WO2018101586A1 - 도로면의 파손부 보수재 및 보수방법 - Google Patents

도로면의 파손부 보수재 및 보수방법 Download PDF

Info

Publication number
WO2018101586A1
WO2018101586A1 PCT/KR2017/010123 KR2017010123W WO2018101586A1 WO 2018101586 A1 WO2018101586 A1 WO 2018101586A1 KR 2017010123 W KR2017010123 W KR 2017010123W WO 2018101586 A1 WO2018101586 A1 WO 2018101586A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
silica powder
road surface
repair
aggregate
Prior art date
Application number
PCT/KR2017/010123
Other languages
English (en)
French (fr)
Inventor
최동현
박혜정
Original Assignee
로드켐 주식회사
최동현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로드켐 주식회사, 최동현 filed Critical 로드켐 주식회사
Publication of WO2018101586A1 publication Critical patent/WO2018101586A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5035Silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Definitions

  • the present invention relates to repairing and repairing the damaged portion of the road surface, and more specifically, to repair the damaged portion of the road surface, that is, the end surface of the port hole and the concrete road surface of the asphalt road surface, and the surrounding cracks and broken joints. It relates to repairing and repairing the damaged portion of the road surface.
  • road types include asphalt pavement and concrete pavement, and these road surfaces are damaged by environmental factors caused by climate change such as repeated vehicle load, rain or snow, and temperature change.
  • the asphalt pavement or concrete pavement has a cross section of a so-called asphalt road porthole or concrete road where thick aggregates are detached by moisture penetrating the road surface and holes are formed in a part of the pavement surface and a boundary surface. Due to heavy and big traffic accidents, such as tire puncture or severe vehicle overturning, porthole repair or sectional repair work is extensively performed after a cold or rainy season with heavy snow.
  • Patent Document 1 Korean Patent Application Publication No. 2015-0143266 (Patent Document 1), in which a port part is desorbed and the asphalt is demolished and removed after removing impurities from the demolition part, the joint part is blown with high-pressure air to remove foreign substances.
  • the repair asphalt installation step of laying the repair asphalt on the coated surface, the secondary torch heating step of heating the repair asphalt installed on the construction surface, and the installed repair asphalt to secure a smooth surface by high-density mechanical compaction Mechanical compaction step, and the boundary line between the existing road part (finish asphalt) and the repair part (repair asphalt) after the compaction Has proposed a porthole repair method including the step of cooling by the second bonding material and the deposition step, the second bonding material after the deposition step for covering the wet sand on the entire repair area wet laying sand or water injection for the integral bonding bar.
  • this road repair method has a lot of repair processes, so it takes a lot of time to construct, so the long control period of the vehicle not only hinders the flow of the vehicle for a long time, but also the durability is weak, resulting in a short repair period, and also repairing the porthole of the asphalt road. There is a problem in that it is not possible to repair the cross section of the concrete road surface because it is only suitable for doing so.
  • Patent Document 1 Republic of Korea Patent Publication No. 2015-0143266
  • the present invention for solving the problems of the above-described prior art, it is possible to easily repair all the damaged parts, such as the hairline broken portion, the joint damaged portion, the crack damaged portion and the port hole damaged portion and the end face of the road surface It is an object of the present invention to provide a method for repairing a damaged part of a road surface, which enables easy repair of a damaged part of a road surface and improves durability of the repaired surface, thereby greatly extending the renovation cycle.
  • the present invention for achieving the above object is a repair method using a silica powder having a particle size of 13 ⁇ 265 ⁇ m and apparent specific gravity of 0.03 ⁇ 0.1, epoxy or epoxy and silica sand or epoxy and aggregate in such ultra low specific gravity powder Using a mixture of the mixture at an optimum ratio, characterized in that the repair method is selected or mixed according to the hairline breaks, joint breaks, crack breaks, port hole breaks and section breaks on the road surface It is done.
  • the repairing method of the damaged part of the road surface by the same method While providing a common repair method for repairing almost all damaged parts such as parts, the repair process is simple, and the repair work time can be significantly shortened, thereby minimizing vehicle control time and greatly improving the driver's convenience. In addition, it has excellent durability, which makes it possible to greatly extend the maintenance period, which can reduce the social cost of maintenance.
  • 1 is a cross-sectional view of repairing the damaged part of the road surface hairline by the repair method of the damaged part of the road surface according to the present invention.
  • Figure 2 is a graph showing the dispersion particle size distribution of the ultra low specific gravity silica powder which is one of the repair agents of the present invention.
  • FIG 3 is a cross-sectional view of the state before and after repairing the joint damaged part of the road surface by the repair method of the damaged part of the road surface according to the present invention.
  • FIG. 4 is a cross-sectional view of repairing the damaged portion of the road surface by the repair method of the damaged portion of the road surface according to the present invention.
  • FIG. 5 is a cross-sectional view of repairing a port hole and a concrete cross section of an asphalt road surface by a repair method of a damaged portion of a road surface according to the present invention.
  • FIG. 6 is a block diagram showing the repair process of FIG.
  • epoxy mortar epoxy, silica powder, silica sand
  • the present invention is a repair material injected into the damaged part of the road surface, characterized in that the epoxy-silica powder mixture is mixed with epoxy powder and silica powder having a particle size of 13 ⁇ 265 ⁇ m and apparent specific gravity of 0.03 ⁇ 0.06 in each 1.5: 0.2 ⁇ 3 volume ratio
  • the repair material is a mixture of one or more selected from the group consisting of a silica sand particle size of 1 ⁇ 3mm, aggregate particle size of 3 ⁇ 10mm, aggregate particle size of 10 ⁇ 15mm with respect to the epoxy-silica powder mixture It is characterized by.
  • Figure 1 is a cross-sectional view of repairing the damaged part of the hairline of the road surface by the repair method of the damaged part of the road surface according to the present invention
  • Figure 2 is a graph showing the dispersion particle size distribution of the ultra-low specific gravity silica powder which is one of the repair agents of the present invention. .
  • the epoxy and the ultra-low specific gravity silica powder mixture 10 may be used to repair the hairline damaged part 2 of the road surface 1 by the repair method of the damaged part of the road surface according to the present invention. It is injected into the broken part 2.
  • the hairline breakage part 2 refers to a portion where cracks are formed in a narrow and thin incontinence form on the road surface 1, and after the epoxy and ultra low specific gravity silica powder mixture 10 is applied on the surface thereof, The surface can be scraped so that the mixture 10 can be injected into the hairline break 2.
  • the ultra low specific gravity silica powder As shown in FIG. 2, it is preferable to select one in which particles having a particle diameter of 13 to 265 ⁇ m are dispersed, and the apparent specific gravity of the ultra low specific gravity silica powder in which such ultra low specific gravity particles are distributed is shown in the following table. It was measured as 0.04 as 1 (the results in Fig. 2 and Table 1 are the test results of the Korea Chemical Testing Institute (KTR) for ultra low specific gravity powder).
  • KTR Korea Chemical Testing Institute
  • the silica powder when the ultra-low specific gravity silica powder having an apparent specific gravity lower than that of water 1 is mixed with the epoxy as the liquid adhesive, the silica powder is a solid powder, but is dispersed in the emulsion form in the epoxy and does not flow down during application of the vertical or inclined surfaces, but rather the specific gravity The mixture does not flow down because it acts to float around the low silica powder.
  • the apparent specific gravity of the silica powder is preferably maintained at a level significantly lower than the specific gravity of water 1, and the preferred apparent specific gravity is 0.03 to 0.1.
  • Silica powder having an apparent specific gravity of less than 0.03 is not preferable because it is difficult to manufacture.
  • larger than 0.1 is not preferable because the specific gravity is relatively large and flows down when the mixture 10 is applied to the vertical surface of the road damage site.
  • Epoxy and silica powder may be mixed in a ratio of 1.5: 0.2 to 3 by volume, and the mixed epoxy-silica powder mixture 10 may be applied with a roller or a brush because it maintains a liquid state.
  • silica powder When the silica powder is mixed less than 0.2 (volume ratio) in the above mixing ratio, it is not an emulsion form but a pure liquid form, and easily flows down. Not.
  • the hairline breakage part 2 generated on the concrete or asphalt road was cleaned with a blower, and then the epoxy and the ultra-low specific gravity silica powder mixture 10 were pushed in and simply repaired.
  • This method is an important process of one of the repair methods of the present invention, and there is currently no suitable way to repair the hairline breakage 2 of concrete and asphalt roads. Starting from this, it is necessary to repair the entire surface as it grows back into a coarse crack.
