WO2018101698A1 - 홀로그램 복제 방법 및 장치 - Google Patents

홀로그램 복제 방법 및 장치 Download PDF

Info

Publication number
WO2018101698A1
WO2018101698A1 PCT/KR2017/013660 KR2017013660W WO2018101698A1 WO 2018101698 A1 WO2018101698 A1 WO 2018101698A1 KR 2017013660 W KR2017013660 W KR 2017013660W WO 2018101698 A1 WO2018101698 A1 WO 2018101698A1
Authority
WO
WIPO (PCT)
Prior art keywords
master
roll
photosensitive material
line beam
laser
Prior art date
Application number
PCT/KR2017/013660
Other languages
English (en)
French (fr)
Inventor
김재진
서대한
송민수
한상철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/349,471 priority Critical patent/US11199813B2/en
Priority to CN201780072278.1A priority patent/CN109983407B/zh
Priority to JP2019524342A priority patent/JP6996057B2/ja
Priority to EP17876557.4A priority patent/EP3540521B1/en
Publication of WO2018101698A1 publication Critical patent/WO2018101698A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/20Copying holograms by holographic, i.e. optical means
    • G03H1/202Contact copy when the reconstruction beam for the master H1 also serves as reference beam for the copy H2
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/20Copying holograms by holographic, i.e. optical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/0236Form or shape of the hologram when not registered to the substrate, e.g. trimming the hologram to alphanumerical shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H1/041Optical element in the object space affecting the object beam, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0413Recording geometries or arrangements for recording transmission holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/043Non planar recording surface, e.g. curved surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • G03H2001/187Trimming process, i.e. macroscopically patterning the hologram
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2234Transmission reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/36Scanning light beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/23Diffractive element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/24Reflector; Mirror
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/04Production line for mass production

