WO2018101413A1 - 心電波形表示方法及び心電図解析装置 - Google Patents

心電波形表示方法及び心電図解析装置 Download PDF

Info

Publication number
WO2018101413A1
WO2018101413A1 PCT/JP2017/043079 JP2017043079W WO2018101413A1 WO 2018101413 A1 WO2018101413 A1 WO 2018101413A1 JP 2017043079 W JP2017043079 W JP 2017043079W WO 2018101413 A1 WO2018101413 A1 WO 2018101413A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
electrocardiogram
candidate
analysis unit
screen
Prior art date
Application number
PCT/JP2017/043079
Other languages
English (en)
French (fr)
Inventor
洋介 嶋井
博則 打田
佐藤 健一
Original Assignee
フクダ電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクダ電子株式会社 filed Critical フクダ電子株式会社
Priority to US16/465,202 priority Critical patent/US20200000354A1/en
Priority to EP17875368.7A priority patent/EP3549521A4/en
Priority to RU2019113456A priority patent/RU2748821C2/ru
Priority to CN201780073688.8A priority patent/CN110022765B/zh
Priority to JP2018554249A priority patent/JP7018401B2/ja
Publication of WO2018101413A1 publication Critical patent/WO2018101413A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7435Displaying user selection data, e.g. icons in a graphical user interface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/333Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records

Definitions

  • the present invention relates to an electrocardiogram waveform display method and an electrocardiogram analyzer.
  • an electrocardiogram is widely used as a diagnostic index of heart disease.
  • An electrocardiogram is an electrical activity of the heart detected on the body surface and represented as an electrocardiogram. By analyzing this electrocardiogram (electrocardiogram), various information on heart activity can be obtained.
  • an electrocardiogram analysis apparatus capable of automatically analyzing such electrocardiograms
  • a medical worker first mounts an electrode on a subject, and then the electrocardiogram analysis apparatus collects an electrocardiogram waveform, and then the electrocardiogram analysis apparatus collects the heart. It automatically analyzes the radio wave form.
  • the first method of performing analysis while collecting the electrocardiogram waveform in real time, and the analysis target from the temporarily stored electrocardiogram waveform data There is a second method of selecting an ECG waveform of good).
  • the user when the user operates the electrocardiograph, waveform collection is started and the collection is stopped according to the setting.
  • the user arbitrarily selects a waveform area to be recorded from the waveform data collected by the apparatus.
  • noise from the examination environment or the subject during the recording (that is, analysis) of the electrocardiogram waveform may occur, or electrode detachment or contact failure may occur. There is. In such a case, it is necessary to repeat re-recording of the electrocardiogram waveform many times until a waveform without noise mixing is recorded.
  • the second method has a drawback that it takes time and effort to find a waveform section suitable for recording.
  • the waveform section suitable for recording is a section in which noise is not mixed, is a section measured with the electrodes attached correctly, and when an abnormal waveform such as arrhythmia is included, This is a section in which an abnormal waveform occurs, and therefore, the user also needs to be able to appropriately determine such a section.
  • the user has to perform an operation to cause the apparatus to execute the analysis and storage of the waveform, and the operation by the user has increased. Therefore, the second method is complicated in operation, and has a high threshold for users who are infrequently used.
  • the present invention has been made in consideration of the above points, and provides an electrocardiogram display method and an electrocardiogram analyzer which can perform an appropriate electrocardiogram examination with easy operation.
  • An electrocardiogram waveform display method used in an electrocardiogram analyzer comprising: An analysis unit interval extraction step of extracting an electrocardiogram waveform of a plurality of analysis unit intervals from the acquired electrocardiogram waveform; Displaying the electrocardiographic waveforms of the plurality of analysis unit sections extracted in the analysis unit section extraction step in one screen; including.
  • One aspect of the electrocardiogram analysis device of the present invention is An analysis unit waveform extraction unit that extracts an electrocardiogram waveform of a plurality of analysis unit sections from the acquired electrocardiogram waveform; A display unit for displaying the electrocardiographic waveforms of the plurality of analysis unit sections extracted by the analysis unit waveform extraction unit in one screen; Equipped with
  • an appropriate electrocardiogram test can be performed with easy operation.