  • the hairline breakage part 2 is not a crack deeply entered but a crack caused by temperature variation on the surface. Therefore, when the hairline breakage part is initially repaired with an epoxy-silica powder mixture 10, the moisture penetrating through the hairline breakage part 2 is removed. It can prevent the damage of concrete or asphalt surface by freezing and expanding in winter.
  • FIG. 3 is a cross-sectional view of the state before and after repairing the joint breakage portion 3 of the road surface by the method for repairing the broken portion of the road surface according to the present invention.
  • the road surface has a joint breakage portion 3 between the asphalt pavement surface and the surface, a joint breakage portion 3 between the asphalt road and the concrete shoulder, and a joint breakage portion 3 between the concrete road and the drainage passage. ), There are many joints, and there are many hairline cracks in this area. If this part is damaged, it is often necessary to repair the entire road pavement surface starting with the joint breakage part 3.
  • the repair method of the joint breakage part 3 is performed by plastering an epoxy mortar 30 mixed with epoxy, a silica sand, and an ultra low specific gravity silica powder and compacting it with a vibrator. After making joints and curing, the urethane (20) is pushed in to complete the joint repair work.
  • the ultra-low specific gravity silica powder may have a specific gravity of 0.03 to 0.1 as particles having a particle diameter of 13 to 265 ⁇ m as described above.
  • the particle size of the silica sand has a sieving diameter of 5 mm, a passing rate of 100%, a sieving diameter of 2.5 mm, a passing rate of 98%, a sieving diameter of 1.2 mm, a passing rate of 1%, and a sieving diameter of 0.6 mm of passing rate of 0% (Table 2).
  • 2 is the test result of the Korea Testing and Research Institute (KTR).
  • Test result Test Items unit Sample classification Result Test Methods Sieve (pass rate): 10mm % - 100 KS F 2502: 2014 Sieve (pass rate): 5mm % - 100 KS F 2502: 2014 Sieve (pass rate): 2.5mm % - 98 KS F 2502: 2014 Sieve (pass rate): 1.2mm % - One KS F 2502: 2014 Sieving rate (passage): 0.6mm % - 0 KS F 2502: 2014 Sieving rate (passage): 0.3mm % - 0 KS F 2502: 2014 Sieve (pass rate): 0.15mm % - 0 KS F 2502: 2014
  • the epoxy mortar (30) is a silica sand with a particle size of 1 ⁇ 3mm, epoxy and a silica powder having a particle size of 13 ⁇ 265 ⁇ m and an apparent specific gravity of 0.03 ⁇ 0.1 are each mixed in a ratio of 6: 1.5: 0.2 ⁇ 3 volume ratio Can be.
  • the mixing ratio of silica sand is greater than 6 (volume ratio) or the mixing ratio of the ultra low specific gravity silica powder is greater than 3 (volume ratio)
  • the cohesion between aggregates may be weakened and the durability of the mixture may be lowered.
  • the mixing ratio of sand is less than 6 or the mixing ratio of ultra low specific gravity silica powder is less than 0.2
  • the bearing capacity of the repair layer is weakened and the repair layer is lower than the height of the road surface (1) to form a fault between the road surface (1) and the repair surface. It is not preferable because it can be done.
  • the mixing ratio of the ultra low specific gravity silica powder is greater than 3 and the epoxy mixing ratio is less than 1.5, the viscosity is not only weakened, but also uniform mixing with the silica sand is difficult, on the contrary, the mixing ratio of the ultra low specific gravity silica powder is smaller than 0.2 and epoxy If the mixing ratio is greater than 1.5, the flowability of the epoxy-ultra low specific gravity silica powder mixture 10 increases, so that the epoxy-silica powder mixture 10 may flow between the silica sands, thereby weakening the overall aggregation force of the epoxy mortar 30.
  • FIG. 4 is a cross-sectional view of repairing a crack damaged part of a concrete road surface by a repair method of a damaged part of a road surface according to the present invention, and FIG. 4 (a) shows a plane of the road surface 1, and FIG. 4 (b). 4 is a cross-sectional view taken along line AA of FIG. 4A, and FIG.
  • the drill hole 4 is drilled at regular intervals along the crack to give shear force, and then the eye I is cut along the crack 5. Epoxy flows in at the same time connecting the drill hole (3).
  • the epoxy 31 is first poured into the drilling hole 4, and then the epoxy mortar 30 mixed with the epoxy, silica sand, and ultra low specific gravity silica powder is pushed in.
  • the particle size of the silica sand applied to FIG. 4 (b) may be 1 to 3 mm as described above, and the ultra-low specific gravity silica powder applied to each of FIGS. 4 (b) and 4 (c) has a particle size of 13 to 265 ⁇ m and is apparent. Specific gravity may be 0.03 to 0.1.
  • FIG. 5 is a cross-sectional view of a cross section of a port hole and a concrete road surface of an asphalt road surface by a method of repairing a broken portion of a road surface according to the present invention.
  • FIG. 6 is a block diagram showing the repair process of FIG. 5A shows that the depth of the porthole and the end face 6 is low, and FIG. 5B shows that the depth of the porthole and the end face 6 is high.
  • the repair method of the port hole and the cross section according to the present invention the adhesive layer forming step (S10), aggregate layer forming step (S20, S30), curing step (S40) and the application step ( S50).
  • the adhesive layer forming step (S10) is a process of forming an epoxy 31 primer layer by applying an epoxy primer having an adhesive function to the porthole of the asphalt road surface 1 or the cross-sectional repair surface of the concrete road surface 1. .
  • the aggregate layer forming step may be subdivided into the first aggregate layer forming step (S20) and the second aggregate layer forming step (S30) according to the depth of the port hole and the end surface (6). That is, when the depth of the pothole and the end face 6 is low, only the second aggregate 42 having a relatively small aggregate particle size is applied. On the contrary, when the depth of the pothole and the end face 6 is high, the first aggregate having a relatively large aggregate particle size ( 41), the second aggregate 42 can be applied thereon.
  • the first aggregate layer forming step (S20) is the first aggregate 41 and the epoxy and ultra-low specific gravity silica powder having a relatively larger particle size than the second aggregate 42 of the second aggregate layer forming step (S30), respectively.
  • the mixing ratio of the first aggregate and the second aggregate is greater than 10 or the mixing ratio of the ultra low specific gravity silica powder is greater than 3, the aggregation strength between the aggregates may be weakened and the durability of the repair layer may be lowered. If the mixing ratio of the aggregate is less than 10 or the mixing ratio of the ultra low specific gravity silica powder is less than 0.2, the bearing capacity of the mixture repair layer is weakened and the repair layer is lower than the height of the road surface (1). It is not preferable because it can be formed.
  • the mixing ratio of the ultra low specific gravity silica powder is greater than 3 and the epoxy mixing ratio is less than 1.5, the viscosity is not only weakened, but also uniform mixing with the aggregate is difficult, on the contrary, the mixing ratio of the ultra low specific gravity silica powder is smaller than 0.2 and the epoxy mixing is performed. If the ratio is greater than 1.5, it is not preferable because the flowability of the epoxy ultra low specific gravity silica powder mixture 10 increases and flows between the aggregates 41 and 42, thereby weakening the cohesive force of the aggregates 41 and 42.
  • the first aggregate 41 having a relatively large particle size forms a foundation, and the second aggregate 42 mixture is plastered thereon.
  • the gap between the first aggregate 41 and the second aggregate 42 interface can be minimized, thereby repairing the first aggregate 41.
  • the second aggregate 42 In addition to maintaining a solid foundation of the second aggregate 42 having a small particle size is exposed to the upper surface of the maintenance surface is easy to planarize the surface.
  • the particle size of the first aggregate 21 has a sieve diameter of 20 mm and a passing rate of 100%, a sieve diameter of 13 mm and a passing rate of 82%, and a sieve diameter of 10 mm and a passing rate of 10% and a sieve diameter as shown in Table 3 below.
  • the pass rate of 5 mm is 0%, and accordingly, the particle diameter of 10 to 15 mm may be selected and applied accordingly.
  • the particle size of the second aggregate 22 has a sieving diameter of 13 mm, a passing rate of 100%, a sieving diameter of 10 mm, a passing rate of 99%, a sieving diameter of 2.5 mm, a passing rate of 10%, and a sieving diameter of 1.2 mm.
  • a particle size of 3 to 10 mm is preferably applied.
  • the first aggregate 41 may be omitted, and the second aggregate 42 may be repaired only.
  • the curing step (S40) is a process of curing aggregates by curing the epoxy-ultra low specific gravity silica powder mixture 10 filled between the first aggregates 21 and between the second aggregates 22.
  • the coating step (S50) is a liquid urethane and particles having a particle size of 13 ⁇ 265 ⁇ m dispersed on the top surface of the aggregate, epoxy and ultra-low specific gravity silica powder mixture layer, the ultra low specific gravity silica powder of 0.03 ⁇ 0.1 is 10: 0.5
  • the final pavement can prevent the vehicle from slipping, while at the same time absorbing the impact of the tire to further improve the durability of the repair layer.
  • the ultra-low specific gravity silica powder and the liquid urethane are mixed in an amount less than 0.5
  • the ultra-low specific gravity silica powder is not an emulsion form, but becomes a pure liquid form and easily flows down. If it is putty type, it is not suitable for applying with roller or brush.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Road Paving Structures (AREA)
  • Road Repair (AREA)