Definitions

  • the present application relates to a method of replicating a holographic optical element and an apparatus used in the replicating method.
  • the holographic optical element refers to an optical element in which an interference pattern is recorded on a photosensitive material by interfering an object wave, which is light reflected or diffracted by an object, with another reference wave that is coherent with the light. . Since the photosensitive material on which the interference pattern is recorded reproduces the image information by using diffraction instead of reflection or refraction, such a photosensitive material may be classified as a kind of diffraction optical elements (DOEs).
  • DOEs diffraction optical elements
  • the holographic optical device may be manufactured by irradiating an object wave and a reference wave onto each photosensitive material, but are usually manufactured by manufacturing a master and replicating it.
  • a master For example, as shown in FIG. 1, light 13 having a predetermined characteristic is irradiated onto the master 11, so that light 13 ′ transmitted through the master 11 without diffraction and light 14 diffracted while passing through the master are While irradiating the photosensitive material 12, a method of replicating the holographic optical element may be used.
  • this method is not suitable for mass production because it is to copy one by one.
  • One object of the present application is to provide a method for replicating a transmissive holographic optical element and an apparatus used therein.
  • Another object of the present application is to provide a method for replicating a transmission holographic optical element having excellent replication productivity and an apparatus used therefor.
  • the present application relates to a method of replicating holographic optical elements (HOE), which is a kind of diffractive optical element.
  • HOE holographic optical elements
  • the holographic optical element to be replicated may be called a master.
  • the master has a predetermined diffraction or interference pattern, i.e., hologram recording, so as to transmit part of the incident light as it is, for example, as in FIG. 1, and diffract the remaining part of the incident light at a particular angle.
  • Element 11 That is, when a predetermined laser is incident on the master, a laser that has passed through the master and a diffracted laser may be generated.
  • the light transmitted without diffraction may be referred to as a transmission beam, and the diffracted light may be referred to as a diffraction beam.
  • the kind of the master that is, the diffractive optical element to be replicated is not particularly limited.
  • the diffractive optical element may be a transmissive holographic optical element, and more specifically, may be volume holographic grating (VHG).
  • the laser is irradiated to the master before the photosensitive material, and then the transmission beam and the diffraction beam should be irradiated on the same side of the photosensitive sheet. Therefore, in order to apply to mass production processes such as roll-to-roll, it is necessary to adjust the process positional position and the optical path of the plurality of rolls, masters, and photosensitive sheets used in the roll-to-roll. In view of this, the inventors of the present application have come to invent a method and apparatus for replicating the present application described below.
  • a roll-to-roll method which is a continuous process.
  • two rolls, that is, a master roll and a main roll, each having a coating material and a replica formed on the surface thereof, are used, and the contact area (exposure area) between the two rolls is linear.
  • a linear laser line beam is used for replication.
  • each member used to perform the method of the present application may have the following configuration or characteristics.
  • the master roll is a roll configuration used in a roll-to-roll process in contact with or spaced from the main roll, and a photosensitive material having a laser line beam required for hologram replication attached to the main roll through a master formed on the surface thereof. It may be a configuration arranged to be irradiated to. In one example, the master roll may be a cylindrical cylinder roll that can rotate about any internal axis.
  • the master roll may have laser permeability.
  • the term laser transmission in this application is, for example, the transmittance for a laser in the wavelength range of 380 nm to 800 nm is at least about 55%, at least about 65%, at least about 75%, at least about 85%, at least about 95% The upper limit may be about 100% and less than 100%. If the transmittance is satisfied, the material for forming the master roll is not particularly limited. In one example, the master roll may comprise BK7, quartz, transparent glass, or transparent plastic material.
  • the transmissive master roll provides an optical path capable of replicating the transmissive hologram element. Specifically, the laser line beam irradiated to any area or surface of the master roll passes through the inside of the transparent master roll, passes through the master of the master roll surface, and is separated into two lasers that may interfere with each other and then photosensitive. The material can be irradiated and thus the transmissive hologram element can be replicated.
  • a master having a diffraction or interference pattern may be formed over a part or all around the perimeter.
  • the fact that the master is formed over a portion around the master roll may mean that the master of a predetermined length does not form a closed curve on the surface of the master roll but exists only in a portion.
  • the master may be present in plural on the surface of the master roll.
  • the size of the master or the shape or shape of the pattern of the master can be appropriately adjusted according to the size or shape of the pattern desired to be replicated in the photosensitive material, and is not particularly limited.
  • the refractive index of the master may have a value greater than 1 to 2, but is not particularly limited.
  • the main roll may be a cylinder of a cylindrical shape, and the photosensitive material is transported while rotating about any axis therein so that the photosensitive material attached to its surface (circumferential peripheral surface) is exposed to the line beam. It can be a configuration.
  • the photosensitive material may be in the form of a film or sheet. In this case, the main roll may have a smooth surface for attachment to the photosensitive material.
  • the main roll may have a black-based color with less reflection in order to prevent the laser passing through the photosensitive material from being reflected by the main roll and being exposed to the photosensitive material. That is, the main roll may have light absorbency.
  • the main roll may have a configuration in which the reflectance of the irradiated light is 10% or less. The lower limit of the reflectance may be about 0%. If the color of the black series can be implemented, the kind of material forming the main roll, more specifically, the material forming the surface of the main roll in contact with the photosensitive material is not particularly limited.
  • the main roll may include a Teflon material.
  • the photosensitive material attached to the main roll, as described above, is a material on which optical information can be recorded while being exposed to two beams passing through the master.
  • various kinds of photosensitive materials are known which can be used for replicating transmission-type holographic optical elements, and such materials can be used in the present application without limitation.
  • the photosensitive material may be a photopolymer, a photoresist, a silver halide emulsion, a dichromated gelatin, a photoic emulsion, a photothermoplastic photothermoplastic or photorefractive materials may be used.
  • a photopolymer may be used as the photosensitive material.
  • the photosensitive material may be a film consisting of only a photopolymer, or may have a multilayer structure including a photopolymer layer composed of a photopolymer and a substrate for the layer.
  • a photosensitive material has a film shape, and may be provided to the copying method of the present application while being attached to the main roll surface.
  • the substrate used with the photopolymer may be an optically transparent film without anisotropy, for example, triacetyl cellulose (TAC), polyethylene (PE), polycarbonate (PC), polypropylene (PP) , Polyamide (PA), or polyethylene terephthalate (PET) may be used, but the base material is not particularly limited.
  • a protective film may be further laminated.
  • the thickness of the photosensitive layer used for the photosensitive material may range from 3 to 30 ⁇ m, and the thickness of the substrate may range from 20 to 200 ⁇ m, but is not particularly limited.
  • the refractive index of the photosensitive material may have a value of more than 1 to 2 or less, but is not particularly limited.
  • the size (circle diameter) of the master roll may be smaller than the size (diameter diameter) of the main roll.
  • the laser line beam is used to expose the photosensitive material to duplicate the master.
  • the line beam may mean a laser that is irradiated in a linear form on the plane of incidence when the area irradiated is linear when the laser is irradiated on a certain plane.
  • the length of the linear irradiation area that is, the linear length of the laser line beam may be referred to as a line width.
  • the laser line beam may be irradiated such that its line width is parallel to the axis of rotation of the rotating main roll or master roll.
  • the exposure area to which the laser line beam having a predetermined line width is irradiated may be a master roll and a main roll or a contact area of the master and the photosensitive material.
  • the hologram recording process requires expensive laser equipment, and mass production is difficult because it must be controlled so as not to have even minute external vibrations during exposure. Furthermore, when the light is to be extended to irradiate the entire area of the photosensitive material to record the hologram, an optical element having a large area corresponding to the irradiation area is required, and an additional high power laser device may be required, which increases the cost. there is a problem. In addition, even if light can be irradiated on the entire surface of the photosensitive material, due to the practically limited laser power, there is a problem that the intensity of light decreases, the exposure time increases, the possibility of noise increases, and the productivity also decreases. .
  • the method of using a normal laser is not suitable for the roll-to-roll process performed by moving a photosensitive material.
  • -Mass replication is possible by continuous roll process.
  • the light used for replication is irradiated to the master under the same or uniform conditions, and it is difficult to provide uniform light to the entire surface of the master with a general laser.
  • the hologram is not easily replicated.
  • holographic duplication may be performed in a continuous process while the photosensitive material moves while maintaining the condition of the beam incident on the master.
  • the line width of the line beam may be 2.5 mm or less.
  • the lower limit of the line width may be 200 ⁇ m or more, 400 ⁇ m or more, 600 ⁇ m or more, or 800 ⁇ m or more
  • the upper limit may be 2.0 mm or less, 1.8 mm or less, 1.5 mm or less, 1.2 mm or less, or 1.0. It may be less than or equal to mm.
  • the incident angle at which the line beam is incident on the master may be determined in consideration of the object wave and the reference wave used to record the hologram on the master.
  • the line beam may be incident on the master at the same angle (direction) as either the object wave or the reference wave used to record the hologram on the master. .
  • the incident angle should be appropriately adjusted in consideration of the refractive index of the master roll and the like.
  • the wavelength of the laser is not particularly limited and may be selected in consideration of the use of the holographic optical element to be replicated.
  • the laser line beam may use a single laser of one wavelength or lasers of two or more different wavelengths.
  • lasers having three wavelengths corresponding to red (R), green (G), and blue regions (B) may be used in combination.
  • the matter regarding the wavelength selection of the laser is known.
  • the laser may be a continuous wave (CW) laser. Since the continuous wave laser has a more stable output than a pulse laser, it is possible to record an interference pattern with uniform optical characteristics in the exposure region of the photosensitive material.
  • CW continuous wave
  • the laser can be a single longitudinal mode laser. This is because when using a multi-mode laser, the coherency of the light passing through the master and the diffracted light may be reduced.
  • the replication method of the present application performed using the master roll, the main roll, and the line beam of the above-described configuration, as shown in FIG. 2 (b), has a laser transmissive property in which a master having a pattern (hologram recorded) is formed on the surface.
  • the master roll may be rotated and the laser line beam is directed toward the master roll while transferring the photosensitive material attached to the main roll surface.
  • the laser line beam may be irradiated to the photosensitive material after passing through the master on the surface of the master roll through the transparent master roll.