  • the perspective view which shows the external appearance structure of the electrocardiograph of embodiment Block diagram showing the main components of the electrocardiograph Figure showing the initial screen of the 12-lead examination Figure showing the screen when collecting electrocardiograms Diagram showing candidate list screen Diagram showing analysis result screen Figure showing a screen with a window popping up for screen switching Diagram showing the recording waveform screen
  • Diagram for explaining the method of extracting a candidate section including an arrhythmia waveform
  • Diagram for explaining the method of extracting candidate intervals in the case where the location where arrhythmia is occurring is smaller than the number of candidate intervals to be extracted Diagram for explaining the method of extracting candidate sections when the collection waveform data is insufficient for the candidate sections to be extracted
  • Diagram for explaining the method of extracting candidate sections when the collection waveform data is insufficient for the candidate sections to be extracted Figure showing a screen with a simple window displaying the analysis results
  • Figure showing a screen with a simple window displaying the analysis results A diagram showing an example of an electrocardiographic waveform extraction position in each section in the case of collectively moving the electrocardiogram waveform Diagram used to explain batch movement of electrocardiographic waveforms Diagram used to explain batch movement of electrocardiographic waveforms Diagram used to explain batch movement of electrocardiographic waveforms Diagram used to explain batch movement of electrocardiographic waveforms
  • FIG. 1 is a perspective view showing an exterior configuration of an electrocardiograph of the present embodiment.
  • the electrocardiograph 100 is configured of a main body 110 and a display 120.
  • the main body unit 110 is provided with an input key 104 and a printer unit 105.
  • the display unit 120 is provided with a touch panel 121.
  • the size of the touch panel 121 is 15 inches.
  • the 15-inch size roughly corresponds to the A4 paper size.
  • an electrocardiogram waveform having the same layout and size as those recorded on A4 size paper can be viewed on the touch panel 121.
  • FIG. 2 is a block diagram showing an essential configuration of the electrocardiograph 100.
  • the main body unit 110 includes an arithmetic operation unit 101, a measurement unit 102, a storage unit 103, an input key 104, a printer unit 105, and a display / print control unit 106.
  • the calculation unit 101 is configured by a CPU (Central Processing Unit) or the like, and executes an electrocardiogram data processing program to perform formation of an electrocardiogram waveform, analysis of the electrocardiogram waveform, and the like. In addition, the calculation unit 101 starts execution of the electrocardiogram data processing program, sets execution conditions and execution conditions (such as threshold values), controls various measurement devices such as the measurement unit 102, and controls various peripheral devices such as the touch panel 121 and the printer unit 105. Perform according to the input command.
  • a CPU Central Processing Unit
  • the measurement unit 102 is connected to an electrode unit attached to a subject (that is, a subject of electrocardiographic measurement), performs amplification processing and the like on a measurement voltage input from the electrode unit, and performs measurement after processing
  • the voltage is output to operation unit 101.
  • the limb electrode portion and the chest electrode portion are usually connected to the measuring portion 102, and a voltage necessary for obtaining a 12-lead electrocardiogram is input.
  • the storage unit 103 is configured of a hard disk drive, a semiconductor memory, and the like.
  • the storage unit 103 stores the data of the electrocardiogram waveform obtained by the calculation unit 101 and the analysis data thereof.
  • the storage unit 103 also stores measurement data output from the measurement unit 102.
  • the storage unit 103 further stores setting data of the electrocardiograph 100 input by the user from the touch panel 121 or the input key 104.
  • the electrocardiograph 100 operates based on the setting data stored in the storage unit 103.
  • a menu screen and various setting screens are displayed on the touch panel 121, and the user can perform menu selection and various settings by touch-operating the touch panel 121. Further, on the touch panel 121, the electrocardiogram waveform obtained by the calculation unit 101, the analysis result, and the like are displayed.
  • the printer unit 105 is a laser printer, a thermal head printer, or the like, and prints the electrocardiogram waveform and the analysis result obtained by the calculation unit 101 according to an instruction from the user.