Abstract

본 발명의 도로면의 파손부 보수방법에 관한 것으로, 더욱 구체적으로는 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.1의 실리카파우더를 이용한 보수방법으로서, 이러한 초저비중 실리카파우더에 에폭시 또는 에폭시와 실리카샌드 또는 에폭시와 골재 등을 최적의 비율로 혼합한 혼합물을 이용한 것이 특징이며, 이러한 혼합물을 도로면 상의 헤어라인 파손부, 죠인트 파손부, 크렉 파손부, 포트홀 및 단면 파손부 등에 따라 선택하거나 혼용하여 적용하는 도로면의 파손부 보수재 및 보수방법에 관한 것이다.

Description

도로면의 파손부 보수재 및 보수방법
본 발명은 도로면의 파손부 보수재 및 보수방법에 관한 것으로, 더욱 구체적으로는 도로면의 파손부, 즉 아스팔트 도로면의 포트홀 및 콘트리트 도로면의 단면과 주변 크렉부위 및 파손된 죠인트를 보수하기 위한 도로면의 파손부 보수재 및 보수방법에 관한 것이다.
일반적으로 도로의 종류는 아스팔트 포장도로와 콘크리트 포장도로가 있고, 이와 같은 이러한 도로 면은 반복되는 차량의 하중, 우천이나 눈, 온도 변화 등 기후 변화에 의한 환경적 요인 등에 의해 손상이 발생한다.
더욱이 최근에는 차량의 대형화와 교통량의 증가로 인해 도로면의 손상이 점차 확대되고 있으며, 이러한 손상된 부분을 보수하기 위한 보수 공사가 빈번하게 시행되고 있다.
특히 아스팔트 포장도로 또는 콘크리트 포장도로는 도로 면에 침투한 수분에 의해 굵은 골재가 탈리되어 포장면 일부분과 경계면에 구멍이 생기는 이른바 아스팔트 도로의 포트홀 또는 콘크리트 도로의 단면이 발생하고 있으며, 이러한 포트홀 또는 단면은 타이어 펑크를 유발하거나 심한 경우 차량이 전복되는 등 크고 작은 교통사고를 유발하기 때문에 대설을 동반한 혹한기 또는 장마가 지난 후 포트홀 보수 또는 단면 보수 공사가 대대적으로 이루어지고 있다.
이러한 포트홀의 보수 공법으로서 대한민국 공개특허 제 2015-0143266호(특허문헌 1)에서는 포트홀 부분의 탈착 및 들뜬 아스팔트 철거 및 철거부분의 불순물을 제거한 후에 접합부분을 고압의 공기로 불어 이물질을 제거하는 보수부분의 시공면 확보단계와, 상기 시공면의 아스팔트 접합면을 가열하여 예열하는 1차 토치가열단계와, 상기 시공면 전체에 걸쳐 용해된 액상의 1차 접합재를 바르는 접합재 시공단계와, 상기 1차 접합재가 도포된 시공면에 보수아스팔트를 포설하는 보수아스팔트 포설단계와, 상기 시공면에 포설된 보수아스팔트를 가열하는 2차 토치가열단계와, 상기 포설된 보수아스팔트를 고밀도 기계다짐으로 평활면을 확보하는 기계다짐단계와, 상기 기계다짐 후 기존 도로부분(마감아스팔트)과 보수부분(보수아스팔트)의 접합부 경계선 간의 접합 일체화를 위한 2차 접합재 부착단계 및, 상기 2차 접합재 부착단계 후 보수부위 전체에 젖은 모래를 덮는 젖은 모래 포설 또는 물분사에 의해 냉각하는 단계를 포함하는 포트홀 보수공법을 제안한 바 있다.
그러나 이와 같은 도로 보수공법은 보수 공정이 많아서 시공 시 많은 시간이 소요되기 때문에 차량 통제시간이 길어서 차량 흐름을 장시간 방해할 뿐 아니라 내구성이 취약하여 재보수 주기가 짧으며, 또한 아스팔트 도로의 포트홀을 보수하는 데에만 적합하기 때문에 콘트리크 도로면의 단면을 보수할 수 없다는 문제점이 있다.
[선행기술문헌]
(특허문헌 1) 1. 대한민국 공개특허 제 2015-0143266호
상기의 종래 기술이 내포한 문제점을 해결하기 위한 본 발명은, 도로면의 헤어라인 파손부, 죠인트 파손부, 크렉 파손부 및 포트홀 파손부 및 단면 등의 모든 파손부분을 용이하게 보수할 수 있도록 한 것으로, 도로면의 파손부 보수 시공이 용이하면서 보수면의 내구성을 향상시킬 수 있도록 하여 재보수 주기를 대폭 연장할 수 있도록 하는 도로면의 파손부 보수방법을 제공하는데 그 목적이 있다.
상기의 목적을 달성하기 위한 본 발명은, 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.1의 실리카파우더를 이용한 보수방법으로서, 이러한 초저비중 실리카파우더에 에폭시 또는 에폭시와 실리카샌드 또는 에폭시와 골재 등을 최적의 비율로 혼합한 혼합물을 이용한 것으로, 이러한 혼합물을 도로면 상의 헤어라인 파손부, 죠인트 파손부, 크렉 파손부, 포트홀 파손부 및 단면 파손부 등에 따라 선택하거나 혼용하여 적용하는 보수방법을 특징으로 한다.
본 발명에 의한 도로면의 파손부 보수방법에 의하면, 동일한 공법에 의해서 아스팔트 도로면의 포트홀을 비롯하여 콘트리트 도로면의 단면과 헤어라인 파손부, 죠인트 파손부, 크렉 파손부, 포트홀 파손부 및 단면 파손부 등 거의 모든 파손부를 보수할 수 있는 공통된 보수 방법을 제공하면서, 보수 공정이 간편하기 때문에 보수공사 시간을 대폭 단축할 수 있으므로 차량 통제 시간을 최소화할 수 있게 되어 운전자의 편의를 대폭 향상시킬 수 있으면서, 내구성이 우수하여 재보수 주기를 대폭 연할 수 있게 되어 보수에 따른 사회적 비용을 절감할 수 있는 등의 효과를 가진다.
도 1은 본 발명에 따른 도로면의 파손부 보수방법에 의해 도로면의 헤어라인 파손부를 보수한 단면도이다.
도 2는 본 발명의 보수제의 하나인 초저비중 실리카파우더의 분산 입도 분포를 보인 그래프.
도 3은 본 발명에 따른 도로면의 파손부 보수방법에 의해 도로면의 죠인트 파손부를 보수하기 전 및 보수 후 상태의 단면도이다.
도 4는 본 발명에 따른 도로면의 파손부 보수방법에 의해 도로면의 파손부를 보수한 단면도이다.
도 5는 본 발명에 따른 도로면의 파손부 보수방법에 의해 아스팔트 도로면의 포트홀 및 콘크리트 단면을 보수한 단면도이다.
도 6은 도 5의 (b) 보수 공정을 보인 블록도이다.
[도면 부호의 설명]
1: 도로면
2: 헤어라인 파손부