  • the replication method of the present application is performed such that the irradiated laser line beam can sequentially pass through any circumferential surface of the master roll, the inside of the master roll, the master, and the photosensitive material.
  • the master on the surface of the master roll and the photosensitive material attached to the main roll should be able to face each other, in the method of the present application so that the laser line beam has the path as described above so that the master roll and the main
  • the roll can be placed and driven (rotated).
  • the separation distance between the master roll and the main roll may be adjusted in consideration of the size of the master and the photosensitive material, and the rotational speed of each roll may be adjusted in consideration of other circumstances.
  • the diffraction pattern of the master may be replicated in the photosensitive material by the interference of the diffraction beam and the transmission beam generated while the laser line beam passes through the master.
  • the method as shown in FIG. The hologram recorded on the master can then be duplicated on the photosensitive material.
  • the light irradiated to the master may be any one of an object wave or a reference wave that has been used to record the hologram already recorded on the master, and the irradiated light penetrates the master to light the same hologram. Can be written on.
  • the master 11 which is a transmissive holographic optical element, as shown in Fig.
  • the same wavelength as the reference wave used to record the hologram on the master 11 and A laser having an incident angle can be irradiated to the diffractive optical element.
  • the master 11 diffracts a portion of the irradiated laser to produce a diffracted laser 14 (diffraction beam).
  • the diffracted laser 14 may have the same wavelength and angle of incidence as the object wave used to record the holographic optical element 11.
  • a part 13 'of the irradiated laser 13 passes through the transmissive holographic optical element as it is.
  • a hologram can be recorded on the photosensitive material 12, i.e., a master can be duplicated.
  • the replicated photosensitive material like the master, is a diffractive optical element and can function as a kind of beam splitter capable of emitting an object wave and a reference wave from one light.
  • the method may be performed such that the copying is performed while the master and the photosensitive material are in physical contact with each other.
  • the replication is made while the master and the photosensitive material are in contact with each other, unwanted reflection occurs at the interface between the master or the photosensitive material and the air, thereby preventing the diffraction efficiency of the duplicated product from being lowered.
  • the method of the present application may further include attaching the photosensitive material to the main roll using a lamination roll.
  • the lamination roll may be disposed to be spaced apart from the main roll at a predetermined interval, and the lamination roll may be pressed to the main roll side of the photosensitive material supplied on the main roll through another path.
  • one surface of the photosensitive material in contact with the main roll may have adhesiveness through an adhesive or the like.
  • the lamination roll may be heated so that the photosensitive material can be easily attached to the main roll. If the temperature at which the photosensitive material can be easily peeled off the main roll after exposure without deforming the photosensitive material does not occur, the heating range for the lamination roll is not particularly limited and can be appropriately adjusted according to the type of photosensitive material. have. For example, it may be 35 ° C to 100 ° C.
  • the method of the present application applies the laser line beam while tilting the laser line beam in the rotational direction of the main roll, that is, the machine direction (MD) or the transverse direction (TD) relative thereto. Irradiation, thereby adjusting the incident angle of the laser line beam irradiated to the master.
  • the incident angle may be, for example, an angle measured based on a normal of the master incident surface.
  • various transmission hologram elements that perform different optical functions may be replicated.
  • a means (not shown) for tilting the laser line beam for example, an angle adjustable reflecting mirror or the like may be used.
  • the method of the present application can be performed using two or more line beams and two or more masters.
  • two masters 23 ′ 23 ′′ are attached to the master roll surface in the rotation axis direction of the master roll, and two laser line beams 26 ′, 26 ′′ are attached to each master.
  • two holograms can be recorded simultaneously in one process.
  • the angle at which each line beam is irradiated onto the master may be the same or different, and the photosensitive material may be formed on the main roll in the number of one or two or more so as to secure a predetermined exposure area at the position where the two or more masters exist.
  • each line beam is irradiated can be adjusted by tilting means such as a reflecting mirror. It is apparent to those skilled in the art that the refractive index of the master roll may be considered together when adjusting the angle. Two or more holograms having different optical properties may be duplicated depending on the master used and the angle of the laser line beam irradiated to the master.
  • the line beam may be irradiated toward the circular portion of the cylindrical master roll.
  • the incident angle of the laser line beam with respect to the normal of the master incident surface can be adjusted very large.
  • the first laser line beam 26 ′′ incident through the circumferential surface 21 ′′ of the cylindrical master roll is refracted at the master roll interface and then incident to the master 23 ′′. While the angle ⁇ A is not large, the second laser line beam 26 ′ that is incident through the circular portion 21 ′ side of the cylindrical master roll and must travel to the master 23 ′ attached to the circumferential surface of the master ) May be incident at a relatively very large angle ⁇ B.
  • the laser line beam incident through the circumferential surface of the master roll cannot have a large incident angle as in the case where the incident angle ⁇ A is 42 ° C. or more, and the master roll
  • the laser line beam incident through the circular portion of may have a large angle of incidence, such as when the angle ⁇ B is 42 ° C. or more.
  • it can be used to produce a predetermined product to which the line beam should be irradiated at an angle of great incidence with respect to the master.
  • the present application relates to a replication apparatus for performing the above replication method.
  • the replicating apparatus of the present application may include an optical unit (not shown) capable of irradiating the master roll 21, the main roll 22, and the laser line beam 26.
  • the description of the configuration and characteristics of the master roll, the main roll, and the line beam used in the copying apparatus is the same as described above.
  • the photosensitive material 24 may be attached to the surface of the main roll 22.
  • the master 23 may be formed on the surface of the laser transmissive master roll 21.
  • the rotating main roll may transport the photosensitive material so that the photosensitive material faces the master and the laser beam passing through the master is irradiated onto the photosensitive material.
  • a laser beam passing through the master may be irradiated onto the photosensitive material.
  • the size of the master roll and the main roll that is, the diameter of the circle of each roll is not particularly limited.
  • the upper limit of the permeable master roll diameter may be 20 cm or less.
  • the present invention uses two rolls, and the problem of curvature due to the use of the rolls can be solved by relatively increasing the size of the main roll, so that the size of the permeable roll having high production price is relatively high. Can be reduced.
  • the diameter of the master roll may be 15 cm or less, 10 cm or less, 9 cm or less, 8 cm or less, 7 cm or less, 6 cm or less, or 5 cm or less.
  • the lower limit is not particularly limited, and may be, for example, 1 cm or more or 2 cm or more in consideration of the size of the master.
  • the main roll it is made larger than the master roll having the diameter, it may have a curvature smaller than the master roll.
  • the main roll may have a diameter of at least 10 cm, at least 20 cm, or at least 30 cm.
  • the driving speed of the rolls is not particularly limited, and may be adjusted in consideration of the replication productivity of the optical device or the possibility of noise in the replication process.
  • the driving (rotational) speed of the rolls may be adjusted such that the photosensitive material attached to the main roll surface is transferred in a speed range of 0.1 m / min to 5 m / min.
  • the diameter of each roll can also be considered.
  • the optical portion is a configuration for providing the laser line beam described above.
  • the optical unit may be configured to provide a circular beam as a line-shaped beam using a predetermined optics such as a line beam generating lens (array).
  • the lens array may include a so-called laser line generator lens such as PL0130, PL0145, PL0160, or PL0175 from THORLABS.
  • the line beam formed while passing through the laser array may be irradiated with uniform intensity almost equal to that in the region where the line beam is irradiated.
  • the optical unit may be provided to adjust the line width (length) of the line beam within a predetermined range according to the size of the HOE to be replicated.
  • the optical unit may include a tilting means for adjusting the incident angle of the laser line beam irradiated to the master.
  • a tilting means for example, a reflecting mirror can be used.
  • the optical unit may emit a plurality of laser line beams.
  • the optical unit may include a plurality of lower optical units, for example, a first optical unit, a second optical unit, or a third optical unit.
  • the optical unit may provide two or more laser line beams having the same or different angles of incidence to the plurality of masters, respectively. This configuration allows two or more holograms to be replicated simultaneously in one process, as described above.
  • the device of the present application may further include a lamination roll to attach the photosensitive material to the main roll.
  • the method of using the lamination roll together in the present application device is the same as described above, and can be appropriately performed by those skilled in the art.
  • a method and apparatus for replicating a transmissive holographic optical device capable of producing a large amount of holographic film having excellent wavelength selectivity can be provided.
  • FIG. 1 schematically illustrates the replication process of a transmissive hologram.
  • FIG. 2 schematically illustrates a method of replicating a transmissive hologram and an apparatus used therein according to an example of the present application.
  • FIG. 3 schematically shows a method of irradiating a laser line beam according to an example of the present application.
  • FIG. 4 compares and illustrates the difference in diffraction efficiency observed when the line width of the line beam is changed in relation to the embodiment of the present application.
  • the master 23 which is a diffractive optical element having predetermined optical properties, is formed on the surface, and the master roll 21, which is laser-transmissive, and the photosensitive material 24 are attached to the surface.
  • a transmissive holographic optical device was manufactured by using a transfer black main roll 22.
  • the photosensitive material 24 After attaching the photosensitive material 24 to the surface of the main roll 22 by a lamination roll (not shown) heated to about 50 ° C, it can face the master 23 formed on the master roll 21 The photosensitive material was transferred so as to. At this time, the photosensitive material 24 was transferred by the main roll 22 at a speed of about 1.5 m / min. On the other hand, the master 23 was formed on the surface of the master roll 21 having a diameter of 10 cm.
  • the laser line beam 26 In the state where the master and the photosensitive material are in contact with each other, the laser line beam 26 is irradiated so that the line beam passes through the master roll 21 and the master 23 in order, thereby causing the photosensitive material 24 and the master 23 to be exposed. ) Can be irradiated to the exposed exposure area 25.
  • the irradiated laser line beam is a continuous light laser, single longitudinal mode, its wavelength is 532 nm, and the line width is about 1 mm.
  • the method of the present application was performed in the same manner as in Example, except that the line width of the used laser line beam was 3 mm.
  • the diffraction efficiency of the transmission hologram manufactured in each example is shown in FIG. 4. 4. 4 is the incidence angle (degree, degrees) of incident light incident on the photosensitive material on which the hologram is recorded, and the vertical axis represents the diffraction efficiency (%) of the diffracted light with respect to the incident light.
  • the diffraction efficiency was calculated by the following equation.
  • Diffraction efficiency diffraction light intensity / (diffraction light intensity + transmitted light intensity)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

