WO2020020250A1 - 一种测量方法和装置 - Google Patents

一种测量方法和装置 Download PDF

Info

Publication number
WO2020020250A1
WO2020020250A1 PCT/CN2019/097564 CN2019097564W WO2020020250A1 WO 2020020250 A1 WO2020020250 A1 WO 2020020250A1 CN 2019097564 W CN2019097564 W CN 2019097564W WO 2020020250 A1 WO2020020250 A1 WO 2020020250A1
Authority
WO
WIPO (PCT)
Prior art keywords
rsrp
measurement
aoa
value
beamforming gain
Prior art date
Application number
PCT/CN2019/097564
Other languages
English (en)
French (fr)
Inventor
鄂楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020020250A1 publication Critical patent/WO2020020250A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a measurement method and device.
  • millimeter wave frequency> 6GHz
  • the combination of millimeter wave and beamforming technology also makes 5G communication systems have high bandwidth and support a large number of users to communicate at the same time.
  • the current millimeter wave reception and measurement technology is affected by millimeter wave characteristics and the integration of 5G chips. It can only be performed in the Over-the-Air (OTA) environment.
  • OTA Over-the-Air
  • TS38.810 defines millimeter wave The measurement scheme is limited by the low level of understanding of the chip's structure, the characteristics of millimeter waves, and the current baseband measurement reference point scheme.
  • a test solution is to perform a comparative test by placing a reference antenna of a known gain at the same position during a test of a test machine (Device Under Test) in the case of indirect far-field testing.
  • the reference signal received power (RSRP) reported by the baseband and the RSRP measured by a reference antenna with a known gain determine the error of the DUT baseband measurement value.
  • the test scheme has beamforming gain
  • the RSRP reported by the DUT baseband includes both the beamforming gain and the error value
  • the RSRP measured by the reference antenna with the known gain in the test scheme also includes the beamforming gain. Therefore, the above The beamforming gain will interfere with the error of the RSRP measurement value, causing the error of the determined RSRP measurement value to be inaccurate.
  • the embodiments of the present application provide a measurement method and device, which can eliminate the interference caused by the beamforming gain on the test result and obtain a more accurate error of the RSRP measurement value.
  • a measurement method includes: a measurement device detects a measurement value of a reference signal received power RSRP measurement value of a millimeter wave signal; calculates a signal arrival angle AoA of the measured millimeter wave signal; and according to the AoA Search a pre-configured database to obtain a beamforming gain reference value corresponding to the AoA; wherein the database includes at least one AoA and a beamforming gain reference value corresponding to each AoA in the at least one AoA; according to the RSRP measurement value and AoA The corresponding beamforming gain reference value calculates the RSRP calibration value of the measured millimeter wave signal.
  • the above measurement equipment is a baseband chip or a terminal device. Based on this solution, the RSRP calibration value that does not include the beamforming gain can be obtained by subtracting the baseband-measured RSRP measurement value with the beamforming gain from the reference value of the beamforming gain corresponding to the signal arrival angle of the measured millimeter-wave beam signal. Therefore, the influence of the baseband beamforming gain on the test scheme is eliminated.
  • a beamforming gain reference value corresponding to one AoA is obtained according to at least two RSRP measurement values and RSRP true values detected in the AoA; wherein, the true RSRP value is 0dBi Measured by an omnidirectional antenna connected instrument, the center of the RF antenna of the above measuring device is aligned with the sphere center of the 0dBi omnidirectional antenna.
  • the reference value of the beamforming gain can be obtained according to the RSRP measurement value and the RSRP true value.
  • the at least two RSRP measurement values are measured by at least two measurement devices of the same model as the measurement device.
  • the purpose of performing multiple measurements by using multiple baseband chips is to eliminate the influence of a single baseband chip in order to obtain a more accurate reference value for the beamforming gain.
  • the method further includes: calculating an error of the RSRP measurement value detected by the measurement device according to the RSRP calibration value and the RSRP true value. Based on this solution, a more accurate RSRP measurement value error can be obtained.
  • the calculating and measuring the signal arrival angle AoA of the millimeter wave signal includes: calculating and measuring the RSRP measurement value of the millimeter wave signal measured by the measurement device. AoA for millimeter wave signals. Based on this solution, the signal arrival angle of the millimeter wave can be obtained from the RSRP measurement value.
  • a measurement device includes: a detection unit for detecting a reference signal received power RSRP measurement value for measuring a millimeter wave signal; and a processing unit for calculating the above measurement millimeter wave signal.
  • the signal arrival angle AoA an obtaining unit, configured to find a pre-configured database according to the AoA calculated by the processing unit, and obtain a beamforming gain reference value corresponding to the AoA; wherein the database includes at least one AoA, and each of the at least one AoA
  • the beamforming gain reference value corresponding to each AoA the processing unit is further configured to calculate an RSRP calibration value for measuring the millimeter wave signal according to the RSRP measurement value detected by the detecting unit and the beamforming gain reference value corresponding to the AoA obtained by the obtaining unit.
  • the measurement device is a baseband chip or a terminal device.
  • a beamforming gain reference value corresponding to an AoA is obtained according to at least two RSRP measurement values and RSRP true values detected in the AoA; wherein the RSRP true value is The 0dBi omnidirectional antenna is connected to the instrument; the center of the RF antenna of the measuring device is aligned with the sphere center of the above 0dBi omnidirectional antenna.
  • the at least two RSRP measurement values are detected by at least two measurement devices of the same model as the measurement device.
  • the processing unit is further configured to calculate an error of an RSRP measurement value detected by the detection unit according to an RSRP calibration value and an RSRP true value.
  • the processing unit is specifically configured to calculate, based on the RSRP measurement value of the measurement millimeter wave signal detected by the detection unit, the measurement of the millimeter wave signal. AoA.
  • a device is provided.
  • the structure of the device includes a processor and a memory, where the memory is used for coupling with the processor, and stores program instructions and data necessary for the server, and the processor is used for executing the memory.
  • the program instructions stored in the server cause the server to execute the measurement method described in the first aspect or any possible implementation manner of the first aspect.
  • a computer storage medium stores computer program code.
  • the processor executes the first aspect or the first aspect.
  • a computer program product stores computer software instructions executed by the processor, and the computer software instructions include a program for executing a solution described in the foregoing aspect.
  • a device exists in the form of a chip product.
  • the structure of the device includes a processor and a memory, and the memory is used for coupling with the processor to store necessary programs of the device. Instructions and data, the processor is used to execute program instructions stored in the memory, so that the device performs the functions of the measurement device in the above method.
  • FIG. 1 is a schematic diagram of an indirect far-field test solution according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a measurement device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another measurement device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of detecting a millimeter-wave RSRP by a measurement device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of detecting a millimeter-wave RSRP by an 0dBi omnidirectional antenna according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of a measurement device and an 0dBi omnidirectional antenna when detecting a millimeter-wave RSRP according to an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a measurement device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another measurement device according to an embodiment of the present application.
  • the embodiment of the present application uses an indirect far-field test, which is an indirect far-field test It is a reflector that reflects the millimeter wave, and establishes the connection between the measuring device and the test millimeter wave signal under the condition that the far field distance is guaranteed.
  • the millimeter wave beam emitted by the transmitting antenna is sent to the measuring device DUT through the reflector, so that the test conditions of the millimeter wave can meet the requirements of a longer distance.
  • the embodiment of the present application does not limit the specific antenna type of the transmitting antenna.
  • the distance between the central position of the transmitting antenna and the RF antenna of the receiver (measurement equipment DUT) in the following embodiments of the present application is constant, that is, the embodiment of the present application is a test solution performed at the same far-field distance.
  • the reference signal received power is one of the key parameters that can represent the strength of the wireless signal in the LTE network and one of the physical layer measurement requirements. It is the average value of the signal power received on all REs (resource particles) that carry the reference signal in a certain symbol.
  • the parameters in the embodiments of the present application include RSRP measurement values, RSRP true values, and RSRP calibration values.
  • the RSRP measurement value is an RSRP measured by a measuring device for measuring a millimeter wave signal, and the RSRP measurement value includes a beamforming gain;
  • the RSRP true value is measured by an instrument connected to an 0dBi omnidirectional antenna, and the instrument may be any band Signal analysis instruments, such as signal analyzers, due to the characteristics of the 0dBi omnidirectional antenna, the RSRP true value does not include beamforming gain;
  • the RSRP calibration value is obtained by calculating the difference between the RSRP measurement value and the beamforming gain reference value