3: 죠인트 파손부
4: 천공 홀
5: 아이(I) 커팅부
6: 포트홀(아스팔트 도로) 및 단면(콘크리트 도로)
10: 에폭시-실리카파우더 혼합물
20: 우레탄
30: 에폭시 몰탈(에폭시, 실리카파우더, 실리카샌드)
31: 에폭시
41: 제1골재
42: 제2골재
50: 우레탄-실리카파우더 혼합물
본 발명은 도로면의 파손부에 주입되는 보수재로서, 에폭시와 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더가 각각 1.5 : 0.2 ~ 3 부피비로 혼합된 에폭시-실리카파우더 혼합물을 특징으로 하며, 이때 상기 보수재는, 상기 에폭시-실리카파우더 혼합물에 대하여 입경이 1 ~ 3mm의 실리카샌드, 입경이 3 ~ 10mm의 골재, 입경이 10 ~ 15mm의 골재로 이루어진 군에서 선택된 1종이 더 혼합된 것을 특징으로 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 이하에서는 본 발명의 바람직한 형태의 방법을 예시하고 이에 기하여 본 발명을 상세하게 설명하고자 한다. 그러나 이는 본 발명을 예시된 형태만으로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위는 예시된 형태의 통상적인 변경이나 균등물 내지 대체물까지 포함한다.
도 1은 본 발명에 따른 도로면의 파손부 보수방법에 의해 도로면의 헤어라인 파손부를 보수한 단면도이고, 도 2는 본 발명의 보수제의 하나인 초저비중 실리카파우더의 분산 입도 분포를 보인 그래프이다.
도 1을 참조하는 바와 같이 본 발명에 따른 도로면의 파손부 보수방법에 의해 도로면(1)의 헤어라인 파손부(2)를 보수하기 위해 에폭시와 초저비중 실리카파우더 혼합물(10)을 헤어라인 파손부(2) 내에 주입한다.
헤어라인 파손부(2)는 도로면(1) 상에서 폭이 좁고 가느다란 실금 형태로 크렉이 발생한 부분을 지칭하는 것으로, 그 표면 상에 에폭시와 초저비중 실리카파우더 혼합물(10)을 도포한 후 그 표면을 긁어서 헤어라인 파손부(2) 내부로 혼합물(10)이 주입될 수 있도록 할 수 있다.
상기 초저비중 실리카파우더는 도 2를 참조하는 바와 같이 입경이 13 ~ 265㎛의 입자가 분산된 것을 선택하는 것이 바람직하고, 이와 같은 초저비중 입자가 분포된 초저비중 실리카파우더의 겉보기 비중은 하기의 표 1과 같이 0.04로 측정되었다(도 2 및 표 1의 결과치는 초저비중 실리카파우더를 대상으로 한 한국화학시험연구원(KTR)의 시험 결과치임).
시험항목 단위 시료 결과치 시험방법
겉보기비중 - 초저비중실리카파우더 0.04 KS M 0602 : 2010
이와 같이 물의 비중 1보다 현저히 낮은 겉보기비중을 가진 초저비중 실리카파우더가 액상 접착제인 에폭시와 혼합되면 실리카 파우더가 고체 분말이지만 에폭시 내에서 에멀젼 형태로 분산되어 수직면 또는 경사면 도포 시에 흘러내리지 않고 오히려 비중이 낮은 실리카파우더를 중심으로 부양하는 역할을 하기 때문에 혼합물이 아래로 흘러내리지 않는다.
이러한 원리에 따라 실리카파우더의 겉보기비중이 물의 비중 1보다 현저히 낮은 수준을 유지하는 것이 좋으며, 바람직한 겉보기비중은 0.03~0.1이다. 겉보기비중이 0.03보다 낮은 실리카파우더는 제조가 어렵기 때문에 바람직하지 않고, 반대로 0.1보다 크면 상대적으로 비중이 커서 특히 도로 파손부위의 수직면에 혼합물(10)을 도포했을 때 흘러내리므로 바람직하지 않다.
에폭시와 실리카파우더는 1.5 : 0.2 ~ 3 부피비의 비율로 혼합될 수 있으며, 이와 같이 혼합된 에폭시-실리카파우더 혼합물(10)은 액상 상태를 유지하기 때문에 롤러 또는 붓으로도 도포 가능하다.
상기의 혼합비율에서 실리카파우더가 0.2(부피비)보다 적게 혼합되면 에멀젼 형태가 아닌, 순수 액상 형태가 되어 흘러내리기 쉽고, 반대로 3(부피비)보다 많이 혼합되면 퍼티형으로 되어 초기 도포성이 좋지 않아 적합하지 않다.
콘크리트 또는 아스팔트 도로에 발생한 헤어라인 파손부(2)를 송풍기로 청소를 한 다음에 에폭시와 초저비중 실리카파우더 혼합물(10)을 밀어 넣어 주어 간단하게 보수한다. 이 방법은 본 발명의 보수방법 중 하나의 중요한 공정인데 현재 콘크리트 및 아스팔트 도로의 헤어라인 파손부(2)를 보수할 마땅한 방법이 없는 것이 현실이다. 이로부터 시작하여 굵은 크렉으로 다시 죠인트로 커지면서 전면 보수를 해야 하는 실정이다.
헤어라인 파손부(2)는 아래로 깊게 들어간 크렉이 아니라 표면에 온도 편차에 의해 일어나는 크렉이므로 초기에 에폭시-실리카파우더 혼합물(10)로 보수하면 헤어라인 파손부(2)를 통해 스며들어간 물기가 동절기에 얼어서 팽창하여 콘크리트나 아스팔트 면을 파손하는 현상을 미리 방지해 줄 수 있다.
도 3은 본 발명에 따른 도로면의 파손부 보수방법에 의해 도로면의 죠인트 파손부(3)를 보수하기 전 및 보수 후 상태의 단면도이다.
도 3의 (a)와 같이 도로면에는 아스팔트 포장면과 면 사이의 죠인트 파손부(3), 아스팔트도로와 콘크리트 갓길 사이의 죠인트 파손부(3), 콘크리트도로와 배수로 사이의 죠인트 파손부(3) 등, 죠인트가 많고 이 부분에서 헤어라인 크렉이 많이 발생한다. 이 부분이 손상된 경우 죠인트 파손부(3)부터 시작해서 전체 도로 포장면을 보수해야 하는 경우가 많다.
죠인트 파손부(3)의 보수 방법은, 도 3의 (b)에서 보는 바와 같이 에폭시와 실리카샌드 및 초저비중 실리카파우더를 혼합한 에폭시 몰탈(30)을 미장하고 진동기로 다져준 다음 가운데를 흙칼로 줄눈을 만들어 주고 양생이 된 다음에 우레탄(20)을 밀어 넣어 주어 죠인트 보수작업을 완성한다.
여기서 상기 초저비중 실리카파우더는 전술한 바와 같이 입경이 13 ~ 265㎛의 입자로서 겉보기비중이 0.03~0.1일 수 있다.