본 출원은 연속적이고 경제적인 공정으로 투과형 홀로그래픽 광학소자를 대량 복제할 수 있는 투과형 홀로그래픽 광학소자의 복제 방법을 제공하고 있으며, 구체적으로 회절 광학 소자인 마스터가 표면에 형성된 레이저 투과성의 마스터롤을 회전시키고, 감광재료를 메인롤 표면에 부착한 상태로 이송하면서 수행되는 투과형 홀로그래픽 광학소자의 복제 방법으로서 마스터롤을 향하여 레이저 라인빔을 조사하는 단계, 및 조사된 레이저 라인빔이 마스터롤 내부를 거쳐 마스터롤 표면의 마스터를 투과한 후 감광재료에 조사되는 단계를 포함한다.

Description

홀로그램 복제 방법 및 장치
관련출원(들)과의 상호인용
본 출원은 2016.11.30자 한국 특허 출원 제10-2016-0162150호의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 홀로그램 광학 소자를 복제하는 방법 및 상기 복제 방법에 사용되는 장치에 관한 것이다.
홀로그래픽 광학소자는 물체에서 반사 또는 회절된 빛인 물체파(object wave)를, 그 빛과 간섭성이 있는 다른 파인 기준파(reference wave)와 간섭시켜 감광재료에 간섭 패턴을 기록한 광학소자를 지칭한다. 간섭패턴이 기록된 감광재료는 반사나 굴절 대신 회절을 이용하여 영상정보를 재생하므로, 이러한 감광재료는 회절 광학소자(diffraction optical elements, DOEs)의 한 종류로 분류되기도 한다.
홀로그래픽 광학소자는 상술한 것과 같이 물체파와 기준파를 각각의 감광재료에 조사하여 제조할 수도 있으나, 통상적으로는 마스터(master)를 제작하고 이를 복제하는 방식으로 제조하고 있다. 예를 들어, 도 1과 같이 마스터(11)에 소정 특성의 광(13)을 조사하여, 회절 없이 마스터(11)를 투과한 광(13')과 마스터를 투과하면서 회절된 광(14)이 감광재료(12)에 조사되면서, 홀로그래픽 광학소자를 복제하는 방식이 사용될 수 있다. 그러나 이러한 방법은 한 장씩 복제하는 것이기 때문에, 대량 생산에 적합하지 않다.
본 출원의 일 목적은, 투과형 홀로그래픽 광학 소자를 복제하는 방법 및 이에 사용되는 장치를 제공하는 것이다.
본 출원의 다른 목적은, 복제 생산성이 우수한 투과형 홀로그래픽 광학 소자의 복제 방법 및 이에 사용되는 장치를 제공하는 것이다.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 달성될 수 있다.
이하, 본 출원의 일례에 따른 방법 및 장치를, 첨부된 도면을 참고하여 상세히 설명한다. 설명의 편의를 위하여, 도시된 각 구성의 크기나 형상은 과장되거나 축소될 수 있다. 또한, 첨부된 도면에 표시된 광로는 예시적인 것이며, 본 출원의 보호범위를 제한하지 않는다.
본 출원에 관한 일례에서 본 출원은 회절 광학 소자의 일종인 홀로그래픽 광학 소자(HOE: holographic optical elements)를 복제하는 방법에 관한 것이다.
본 출원에서, 복제 대상인 홀로그래픽 광학 소자는 마스터로 호칭될 수 있다. 상기 마스터는, 예를 도 1에서와 같이, 입사된 빛의 일부를 그대로 투과시키고, 그리고 입사된 빛의 나머지 일부는 특정한 각도로 회절시킬 수 있도록, 소정의 회절 또는 간섭 패턴, 즉 홀로그램 기록을 갖는 소자(11)이다. 즉, 소정의 레이저가 마스터에 입사될 경우, 마스터를 그대로 투과한 레이저와 회절된 레이저가 생성될 수 있다. 이때, 회절 없이 투과된 광은 투과 빔으로, 회절된 광은 회절 빔으로 각각 호칭될 수 있다.
상기 기능을 수행할 수 있다면, 마스터, 즉 복제 대상인 회절 광학 소자의 종류는 특별히 제한되지 않는다. 예를 들어, 상기 회절 광학 소자는 투과형 홀로그래픽 광학소자일 수 있고, 보다 구체적으로는 볼륨 홀로그램 그레이팅(VHG: volume holographic grating)일 수 있다.
투과형 홀로그램 복제의 경우, 도 1에서와 같이 감광재료 보다 마스터에 먼저 레이저가 조사된 후 투과 빔과 회절 빔이 감광시트의 동일한 일면 상에 조사되어야 한다. 따라서, 롤투롤(roll-to-roll)과 같은 대량 생산 공정에 적용하기 위해서는, 롤투롤에 사용되는 복수의 롤, 마스터, 및 감광시트의 공정 상 위치 관계와 광 경로에 대한 조절이 필수적이다. 이러한 점을 고려하여, 본 출원의 발명자들은 하기 설명되는 본 출원의 복제 방법 및 장치를 발명하기에 이르렀다.
본 출원의 일례에 따르면, 마스터가 표면에 형성된 마스터롤, 상기 마스터롤과는 별도로 감광재료가 표면에 부착된 메인롤, 및 상기 마스터롤을 향하여 조사되는 레이저 라인빔을 이용하여, 홀로그래픽 광학 소자가 연속 공정인 롤투롤(roll-to-roll) 방식에 의해 복제될 수 있다. 하기 설명되는 바와 같이, 본 출원의 경우, 2개의 롤, 즉 피복제물과 복제물이 각각 그 표면에 형성된 마스터롤과 메인롤을 사용하고, 2개 롤 간 접촉영역(노광영역)이 선형이라는 점을 고려하여 선형의 레이저 라인빔을 복제에 사용한다.
본 출원에 관한 예시에서, 본 출원의 방법을 수행하고자 사용되는 각 부재들은 아래와 같은 구성 또는 특성을 가질 수 있다.
하나의 예시에서, 마스터롤은, 메인롤과 접촉 또는 이격된 상태로 롤투롤 공정에 사용되는 롤 구성으로서, 그 표면에 형성된 마스터를 통해 홀로그램 복제에 필요한 레이저 라인빔이 메인롤에 부착된 감광재료에 조사될 수 있도록 배치되는 구성일 수 있다. 하나의 예시에서, 상기 마스터롤은 어느 내부의 축을 중심으로 회전할 수 있는 원기둥 형상의 실린더 롤일 수 있다.
상기 마스터롤은 레이저 투과성을 가질 수 있다. 본 출원에서 용어 레이저 투과성은, 예를 들면, 380 nm 내지 800 nm범위 파장의 레이저에 대한 투과율이 약 55 % 이상, 약 65 % 이상, 약 75 % 이상, 약 85 % 이상, 약 95 % 이상이고, 그 상한은 약 100 %로서 100 % 미만인 경우를 의미할 수 있다. 상기 투과율을 만족하는 경우라면, 마스터롤을 형성하기 위한 재료는 특별히 제한되지 않는다. 하나의 예시에서, 상기 마스터롤은 BK7, 석영(quartz), 투명 유리, 또는 투명 플라스틱 재료를 포함할 수 있다.
상기 투과성을 갖는 마스터롤은 투과형 홀로그램 소자를 복제할 수 있는 광경로를 제공한다. 구체적으로, 마스터롤의 어느 영역 또는 표면에 대하여 조사되는 레이저 라인빔은 상기 투과성 마스터롤의 내부를 통과하여, 마스터롤 표면의 마스터를 투과하고, 서로 간섭할 수 있는 두 개의 레이저로 분리된 후 감광재료에 조사될 수 있고, 그에 따라 투과형 홀로그램 소자가 복제될 수 있다.
상기 마스터롤의 표면에는, 그 둘레의 일부 또는 둘레 전부에 걸쳐 회절 또는 간섭 패턴을 갖는 마스터가 형성되어 있을 수 있다. 이와 관련하여, 둘레의 전부에 걸쳐 마스터가 형성되어 있다는 것은, 예를 들어 원(circle)처럼, 소정 길이의 마스터가 마스터롤의 표면(원기둥의 둘레면) 상에서 끝과 끝이 맞닿아 폐곡선을 형성하는 경우를 의미할 수 있다. 이와 달리, 마스터롤 둘레의 일부에 걸쳐 마스터가 형성되어 있다는 것은, 소정 길이의 마스터가 마스터롤의 표면 상에서 폐곡선을 형성하지 않고, 일부에만 존재하는 것을 의미할 수 있다. 상기 마스터는, 마스터롤 표면에서 복수 개 존재할 수 있다. 마스터의 크기나 마스터가 갖는 패턴의 형상 또는 형태는, 감광재료에 복제되길 원하는 패턴의 크기나 형상 등에 따라 적절히 조절될 수 있는 것으로, 특별히 제한되지 않는다.
하나의 예시에서, 상기 마스터의 굴절률은 1 초과 내지 2 이하의 값을 가질 수 있으나, 특별히 제한되는 것은 아니다.
하나의 예시에서, 상기 메인롤은 원기둥 형상의 실린더일 수 있으며, 그 표면(원기둥 둘레면)에 부착된 감광재료가 라인빔에 노광될 수 있도록 내부의 어느 축을 중심으로 회전하면서 감광재료를 이송하는 구성일 수 있다. 공정상 편의를 위해, 상기 감광재료는 필름 또는 시트 형상일 수 있다. 이때, 상기 메인롤은 감광재료와의 부착을 위해 매끈한 표면을 가질 수 있다.
상기 메인롤은, 감광재료를 통과한 레이저가 메인롤에 반사되어 다시 감광재료에 노광되는 것을 막기위해, 반사가 적은 검은색 계열의 색상을 가질 수 있다. 즉, 메인롤은 광흡수성을 가질 수 있다. 예를 들어, 상기 메인롤은, 조사되는 광에 대한 반사율이 10% 이하인 구성일 수 있다. 반사율의 하한은 약 0% 일 수 있다. 검은색 계열의 색상을 구현할 수 있다면, 상기 메인롤을 형성하는 재료, 보다 구체적으로는 감광재료와 접하는 메인롤의 표면을 형상하는 재료의 종류는 특별히 제한되지 않는다. 하나의 예시에서, 상기 메인롤은 테프론 재질을 포함할 수 있다.
메인롤에 부착되는 감광재료는, 상기 설명된 것과 같이, 마스터를 투과한 2개 빔에 노광되면서 광학적인 정보가 기록될 수 있는 재료이다. 홀로그램 관련 분야에서는, 투과형 홀로그래픽 광학소자의 복제에 사용될 수 있는 다양한 종류의 감광재료가 공지되어 있으며, 이러한 재료가 제한없이 본 출원에서도 사용될 수 있다. 예를 들어, 상기 감광재료로는, 포토폴리머(photopolymer), 포토레지스트(photoresist), 실버 팔라이드 에멀젼(silver halide emulsion), 중크롬산 젤라틴(dichromated gelatin), 포토그래픽 에멀젼(photographic emulsion), 포토써모플라스틱(photothermoplastic) 또는 광회절(photorefractive) 재료 등이 사용될 수 있다. 하나의 예시에서, 감광재료로는 포토폴리머가 사용될 수 있다. 보다 구체적으로, 감광재료는 포로폴리머 만으로 이루어진 필름일 수 있고, 또는 포토폴리머로 구성된 감광층(photopolymer layer) 및 상기 층에 대한 기재(substrate)를 함께 포함하는 중층 구조를 가질 수도 있다. 이러한 감광재료는 필름 형상을 가지며, 메인롤 표면에 부착된 상태로 본 출원의 복제 방법에 제공될 수 있다. 이 경우, 포토폴리머와 함께 사용되는 기재는 광학적으로 투명하면서 이방성이 없는 필름일 수 있고, 예를 들어, 트리아세틸셀룰로오스(TAC), 폴리에틸렌(PE), 폴리카보네이트(PC), 폴리프로필렌(PP), 폴리아미드(PA), 또는 폴리에틸렌 테르프탈레이트(PET) 등을 포함하는 기재일 수 있으나, 특별히 제한되지는 않는다. 경우에 따라서는, 감광층의 포토폴리머를 보호하고자, 보호 필름이 추가로 적층될 수 있다. 하나의 예시에서, 감광재료에 사용되는 감광층의 두께는 3 내지 30 μm 범위일 수 있고, 상기 기재의 두께는 20 내지 200μm의 범위일 수 있으나, 특별히 제한되는 것은 아니다.