  • the RSRP calibration value is the RSRP value after excluding the beamforming gain, and can be used to compare with the RSRP true value to obtain the error of the RSRP measurement value.
  • the database in the embodiment of the present application may be a pre-configured database stored in the measuring device before the measuring device leaves the factory.
  • the database stores the test beam corresponding to the millimeter wave signal when the signal reaches different angles when a certain test distance is stored in the database.
  • Forming gain reference value, the test distance is the distance that can be reached within the range specified by the test instrument and the agreement.
  • the reference value of the beamforming gain corresponding to each AoA is obtained according to at least two RSRP measurement values and real RSRP values detected in the AoA.
  • the at least two RSRP measurement values are at least two Measured by measuring equipment.
  • the measurement device in the embodiment of the present application may be a baseband chip or a terminal device including the baseband chip.
  • the baseband chip or terminal device is used to detect and measure the RSRP measurement value of the millimeter wave signal, and obtain a more accurate RSRP measurement value error after excluding the beamforming gain according to the measurement method in the embodiment of the present application.
  • the measurement equipment is calibrated.
  • the structure of the baseband chip 200 is shown in FIG. 2 and can be divided into five sub-blocks: the processor 201, the channel encoder 202, the digital signal processor 203, and the modulation / decoding ⁇ ⁇ 204 and interface module 205.
  • the processor 201 is configured to control and manage terminal equipment, including timing control, digital system control, radio frequency control, power saving control, and man-machine interface control.
  • the control may be a microprocessor (Microcontroller Unit, MCU).
  • MCU Microcontroller Unit
  • the MCU may include a CPU core and a single-chip microcomputer support system.
  • the microprocessor unit may use an ARM processor core.
  • the channel encoder 202 is used for channel coding and encryption of service information and control information.
  • the channel coding includes convolution coding, FIRE code, parity check code, interleaving, and burst formatting.
  • the digital signal processor 203 is used for radio frequency control, channel coding, equalization, interleaved insertion and deinterleaved insertion, AGC, AFC, SYCN, cryptographic algorithms, neighboring cell monitoring, and the like.
  • the digital signal processor can also handle some other functions, such as dual-tone multi-frequency tone generation and some short-term echo cancellation.
  • the modulator / demodulator 204 is configured to convert digital transmission from a terminal device into an analog signal that can be transmitted through a telephone system, and also convert an analog signal from a telephone line into a digital signal that the terminal device can understand.
  • the interface module 205 may include three sub-blocks of an analog interface, a digital interface, and a human-machine interface.
  • the analog interface may include: voice input / output interface, radio frequency control interface
  • the digital interface may include: system interface, SIM card interface, test interface, EEPROM interface, memory interface, etc .
  • human-machine interface to support the system and users Interaction and information exchange.
  • FIG. 2 is only an exemplary description.
  • the baseband chip 200 may include more or fewer components than those shown in FIG. 2, and the structure shown in FIG. 2 does not constitute the baseband chip provided in the embodiment of the present application. No restrictions.
  • the structure of the terminal device 300 is shown in FIG. 3 and includes a radio frequency module 301, a baseband module 302, a power management module 303, a peripheral device 304, and software 305.
  • the radio frequency module 301 is used to complete the receiving and transmitting processing of signals from the antenna to the baseband signal. For example, it can convert the low-frequency and low-power signals sent by the baseband into high-frequency and high-power signals transmitted in space, and receive the antenna.
  • the weak high-frequency signal is transformed into a low-frequency signal with a certain amplitude that the base can process.
  • the baseband module 302 is used to perform functions such as sound channel, radio frequency control, power management, voice coding, channel coding, modulation, and adaptive equalization. For example, the baseband module 302 can convert a sound signal into an electric signal and then process it, so that the signal is transmitted in the channel and ensure that it can be received correctly at the receiving end.
  • the baseband module 302 includes the above-mentioned baseband chip 200, which is a core part of a terminal device.
  • the power management module 303 is configured to distribute power to internal units, and adjust the voltage (or current) of each unit as needed to reduce its power consumption.
  • the peripheral device 304 may include an LCD, a keyboard, a case, a camera, and the like.
  • the embodiments of the present application do not limit the peripherals included in the terminal device.
  • the software 305 generally includes an operating system, drivers, middleware, and applications.
  • the operating system of the terminal device is a computer program that manages and controls the hardware and software resources of the terminal. It is the most basic system software that runs directly on the "bare metal". Any other software must run with the support of the operating system, such as Run of various applications.
  • the terminal device operating system can include Apple's IOS operating system, Google's Android open source operating system, Symbian's Symbian operating system, HP's WebOS operating system, open source MeeGo operating system, and Microsoft Windows operating system.
  • a related program that drives the hardware of the terminal device to be recognized by a computer or the like and works normally.
  • Middleware is software that sits between the operating system and applications.
  • FIG. 3 is only an exemplary description. In practical applications, the terminal device 300 may include more or fewer components than those shown in FIG. 3, and the structure shown in FIG. 3 does not constitute the terminal device provided in the embodiment of the present application. No restrictions.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be construed as more preferred or more advantageous than other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • the beamforming gain in the existing test schemes will cause interference with the RSRP error of the tester's baseband measurement, resulting in the inaccuracy of the determined RSRP measurement value.
  • An embodiment of the present application provides Measurement method. This method can eliminate the interference caused by the beamforming gain on the test results, in order to obtain more accurate baseband measurement errors, and improve the accuracy of calibration.
  • the measurement method provided in the embodiment of the present application may include S401-S404.
  • the measuring device detects a reference signal received power RSRP measurement value of the millimeter wave signal.
  • the measurement millimeter wave signal is sent by a transmitting antenna shown in FIG. 1, and the frequency of the millimeter wave is greater than 6 GHz.
  • the RSRP measurement value is an RSRP with a beamforming gain.
  • the measuring device detects and measures the RSRP of the millimeter wave, on the one hand, because the measurement scheme has a beamforming gain, and on the other hand, because the measuring device has an error, the RSRP measurement value includes the error values of the beamforming gain and the baseband measurement.
  • the signal arrival angle AoA is the angle at which the millimeter wave beam arrives.
  • calculating the signal arrival angle AoA of the measured millimeter wave signal may include: calculating the AoA of the measured millimeter wave signal according to the RSRP measurement value of the measured millimeter wave signal detected by the measurement device.
  • the AoA of the millimeter wave beam can be calculated by using the multi-signal classification MUSIC algorithm according to the RSRP measurement value.
  • the embodiment of the present application does not limit the specific method of calculating the signal arrival angle AoA of the measured millimeter wave signal, which is only an example here.
  • the database includes at least one AoA and a beamforming gain reference value corresponding to each AoA in the at least one AoA.
  • the beamforming gain reference value refers to a beamforming gain value corresponding to AoA of a millimeter wave beam signal when a distance between a transmitting antenna and a center position of a radio frequency antenna of a measurement device is a certain distance.
  • a beamforming gain reference value corresponding to one AoA may be obtained according to at least two RSRP measurement values and RSRP true values detected in the AoA, and the RSRP true value may be measured by a signal analyzer connected to an 0dBi omnidirectional antenna.
  • the above specific obtaining method for obtaining the beamforming gain reference value corresponding to the AoA according to at least two RSRP measurement values and RSRP true values detected in an AoA may include the following steps S403a-S403c.
  • At least two RSRP measurement values are detected in the AoA.
  • the at least two RSRP measurement values are measured by at least two measurement devices of the same model as the measurement device.
  • the measurement device is a baseband chip
  • at least two RSRP measurement values are measured by at least two baseband chips of the same model as the baseband chip. It can be understood that the purpose of performing multiple measurements by using multiple baseband chips in the embodiments of the present application is to eliminate the influence of a single baseband chip, so as to obtain a more accurate reference value of the beamforming gain.
  • the measurement equipment detects the RSRP measurement value of the millimeter-wave signal at point A , and records it as RSRP A.
  • the point A can be any position. After the point A is determined, the center of the transmitting antenna and the RF antenna of the measuring device The distance of the location is determined. It can be understood that the first position satisfies the distance condition of the far field.
  • S403b The RSRP true value is detected in the AoA.
  • the actual RSRP value can be measured by a signal analyzer connected to an 0dBi omnidirectional antenna.
  • the 0dBi omnidirectional antenna can be connected to a signal analyzer to measure the true RSRP value received at point A, which is recorded as RSRP A ' . Due to the characteristics of the 0dBi omnidirectional antenna, the measured RSRP value does not include a beam. Shape gain.