또한, 상기 실리카샌드의 입도는 하기의 표 2와 같이 체지름 5mm 통과율이 100%이고 체지름 2.5mm 통과율이 98%이고 체지름 1.2mm 통과율이 1%이고 체지름 0.6mm 통과율이 0%(표 2는 한국화학시험연구원(KTR)의 시험 결과치임)로서, 이에 따라 1 ~ 3mm 입도의 것을 선택한다.
시험결과
시험항목 단위 시료구분 결과치 시험방법
체가름(통과율) : 10mm % - 100 KS F 2502 : 2014
체가름(통과율) : 5mm % - 100 KS F 2502 : 2014
체가름(통과율) : 2.5mm % - 98 KS F 2502 : 2014
체가름(통과율) : 1.2mm % - 1 KS F 2502 : 2014
체가름(통과율) : 0.6mm % - 0 KS F 2502 : 2014
체가름(통과율) : 0.3mm % - 0 KS F 2502 : 2014
체가름(통과율) : 0.15mm % - 0 KS F 2502 : 2014
이에 따라 상기 에폭시 몰탈(30)은 입도가 1 ~ 3mm의 실리카샌드, 에폭시 및 입경이 13 ~ 265㎛이고 겉보기비중이 0.03~0.1인 실리카파우더가 각각 6 : 1.5 : 0.2 ~ 3 부피비의 비율로 혼합될 수 있다.
상기의 조성비에서 실리카샌드의 혼합비율이 6(부피비)보다 크거나 초저비중 실리카파우더의 혼합비율이 3(부피비)보다 클 경우 골재들 간의 결집력이 약화되어 혼합물의 내구성을 저하시킬 수 있고, 반대로 실리카샌드의 혼합비율이 6보다 작거나 초저비중 실리카파우더의 혼합비율이 0.2보다 작은 경우 보수층의 지지력이 약화되어 보수층이 도로면(1)의 높이보다 낮아져서 도로면(1)과 보수면 간 단층을 형성할 수 있으므로 바람직하지 않다.
또한, 초저비중 실리카파우더의 혼합비율이 3보다 크고 에폭시 혼합비율이 1.5보다 작으면 점성이 약화될 뿐 아니라 실리카샌드와의 균일한 배합이 어렵고, 반대로 초저비중 실리카파우더의 혼합비율이 0.2보다 작고 에폭시 혼합비율이 1.5보다 크면 에폭시-초저비중 실리카파우더 혼합물(10)의 유동성이 증가하므로 에폭시-실리카파우더 혼합물(10)이 실리카샌드들 사이로 흘러내려서 에폭시몰탈(30)의 전체 결집력이 약화될 수 있다.
도 4는 본 발명에 따른 도로면의 파손부 보수방법에 의해 콘크리트 도로면의 크렉 파손부를 보수한 단면도로서, 도 4의 (a)는 도로면(1)의 평면을, 도 4의 (b)는 도 4 (a)의 A-A 단면을, 도 4의 (c)는 도 4 (a)의 B-B 단면을 나타낸 것이다.
도 4를 참조하는 바와 같이 콘크리트나 아스팔트 도로의 크렉 파손부를 보수하기 위해 크렉을 따라 일정 간격을 두고 천공 홀(4)을 뚫어서 전단력을 준 다음, 크렉을 따라 아이(I)커팅(5)하여 각각의 천공 홀(3)을 연결하는 동시에 에폭시가 흘러들어가게 한다.
도 4 (b) 단면도와 같이 천공 홀(4)에 에폭시(31)를 먼저 흘려 넣고 다음에 에폭시와 실리카샌드 및 초저비중 실리카파우더가 혼합된 에폭시 몰탈(30)을 밀어 넣어 준다.
또한, 도 4 (c) 단면도와 같이 아이(I)커팅한 면에 먼저 에폭시(31)를 살짝 흘려 주고 상부에 에폭시와 초저비중 실리카파우더가 혼합된 에폭시-실리카파우더 혼합물(10)을 밀어 넣어 준다.
이것은 본 발명의 중요한 개념인데 에폭시만 흘려 넣어 주고 일반 스톤 파우더와 에폭시를 혼합한 혼합물을 밀어 넣어 주면 자중과 대기압에 의해 계속해서 아래로 흘러 내려가서 작업 마무리를 못하고 표면이 아래로 U 자식으로 내려앉게 되는 문제가 발생한다.
이와 달리 본 발명과 같이 에폭시-초저비중 실리카파우더 혼합물(10)을 주입할 경우 에폭시가 아래로 더 흘러 내려가지 않고 그 자리에 멈추게 되어 양 크렉 부위를 접합시켜 주고 보수층의 표면도 일자로 만들어져서 신속하게 작업을 마무리할 수 있다.
도 4의 (b)에 적용된 실리카샌드의 입경은 전술한 바와 같이 1 ~ 3mm일 수 있고, 도 4의 (b) 및 (c)에 각각 적용된 초저비중 실리카파우더는 입경이 13 ~ 265㎛이고 겉보기비중이 0.03~0.1일 수 있다.
도 5는 본 발명에 따른 도로면의 파손부 보수방법에 의해 아스팔트 도로면의 포트홀 및 콘크리트 도로의 단면을 보수한 단면도이고, 도 6은 도 5의 (b) 보수 공정을 보인 블록도로서, 도 5의 (a)는 포트홀 및 단면(6)의 깊이가 낮은 것을, 도 5의 (b)는 포트홀 및 단면(6)의 깊이가 큰 높은 것을 나타낸 것이다.
도 5 및 도 6을 참조하는 바와 같이, 본 발명에 따른 포트홀 및 단면의 보수 방법은, 접착제층 형성 단계(S10), 골재층 형성 단계(S20,S30), 양생 단계(S40) 및 도포 단계(S50)로 이루어진다.
상기 접착제층 형성 단계(S10)는, 아스팔트 도로면(1)의 포트홀 또는 콘크리트 도로면(1)의 단면 보수면에 접착제 기능을 가진 에폭시 프라이머를 도포하여 에폭시(31) 프라이머층을 형성하는 공정이다.
상기 골재층 형성 단계(S20, S30)는, 상기 에폭시(31) 프라이머층 상에 골재(41, 42), 입경이 13 ~ 265㎛의 입자가 분산되고 겉보기비중이 0.03~0.1의 초저비중 실리카파우더 및 에폭시를 각각 혼합한 혼합물을 미장한 다음 바이브레이터 등의 다지기 장치를 이용하여 표면에 진동을 가하여 다지기함으로써 골재(41,42)와 골재(41,42)) 사이에 초저비중 실리카파우더-에폭시 혼합물(10)이 밀착되어 충진되게 하는 공정이다.
여기서 상기 골재층 형성 단계는, 포트홀 및 단면(6)의 깊이에 따라 제1골재층 형성 단계(S20) 및 제2골재층 형성 단계(S30)로 세분화될 수 있다. 즉, 포트홀 및 단면(6)의 깊이가 낮은 경우 비교적 골재 입도가 작은 제2골재(42)만 적용하고, 반대로 포트홀 및 단면(6)의 깊이가 높은 경우, 비교적 골재 입도가 큰 제1골재(41)를 적용한 다음, 그 위에 제2골재(42)를 적용할 수 있다.