하나의 예시에서, 상기 감광재료의 굴절률은 1 초과 내지 2 이하의 값을 가질 수 있으나, 특별히 제한되는 것은 아니다.
투과형 홀로그램 소자 제조시, 마스터에 먼저 광이 조사되어야 하기 때문에, 종래 기술에서는 하나의 광 투과성(투명) 실린더 표면에 마스터와 감광재료를 순차로 부착시키고, 마스터와 감광재료의 부착면 반대편에서 광을 조사하는 방식이 고려되기도 하였다. 실린더의 곡률이 클 경우, 마스터로부터 감광재료에 전달되는 광의 각도를 조절하기 어려운 문제가 있다. 따라서, 이러한 방법을 사용할 경우에는 투명 실린더의 곡률을 줄이고자, 제조 단가가 높은 투명 실린더를 크게 제작작해야만 했다. 그렇지만 본 출원에서는, 투과성인 마스터롤 외에도 하나의 롤을 더 사용하기 때문에, 투과성인 마스터롤을 크게 제조할 필요 없이, 함께 사용되는 메인롤의 크기를 증가시켜 감광재료의 곡률로 인한 문제를 경제적으로 해결할 수 있다. 특별히 제한되지는 않으나, 본 출원에서는 상기 마스터롤의 크기(원의 직경)가 메인롤의 크기(원의 직경) 보다 작게 형성될 수 있다.
상기 레이저 라인빔은, 감광재료를 노광하여 마스터를 복제하는데 사용된다. 본 출원에서 라인빔이란, 어떤 평면에 레이저를 조사할 때 조사되는 영역이 선형인 경우, 즉 입사 평면 상에 선형 형태로 조사되는 레이저를 의미할 수 있다. 이와 관련하여, 본 출원에서, 레이저 라인빔을 평면상에 조사하였을 때 선형인 조사영역의 길이, 즉 레이저 라인빔이 갖는 선형의 길이는 선폭으로 호칭될 수 있다. 하나의 예시에서, 도 2(a)에서와 같이, 상기 레이저 라인빔은 그 선폭이, 회전하는 메인롤이나 마스터롤의 회전축과 평행하도록 조사될 수 있다. 구체적으로, 소정의 선폭을 갖는 상기 레이저 라인빔이 조사되는 노광영역은 마스터롤과 메인롤, 또는 마스터와 감광재료의 접촉 영역일 수 있다.
일반적으로, 홀로그램 기록 공정에는 고가의 레이저 장비가 필요하며, 노광 중에는 미세한 외부 진동 조차 없도록 통제 되어야 하기 때문에 대량 생산이 어렵다. 더욱이, 홀로그램을 기록하고자 하는 감광재료의 전면적에 광을 확대하여 조사하려고 하는 경우에는, 조사 면적에 상응하는 대면적의 광학 소자가 필요하고, 고출력 레이저 장치도 추가로 필요할 수 있기 때문에 비용이 증가하는 문제가 있다. 또한, 감광재료의 전면적에 광을 조사할 수 있다고 하더라도, 현실적으로 한정된 레이저 파워로 인해 광의 인텐시티(intensity)가 작아지고, 노광시간이 증가하게 되면서 노이즈 발생 가능성이 높아지고, 동시에 생산성도 저하되는 문제가 있다. 즉, 통상의 레이저를 사용하는 방식은 감광재료가 이동하면서 이루어지는 롤투롤 공정에는 적합하지 않다. 그러나, 마스터와 감광재료를 각각 마스터롤과 메인롤 표면에 부착하고, 회전하는 마스터롤과 메인롤을 통해 스캐닝하듯이 라인빔을 조사하는 본 출원에 따르면, 상기와 같은 문제점을 해결하면서도 롤-투-롤 연속공정에 의한 대량 복제가 가능하다. 또한, 홀로그램이 복제되는 시간 동안에는 복제에 사용되는 광이 마스터에 동일 또는 균일한 조건으로 조사되는 것이 바람직한데, 일반적인 레이저로는 마스터 전면적에 균일한 광을 제공하기 어렵다. 특히, 레이저 노광이 이루어지는 동안 필름의 이동이 많은 롤투롤 공정에서는 홀로그램의 복제가 더욱 용이하지 않다. 그러나, 롤투롤 공정에서 라인빔을 사용하는 경우에는, 마스터에 입사되는 빔의 조건이 균일하게 유지되면서 감광재료가 이동하는 동안 연속 공정으로 홀로그램 복제가 이루어질 수 있다.
하나의 예시에서, 상기 라인빔의 선폭은 2.5 mm 이하일 수 있다. 예를 들어, 상기 선폭의 하한은, 200 μm이상, 400 μm 이상, 600 μm 이상, 또는 800 μm 이상일 수 있고, 그 상한은 2.0 mm 이하, 1.8 mm 이하, 1.5 mm 이하, 1.2 mm 이하, 또는 1.0 mm 이하 일 수 있다. 레이저 라인빔의 선폭을 상기 범위로 조절함으로써, 감광재료의 이송 과정에서 발생하는 애버리지 아웃(average out)이나, 그로 인한 홀로그램의 기록 저하를 예방할 수 있다.
상기 라인빔이 마스터에 입사하는 입사각은, 마스터에 홀로그램을 기록하는데 사용된 물체파 및 기준파를 고려하여 결정될 수 있다. 예를 들어, 투과형 홀로그래픽 회절 광학소자를 마스터로 사용할 경우, 상기 마스터에 홀로그램을 기록하는데 사용된 물체파 또는 기준파 중 어느 하나와 동일한 각도(방향)로, 라인빔이 마스터에 입사될 수 있다. 관련 기술분야에서 통상의 지식을 가진 자라면, 마스터에 대한 라인빔의 입사각을 조절하는데 있어서, 마스터롤의 굴절률 등을 고려하여 상기 입사각을 적절히 조절해야 한다는 것을 이해할 수 있다.
상기 레이저의 파장은 특별히 제한되지 않으며, 복제되는 홀로그래픽 광학 소자의 용도를 고려하여 선택될 수 있다. 예를 들어, 상기 레이저 라인빔은 어느 한 파장의 단일 레이저, 혹은 둘 이상의 서로 다른 파장의 레이저를 사용할 수 있다. 특히, 풀컬러(full color) 홀로그램 구현을 위해서는 적색(R), 녹색(G), 청색 영역(B)에 해당하는 세 파장의 레이저를 조합하여 사용할 수 있다. 홀로그래픽 광학 소자의 제조 분야에서 상기와 같은 레이저의 파장 선택에 관한 사항은 공지이다.
하나의 예시에서, 상기 레이저는 연속파(CW: continuous wave) 레이저일 수 있다. 연속파 레이저는 펄스 레이저(pulse laser)에 비하여 안정적인 출력을 가지므로, 감광재료의 노광영역에 광학 특성이 균일한 간섭 패턴을 기록할 수 있다.
또 하나의 예시에서, 레이저는 단일 종모드(single longitudinal mode) 레이저일 수 있다. 다중 모드 레이저를 사용하는 경우, 마스터를 통과한 빛과 회절한 빛의 간섭성(coherency)이 떨어질 수 있기 때문이다.
상기 구성의 마스터롤, 메인롤, 및 라인빔을 사용하여 수행되는 본 출원의 복제 방법은, 도 2(b)에서와 같이, 패턴을 갖는 (홀로그램이 기록된) 마스터가 표면에 형성된 레이저 투과성의 마스터롤을 회전시키고, 그리고 감광재료를 메인롤 표면에 부착한 상태로 이송하면서, 마스터 롤을 향하여 레이저 라인빔을 조사하여 수행될 수 있다. 이때, 상기 레이저 라인빔은, 투과성인 마스터롤 내부를 거쳐 마스터롤 표면의 마스터를 투과한 후 감광재료에 조사될 수 있다.
본 출원의 복제 방법은, 조사된 레이저 라인빔이 마스터롤의 어느 둘레면, 마스터롤의 내부, 마스터, 및 감광재료를 순차로 투과할 수 있도록 수행된다. 이를 위해서는 상기 마스터롤의 표면에 존재하는 마스터와 상기 메인롤에 부착된 감광재료가 서로 마주볼 수 있어야 하므로, 본 출원의 방법에서는 레이저 라인빔이 상기와 같은 경로를 가질 수 있도록 상기 마스터롤과 메인롤이 배치 및 구동(회전)될 수 있다. 예를 들어, 마스터와 감광재료의 크기 등을 고려하여 마스터롤과 메인롤의 이격 거리가 조절될 수 있고, 기타 제반 사정을 고려하여 각 롤의 회전 속도가 조절될 수 있다. 그에 따라, 상기 레이저 라인빔이 마스터를 투과하면서 발생된 회절 빔과 투과 빔의 간섭에 의해 마스터의 회절 패턴이 감광재료에 복제될 수 있다.
구체적으로, 서로 다른 롤에서 회전 또는 이송되는 마스터와 감광재료가 서로 마주보고, 라인빔이 상기와 같은 경로를 가질 수 있는 경우, 마스터와 감광재료의 어느 일부 영역에서는 도 1에 도시한 것과 같은 방식으로 마스터에 기록된 홀로그램이 감광재료에 복제될 수 있다. 앞서 설명한 바와 같이, 마스터에 조사되는 광은 상기 마스터에 이미 기록된 홀로그램을 기록하는데 사용되었던 물체파 또는 기준파 중 어느 하나의 광일 수 있으며, 상기 조사된 광이 마스터를 투과하면서 동일한 홀로그램을 감광재료에 기록할 수 있다. 예를 들어, 도 1에 도시한 것처럼 투과형 홀로그래픽 광학소자인 마스터(11)를 이용하여 감광재료에 홀로그램 기록을 복제할 경우, 마스터(11)에 홀로그램을 기록하는 데 사용된 기준파와 동일한 파장 및 입사각을 가지는 레이저를 상기 회절 광학 소자에 조사할 수 있다. 이러한 경우, 마스터(11)는 조사된 레이저의 일부를 회절시켜 회절된 레이저(14, 회절빔)를 생성한다. 이 경우, 상기 회절된 레이저(14)는 상기 홀로그래픽 광학소자(11)를 기록하는데 사용된 물체파와 동일한 파장 및 입사각을 가질 수 있다. 또한, 상기 조사된 레이저(13)의 일부(13')는 상기 투과형 홀로그래픽 광학소자를 그대로 투과한다. 이러한 방식으로 감광재료(12)에 홀로그램을 기록, 즉 마스터를 복제할 수 있다. 복제된 감광재료는 마스터와 마찬가지로 회절 광학 소자이며, 하나의 광으로부터 물체파와 기준파를 출사할 수 있는 일종의 빔 분리기(beam splitter)로서 기능할 수 있다.
본 출원의 일례에 따르면, 상기 방법은 상기 복제가 마스터와 감광재료가 물리적으로 서로 접촉하는 상태에서 이루어지도록 수행될 수 있다. 마스터와 감광재료를 접촉시킨 상태에서 복제가 이뤄지는 경우, 마스터 또는 감광재료와 공기의 계면에서 원하지 않는 반사가 일어나고, 그로 인해 복제된 제품의 회절 효율이 저하되는 것을 막을 수 있다.
본 출원의 방법은, 라미네이션 롤을 사용하여 상기 감광재료를 메인롤에 부착하는 단계를 추가로 포함할 수 있다. 상기 단계는, 예를 들면, 라미네이션 롤을 메인롤과 소정 간격으로 이격되도록 배치하되, 다른 경로를 통해 메인롤 상에 공급되는 감광재료를 라미네이션 롤이 메인롤 측으로 가압하면서 이루어질 수 있다. 이 경우, 메인롤과 접하는 감광재료 일면은, 점착제 등을 통해 점착성을 가질 수 있다.
하나의 예시에서, 상기 라미네이션 롤은 감광재료가 메인롤에 용이하게 부착될 수 있도록 가온될 수 있다. 감광재료의 변형이 발생하지 않으면서 노광 이후에 감광재료가 메인롤에서 용이하게 박리될 수 있도록 하는 온도라면, 라미네이션 롤에 대한 가온 범위는 특별히 제한되지 않으며, 감광재료의 종류에 따라 적절히 조절될 수 있다. 예를 들면, 35˚C 내지 100˚C 일 수 있다.
