的,如图1所示,假设该天线当前的工作状态为图中示意的4个通道映射连接馈源1、2、3、4。在某一时刻,波束跟踪装置30通过4个探测点检测到4个预设位置的接收信号强度值分别记录为D1、D2、D3、D4,其强弱关系满足D1与D3的功率比值大于第一比值,D2与D4的功率比值大于第二比值。因此,波束跟踪装置30根据表1所示的预设切换规则,将该天线的工作状态切换为图7所示的工作状态,即4个通道映射连接馈源4、7、10、13。
需要说明的是,本申请实施例提供的波束跟踪装置30,可以周期性的执行波束跟踪过程,或者,也可以定时执行波束跟踪过程,或者,也可以在空闲时间片执行波束跟踪过程,本申请实施例对于波束跟踪装置30的工作时刻不进行具体限定。
进一步的,当检测器302获取的N个信号的接收强度值,处理器303不能识别,如图8所示,波束跟踪装置30还可以包括用于连接检测器302及处理器303的转换器306。
可选的,转换器306可以为模数转换器,或者其他。本申请对转换器306的类型不进行具体限定。
需要说明的是,图8只是在图3的基础上包含了转换器306,图4和图5所示意的波束跟踪装置30也可以根据实际需求包括转换器306,不再一一赘述及示意。
进一步的,如图9所示,波束跟踪装置30还可以包括存储器307,可以是易失性存储器(英文全称:volatile memory),例如随机存取存储器(英文全称:random-access memory,RAM);或者非易失性存储器(英文全称:non-volatile memory),例如只读存储器(英文全称:read-only memory,ROM),快闪存储器(英文全称:flash memory),硬盘(英文全称:hard disk drive,HDD)或固态硬盘(英文全称:solid-state drive,SSD);或者上述种类的存储器的组合,用于存储实现波束跟踪装置30功能的相关应用程序、以及配置文件。处理器303可以通过运行或执行存储在存储器307内的软件程序和/或模块,以及调用存储在存储器307内的数据,执行波束跟踪装置30的各种功能。
需要说明的是,图9只是在图3的基础上包含了存储器307,图4、图5及图8所示意的波束跟踪装置30也可以包括存储器307,不再一一赘述及示意。
进一步的,预设切换规则还可以包括接收信号强度值的强弱关系与来波方向的对应关系。处理器303具体还可以用于,根据检测器302发送的N个接收信号强度值的强弱关系、及预设切换规则,确定天线接收信号的来波方向。具体的,根据检测器302发送的N个接收信号强度值的强弱关系、及预设切换规则,可以确定天线接收信号的来波方向为预设切换规则中,与N个接收信号强度值的强弱关系对应的来波方向
本申请提供的波束跟踪装置30,通过设置探测点检测N个预设位置的接收信号强度,再根据检测的N个接收信号强度值的强弱关系及预设切换规则进行波束跟踪。也就是说,通过本申请提供的波束跟踪装置30进行天线的自动波束跟踪,只需探测预设位置的信号强度,及可以实现准确的波束跟踪;由于探测预设位置的信号强度实现简单、用时短,且无需占用大量的天线资源,因此,本申请提供的波束跟踪装置实现了快速且占用资源少的波束跟踪。
另一方面,本申请实施例提供一种波束跟踪方法,如图10所示, 所述方法可以包括:
S1001、检测天线天线中N个预设位置的接收信号强度。
其中,N大于1。
需要说明的是,S1001的具体实现方式,与上述波束跟踪装置30的功能描述中的内容相同,此次不再进行赘述。
S1002、根据检测得到的N个接收信号强度值的强弱关系、及预设切换规则,切换天线的工作状态,进行波束跟踪。
其中,预设切换规则包括N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系。