  • the sphere center of the 0dBi omnidirectional antenna is aligned with the center position of the RF antenna of the measurement device. As shown in FIG. 7, the sphere center of the 0dBi omnidirectional antenna and the center position of the RF antenna of the measurement device are aligned at point A.
  • the RSRP value measured by the 0dBi omnidirectional antenna can be maintained when the incident angle of the millimeter wave beam is different.
  • S403c Obtain the beamforming gain reference value corresponding to the AoA according to the at least two RSRP measurement values and the RSRP true value.
  • the difference between the at least two RSRP measurement values and the true RSRP value can be obtained respectively to obtain at least two beamforming gain values, and then the average values of the at least two beamforming gain values are obtained to obtain the AoA Corresponding beamforming gain reference value.
  • the corresponding beamforming gain reference value is Where n is the number of measuring devices, RSRP measurement value detected by the i-th measuring device at point A.
  • steps S303a-S303c only obtain the reference value of the beamforming gain corresponding to the signal arrival angle AoA, and the reference values of the beamforming gain corresponding to the other signal arrival angles can be obtained by the same method as above, and the obtained The reference values of the beam-forming gains corresponding to different signal arrival angles are stored in the database.
  • the accuracy of the signal arrival angle AoA stored in the database is not limited in the embodiment of the present application. In actual applications, it can be set according to the different needs of the manufacturer.
  • the accuracy of the signal arrival angle can be finer.
  • the accuracy of the angle of arrival of the signal can be 0.5 degrees or 1 degree.
  • searching the pre-configured database according to the AoA and obtaining the reference value of the beamforming gain corresponding to the AoA may include: searching in the pre-configured database whether the same AoA exists as the current AoA, and if it exists, corresponding to the AoA in the database The beamforming gain is determined as the beamforming gain reference value corresponding to the current AoA.
  • the embodiment of the present application does not limit the specific method of obtaining the beamforming gain reference value corresponding to AoA, and is only an exemplary description here.
  • the RSRP calibration value is an RSRP after excluding a beamforming gain.
  • calculating the RSRP calibration value for measuring the millimeter wave signal according to the RSRP measurement value and the beamforming gain reference value corresponding to the AoA may include: obtaining a difference value according to the RSRP measurement value and the beamforming gain reference value, and the difference value is RSRP Calibration value.
  • the RSRP calibration value is obtained by subtracting the RSRP measurement value including the beamforming gain from the reference value of the beamforming gain corresponding to the signal arrival angle of the measured millimeter wave signal. Therefore, the RSRP calibration value no longer includes The beamforming gain brought by the measurement scheme can eliminate the interference of the beamforming gain on the test results.
  • a measurement device detects a reference signal received power RSRP measurement value of a millimeter wave signal; calculates a signal arrival angle AoA of the measured millimeter wave signal; searches a pre-configured database according to the AoA to obtain the AoA The corresponding beamforming gain reference value; the RSRP calibration value for measuring the millimeter wave signal is calculated according to the RSRP measurement value and the beamforming gain reference value corresponding to the AoA.
  • the measurement method in the embodiment of the present application can obtain a value that does not include the beamforming gain by subtracting the reference value of the beamforming gain corresponding to the signal arrival angle of the measured millimeter wave beam signal from the RSRP measurement value with the beamforming gain measured by the baseband.
  • RSRP calibration value thereby excluding the influence of baseband beamforming gain on the test solution.
  • An embodiment of the present application further provides a measurement method. As shown in FIG. 8, the method further includes step S405 after step S404.
  • the error of calculating the RSRP measurement value detected by the measurement device according to the RSRP calibration value and the RSRP true value may include: calculating a difference between the RSRP calibration value and the RSRP true value, where the difference is the RSRP measurement value detected by the measurement device. error.
  • the true RSRP value in the embodiment of the present application is measured by a measurement device connected to the 0dBi omnidirectional antenna. Due to the characteristics of the 0dBi omnidirectional antenna, the measured RSRP true value does not include beamforming gain. Compared with the error obtained by using a reference antenna with a known gain in the prior art to obtain the baseband measurement value, the RSRP measurement of the 0dBi omnidirectional antenna in the embodiment of the present application can eliminate the influence of the beamforming gain of the reference antenna on the error in the prior art. .
  • the RSRP calibration value does not include beamforming gain
  • the RSRP calibration value has excluded the beamforming gain of the measurement equipment in the test scheme.
  • the true RSRP value is 0dBi and the signal analyzer connected to the omnidirectional antenna does not include the beam.
  • the RSRP of the gain is shaped, so the error of the RSRP measurement value obtained by subtracting the difference between the RSRP calibration value and the RSRP true value is to eliminate the error after the beams of the measuring equipment and the reference antenna are gained.
  • This error value is compared with the prior art.
  • the error determined in the direct measurement of the RSRP measured directly from the baseband and the RSRP measured from a reference antenna of known gain is more accurate.
  • the error of the RSRP measurement value obtained above can be used to calibrate the measurement device.
  • the baseband chip may add a port for external equipment (for example, a calibration device) to call the RSRP calibration value excluding the beamforming gain obtained by the baseband chip from the outside, and use the RSRP
  • the calibration value is compared with the real RSRP value to determine the error of the RSRP measurement value measured by the baseband chip, and the measurement equipment is calibrated according to the error of the measurement value.
  • This port can only have the function of calling the baseband RSRP calibration value.
  • a measurement device detects a reference signal received power RSRP measurement value of a millimeter wave signal; calculates a signal arrival angle AoA of the measured millimeter wave signal; searches a pre-configured database according to the AoA to obtain the AoA The corresponding beamforming gain reference value; the RSRP calibration value for measuring the millimeter wave signal is calculated according to the RSRP measurement value and the beamforming gain reference value corresponding to the AoA; the RSRP measurement value detected by the measurement device is obtained according to the RSRP calibration value and the RSRP true value. error.
  • the measurement method in the embodiment of the present application can obtain a value that does not include the beamforming gain by subtracting the reference value of the beamforming gain corresponding to the signal arrival angle of the measured millimeter wave beam signal from the RSRP measurement value with the beamforming gain measured by the baseband.
  • RSRP calibration value and according to RSRP calibration value and RSRP true value, can obtain more accurate RSRP measurement value error, this error excludes the influence of baseband beamforming gain and reference antenna beamforming gain on the test solution, improving the accuracy of calibration degree.
  • the measurement device includes a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in a combination of hardware and computer software. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • the measurement device 900 includes a detection unit 901, a processing unit 902, and an acquisition unit 903.
  • the detection unit 901 may be used to support the measurement device 900 to execute S401 in FIG. 4;
  • the processing unit 902 may be used to support the measurement device 900 to execute S402, S404 in FIG. 4, or S405 in FIG. 8;
  • the acquisition unit 903 is used to support measurement
  • the device 900 executes S403 in FIG. 4. Wherein, all relevant content of each step involved in the above method embodiment can be referred to the functional description of the corresponding functional module, which will not be repeated here.
  • the measurement device 1000 includes a storage module 1001 and a processing module 1002.
  • the processing module 1002 is used to control and manage the actions of the measurement device.
  • the processing module 1002 is used to support the measurement device to perform S401-S404 in FIG. 4 or S401-S405 in FIG. 8 and / or used in the description herein.
  • Other processes of technology is configured to store computer program code and data.
  • An embodiment of the present application further provides a device, which is in the form of a chip product.
  • the structure of the device includes a processor and an interface circuit.
  • the processor can obtain protocol packets sent by other routers through the interface circuit.
  • the device may further include a memory, which is configured to be coupled to the processor, and stores necessary program instructions and data of the device, and the processor is configured to execute the program instructions stored in the memory, so that the device executes the message attack prevention device in the foregoing method.
  • the memory may be a memory module in the chip, such as a register, a cache, etc.
  • the memory module may also be a memory module located outside the chip, such as a ROM or other device that can store static information and instructions. Type of static storage device, RAM, etc.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in Random Access Memory (RAM), flash memory, Erasable Programmable ROM (EPROM), electrically erasable and erasable.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC can be located in a core network interface device.
  • the processor and the storage medium can also exist as discrete components in the core network interface device.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种测量方法和装置,涉及通信技术领域,解决了现有技术中波束成形增益会对测量值的误差造成干扰,导致确定的测量值的误差并不准确的问题。具体方案为:测量设备检测测量毫米波信号的参考信号接收功率RSRP测量值;计算测量毫米波信号的信号到达角度AoA;根据AoA查找预配置的数据库,获取该AoA对应的波束成形增益基准值;其中,数据库包含至少一个AoA,以及与该至少一个AoA中每个AoA对应的波束成形增益基准值;根据RSRP测量值和AoA对应的波束成形增益基准值获取测量毫米波信号的RSRP校准值。