하나의 예시에서, 본 출원의 방법은 메인롤의 회전방향, 즉 진행방향(MD: Machine Direction)이나 그에 대한 수직방향(TD: Transverse Direction)으로 레이저 라인빔을 틸팅(tiliting)시키면서 레이저 라인빔을 조사하고, 이로써 마스터에 조사되는 레이저 라인빔의 입사각을 조절할 수 있다. 상기 입사각은 예를 들어, 마스터 입사면의 법선을 기준으로 측정되는 각도일 수 있다. 상기와 같이 입사각을 조절할 경우, 상이한 광학 기능을 수행하는 다양한 투과형 홀로그램 소자를 복제할 수 있다. 레이저 라인빔을 틸팅 시키는 수단(미도시)으로는, 예를 들어, 각도 조절이 가능한 반사거울 등이 사용될 수 있다.
하나의 예시에서, 본 출원의 방법은 2이상의 라인빔과 2 이상의 마스터를 이용하여 수행될 수 있다. 예를 들어 도 3에서와 같이, 마스터롤의 회전 축 방향에서 마스터롤 표면에 2 개의 마스터(23' 23”)를 부착하고, 2개의 레이저 라인빔(26', 26”)을 각각의 마스터에 조사함으로써, 한 공정에서 동시에 2개의 홀로그램을 기록할 수 있다. 이 경우, 각 라인빔이 마스터에 조사되는 각도는 동일 또는 상이할 수 있고, 감광재료는 상기 2이상의 마스터가 존재하는 위치에 소정의 노광영역을 확보할 수 있도록 하나 또는 2 이상의 개수로 메인롤 상에 존재할 수 있다. 각 라인빔이 조사되는 각도는 반사 거울과 같은 틸팅 수단에 의해 조절될 수 있다. 각도 조절시 마스터롤의 굴절률이 함께 고려될 수 있음은 당업자에게 자명하다. 사용되는 마스터와, 상기 마스터에 조사되는 레이저 라인빔의 각도에 따라서 광학 특성이 상이한 2개 이상의 홀로그램이 복제될 수 있다.
또 하나의 예시에서, 상기 라인빔은 원기둥형 마스터롤의 원형부를 향하여 조사될 수 있다. 이 경우, 마스터 입사면의 법선에 대한 레이저 라인빔의 입사각이 매우 크게 조절될 수 있다. 예를 들어, 도 3에서와 같이, 실린더 형 마스터롤의 둘레면(21”)을 통해 입사된 제1 레이저 라인빔(26”)이 마스터롤 계면에서 굴절된 후 마스터(23”)로 입사되는 각도(θA)는 크지 않은 반면, 실린더 형 마스터롤의 원형부(21') 측을 통해 입사되어 마스터의 둘레면에 부착된 마스터(23')로 진행해야 하는 제2 레이저 라인빔(26')은 상대적으로 매우 큰 각도(θB)로 입사될 수 있다. 즉, 실런더의 굴절률이 1초과 내지 1.5 이하인 경우, 마스터롤의 둘레면을 통해 입사되는 레이저 라인빔은 그 입사 각도(θA)가 42℃ 이상인 경우와 같이 큰 입사각을 가질 수 없고, 마스터롤의 원형부를 통해 입사되는 레이저 라인빔은, 그 각도(θB)가 42℃ 이상인 경우와 같이 큰 입사각을 가질 수 있다. 바꾸어 말하면, 마스터롤의 원형부에 레이저 라인빔을 조사하는 경우에는, 마스터에 대하여 큰 입사각을 각도로 라인빔이 조사되어야 하는 소정의 제품을 제조하는데 사용될 수 있다. 예를 들어, 외부로부터 입사면 법선에 대하여 0 ° 각도로, 즉 입사면에 수직으로 입사되는 광을 인접하는 공기층 또는 저굴절 물질과의 계면에서 항상 전반사하는 광으로 회절시킬 수 있는 굴절률 1.5 가량의 소자를 복제하고자 할 때에는, 전반사될 수 있는 큰 각도의 입사각을 마스터에 입사시켜야 하는데, 상기 설명된 방법이 이러한 소자 복제에 사용될 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 상기 복제 방법을 수행하기 위한 복제 장치에 관한 것이다. 도 2에 도시한 것처럼, 본 출원의 복제장치는 마스터롤(21), 메인롤(22), 레이저 라인빔(26)을 조사할 수 있는 광학부(미도시)를 포함할 수 있다. 복제 장치에 사용되는 마스터롤, 메인롤, 및 라인빔에 구성이나 특성에 관한 설명은 상기 설명한 바와 동일하다.
상기 설명한 바와 같이, 메인롤(22)의 표면에는 감광 재료(24)가 부착될 수 있다. 그리고, 상기 설명한 바와 같이, 레이저 투과성의 마스터롤(21) 표면에는 마스터(23)가 형성될 수 있다. 회전하는 메인롤은 감광재료가 마스터를 마주하고, 마스터를 투과한 레이저가 감광재료에 조사될 수 있도록 감광재료를 이송할 수 있다. 하나의 예시에서, 상기 설명한 바와 같이, 감광재료와 마스터가 서로 접촉하는 상태에서, 마스터를 투과한 레이저가 감광재료에 조사될 수 있다.
상기 설명된 방법을 수행할 수 있다면, 상기 마스터롤과 메인롤의 크기, 즉 각각의 롤이 갖는 원의 직경은 특별히 제한되지 않는다. 예를 들어, 투과성 마스터롤 직경의 상한은 20 cm이하일 수 있다. 특히, 상기 설명한 바와 같이, 본 출원에서는 2개의 롤을 사용하고, 롤 사용에 따른 곡률 문제는 메인롤의 크기를 상대적으로 크게 증가시킴으로써 해결할 수 있기 때문에, 생산 가격이 높은 투과성 롤의 크기는 상대적으로 줄일 수 있다. 구체적으로, 상기 마스터롤의 직경은 15 cm이하, 10 cm 이하, 9 cm 이하, 8 cm 이하, 7 cm 이하, 6 cm 이하, 또는, 5 cm 이하일 수 있다. 하한의 경우에는 특별히 제한되지 않으며, 마스터의 크기 등을 고려하여 예를 들어, 1 cm 이상 또는 2 cm 이상일 수 있다. 메인롤의 경우, 상기 직경을 갖는 마스터롤 보다 크게 제작되어, 마스터롤 보다 작은 곡률을 가질 수 있다. 예를 들어, 메인롤은 10 cm이상, 20 cm이상, 또는 30 cm이상의 직경을 가질 수 있다.
본 출원에서, 상기 롤들의 구동속도는 특별히 제한되지 않으며, 광학소자의 복제 생산성이나 복제 과정에서의 노이즈 발생 가능성 등을 고려하여 조절될 수 있다. 하나의 예시에서, 상기 롤들의 구동(회전) 속도는, 메인롤 표면에 부착된 감광재료가 0.1 m/분 내지 5 m/분의 속도 범위로 이송 되도록 조절될 수 있다. 상기 속도 조절시, 각 롤의 직경도 함께 고려될 수 있다.
광학부는 상기 설명된 레이저 라인빔을 제공하는 구성이다. 예를 들어, 상기 광학부는 원형의 빔을, 예를 들어 라인 빔 생성 렌즈(어레이)와 같은 소정의 장치(optics)를 이용하여 라인 형태의 빔으로 제공하는 구성일 수 있다. 상기 렌즈 어레이는, THORLABS社의 PL0130, PL0145, PL0160 또는 PL0175와 같은 소위 레이저 라인 제너레이터 렌즈(laser line generator lense)를 포함할 수 있다. 상기 레이저 어레이를 통과하면서 형성된 라인빔은 라인빔이 조사되는 영역에서 거의 동일할 정도의 균일한 강도(intensity)를 가지면서 조사될 수 있다. 하나의 예시에서, 상기 광학부는 복제하고자 하는 HOE의 크기에 맞추어 상기 라인 빔의 선폭(길이)를 소정 범위 내에서 조절할 수 있도록 마련될 수 있다.
하나의 예시에서, 상기 광학부는 마스터에 조사되는 레이저 라인빔의 입사 각도를 조절할 수 있는 틸팅(tiliting) 수단을 구비할 수 있다. 상기 틸팅 수단으로는, 예를 들어, 반사 거울이 사용될 수 있다.
하나의 예시에서, 상기 광학부는, 복수의 레이저 라인빔을 조사할 수 있다. 구체적으로, 상기 광학부는 복수의 하위 광학부, 예를 들어, 제1 광학부, 제2 광학부, 또는 제3 광학부 등을 포함할 수 있다. 상기 광학부는 입사각이 서로 동일 또는 상이한 2 이상의 레이저 라인빔을 복수의 마스터에 각각 제공할 수 있다. 이러한 구성은, 상기 설명한 바와 같이, 2 개 이상의 홀로그램을 한 공정에서 동시에 복제할 수 있도록 한다.
하나의 예시에서, 본 출원의 장치는, 메인롤에 감광재료를 부착시키기 위하여 라미네이션 롤을 더 포함할 수 있다. 라미네이션 롤을 본 출원 장치에 함께 사용하는 방법은 상기 설명된 것과 동일하며, 당업자에 의해 적절히 수행될 수 있다.
본 출원에 따르면, 파장 선택성이 우수한 홀로그래픽 필름을 대량으로 생산할 수 있는 투과형 홀로그래픽 광학소자의 복제 방법 및 장치가 제공될 수 있다.
도 1은 투과형 홀로그램의 복제 과정을 개략적으로 도시한 것이다.
도 2는 본 출원의 일례에 따른 투과형 홀로그램의 복제 방법 및 이에 사용되는 장치를 개략적으로 도시한 것이다.
도 3은, 본 출원의 일례에 따른 레이저 라인빔의 조사 방식을 개략적으로 도시한 것이다.
도 4는, 본 출원의 실시예와 관련하여, 라인빔의 선폭을 달리 하는 경우에 관찰되는 회절 효율의 차이를 비교 도시한 것이다.
상기 도면에 사용된 각 부호는 다음과 같다.
11: 마스터
12: 감광재료
13: 마스터에 조사된 레이저
13’: 마스터를 통과한 레이저(투과 빔)
14: 회절된 레이저(회절 빔)
21, 21’, 21”: 마스터롤
22: 메인롤
23, 23’, 23”: 마스터
24: 감광재료
25: 노광 영역
26, 26’, 26”: 레이저 라인빔
이하, 실시예를 통해 본 출원을 상세히 설명한다. 그러나, 본 출원의 보호범위가 하기 설명되는 실시예에 의해 제한되는 것은 아니다.
홀로그래픽 소자의 복제
실험례 1
도 2에 도시된 것과 같이, 표면에 소정의 광학 특성을 갖는 회절 광학 소자인 마스터(23)가 형성되어 있고 레이저 투과성인 마스터롤(21)과, 감광재료(24)를 표면에 부착한 상태로 이송하는 검은색 계열의 메인롤(22)을 사용하여 투과형 홀로그래픽 광학소자를 제조하였다.
구체적으로, 약 50˚C로 가열된 라미네이션 롤(미도시)에 의하여 감광재료(24)를 메인롤(22) 표면에 부착시킨 후, 마스터롤(21)에 형성된 마스터(23)와 마주볼 수 있도록, 감광재료를 이송시켰다. 이때, 감광재료(24)는 메인롤(22)에 의하여 약 1.5 m/min의 속도로 이송되었다. 한편, 마스터(23)는 직경이10 cm인 마스터롤(21) 표면상에 형성하였다. 마스터와 감광재료가 마주보면서 접촉하는 상태에서, 레이저 라인빔(26)을 조사하여, 상기 라인빔이 마스터롤(21)과 마스터(23)를 순서대로 투과하여 감광재료(24)와 마스터(23)가 접촉한 노광영역(25)에 조사될 수 있도록 하였다. 조사된 레이저 라인빔은 연속광 레이저이고, 단일 종모드이며, 그 파장은 532nm이고, 선폭은 약 1 mm 이다.
실험례 2
사용한 레이저 라인빔의 선폭이 3mm라는 점을 제외하고 실시예와 동일한 방법으로 본 출원의 방법을 수행하였다.
복제된 홀로그래픽 광학소자의 평가
각 실시예에서 제조한 투과형 홀로그램의 회절 효율을 도 4에 도시하였다. 도 4의 가로축은 홀로그램이 기록된 감광재료에 입사된 입사광의 입사 각도(degree, ˚)이며, 세로축은 입사된 광에 대한 회절된 광의 회절효율(%)을 나타낸다. 회절 효율은 아래식에 의하여 계산하였다.
[식] 회절효율=회절광의 세기/(회절광의 세기+투과광의 세기)
도 4에 도시한 것과 같이, 선폭이 1 mm인 라인빔을 사용한 실험례 1의 경우, 실험례 2 보다 회절효율이 더 크고, 보다 샤프한 피크를 보였다.