需要说明的是,S1002的具体实现方式,与上述波束跟踪装置30的功能描述中的内容相同,此次不再进行赘述。
本申请提供的波束跟踪方法,通过检测N个预设位置的接收信号强度,再根据检测的N个接收信号强度值的强弱关系及预设切换规则实现波束跟踪。也就是说,通过本申请提供的方案进行波束跟踪,只需探测预设位置的信号强度,及可以实现准确的波束跟踪;由于探测预设位置的信号强度实现简单、用时短,且无需占用大量的天线资源,因此,本申请提供的波束跟踪方法实现了快速且占用资源少的波束跟踪。
进一步的,如图11所述,在S1001之后,所述方法还可以包括:
S1003、根据N个接收信号强度值的强弱关系、及预设切换规则,确定天线接收信号的来波方向。
其中,预设切换规则还可以包括N个预设位置接收信号强度值的强弱关系与来波方向的对应关系。
需要说明的是,S1003的具体实现方式,与上述波束跟踪装置30的功能描述中的内容相同,此次不再进行赘述。
还需要说明的是,S1003与S1002的执行顺序可以根据实际需求设定,可以同时执行,也可以依次执行。当S1003与S1002依次执行时,其先后顺序本申请实施例不进行具体限定。
还需要说明的是,本申请实施例提供的波束跟踪方法,可以周 期性的执行波束跟踪过程,或者,也可以定时执行波束跟踪过程,或者,也可以在空闲时间片执行波束跟踪过程,本申请实施例对于波束跟踪方法的执行时刻不进行具体限定。本申请实施例只是对于执行一次波束跟踪方法的具体描述,多次执行波束跟踪方法,也属于本申请的保护范围。
上述主要从波束跟踪装置的工作过程的角度对本申请实施例提供的方案进行了介绍。可以理解的是,波束跟踪装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
再一方面,本申请实施例提供一种天线系统120,如图12所示,该天线系统120可以包括:
开关切换馈源阵列加抛物面天线、及上述任一实施例所述的波 束跟踪装置30。
需要说明的是,天线系统120通过波束跟踪装置30对开关切换馈源阵列加抛物面天线进行波束跟踪,可以达到与天线波束跟踪30相同的有益效果,此处不再进行赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目 的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种波束跟踪装置,其特征在于,所述装置包括N个探测点、与所述N个探测点连接的检测器、与所述检测器连接的处理器;所述N大于1;
    所述检测器用于,通过所述N个探测点,检测天线中N个预设位置的接收信号强度,并向所述处理器发送检测到的N个接收信号强度值;
    所述处理器用于,根据所述检测器发送的所述N个接收信号强度值的强弱关系、及预设切换规则,切换所述天线的工作状态,进行波束跟踪;其中,所述预设切换规则包括所述N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系;所述工作状态为所述天线中通道与馈源的连接关系。
  2. 根据权利要求1所述的装置,其特征在于,所述天线包括开关切换馈源阵列加抛物面天线;
    所述开关切换馈源阵列加抛物面天线包括M个通道,M个单刀多掷开关及馈源阵列;所述M个通道分别与M个单刀多掷开关的不动端连接,所述M个单刀多掷开关的动端用于选择所述馈源阵列中不同的馈源阵列组;所述M大于1。
  3. 根据权利要求1或2所述的装置,其特征在于,所述N个预设位置为所述天线中的N个通道。
  4. 根据权利要求1或2所述的装置,其特征在于,所述N个预设位置为所述天线包括的馈源阵列的N个不同位置;
    若所述馈源阵列为四边形分布时,所述N为4;所述N个预设位置分别分布在所述馈源阵列的四个边上,或者,所述N个预设位置包括所述馈源阵列的四个顶点。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述装置还包括单刀N掷开关,所述单刀N掷开关的不动端连接所述检测器,所述单刀N掷开关的动端连接所述N个探测点;