상기 제1골재층 형성 단계(S20)는 상기 제2골재층 형성 단계(S30)의 제2골재(42)보다 상대적으로 입도가 큰 제1골재(41)와 에폭시 및 초저비중 실리카파우더를 각각 순서대로 10 : 1.5 : 0.2 ~ 3 부피비의 비율로 혼합한 혼합물을 미장한 다음 다지기 한 후, 연이어 제1골재(41)보다 상대적으로 입도가 작은 제2골재, 에폭시 및 초저비중 실리카파우더를 각각 순서대로 10 : 1.5 : 0.2 ~ 3 부피비의 비율로 혼합한 혼합물을 미장한 다음 다지기 한 것으로, 이 경우 골재 입도가 큰 제1골재 혼합층 위에 골재 입도가 작은 제2골재 혼합층이 순서대로 적층될 수 있다.
제1골재 및 제2골재의 혼합비율이 10보다 크거나 초저비중 실리카파우더의 혼합비율이 3보다 클 경우 골재들 간의 결집력이 약화되어 보수층의 내구성을 저하시킬 수 있고, 반대로 제1골재 및 제2골재의 혼합비율이 10보다 작거나 초저비중 실리카파우더의 혼합비율이 0.2보다 작은 경우 혼합물 보수층의 지지력이 약화되어 보수층이 도로면(1)의 높이보다 낮아져서 도로면(1)과 보수면 간 단층을 형성할 수 있으므로 바람직하지 않다.
또한, 초저비중 실리카파우더의 혼합비율이 3보다 크고 에폭시 혼합비율이 1.5보다 작으면 점성이 약화될 뿐 아니라 골재와의 균일한 배합이 어렵고, 반대로 초저비중 실리카파우더의 혼합비율이 0.2보다 작고 에폭시 혼합비율이 1.5보다 크면 에폭시 초저비중 실리카파우더 혼합물(10)의 유동성이 증가하여 골재(41)(42)들 사이로 흘러내려서 골재(41)(42)들의 결집력이 약화되기 때문에 바람직하지 않다.
이와 같이 제1골재(41)층과 제2골재(42)층으로 양분하는 경우, 상대적으로 입도가 큰 제1골재(41)가 기초를 형성하고, 그 위에 제2골재(42) 혼합물을 미장하면 제1골재(41) 사이의 큰 틈으로 제2골재(42)가 들어가서 제1골재(41)와 제2골재(42) 경계면 사이의 틈을 최소화할 수 있게 되어 제1골재(41) 보수층의 기초를 튼튼하게 유지할 뿐 아니라 보수면 상면에 입도가 작은 제2골재(42)가 노출되므로 표면의 평탄화 작업이 용이하다.
이러한 최적의 조건을 형성하기 위해, 상기 제1골재(21)의 입도는 하기 표 3와 같이 체지름 20mm 통과율이 100%이고 체지름 13mm 통과율이 82%이고 체지름 10mm 통과율이 10%이고 체지름 5mm 통과율이 0%인 것으로, 이에 따라 바람직하게는 입경이 10 ~ 15mm인 것을 선택 적용할 수 있다.(표 3의 결과치는 한국화학시험연구원(KTR)의 시험 결과치임).
시험결과
시험항목 단위 시료구분 결과치 시험방법
체가름(통과율) : 20mm % - 100 KS F 2502 : 2014
체가름(통과율) : 13mm % - 82 KS F 2502 : 2014
체가름(통과율) : 10mm % - 10 KS F 2502 : 2014
체가름(통과율) : 5mm % - 0 KS F 2502 : 2014
체가름(통과율) : 2.5mm % - 0 KS F 2502 : 2014
체가름(통과율) : 1.2mm % - 0 KS F 2502 : 2014
또한, 상기 제2골재(22)의 입도는 하기 표 4와 같이 체지름 13mm 통과율이 100%이고 체지름 10mm 통과율이 99%이고 체지름 2.5mm 통과율이 10%이고 체지름 1.2mm 통과율이 6%인 입도인 것으로, 이에 따라 바람직하게는 입경이 3 ~ 10mm인 것을 선택 적용할 수 있다.(표 4의 결과치는 한국화학시험연구원(KTR)의 시험 결과치임).
시험결과
시험항목 단위 시료구분 결과치 시험방법
체가름(통과율) : 20mm % - 100 KS F 2502 : 2014
체가름(통과율) : 13mm % - 100 KS F 2502 : 2014
체가름(통과율) : 10mm % - 99 KS F 2502 : 2014
체가름(통과율) : 5mm % - 71 KS F 2502 : 2014
체가름(통과율) : 2.5mm % - 10 KS F 2502 : 2014
체가름(통과율) : 1.2mm % - 6 KS F 2502 : 2014
만약, 깊이가 1cm 전후의 얇은 깊이의 포트홀 및 단면(6)을 보수하기 위해서는 제1골재(41)를 생략하고, 제2골재(42) 만으로 보수할 수 있다.
상기 양생 단계(S40)는 상기 제1골재(21)들 사이 및 제2골재(22)들 사이에 충진된 에폭시-초저비중 실리카파우더 혼합물(10)을 경화시켜서 골재들을 결집시키는 공정이다.
상기 도포 단계(S50)는 상기 골재, 에폭시 및 초저비중 실리카파우더 혼합물 층의 최상면에 액상 우레탄과 입경이 13 ~ 265㎛의 입자가 분산되고 겉보기비중이 0.03~0.1의 초저비중 실리카파우더가 10 : 0.5 ~ 2(부피비)의 비율로 혼합된 혼합물을 도포하여 초저비중 실리카파우더-우레탄 혼합층(50)을 형성하는 공정으로, 상기 우레탄의 특성상 마찰계수가 크고 완충성을 가지고 있기 때문에 도로면(1)에 최종 포장시 차량의 미끄러짐을 방지할 수 있는 동시에 타이어로 인해 가해지는 충격을 흡수하여 보수층의 내구성을 더욱 향상시킬 수 있다.
도포 단계(S50) 공정에서, 즉 초저비중 실리카파우더와 액상 우레탄을 혼합하는 과정에서 초저비중 실리카파우더가 0.5보다 적게 혼합되면 에멀젼 형태가 아닌, 순수 액상 형태가 되어 흘러내리기 쉽고, 반대로 2보다 많이 혼합되면 퍼티형으로 되어 롤러나 붓으로 도포하기에 적합하지 않다.
상술한 설명은 본 발명의 기술 사상을 보인 한정된 실시 예에 따라 설명하였으나, 본 발명은 특정의 실시 예나 재질, 수치에 한정되지 아니하며, 실시 예들의 구성요소 일부를 변경, 혼합하는 등, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능하고, 그러한 변형 실시는 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.