  • the display / print control unit 106 controls the layout of the electrocardiogram waveform displayed on the screen of the touch panel 121 and printed on a recording sheet by the printer unit 105. Display control of the electrocardiogram waveform and the analysis result in the present embodiment is mainly performed by the display / print control unit 106.
  • an initial screen of a 12-lead test as shown in FIG. 3 is displayed on the touch panel 121 first.
  • collection of an electrocardiogram waveform is started, and an electrocardiogram waveform as shown in FIG. 4 is displayed on the touch panel 121.
  • the acquisition time of the electrocardiogram waveform can be set, for example, in 30 seconds to 10 minutes (in 1 second steps).
  • This collection time is a waiting time until the completion of collection, and if the collection time is set long, a large amount of ECG waveform data can be collected, so improvement in examination accuracy can be expected, but the waiting time will be long.
  • the collection time will be set while taking into account the
  • the electrocardiograph 100 of this embodiment automatically extracts candidate waveforms, analyzes the waveforms, and displays candidate waveforms. Specifically, since the collected waveform is stored in the storage unit 103, the operation unit 101 extracts waveforms of a plurality of candidate sections suitable for analysis from the collected waveform, and extracts the plurality of extracted sections. Analyze the waveform of the candidate section of Further, the waveforms of the plurality of extracted candidate sections are displayed on the touch panel 121.
  • the candidate section means an analysis unit section.
  • the candidate section since the user can make various selections in units of the analysis unit section, it is called a candidate section.
  • the waveform extraction processing of a plurality of candidate sections by the calculation unit 101 will be described in detail later.
  • FIG. 5 shows an example of a candidate list screen displayed on the touch panel 121.
  • the waveform display area is divided into four, and four candidate sections of first to fourth candidates are displayed. Specifically, the first candidate is displayed at the upper left, the second candidate at the upper right, the third candidate at the lower left, and the fourth candidate at the lower right.
  • the user since the electrocardiogram waveforms of a plurality of candidate sections are displayed in one screen, the user compares a plurality of candidate sections in one screen, and records from among a plurality of candidate sections. It becomes possible to easily select the electrocardiogram waveform of the section to be done.
  • the arrangement order of candidate section waveforms from the first candidate to the fourth candidate is in the order of the highest degree of severity in the analysis findings. This allows the user to view the waveforms in descending order of severity. By the way, if the degree of severity is the same, it will be arranged in chronological order and in ascending order. However, the arrangement order is not limited to this, and may be arranged in chronological order, for example, regardless of the degree of severity.
  • one of the candidate section waveforms is surrounded by a selection frame W1.
  • the display position of the selection frame W1 can be selected by the user touching any one of the display areas where the candidate section waveforms of the first to fourth candidates are displayed with a finger.
  • the waveform display area of the first candidate is surrounded by the selection frame W1, but when the waveform display area of the second candidate is touched, for example, the waveform display area of the second candidate is the selection frame W1. It is surrounded.
  • the selection is made by touching with a finger, but of course, instead of the touch, the pointer is moved to the touch position and the mouse is clicked. The same selection can be made.
  • FIG. 6 shows an example of a transition destination analysis result screen.
  • the analysis result screen includes a finding A1, a finding commentary A2, a measurement value A3, and the like.
  • the candidate list screen of FIG. 5 is displayed again on the touch panel. Thereby, the user can reselect the candidate waveform on the screen of FIG.
  • This recording waveform screen is a screen for displaying a waveform obtained by returning the waveform surrounded by the selection frame W1 of FIG. 5 to the original recording size.
  • the electrocardiograph 100 shifts to processing for storing the analysis result and waveform data of the currently selected candidate section in the storage unit 103.
  • the electrocardiograph 100 shifts to processing for printing the analysis result of the currently selected candidate section by the printer unit 105.
  • the user may touch, for example, the button "To examination” B7 in the analysis result screen of FIG. 6, or touch the button "back” B8 on the candidate list screen of FIG. .
  • the initial screen shown in FIG. 3 is displayed on the touch panel.
  • the display format of the electrocardiogram waveform in the candidate list screen can be changed. Specifically, the candidate list screen is sequentially changed as shown in FIGS. 9A to 9D in accordance with the number of times the user touches the button B10 of “Select Screen” on the candidate list screen shown in FIG.