Description

一种测量方法和装置
本申请要求于2018年7月26日提交中国国家知识产权局、申请号为201810830981.0、申请名称为“一种测量方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种测量方法和装置。
背景技术
在5G发展过程中,对于毫米波(频率>6GHz)的应用要求已经确定,毫米波和波束成形技术的结合也使得5G通讯系统拥有高带宽并且支持大量用户同时通讯。目前对于毫米波的接收和测量技术受到了毫米波特性以及5G芯片集成化的影响,只能在空口技术(Over The Air,OTA)环境下进行,在TS38.810中定义了对于毫米波的测量方案,由于受限于对芯片的构造的了解程度不高,毫米波的特性,以及当前的基带测量参考点方案,目前对于基带侧毫米波的RSRP测量值精度的测试需要解决两个问题:一是测试仪器或环境需要知晓对测试机的波束成形增益;二是测试仪器或环境需要排除波束成形增益对误差值的影响。
现有技术中的一种测试方案是在非直接远场测试的情况下,通过在测试机(Device Under Test,DUT)测试时的同一位置放置一个已知增益的参考天线进行对比测试,根据DUT基带上报的参考信号接收功率(Reference Signal Receiving Power,RSRP)与已知增益的参考天线测量的RSRP确定DUT基带测量值的误差。由于该测试方案中带有波束成形增益,因此DUT基带上报的RSRP中同时包含波束成形增益和误差值,而且测试方案中已知增益的参考天线测量的RSRP中也包含波束成形增益,因此,上述波束成形增益会对RSRP测量值的误差造成干扰,导致确定的RSRP测量值的误差并不准确。
发明内容
本申请实施例提供一种测量方法和装置,能够排除波束成形增益对测试结果造成的干扰,获取更加精确的RSRP测量值的误差。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种测量方法,该方法包括:测量设备检测测量毫米波信号的参考信号接收功率RSRP测量值;计算该测量毫米波信号的信号到达角度AoA;根据该AoA查找预配置的数据库,获取该AoA对应的波束成形增益基准值;其中,上述数据库包含至少一个AoA,以及与该至少一个AoA中每个AoA对应的波束成形增益基准值;根据RSRP测量值和AoA对应的波束成形增益基准值计算测量毫米波信号的RSRP校准值。上述测量设备为基带芯片或终端设备。基于本方案,通过将基带测量的带有波束成形增益的RSRP测量值减去测量毫米波波束信号的信号到达角度对应的波束成形增益的基准值,能够获得不包含波束成形增益的RSRP校准值,从而排除基带波束成形增益对测试方案的影响。
结合第一方面,在第一种可能的实现方式中,一个AoA对应的波束成形增益基准值根据在该AoA检测的至少两个RSRP测量值与RSRP真实值获得;其中,RSRP真实值是由0dBi全向天线连接的仪器测量的,上述测量设备射频天线的中心和该0dBi全向天线的球体中心对齐。基于本方案,能够根据RSRP测量值和RSRP真实值得到波束成形增益的基准值。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述至少两个RSRP测量值是由与上述测量设备型号相同的至少两个测量设备测量的。基于本方案,通过采用多个基带芯片进行多次测量的目的是为了排除单一基带芯片的影响,以获取较为准确的波束成形增益基准值。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述方法还包括:根据上述RSRP校准值和上述RSRP真实值计算测量设备检测的RSRP测量值的误差。基于本方案,能够获得较为准确的RSRP测量值误差。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述计算测量毫米波信号的信号到达角度AoA包括:根据测量设备检测的测量毫米波信号的RSRP测量值,计算测量毫米波信号的AoA。基于本方案,能够根据RSRP测量值获得毫米波的信号到达角度。
本申请实施例的第二方面,提供一种测量装置,该装置包括:检测单元,用于检测测量毫米波信号的参考信号接收功率RSRP测量值;处理单元,用于计算上述测量毫米波信号的信号到达角度AoA;获取单元,用于根据上述处理单元计算的AoA查找预配置的数据库,获取该AoA对应的波束成形增益基准值;其中,数据库包含至少一个AoA,以及与该至少一个AoA中每个AoA对应的波束成形增益基准值;上述处理单元,还用于根据上述检测单元检测的RSRP测量值和获取单元获取的AoA对应的波束成形增益基准值计算测量毫米波信号的RSRP校准值。上述测量装置为基带芯片或终端设备。
结合第二方面,在第一种可能的实现方式中,一个AoA对应的波束成形增益基准值根据在该AoA检测的至少两个RSRP测量值与RSRP真实值获得;其中,该RSRP真实值是由0dBi全向天线连接的仪器测量的;测量设备射频天线的中心和上述0dBi全向天线的球体中心对齐。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述至少两个RSRP测量值是由与上述测量设备型号相同的至少两个测量设备检测的。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述处理单元,还用于,根据RSRP校准值和RSRP真实值计算所述检测单元检测的RSRP测量值的误差。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述处理单元,具体用于,根据上述检测单元检测的测量毫米波信号的RSRP测量值,计算测量毫米波信号的AoA。
上述第二方面以及第二方面的各种实现方式的效果描述可以参考第一方面和第一方面的各种实现方式的相应效果的描述,在此不再赘述。
本申请实施例的第三方面,提供一种装置,该装置的结构中包括处理器和存储器, 该存储器用于与处理器耦合,保存该服务器必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该服务器执行上述第一方面或第一方面的可能的实现方式中任一所述的测量方法。
本申请实施例的第四方面,提供一种计算机存储介质,该计算机存储介质中存储有计算机程序代码,当上述计算机程序代码在处理器上运行时,使得处理器执行第一方面或第一方面的可能的实现方式中任一所述的测量方法。
本申请实施例的第五方面,提供了一种计算机程序产品,该程序产品储存有上述处理器执行的计算机软件指令,该计算机软件指令包含用于执行上述方面所述方案的程序。
本申请实施例的第六方面,提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中测量装置的功能。
附图说明
图1为本申请实施例提供的一种非直接远场测试方案的示意图;
图2为本申请实施例提供的一种测量设备的结构示意图;
图3为本申请实施例提供的另一种测量设备的结构示意图;
图4为本申请实施例提供的一种测量方法的流程图;
图5为本申请实施例提供的一种测量设备检测毫米波RSRP的示意图;
图6为本申请实施例提供的一种0dBi全向天线检测毫米波RSRP的示意图;
图7为本申请实施例提供的一种测量设备和0dBi全向天线检测毫米波RSRP时的位置示意图;
图8为本申请实施例提供的另一种测量方法的流程图;
图9为本申请实施例提供的一种测量装置的组成示意图;
图10为本申请实施例提供的另一种测量装置的组成示意图。
具体实施方式
首先,对本申请实施例中涉及的部分名词进行解释说明:
1、非直接远场测试
示例性的,对于毫米波OTA环境的测量方案,通常采用远场测试,但由于远场测试的条件要求的距离较长,因此本申请实施例采用非直接远场测试,该非直接远场测试是通过一个反射器反射毫米波,在保证远场的距离条件下建立测量设备和测试毫米波信号之间的连接。如图1所示,发射天线发出的毫米波波束经过反射器发送至测量设备DUT,使得毫米波的测试条件满足距离较长的要求。本申请实施例对于发射天线的具体天线类别并不进行限定。