Claims (7)

  1. 도로면의 파손부에 주입되는 보수재로서,
    에폭시와 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더가 각각 1.5 : 0.2 ~ 3 부피비로 혼합된 에폭시-실리카파우더 혼합물을 특징으로 하는 도로면 파손부 보수재.
  2. 청구항 1에 있어서,
    상기 보수재는, 상기 에폭시-실리카파우더 혼합물에 대하여 입경이 1 ~ 3mm의 실리카샌드, 입경이 3 ~ 10mm의 골재, 입경이 10 ~ 15mm의 골재로 이루어진 군에서 선택된 1종이 더 혼합된 것을 특징으로 하는 도로면 파손부 보수재.
  3. 도로면의 파손부 보수방법으로서,
    상기 파손부는 헤어라인 파손부이고,
    상기 헤어라인 파손부에 에폭시와 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 1.5 : 0.2 ~ 3 부피비로 혼합된 에폭시-실리카파우더 혼합물을 주입하는 것을 특징으로 하는 도로면의 파손부 보수방법.
  4. 도로면의 파손부 보수방법으로서,
    상기 파손부는 죠인트 파손부이고,
    상기 죠인트 파손부에 입경이 1 ~ 3mm의 실리카샌드, 에폭시 및 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 6 : 1.5 : 0.2 ~ 3 부피비로 혼합된 에폭시 몰탈을 주입하는 것을 특징으로 하는 도로면의 파손부 보수방법.
  5. 도로면의 파손부 보수방법으로서,
    상기 파손부는 크렉 파손부이고,
    상기 크렉 파손부를 따라 소정 간격으로 천공 홀을 형성하고,
    상기 크렉 파손부를 따라 아이커팅으로 하여 상기 천공 홀을 상호 연결하며,
    상기 천공 홀에 에폭시를 흘려보낸 후 입경이 1 ~ 3mm의 실리카샌드, 에폭시 및 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 6 : 1.5 : 0.2 ~ 3 부피비로 혼합된 에폭시 몰탈을 주입하며,
    상기 아이커팅 부분에 에폭시를 흘려보낸 후 에폭시와 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 1.5 : 0.2 ~ 3 부피비로 혼합된 에폭시-실리카파우더 혼합물을 주입하는 것을 특징으로 하는 도로면의 파손부 보수방법.
  6. 도로면의 파손부 보수방법으로서,
    상기 파손부는 아스팔트 도로의 포트홀 또는 콘크리트 도로의 단면이고,
    상기 포트홀 또는 단면에 에폭시 프라이머를 도포하여 에폭시층을 형성하는 단계와,
    상기 에폭시층 상에 입경이 3 ~ 10mm의 골재, 에폭시 및 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 10 : 1.5 : 0.2 ~ 3 부피비로 혼합된 혼합물을 미장하는 단계와,
    상기 골재, 에폭시 및 실리카파우더 혼합물 상에 우레탄과 입경이 13 ~ 265㎛이고 겉보기비중이 0.03~0.06의 실리카파우더가 10 : 0.5 ~ 2 부피비로 혼합된 혼합물을 도포하는 단계를 포함하는 것을 특징으로 하는 도로면의 파손부 보수방법.
  7. 도로면의 파손부 보수방법으로서,
    상기 파손부는 아스팔트 도로의 포트홀 또는 콘크리트 도로의 단면이고,
    상기 포트홀 또는 단면에 에폭시 프라이머를 도포하여 에폭시층을 형성하는 단계와,
    상기 에폭시층 상에 입경이 10 ~ 15mm의 제1골재, 에폭시 및 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 10 : 1.5 : 0.2 ~ 3 부피비로 혼합된 혼합물을 미장하는 단계와,
    상기 제1골재, 에폭시 및 실리카파우더 혼합물 상에 입경이 3 ~ 10mm의 제2골재, 에폭시 및 입경이 13 ~ 265㎛이고 겉보기비중이 0.03 ~ 0.06의 실리카파우더를 각각 10 : 1.5 : 0.2 ~ 3 부피비로 혼합된 혼합물을 미장하는 단계와,
    상기 제2골재, 에폭시 및 실리카파우더 혼합물 상에 우레탄과 입경이 13 ~ 265㎛이고 겉보기비중이 0.03~0.06의 실리카파우더가 10 : 0.5 ~ 2 부피비로 혼합된 혼합물을 도포하는 단계를 포함하는 것을 특징으로 하는 도로면의 파손부 보수방법.
PCT/KR2017/010123 2016-11-29 2017-09-15 도로면의 파손부 보수재 및 보수방법 WO2018101586A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0160219 2016-11-29
KR1020160160219A KR101804795B1 (ko) 2016-11-29 2016-11-29 도로면의 파손부 보수재 및 보수방법