  • a 12 channel lead electrocardiogram of 6 channels ⁇ 2 and a rhythm waveform of 1 channel are displayed in each candidate area (that is, one area which can be surrounded by the selection frame W1). More specifically, in the candidate list screen of FIG. 9A, in each candidate area, the electrocardiogram waveform is displayed in a continuous mode or a coherent mode.
  • the limb lead waveforms I, II, III, aVR, aVL, aVF are disposed on the left side, and chest lead waveforms V1, V2, V3, V4, V5, V6 are arranged on the right.
  • the continuous method among the 10-second electrocardiographic waveforms, the first 0-5 second limb-lead waveform is displayed on the left, and the second-half 5-second chest lead waveform is displayed on the right.
  • the coherent method among the 10-second waveforms, the first 0-5 second limb lead waveform is displayed on the left, and the first 0-5 second chest lead waveform is displayed on the right.
  • this continuous mode and the coherent mode it is possible to collectively display 12-lead waveforms in one screen so that the user can easily diagnose without reducing the waveform amplitude as much as possible in one screen of a limited size. It is an arrangement of shapes, and is a display method widely used conventionally.
  • the candidate list screen of FIG. 9C six channels of 12-lead electrocardiograms and one channel of rhythm waveform are displayed in each candidate area. More specifically, in the candidate list screen of FIG. 9C, in each candidate region, the limb induction waveforms I, II, III, aVR, aVL, aVF of the 12 lead electrocardiographic waveforms are continuously (or coherent) That is, the entire waveform within a predetermined period (for example, 10 seconds) is displayed without reducing the waveform of the partial section reduced in 2.).
  • a predetermined period for example, 10 seconds
  • V4, V5, and V6 are all arranged vertically by reducing the sensitivity (waveform amplitude) direction, and without reducing the waveform of a partial section reduced by the continuous method (or coherent method), that is, within a predetermined period
  • the entire waveform (for example, 10 seconds) is displayed.
  • the extraction method of the present embodiment for extracting the waveform of the candidate section from the acquisition waveform temporarily stored in the storage unit 103 will be described.
  • the collection time is 60 seconds
  • one candidate interval is 10 seconds
  • four candidate intervals are extracted.
  • the collection time can be set in, for example, 30 seconds to 10 minutes (in 1 second increments)
  • the section length of the candidate section can be set in, for example, 8 to 24 seconds.
  • the number of sections is not limited to four.
  • the calculation unit 101 functions as a candidate waveform extraction unit that extracts an electrocardiogram waveform of a plurality of candidate sections from the collected electrocardiogram waveform.
  • FIG. 10 is a diagram for describing a method for extracting an electrocardiogram waveform of a candidate section excluding noise sections.
  • the waveform at the top of the figure shows the 60-second acquisition waveform temporarily stored in the storage unit 103.
  • the second row shows that the collected waveform is divided every 10 seconds to form four candidate sections, and the third row shows that candidate segments are extracted excluding the noise section according to the present embodiment.
  • FIG. 10 is a diagram for describing a method for extracting an electrocardiogram waveform of a candidate section excluding noise sections.
  • the waveform at the top of the figure shows the 60-second acquisition waveform temporarily stored in the storage unit 103.
  • the second row shows that the collected waveform is divided every 10 seconds to form four candidate sections
  • the third row shows that candidate segments are extracted excluding the noise section according to the present embodiment.
  • noise is included in the second, third, and fourth candidate sections.
  • the analysis result is greatly affected by noise, so it becomes impossible to obtain an analysis result in which the electrocardiogram waveform is correctly reflected .
  • the noise section by excluding the noise section and extracting the candidate sections, it is possible to obtain an analysis result in which the influence of the noise is small and the electrocardiogram waveform is correctly reflected for all the candidate sections. It has become.
  • a section in which an extremely high frequency waveform appears with respect to the assumed electrocardiogram waveform for example, alternating current, myoelectricity, drift A section where it occurs or a section where an extremely low frequency waveform appears (for example, a section where noise due to electrode detachment or contact failure is generated) is detected as a noise section, and this noise section is excluded to be a candidate Extract the ECG waveform of the section.