需要说明的是,本申请下述实施例中发射天线与接收机(测量设备DUT)射频天线的中心位置的距离不变,即本申请实施例是在同一个远场距离下进行的测试方案。
2、参考信号接收功率RSRP
参考信号接收功率是LTE网络中可以代表无线信号强度的关键参数以及物理层测量需求之一,是在某个符号内承载参考信号的所有RE(资源粒子)上接收到的信号功 率的平均值。
本申请实施例中的参数包括RSRP测量值、RSRP真实值和RSRP校准值。其中,RSRP测量值是由测量设备检测到的测量毫米波信号的RSRP,该RSRP测量值中包含波束成形增益;RSRP真实值是由0dBi全向天线连接的仪器测量的,该仪器可以为任何带信号分析功能的仪器,例如,信号分析仪,由于0dBi全向天线的特性,该RSRP真实值不包含波束成形增益;RSRP校准值是由RSRP测量值和波束成形增益基准值计算差值后获得的,该RSRP校准值是排除波束成形增益后的RSRP值,可以用于和RSRP真实值比较,得到RSRP测量值的误差。
3、数据库
本申请实施例中的数据库可以是在测量设备出厂前,在测量设备存储一个预先配置好的数据库,该数据库中存储了某一测试距离时,测试毫米波信号在不同信号到达角度时对应的波束成形增益基准值,该测试距离为测试仪表和协议规定范围内能达到的距离。其中,每一个AoA对应的波束成形增益基准值是根据在该AoA检测的至少两个RSRP测量值与RSRP真实值获得的,该至少两个RSRP测量值是由与测量设备型号相同的至少两个测量设备测量的。
4、测量设备
本申请实施例中的测量设备可以为基带芯片或者包含基带芯片的终端设备。该基带芯片或终端设备用于检测测量毫米波信号的RSRP测量值,并根据本申请实施例中的测量方法获取排除波束成形增益后的较为精确的RSRP测量值误差,可以根据该测量值误差对测量设备进行校准。
示例性的,当上述测量设备为基带芯片时,该基带芯片200的结构如图2所示,可分为五个子块:处理器201、信道编码器202、数字信号处理器203、调制/解调器204和接口模块205。
处理器201,用于对终端设备进行控制和管理,包括定时控制、数字系统控制、射频控制、省电控制和人机接口控制等。示例性的,该控制可以为微处理器(Microcontroller Unit,MCU),该MCU可以包括一个CPU核心和单片机支持系统,该微处理器单元可以采用ARM处理器内核。
信道编码器202,用于完成业务信息和控制信息的信道编码、加密等,其中信道编码包括卷积编码、FIRE码、奇偶校验码、交织、突发脉冲格式化。
数字信号处理器203,用于射频控制、信道编码、均衡、分间插入与去分间插入、AGC、AFC、SYCN、密码算法、邻近蜂窝监测等。该数字信号处理器还可以处理一些其他功能,例如双音多频音的产生和一些短时回声的抵消。
调制/解调器204,用于将来自终端设备的数字传输转化为能够通过电话系统传输的模拟信号,同时也把来自电话线的模拟信号转化为终端设备能够理解的数字信号。
接口模块205,可以包括模拟接口、数字接口以及人机接口三个子块。其中,模拟接口可以包括:语音输入/输出接口、射频控制接口;数字接口可以包括:系统接口、SIM卡接口、测试接口、EEPROM接口、存储器接口等;人机接口,用于支持系统和用户之间进行交互和信息交换。
可理解的是,图2仅为示例性说明,实际应用中,基带芯片200可以包括比图2 所示更多或者更少的部件,图2所示结构不对本申请实施例提供的基带芯片构成任何限制。
示例性的,当上述测量设备为终端设备时,该终端设备300的结构如图3所示,包括射频模块301、基带模块302、电源管理模块303、外设304和软件305。
射频模块301,用于完成信号从天线到基带信号的接收和发射处理,例如,可以将基带发送的低频小功率的信号转变为是和在空间传送的高频大功率的信号,以及把天线接收的高频微弱信号转变成为基地能够处理的具有一定幅度的低频信号。
基带模块302,用于完成声音通道、射频的控制、电源管理、话音编码、信道编码、调制、自适应均衡等功能。例如,基带模块302可以将声音信号转变成为电信号再进行处理,使得信号是和在信道中传输,并保证在接收端可以正确接收。基带模块302包括上述基带芯片200,该基带芯片是终端设备的核心部分。
电源管理模块303,用于将电源分配给内部单元,根据需要调节各个单元的电压(或电流),降低其功耗。
外设304,可以包括LCD,键盘,机壳,摄像头等。本申请实施例对于终端设备包含的外设并不进行限定。
软件305,一般包括操作系统,驱动,中间件,应用四大部分。其中,终端设备的操作系统是管理和控制终端硬件与软件资源的计算机程序,是直接运行在"裸机"上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行,例如各种应用程序的运行。终端设备的操作系统可以包括苹果的IOS操作系统、谷歌的Android开源操作系统、塞班的Symbian操作系统、惠普的WebOS操作系统、开源的MeeGo操作系统及微软Windows操作系统等。驱动用于使终端设备的硬件能够被计算机等识别并且正常工作的相关程序。中间件是处于操作系统和应用程序之间的软件。
可理解的是,图3仅为示例性说明,实际应用中,终端设备300可以包括比图3所示更多或者更少的部件,图3所示结构不对本申请实施例提供的终端设备构成任何限制。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了解决背景技术中,现有的测试方案中的波束成形增益会对测试机基带测量的RSRP的误差造成干扰,导致确定的RSRP测量值的误差不准确的问题,本申请实施例提供了一种测量方法,该方法能够排除波束成形增益对测试结果造成的干扰,以获取更加精确的基带测量值的误差,提升校准的精确度。
结合图1-图3,如图4所示,本申请实施例提供的测量方法,可以包括S401-S404。
S401、测量设备检测测量毫米波信号的参考信号接收功率RSRP测量值。
示例性的,该测量毫米波信号是由图1所示的发射天线发出,该毫米波的频率大于6GHz。
示例性的,该RSRP测量值为带有波束成形增益的RSRP。测量设备检测测量毫米波的RSRP时,一方面由于测量方案中带有波束成形增益,另一方面由于测量设备测 量存在误差,因此该RSRP测量值中包含波束成形增益和基带测量的误差值。
S402、计算测量毫米波信号的信号到达角度AoA。
该信号到达角度AoA为毫米波波束到达的角度。
示例性的,计算测量毫米波信号的信号到达角度AoA可以包括:根据上述测量设备检测的测量毫米波信号的RSRP测量值,计算测量毫米波信号的AoA。例如,可以根据RSRP测量值,采用多信号分类MUSIC算法计算毫米波波束的AoA,具体可参见现有技术,在此不予赘述。本申请实施例对于计算测量毫米波信号的信号到达角度AoA的具体方法并不进行限定,在此仅是示例。
S403、根据AoA查找预配置的数据库,获取该AoA对应的波束成形增益基准值。
其中,该数据库包含至少一个AoA,以及与该至少一个AoA中每个AoA对应的波束成形增益基准值。
该波束成形增益基准值是指发射天线与测量设备射频天线的中心位置的距离为某一距离时,测量毫米波波束信号的AoA对应的波束成形增益的值。
示例性的,一个AoA对应的波束成形增益基准值可以根据在该AoA检测的至少两个RSRP测量值与RSRP真实值获得,该RSRP真实值可以由0dBi全向天线连接的信号分析仪测量的。
上述根据在一个AoA检测的至少两个RSRP测量值与RSRP真实值获得该AoA对应的波束成形增益基准值的具体获取方式可以包括以下步骤S403a-S403c。
S403a、在上述AoA检测至少两个RSRP测量值。
示例性的,该至少两个RSRP测量值是由与上述测量设备型号相同的至少两个测量设备测量的。例如,当该测量设备为基带芯片时,至少两个RSRP测量值是由与该基带芯片型号相同的至少两个基带芯片测量的。可以理解的,本申请实施例通过采用多个基带芯片进行多次测量的目的是为了排除单一基带芯片的影响,以获取较为准确的波束成形增益基准值。
如图5所示,测量设备在A点检测测量毫米波信号的RSRP测量值,记为RSRP A,该A点可以为任意一个位置,该A点确定后,发射天线和测量设备射频天线的中心位置的距离确定。可以理解的,该第一位置满足远场的距离条件。
S403b、在上述AoA检测RSRP真实值。