Claims (15)

  1. 회절 광학 소자인 마스터가 표면에 형성된 레이저 투과성의 마스터롤을 회전시키고, 그리고 감광재료를 메인롤 표면에 부착한 상태로 이송하면서 수행되는 투과형 홀로그래픽 광학소자의 복제 방법이고,
    상기 방법은 마스터롤을 향하여 레이저 라인빔을 조사하는 단계를 포함하고,
    상기 조사된 레이저 라인빔이 마스터롤 내부를 거쳐 마스터롤 표면의 마스터를 투과한 후 감광재료에 조사될 수 있도록 수행되는 투과형 홀로그래픽 광학소자의 복제 방법.
  2. 제1항에 있어서, 상기 레이저 라인빔이 마스터를 투과하면서 발생된 회절 빔과 투과 빔의 간섭에 의해 마스터의 회절 패턴이 감광재료에 복제되고, 상기 복제는 마스터와 감광재료가 서로 마주보는 상태에서 이루어지도록 수행되는 투과형 홀로그래픽 광학소자의 복제 방법.
  3. 제2항에 있어서, 상기 마스터와 상기 감광재료가 서로 접촉하는 상태에서 복제가 이루어지도록 수행되는 투과형 홀로그래픽 광학소자의 복제 방법.
  4. 제1항에 있어서, 상기 마스터는 상기 마스터롤 둘레의 일부 또는 전부에 형성되어 있는 투과형 홀로그래픽 광학소자의 복제 방법.
  5. 제1항에 있어서, 광경로를 변경할 수 있는 틸팅(tiliting) 수단에 의해 마스터에 조사되는 레이저 라인빔의 입사각을 조절할 수 있는 투과형 홀로그래픽 광학소자의 복제 방법.
  6. 제5항에 있어서, 2이상의 레이저 라인빔을, 마스터롤 표면에 형성된 2 이상의 마스터에 각각 조사하는 투과형 홀로그래픽 광학소자의 복제 방법.
  7. 제1항에 있어서, 라미네이션 롤을 사용하여 감광재료를 메인롤 표면에 부착하는 단계;
    를 더 포함하는 투과형 홀로그래픽 광학소자의 복제 방법.
  8. 제1항에 있어서, 상기 라인빔의 선폭이 2.5 mm 이하인 투과형 홀로그래픽 광학소자의 복제 방법.
  9. 내부의 어느 축을 중심으로 회전할 수 있고, 그 표면에 부착된 감광 재료를 이송할 수 있는 메인롤; 내부의 어느 축을 중심으로 회전할 수 있고, 그 표면에 형성된 회절 광학 소자인 마스터를 이송할 수 있는 레이저 투과성의 마스터롤; 및 레이저 라인빔을 조사할 수 있는 광학부;를 포함하고,
    상기 광학부는, 레이저 라인빔이 마스터롤 내부를 거쳐 마스터롤 표면의 마스터를 투과한 후 감광재료에 조사될 수 있도록, 상기 레이저 라인빔을 마스터롤을 향하여 조사하는 투과형 홀로그래픽 광학소자의 복제 장치.
  10. 제9항에 있어서, 상기 레이저 라인빔이 마스터를 투과하면서 발생된 회절 빔과 투과 빔의 간섭에 의해 마스터의 회절 패턴이 감광재료에 복제될 수 있도록, 상기 메인롤과 상기 마스터롤이 배치 및 회전되는 투과형 홀로그래픽 광학소자의 복제 장치.
  11. 제9항에 있어서, 상기 마스터와 상기 감광재료가 서로 접촉하는 상태에서 복제가 이루어지도록 마련되는 투과형 홀로그래픽 광학소자의 복제 장치.
  12. 제9항에 있어서, 마스터에 조사되는 레이저 라인빔의 입사각을 조절할 수 있는 틸팅(tiliting) 수단;
    을 더 포함하는 투과형 홀로그래픽 광학소자의 복제 장치.
  13. 제12항에 있어서, 상기 광학부는 2 이상의 광학부를 포함하고, 상기 2이상의 광학부는 마스터롤 표면에 형성된 2 이상의 마스터에 레이저 라인빔을 각각 조사하는 투과형 홀로그래픽 광학소자의 복제 장치.
  14. 제9항에 있어서, 감광재료를 메인롤 표면에 부착하도록 마련된 라미네이션 롤;
    을 더 포함하는 투과형 홀로그래픽 광학소자의 복제 장치.
  15. 제9항에 있어서, 상기 광학부는 선폭이 2.5 mm 이하인 레이저 라인빔을 조사하는 투과형 홀로그래픽 광학소자의 복제 장치.
PCT/KR2017/013660 2016-11-30 2017-11-28 홀로그램 복제 방법 및 장치 WO2018101698A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/349,471 US11199813B2 (en) 2016-11-30 2017-11-28 Hologram replicating method and hologram replicating device
CN201780072278.1A CN109983407B (zh) 2016-11-30 2017-11-28 全息图复制方法和全息图复制设备
JP2019524342A JP6996057B2 (ja) 2016-11-30 2017-11-28 ホログラム複製方法及び装置
EP17876557.4A EP3540521B1 (en) 2016-11-30 2017-11-28 Hologram reproduction method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160162150 2016-11-30
KR10-2016-0162150 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101698A1 true WO2018101698A1 (ko) 2018-06-07