    所述检测器具体用于,通过所述单刀N掷开关的接通,依次接 通所述N个探测点,检测天线中N个预设位置的接收信号强度。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,所述强弱关系包括差值或者比值。
  7. 根据权利要求1-6任一项所述的装置,其特征在于,所述处理器还用于,根据所述检测器发送的所述N个接收信号强度值的强弱关系、及预设切换规则,确定所述开关切换馈源阵列加抛物面天线接收信号的来波方向,其中,所述预设切换规则包括接收信号强度值的强弱关系与来波方向的对应关系。
  8. 一种波束跟踪方法,其特征在于,包括:
    检测天线中N个预设位置的接收信号强度;所述N大于1;
    根据检测得到的N个接收信号强度值的强弱关系、及预设切换规则,切换所述天线的工作状态,进行波束跟踪;其中,所述预设切换规则包括所述N个预设位置接收信号强度值的强弱关系与天线工作状态的对应关系;所述工作状态为所述天线中通道与馈源的连接关系。
  9. 根据权利要求8所述的方法,其特征在于,所述天线包括开关切换馈源阵列加抛物面天线;
    所述开关切换馈源阵列加抛物面天线包括M个通道,M个单刀多掷开关及馈源阵列;所述M个通道分别与M个单刀多掷开关的不动端连接,所述M个单刀多掷开关的动端选择所述馈源阵列中不同的馈源阵列组;所述M大于1。
  10. 根据权利要求8或9所述的方法,其特征在于,所述N个预设位置为所述天线中的N个通道。
  11. 根据权利要求8或9所述的方法,其特征在于,所述N个预设位置为所述天线包括的馈源阵列的N个不同位置;
    若所述馈源阵列为四边形分布时,所述N为4;所述N个预设位置分别分布在所述馈源阵列的四个边上,或者,所述N个预设位置包括所述馈源阵列的四个顶点。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述 强弱关系包括差值或者比值。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    根据所述检测器发送的所述N个接收信号强度值的强弱关系、及预设切换规则,确定所述开关切换馈源阵列加抛物面天线接收信号的来波方向,其中,所述预设切换规则包括接收信号强度值的强弱关系与来波方向的对应关系。
  14. 一种天线系统,其特征在于,所述天线系统包括:权利要求1-7任一项所述的波束跟踪装置。
PCT/CN2016/108609 2016-12-05 2016-12-05 一种波束跟踪装置、方法及天线系统 WO2018102971A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680087953.3A CN109565110B (zh) 2016-12-05 2016-12-05 一种波束跟踪装置、方法及天线系统
EP16923146.1A EP3531505B1 (en) 2016-12-05 2016-12-05 Beam tracking apparatus and method, and antenna system
PCT/CN2016/108609 WO2018102971A1 (zh) 2016-12-05 2016-12-05 一种波束跟踪装置、方法及天线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108609 WO2018102971A1 (zh) 2016-12-05 2016-12-05 一种波束跟踪装置、方法及天线系统