示例性的,该RSRP真实值可以由0dBi全向天线连接的信号分析仪测量得到。
如图6所示,该0dBi全向天线可以连接信号分析仪测量A点处接收的RSRP真实值,记为RSRP A’,由于0dBi全向天线的特性,其测量的RSRP值中是不包含波束成形增益的。
需要说明的是,该0dBi全向天线的球体中心和上述测量设备射频天线的中心位置对齐。如图7所示,0dBi全向天线的球体中心和测量设备射频天线的中心位置在A点处对齐。
可以理解的,当发射天线和测试机基带射频中心的距离不变时,在毫米波波束的入射角度不同时,该0dBi全向天线测量的RSRP值可以保持不变。
S403c、根据上述至少两个RSRP测量值和RSRP真实值获取上述AoA对应的波束成形增益基准值。
示例性的,可以将上述至少两个RSRP测量值分别和RSRP真实值求差值,获得至少两个波束成形增益的值,再将该至少两个波束成形增益的值求平均值,获得该AoA对应的波束成形增益基准值。例如,测量毫米波信号的信号到达角度为AoA时,对应的波束成形增益基准值为
Figure PCTCN2019097564-appb-000001
其中,n为测量设备的个数,
Figure PCTCN2019097564-appb-000002
为第i个测量设备在A点检测的RSRP测量值。
可以理解的,上述步骤S303a-S303c仅获取了一个信号到达角度AoA对应的波束成形增益的基准值,对于其他信号到达角度对应的波束成形增益基准值可以采用上述同样的方法得到,并将得到的不同信号到达角度所对应的波束成增益的基准值存储在数据库中。
需要说明的是,数据库中存储的信号到达角度AoA的精度本申请实施例并不进行限定,实际应用中,可以根据厂商的不同需求进行设置,可选的,该信号到达角度的精度可以精细一些,例如,该信号到达角度的精度可以为0.5度或者1度。
示例性的,上述根据AoA查找预配置的数据库,获取AoA对应的波束成形增益基准值可以包括:在预配置的数据库中查找是否存在与当前AoA相同的AoA,若存在,将数据库中该AoA对应的波束成形增益确定为当前AoA对应的波束成形增益基准值。本申请实施例对于获取AoA对应的波束成形增益基准值的具体方法并不进行限定,在此仅是示例性说明。
S404、根据RSRP测量值和上述AoA对应的波束成形增益基准值计算测量毫米波信号的RSRP校准值。
其中,该RSRP校准值为排除了波束成形增益后的RSRP。
示例性的,上述根据RSRP测量值和上述AoA对应的波束成形增益基准值计算测量毫米波信号的RSRP校准值可以包括:根据RSRP测量值和波束成形增益基准值求差值,该差值为RSRP校准值。
可以理解的,该RSRP校准值是将包含波束成形增益的RSRP测量值减去该测量毫米波信号的信号到达角度对应的波束成形增益基准值后得到的,因此,该RSRP校准值中不再包含测量方案带来的波束成形增益,能够排除波束成形增益对测试结果的干扰。
本申请实施例提供的测量方法,通过测量设备检测测量毫米波信号的参考信号接收功率RSRP测量值;计算该测量毫米波信号的信号到达角度AoA;根据该AoA查找预配置的数据库,获取该AoA对应的波束成形增益基准值;根据RSRP测量值和该AoA对应的波束成形增益基准值计算测量毫米波信号的RSRP校准值。本申请实施例中的测量方法通过将基带测量的带有波束成形增益的RSRP测量值减去测量毫米波波束信号的信号到达角度对应的波束成形增益的基准值,能够获得不包含波束成形增益的RSRP校准值,从而排除基带波束成形增益对测试方案的影响。
本申请实施例还提供一种测量方法,如图8所示,该方法在步骤S404之后,还包括步骤S405。
S405、根据上述RSRP校准值和RSRP真实值计算测量设备检测的RSRP测量值的误差。
示例性的,上述根据RSRP校准值和RSRP真实值计算测量设备检测的RSRP测 量值的误差可以包括:计算RSRP校准值和RSRP真实值的差值,该差值为测量设备检测的RSRP测量值的误差。
需要说明的是,本申请实施例中的RSRP真实值是由0dBi全向天线连接的测量设备测量的,由于该0dBi全向天线的特性,其测量的RSRP真实值是不包含波束成增益的,与现有技术中采用已知增益的参考天线获取基带测量值的误差相比,本申请实施例采用0dBi全向天线测量RSRP能够排除现有技术中参考天线的波束成形增益对误差带来的影响。
可以理解的,由于上述RSRP校准值不包含波束成形增益,该RSRP校准值已经排除了测试方案中测量设备的波束成形增益,RSRP真实值为0dBi全向天线连接的信号分析仪测量的不包含波束成形增益的RSRP,故将RSRP校准值减去RSRP真实值的差值获得的RSRP测量值的误差,为排除测量设备和参考天线的波束成增益后的误差,该误差值相较于现有技术中直接根据基带测量的RSRP与已知增益的参考天线测量的RSRP确定的误差更为精确。
示例性的,上述获得的RSRP测量值的误差可以用于校准测量设备。例如,当该测量设备为基带芯片时,该基带芯片可以新增一个端口,用于外部设备(例如,校准设备)从外部调用基带芯片获得的排除波束成形增益的RSRP校准值,并将该RSRP校准值与RSRP真实值比较,确定基带芯片测量的RSRP测量值的误差,并根据该测量值的误差对测量设备进行校准。该端口可以只具备调用基带RSRP校准值的功能。
本申请实施例提供的测量方法,通过测量设备检测测量毫米波信号的参考信号接收功率RSRP测量值;计算该测量毫米波信号的信号到达角度AoA;根据该AoA查找预配置的数据库,获取该AoA对应的波束成形增益基准值;根据RSRP测量值和该AoA对应的波束成形增益基准值计算测量毫米波信号的RSRP校准值;根据上述RSRP校准值和RSRP真实值获取测量设备检测的RSRP测量值的误差。本申请实施例中的测量方法通过将基带测量的带有波束成形增益的RSRP测量值减去测量毫米波波束信号的信号到达角度对应的波束成形增益的基准值,能够获得不包含波束成形增益的RSRP校准值,并根据RSRP校准值与RSRP真实值,能够获取更为精确的RSRP测量值误差,该误差排除了基带波束成形增益和参考天线波束成形增益对测试方案的影响,提升了校准的精准度。
上述主要从方法步骤的角度对本申请实施例提供的方案进行了介绍。可以理解的是,测量设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件和计算机软件的结合形式来实现。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对测量设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,本申请实施例还提供一种测量装置,如图9所示,该测量装置900包括:检测单元901、处理单元902和获取单元903。检测单元901可以用于支持测量装置900执行图4中的S401;处理单元902可以用于支持测量装置900执行图4中的S402、S404,或者图8中的S405;获取单元903用于支持测量装置900执行图4中的S403。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,本申请实施例还提供一种测量装置,如图10所示,该测量装置1000包括:存储模块1001和处理模块1002。处理模块1002用于对测量装置的动作进行控制管理,例如,处理模块1002用于支持测量装置执行图4中的S401-S404,或图8中的S401-S405,和/或用于本文所描述的技术的其它过程。存储模块1001,用于存储计算机程序代码和数据。
本申请实施例还提供一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,处理器可以通过接口电路获取其他路由器发送的协议报文,可选的,该装置还可以包括存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中报文防攻击装置的功能。可选地,所述存储器可以为所述芯片内的存储模块,如寄存器、缓存等,所述存储模块还可以是位于所述芯片外部的存储模块,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (17)