Family

ID=62241652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013660 WO2018101698A1 (ko) 2016-11-30 2017-11-28 홀로그램 복제 방법 및 장치

Country Status (6)

Country Link
US (1) US11199813B2 (ko)
EP (1) EP3540521B1 (ko)
JP (1) JP6996057B2 (ko)
KR (1) KR102136552B1 (ko)
CN (1) CN109983407B (ko)
WO (1) WO2018101698A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760896A (zh) * 2018-07-26 2020-02-07 苏州苏大维格科技集团股份有限公司 一种工作版的防皱电铸工艺
CN111605347B (zh) * 2020-06-11 2022-07-15 南京工业职业技术大学 一种激光加热辊型微细压印装置
CN115176182A (zh) * 2020-08-25 2022-10-11 株式会社Lg化学 用于复制大型全息光学元件的方法和由此复制的大型全息光学元件
US20230314686A1 (en) * 2020-08-25 2023-10-05 Lg Chem, Ltd. Holographic Optical Element, Manufacturing Method Therefor and Manufacturing Device Therefor
KR102469242B1 (ko) 2021-12-28 2022-11-21 재단법인 구미전자정보기술원 복제빔의 선형 스캐닝과 기록 매질의 회전을 이용한 홀로그램 복제 방법 및 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576853A (en) * 1994-12-20 1996-11-19 Polaroid Corporation Apparatus and methods for making transmission holograms
KR0162150B1 (ko) 1994-12-23 1998-12-15 클라우스 피셔 자동차에 설치된 우산 저장 장치
JP2006011489A (ja) * 2005-09-12 2006-01-12 Dainippon Printing Co Ltd ホログラムの複製方法
JP2007286646A (ja) * 2007-08-06 2007-11-01 Dainippon Printing Co Ltd 反射型ホログラム撮影方法及び複製方法
JP2011227182A (ja) * 2010-04-16 2011-11-10 Dainippon Printing Co Ltd 透過型体積ホログラムの製造方法および製造装置
KR20130088995A (ko) * 2012-02-01 2013-08-09 (주) 한교아이씨 홀로그램 연속복제장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790245A (en) * 1972-10-12 1974-02-05 Rca Corp Double-sided holographic replicas
US4906315A (en) * 1983-06-20 1990-03-06 Mcgrew Stephen P Surface relief holograms and holographic hot-stamping foils, and method of fabricating same
US4973113A (en) * 1989-04-20 1990-11-27 E. I. Du Pont De Nemours And Company Method and apparatus for making transmission holograms
US4946258A (en) 1989-07-11 1990-08-07 Fisher Gary R Holographic exposure station and film transport
JP2982011B2 (ja) 1989-08-09 1999-11-22 大日本印刷株式会社 エンボスロールの作成方法
US5066133A (en) * 1990-10-18 1991-11-19 United Technologies Corporation Extended length embedded Bragg grating manufacturing method and arrangement
JP2883436B2 (ja) * 1990-10-18 1999-04-19 大日本印刷株式会社 ホログラムの複製方法及び装置
JPH06118861A (ja) 1992-09-30 1994-04-28 Toppan Printing Co Ltd リップマンホログラムの複製方法
JP4033360B2 (ja) * 1997-06-27 2008-01-16 大日本印刷株式会社 反射型ホログラム複製方法
JP4374679B2 (ja) 1999-10-29 2009-12-02 凸版印刷株式会社 体積位相透過型ホログラムの複製方法およびホログラム反射板の製造装置
JP4153686B2 (ja) * 2001-09-26 2008-09-24 大日本スクリーン製造株式会社 成膜液乾燥装置
DE102008017652A1 (de) 2008-04-04 2009-10-08 Leonhard Kurz Stiftung & Co. Kg Sicherheitselement sowie Verfahren zur Herstellung eines Sicherheitselements
JP2010117581A (ja) 2008-11-13 2010-05-27 Osaka Sealing Printing Co Ltd ホログラム付きシュリンクフィルムの製造方法
DE102008057784A1 (de) 2008-11-17 2010-05-20 Hologram Industries Research Gmbh Verfahren und Vorrichtung zum Herstellen von Volumen-Transmissions-und/oder -Reflexionshologrammen
JP5169781B2 (ja) * 2008-12-05 2013-03-27 凸版印刷株式会社 情報記録体及びその情報記録方法
EP2218744A1 (de) * 2009-02-12 2010-08-18 Bayer MaterialScience AG Methode zur Herstellung von holografischen Photopolymeren auf Polymerfolien
JP2011158788A (ja) * 2010-02-02 2011-08-18 Sony Corp ホログラム付き媒体、ホログラム付き媒体製造装置および情報判定方法
JP2012173300A (ja) * 2011-02-17 2012-09-10 Sony Corp ホログラム付き媒体、ロール状媒体、判別装置およびホログラム付き媒体製造装置ならびに情報判定方法
BR112014030976A2 (pt) 2012-06-14 2017-06-27 Basf Se método para formação de uma microestrutura de relevo de superfície, produto de segurança, uso de um produto, e, método para a formação de um revestimento que mostra uma mudança de cor dependente de ângulo em um substrato
GB201413156D0 (en) 2014-07-24 2014-09-10 Bowater Holographic Res Ltd And Harman Technology Ltd Holographic windows
US20180188690A1 (en) * 2017-01-04 2018-07-05 Metamaterial Technologies Usa, Inc. Rolling holographic lithography

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576853A (en) * 1994-12-20 1996-11-19 Polaroid Corporation Apparatus and methods for making transmission holograms
KR0162150B1 (ko) 1994-12-23 1998-12-15 클라우스 피셔 자동차에 설치된 우산 저장 장치
JP2006011489A (ja) * 2005-09-12 2006-01-12 Dainippon Printing Co Ltd ホログラムの複製方法
JP2007286646A (ja) * 2007-08-06 2007-11-01 Dainippon Printing Co Ltd 反射型ホログラム撮影方法及び複製方法
JP2011227182A (ja) * 2010-04-16 2011-11-10 Dainippon Printing Co Ltd 透過型体積ホログラムの製造方法および製造装置
KR20130088995A (ko) * 2012-02-01 2013-08-09 (주) 한교아이씨 홀로그램 연속복제장치

Also Published As

Publication number Publication date
CN109983407A (zh) 2019-07-05
KR20180062385A (ko) 2018-06-08
JP2019537059A (ja) 2019-12-19
CN109983407B (zh) 2021-11-19
JP6996057B2 (ja) 2022-01-17
US20190339646A1 (en) 2019-11-07
US11199813B2 (en) 2021-12-14
EP3540521A1 (en) 2019-09-18
EP3540521B1 (en) 2022-01-05
EP3540521A4 (en) 2019-09-18
KR102136552B1 (ko) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2018101698A1 (ko) 홀로그램 복제 방법 및 장치
TW293089B (ko)
US4244633A (en) Multicolor hologram and method for forming same
JPH05150699A (ja) 多層ホログラム
EP0724740B1 (en) Retroreflective sheeting material, a method of its production and its use
JP2008107843A (ja) 液晶ディスプレイに使用するためのホログラフィック多色光学要素および該要素の製造方法
EP2912523B1 (en) Producing images of security features
EP1400874A1 (en) Image exposure recorder and image exposure recording method
CN112839817B (zh) 全息图转录设备
KR20130088995A (ko) 홀로그램 연속복제장치
US20080259417A1 (en) Holographic Recording Media
JP2022177038A (ja) ホログラム素子、情報記録媒体、ラベル体、転写箔体、カード、及びホログラムシート
CN101636697A (zh) 掩蔽法多色全息复制
WO2021060828A1 (ko) 디스플레이 렌즈의 제조 장치, 방법 및 이에 의해 제조된 디스플레이 렌즈를 포함하는 두부 장착형 디스플레이 장치
US20210116862A1 (en) Manufacturing method of holographic optical element and display device including holographic optical device manufactured thereby
JPH1055129A (ja) ホログラムアレーの複製方法
KR102159501B1 (ko) 홀로그래픽 광학소자 제조방법 및 홀로그래픽 광학소자 제조장치
KR102219835B1 (ko) 홀로그래픽 광학 소자의 제조방법
JP4374679B2 (ja) 体積位相透過型ホログラムの複製方法およびホログラム反射板の製造装置
JP3365536B2 (ja) ホログラムの複製方法およびその装置
KR20240085533A (ko) 발산광을 이용한 홀로그래픽 광학소자의 제조방법 및 상기 제조방법으로 제조된 홀로그래픽 광학소자
KR20240043218A (ko) 대면적 마스터 홀로그램
JP2006023609A (ja) ホログラム記録装置、記録媒体、記録媒体保持部材、及びホログラム記録方法
JPH11212435A (ja) ホログラム複製用原版およびホログラムの複製方法
JPH0990860A (ja) ホログラムアレーの複製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017876557

Country of ref document: EP

Effective date: 20190612