Publications (1)

Publication Number Publication Date
WO2018102971A1 true WO2018102971A1 (zh) 2018-06-14

Family

ID=62490520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108609 WO2018102971A1 (zh) 2016-12-05 2016-12-05 一种波束跟踪装置、方法及天线系统

Country Status (3)

Country Link
EP (1) EP3531505B1 (zh)
CN (1) CN109565110B (zh)
WO (1) WO2018102971A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110086552B (zh) * 2019-04-28 2021-11-05 深圳市万普拉斯科技有限公司 天线组合设备及移动终端

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066474A1 (en) * 2004-09-29 2006-03-30 Fujitsu Limited Apparatus for estimating direction of arrival of signal
CN1909401A (zh) * 2006-08-07 2007-02-07 西安交通大学 一种波束切换智能天线装置
US20080291083A1 (en) * 2007-05-21 2008-11-27 Donald Chin-Dong Chang Retro-directive ground-terminal antenna for communication with geostationary satellites in slightly inclined orbits
CN101765127A (zh) * 2009-12-14 2010-06-30 西安交通大学 无线局域网基站接入系统及智能定向收发方法
CN102684760A (zh) * 2011-03-15 2012-09-19 联想(北京)有限公司 一种移动终端无线通信方法以及移动终端
CN104052700A (zh) * 2014-05-27 2014-09-17 北京创毅视讯科技有限公司 一种lte系统抗干扰方法和装置
CN104049252A (zh) * 2014-03-18 2014-09-17 中国电子科技集团公司第十研究所 多波束抛物面天线多通道动态分组切换方法
CN104103910A (zh) * 2014-05-26 2014-10-15 西安空间无线电技术研究所 一种单口径多波束天线的优化设计方法
CN104917542A (zh) * 2014-03-11 2015-09-16 启碁科技股份有限公司 射频收发系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1298402C (en) * 1987-05-29 1992-03-31 Makoto Nakayama Tracking system with beam switching antenna
JPH07170227A (ja) * 1993-12-16 1995-07-04 Hitachi Ltd 無線データ通信システム
WO2014071582A1 (zh) * 2012-11-07 2014-05-15 华为技术有限公司 一种多输入多输出微波系统的天线调整方法及装置
EP3043420B1 (en) * 2013-09-30 2018-05-30 Huawei Technologies Co., Ltd. Antenna array and phase control system
EP3171456B1 (en) * 2014-08-14 2021-10-06 Huawei Technologies Co., Ltd. Beam scanning antenna, microwave system and beam alignment method
EP3553885B1 (en) * 2016-12-29 2023-03-01 Huawei Technologies Co., Ltd. Array antenna and network apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060066474A1 (en) * 2004-09-29 2006-03-30 Fujitsu Limited Apparatus for estimating direction of arrival of signal
CN1909401A (zh) * 2006-08-07 2007-02-07 西安交通大学 一种波束切换智能天线装置
US20080291083A1 (en) * 2007-05-21 2008-11-27 Donald Chin-Dong Chang Retro-directive ground-terminal antenna for communication with geostationary satellites in slightly inclined orbits
CN101765127A (zh) * 2009-12-14 2010-06-30 西安交通大学 无线局域网基站接入系统及智能定向收发方法
CN102684760A (zh) * 2011-03-15 2012-09-19 联想(北京)有限公司 一种移动终端无线通信方法以及移动终端
CN104917542A (zh) * 2014-03-11 2015-09-16 启碁科技股份有限公司 射频收发系统
CN104049252A (zh) * 2014-03-18 2014-09-17 中国电子科技集团公司第十研究所 多波束抛物面天线多通道动态分组切换方法
CN104103910A (zh) * 2014-05-26 2014-10-15 西安空间无线电技术研究所 一种单口径多波束天线的优化设计方法
CN104052700A (zh) * 2014-05-27 2014-09-17 北京创毅视讯科技有限公司 一种lte系统抗干扰方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531505A4 *

Also Published As

Publication number Publication date
EP3531505B1 (en) 2020-10-07
EP3531505A1 (en) 2019-08-28
EP3531505A4 (en) 2019-11-13
CN109565110A (zh) 2019-04-02
CN109565110B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
EP3861806B1 (en) Method for positioning reference design
RU2741626C1 (ru) Способ конфигурирования измерений и относящийся к нему продукт
KR102524269B1 (ko) 업링크 도달 시간차에 대한 로케이팅 방법 및 그의 장치
KR20200140866A (ko) 다중 패널 ue에 대한 빔 표시
CN106464389B (zh) 一种天线测试装置、系统、方法以及相关设备
US11595233B2 (en) Electronic device supporting muli-band wireless communications and method of controlling same
CN109462448A (zh) 一种射频测试方法、移动终端及存储介质
KR102462464B1 (ko) 통신 방법 및 장치
CN110913447B (zh) 网络控制方法、装置、存储介质及电子设备
CN111654870A (zh) 调整小区覆盖区的控制方法、装置、设备及存储介质
CN113518302B (zh) 一种定位参考信号配置方法、lmf、基站及终端
CN111148182B (zh) 设备控制方法、装置、存储介质及电子设备
WO2018102971A1 (zh) 一种波束跟踪装置、方法及天线系统
CN112782567B (zh) 芯片测试系统、方法、装置、介质及设备
WO2020020250A1 (zh) 一种测量方法和装置
CN113133020A (zh) 移动终端天线性能测试方法、系统、计算机设备
WO2022194144A1 (zh) 定位方法、终端及网络侧设备
US10305562B2 (en) Different sector rotation speeds for post-amble processing of a beam forming packet
JP2021139623A (ja) 測定方法及び測定装置
CN114374417A (zh) 天线检测方法及装置、电子设备、存储介质
CN112152689A (zh) 波束发送控制方法、装置及发送端
CN111030767B (zh) 无线mesh回传性能的优化方法、无线设备和存储介质
KR102598267B1 (ko) 안테나 커플링을 위한 전자 장치 및 방법
US20200036495A1 (en) Signal processing method and device
JP2013162464A (ja) 無線通信装置、その制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016923146

Country of ref document: EP

Effective date: 20190521

NENP Non-entry into the national phase

Ref country code: DE