Publications (1)

Publication Number Publication Date
WO2018101586A1 true WO2018101586A1 (ko) 2018-06-07

Family

ID=60919925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010123 WO2018101586A1 (ko) 2016-11-29 2017-09-15 도로면의 파손부 보수재 및 보수방법

Country Status (2)

Country Link
KR (1) KR101804795B1 (ko)
WO (1) WO2018101586A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087387B1 (ko) * 2019-10-25 2020-03-10 (주)화인코왁 아스팔트 포장도로의 종균열 또는 포트홀 보수공법
KR102416515B1 (ko) 2022-05-03 2022-07-06 주식회사 다현산업 순환 경량골재를 이용한 도로의 긴급보수용 개질 아스팔트계 친환경 보수재 조성물 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020509A (ja) * 2000-07-10 2002-01-23 Nippon Shokubai Co Ltd コンクリート構造物の補強用樹脂組成物および補強方法
KR101160540B1 (ko) * 2012-03-30 2012-06-27 박혜정 아스팔트 도로용 보수재 및 이를 이용한 도로보수방법
KR20130063802A (ko) * 2011-12-07 2013-06-17 흥진산업(주) 도로 보수용 조성물 및 그를 이용한 도로 보수 방법
KR101522505B1 (ko) * 2014-09-29 2015-05-21 로드켐 주식회사 콘크리트, 아스팔트 도로의 크랙 보수 및 전면 미장도포방법
KR101623150B1 (ko) * 2015-12-16 2016-05-20 (주)코메스코리아 내산성 및 내알칼리성 친환경 보수용 몰탈 조성물

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323022B1 (ko) 2013-06-28 2013-10-29 로드켐 주식회사 콘크리트 도로용 신축줄눈 파손부의 보수방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020509A (ja) * 2000-07-10 2002-01-23 Nippon Shokubai Co Ltd コンクリート構造物の補強用樹脂組成物および補強方法
KR20130063802A (ko) * 2011-12-07 2013-06-17 흥진산업(주) 도로 보수용 조성물 및 그를 이용한 도로 보수 방법
KR101160540B1 (ko) * 2012-03-30 2012-06-27 박혜정 아스팔트 도로용 보수재 및 이를 이용한 도로보수방법
KR101522505B1 (ko) * 2014-09-29 2015-05-21 로드켐 주식회사 콘크리트, 아스팔트 도로의 크랙 보수 및 전면 미장도포방법
KR101623150B1 (ko) * 2015-12-16 2016-05-20 (주)코메스코리아 내산성 및 내알칼리성 친환경 보수용 몰탈 조성물

Also Published As

Publication number Publication date
KR101804795B1 (ko) 2017-12-08

Similar Documents

Publication Publication Date Title
AU710811B2 (en) Method for constructing block pavement
WO2016052927A1 (ko) 콘크리트, 아스팔트 도로의 크랙 보수 및 전면 미장도포방법
WO2014209000A1 (ko) 콘크리트 도로용 신축줄눈 파손부의 보수방법
CN103145396B (zh) 一种水泥混凝土路面多功能快速修补材料及其制备方法
WO2015105362A1 (ko) 포장도로의 보수방법
WO2013147370A1 (ko) 아스팔트 도로용 보수재 및 이를 이용한 도로보수방법
CN104652212B (zh) 一种旧水泥混凝土路面的提升改造方法
WO2022151677A1 (zh) 一种民航不停航施工破损道面板快速整体换板施工工艺
CN104131512A (zh) 水泥混凝土桥面热喷聚合物改性沥青防水粘结层铺装结构及施工方法
WO2018101586A1 (ko) 도로면의 파손부 보수재 및 보수방법
CN104911973A (zh) 一种植石式层间处治方法及该方法铺筑的复合路面
KR100875211B1 (ko) 건식 숏크리트를 이용한 도로시설물의 보수공법
CN112281572A (zh) 一种应力吸收层沥青路面的施工方法
CN108277908B (zh) 节能环保型cl墙体工程施工方法
CN110904763A (zh) 一种沥青道路加固处治方法
CH699210A2 (it) Conglomerato bituminoso da posare a caldo.
KR101028144B1 (ko) 교량 표면 방수 공법
CN111021186A (zh) 一种混凝土路面板大间距接缝修补方法
CN103233405A (zh) 一种新旧沥青路面联结层及其应用
KR20130078996A (ko) 보강섬유 및 이를 이용한 섬유보강 아스팔트 혼합물
KR20200117102A (ko) 단면보수용 시멘트 조성물 및 이를 이용한 시공방법
KR102207040B1 (ko) Ldpe를 포함하는 불투수성 방수아스팔트 콘크리트 조성물 및 이의 시공방법
KR100337443B1 (ko) 도막과 시트의 복합 방수재와 그 방수재를 이용한 방수방법
KR100490364B1 (ko) 투수성 도로포장방법 및 도로포장재
EP1489057A1 (en) Concrete for paving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17875852

Country of ref document: EP

Kind code of ref document: A1