  1. 一种测量方法,其特征在于,所述方法包括:
    测量设备检测测量毫米波信号的参考信号接收功率RSRP测量值;
    计算所述测量毫米波信号的信号到达角度AoA;
    根据所述AoA查找预配置的数据库,获取所述AoA对应的波束成形增益基准值;其中,所述数据库包含至少一个AoA,以及与所述至少一个AoA中每个AoA对应的波束成形增益基准值;
    根据所述RSRP测量值和所述AoA对应的波束成形增益基准值计算所述测量毫米波信号的RSRP校准值。
  2. 根据权利要求1所述的测量方法,其特征在于,一个AoA对应的波束成形增益基准值根据在该AoA检测的至少两个RSRP测量值与RSRP真实值获得;其中,所述RSRP真实值是由0dBi全向天线连接的仪器测量的。
  3. 根据权利要求1或2所述的测量方法,其特征在于,所述至少两个RSRP测量值是由与所述测量设备型号相同的至少两个测量设备测量的。
  4. 根据权利要求2或3所述的测量方法,其特征在于,所述测量设备射频天线的中心和所述0dBi全向天线的球体中心对齐。
  5. 根据权利要求1-4任一项所述的测量方法,其特征在于,所述方法还包括:
    根据所述RSRP校准值和所述RSRP真实值计算所述测量设备检测的RSRP测量值的误差。
  6. 根据权利要求1-5任一项所述的测量方法,其特征在于,所述计算所述测量毫米波信号的信号到达角度AoA包括:
    根据所述测量设备检测的测量毫米波信号的RSRP测量值,计算所述测量毫米波信号的AoA。
  7. 根据权利要求1-6任一项所述的测量方法,其特征在于,所述测量设备为基带芯片或终端设备。
  8. 一种测量装置,其特征在于,所述装置包括:
    检测单元,用于检测测量毫米波信号的参考信号接收功率RSRP测量值;
    处理单元,用于计算所述测量毫米波信号的信号到达角度AoA;
    获取单元,用于根据所述处理单元计算的所述AoA查找预配置的数据库,获取所述AoA对应的波束成形增益基准值;其中,所述数据库包含至少一个AoA,以及与所述至少一个AoA中每个AoA对应的波束成形增益基准值;
    所述处理单元,还用于根据所述检测单元检测的所述RSRP测量值和所述获取单元获取的所述AoA对应的波束成形增益基准值计算所述测量毫米波信号的RSRP校准值。
  9. 根据权利要求8所述的测量装置,其特征在于,一个AoA对应的波束成形增益基准值根据在该AoA检测的至少两个RSRP测量值与RSRP真实值获得;其中,所述RSRP真实值是由0dBi全向天线连接的仪器测量的。
  10. 根据权利要求8或9所述的测量装置,其特征在于,所述至少两个RSRP测量值是由与所述测量设备型号相同的至少两个测量设备检测的。
  11. 根据权利要求9或10所述的测量装置,其特征在于,所述测量设备射频天线的中心和所述0dBi全向天线的球体中心对齐。
  12. 根据权利要求8-11任一项所述的测量装置,其特征在于,所述处理单元,还用于,
    根据所述RSRP校准值和所述RSRP真实值计算所述检测单元检测的RSRP测量值的误差。
  13. 根据权利要求8-12任一项所述的测量装置,其特征在于,所述处理单元,具体用于,
    根据所述检测单元检测的测量毫米波信号的RSRP测量值,计算所述测量毫米波信号的AoA。
  14. 根据权利要求8-13任一项所述的测量装置,其特征在于,所述测量装置为基带芯片或终端设备。
  15. 一种装置,应用于测量装置中,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取和执行存储器中的指令,使得所述测量装置执行如权利要求1-7任一项所述的测量方法。
  16. 根据权利要求15所述的装置,其特征在于,所述装置为所述测量装置,或为所述测量装置的一部分。
  17. 一种计算机存储介质,所述计算机存储介质中存储有计算机程序代码,其特征在于,当所述计算机程序代码在处理器上运行时,使得所述处理器执行如权利要求1-7任一项所述的测量方法。
PCT/CN2019/097564 2018-07-26 2019-07-24 一种测量方法和装置 WO2020020250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810830981.0A CN110768734B (zh) 2018-07-26 2018-07-26 一种测量方法和装置
CN201810830981.0 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020020250A1 true WO2020020250A1 (zh) 2020-01-30

Family

ID=69180846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097564 WO2020020250A1 (zh) 2018-07-26 2019-07-24 一种测量方法和装置

Country Status (2)

Country Link
CN (1) CN110768734B (zh)
WO (1) WO2020020250A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置
CN112932344A (zh) * 2021-04-02 2021-06-11 深圳乐居智能电子有限公司 一种扫地机器人清扫方法及一种扫地机器人

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307070A (zh) * 2011-05-26 2012-01-04 中国科学院上海微系统与信息技术研究所 毫米波段非接触式传输特性的自动测试系统与测试方法
CN104062620A (zh) * 2014-07-16 2014-09-24 中国科学院上海微系统与信息技术研究所 一种功率校准测试系统及校准测量方法
US9103873B1 (en) * 2013-03-01 2015-08-11 Anritsu Company Systems and methods for improved power control in millimeter wave transceivers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9844077B1 (en) * 2015-03-19 2017-12-12 Sprint Spectrum L.P. Secondary component carrier beamforming
US20170006593A1 (en) * 2015-07-02 2017-01-05 Futurewei Technologies, Inc. Beam Detection, Beam Tracking and Random Access in MM-Wave Small Cells in Heterogeneous Network
CN107040989A (zh) * 2016-02-04 2017-08-11 上海大唐移动通信设备有限公司 一种终端定位方法、装置及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307070A (zh) * 2011-05-26 2012-01-04 中国科学院上海微系统与信息技术研究所 毫米波段非接触式传输特性的自动测试系统与测试方法
US9103873B1 (en) * 2013-03-01 2015-08-11 Anritsu Company Systems and methods for improved power control in millimeter wave transceivers
CN104062620A (zh) * 2014-07-16 2014-09-24 中国科学院上海微系统与信息技术研究所 一种功率校准测试系统及校准测量方法

Also Published As

Publication number Publication date
CN110768734A (zh) 2020-02-07
CN110768734B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
KR101136671B1 (ko) 무선 디바이스의 방사 성능을 결정하기 위한 방법 및 장치
CN111478737B (zh) 射频测试方法、装置、电子装置及存储介质
US20060194552A1 (en) Method of using SNR to reduce factory test time
CN109462448B (zh) 一种射频测试方法、移动终端及存储介质
WO2020020250A1 (zh) 一种测量方法和装置
WO2011134206A1 (zh) 等效全向灵敏度测试方法和装置
WO2014176846A1 (zh) 一种终端天线总辐射功率的快速测试方法
CN102244549A (zh) 一种wcdma移动终端的tis测试方法
JP7016303B2 (ja) 放射電力推定方法
WO2014019512A1 (zh) 天线空间相关性测量方法和装置,以及终端设备
CN106714189B (zh) 一种小区过覆盖的分析方法及装置
WO2014190609A1 (zh) 一种移动终端的wifi ota测试方法及其测试系统
EP1696682A1 (en) Method of using the signal-to-noise ratio (SNR) to reduce factory test time
US20240023056A1 (en) Positioning method and apparatus
US12028845B2 (en) Beam correspondence capability reporting method and apparatus
CN107333309B (zh) 一种无线信道的切换方法及装置
CN112448775B (zh) 蓝牙辐射性能测试方法、装置及存储介质
TWI846058B (zh) 校準測試環境的方法及其系統
CN110392387B (zh) 无线信号的角度测量方法和设备
WO2019137190A1 (zh) 用于测量无线终端的接收机的无线性能的方法、装置和计算机可读存储介质
CN111224723B (zh) 射频前端模块的校准方法、系统、电子设备及存储介质
US11601207B2 (en) Method for measuring power of non-constant envelope modulated signal, and electronic device
CN109660935B (zh) 一种基站侧阵列天线系统的干扰定位方法
CN111867093B (zh) 一种波束互易性能力上报方法及装置
TWI774199B (zh) 通道狀態資訊之表示方法及其相關接收裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841558

Country of ref document: EP

Kind code of ref document: A1