  • the noise detection method is not limited to this, and it is sufficient to detect a waveform different from the human electrocardiogram waveform that is supposed to be as noise.
  • the electrocardiographic waveforms of the four candidate sections of the candidates 1 to 4 indicated by hatching are analyzed by the operation unit 101 as the electrocardiographic waveforms displayed on the candidate list screen (FIG. 5), and It is extracted as a subject's electrocardiogram.
  • FIG. 11 is a diagram for describing a method of extracting a candidate section in which the arrhythmia waveform is included.
  • the arithmetic operation unit 101 detects the position where the arrhythmia is occurring, and the electrocardiographic waveforms of the four candidate sections of the candidates 1 to 4 indicated by hatching, centering on the position, are candidates
  • the electrocardiographic waveform displayed on the list screen (FIG. 5) and the electrocardiographic waveform to be analyzed are extracted.
  • a candidate section including the arrhythmia waveform as a candidate section to be displayed and analyzed it is possible to perform display and analysis suitable for an electrocardiogram test.
  • the arrhythmia waveform is preferably disposed at the center of the candidate section. This is because if there is a waveform before and after the arrhythmia waveform, it is possible to confirm whether the arrhythmia has suddenly occurred or whether there is a sign, while looking at the waveforms before and after the arrhythmia waveform.
  • the position of the candidate sections is in the direction in which the waveform data exists.
  • the extraction may be performed by shifting the position of one of the candidate sections in a direction that does not overlap.
  • the candidate segment including the arrhythmia (the candidate 2 in the case of FIG.
  • the sections adjacent to each other in time may be extracted as candidate sections (in the case of the figure, candidate 1 and candidate 3).
  • the candidate 4 for example, an electrocardiogram waveform of an interval of 0 to 10 seconds where no arrhythmia occurs is extracted and added. May be displayed.
  • ⁇ 4-3> When the collected waveform data is insufficient If the collected waveform data is insufficient for the candidate segment to be extracted, the candidate segment is extracted so that the candidate segments overlap. Good.
  • the candidate 4 is extracted so as to overlap with the candidate 3.
  • candidates 1 to 4 are extracted so that all of the candidates 1 to 4 overlap by an equal length. If duplication is not permitted, only three candidates 1 to 3 may be extracted.
  • extraction of candidate sections is performed in the order of (i) exclusion of noise, (ii) duplication prohibition, and (iii) extraction centered on arrhythmia.
  • noise since noise can not obtain correct analysis results, priority is given to noise rejection.
  • duplication prohibition is prioritized over extraction based on arrhythmia.
  • FIG. 12 corresponds to this.
  • the collected waveform when there are arrhythmias in the collected waveform in the number of candidate intervals more than the number of candidate intervals to be extracted, it is preferable to extract in order from the intervals including the arrhythmia having higher severity.
  • the collected waveform includes six arrhythmias, and six arrhythmias have two severity levels (high) and two severity levels (medium), In the case of two severity (low), it is preferable to preferentially extract candidate segments including 4 high severity, ie, 2 high severity and 2 high severity (medium) arrhythmias.
  • the two types of arrhythmias of the high (high) severity are of the same type, either one of them is considered as a candidate section depending on the priority other than the severity, and two (middle) and one (low) severity are added.
  • the four candidate intervals may be extracted.
  • the analysis result button B1 on the candidate list screen of FIG. 5 when the user touches the analysis result button B1 on the candidate list screen of FIG. 5, the analysis result screen of the waveform surrounded by the selection frame W1 is displayed .
  • 16 and 17 show an example of the display.
  • the display area of the first candidate is surrounded by the selection frame W1 and the simple window W10 Is displayed, and the analysis result on the section waveform of the first candidate is displayed in the simple window W10.
  • the analysis result displayed in the simple window W10 is an analysis finding regarding the section waveform of the first candidate. Note that what is displayed in the simple window W10 may be other analysis results such as measured values and representative waveforms.
  • the analysis results displayed in the simple window W10 are in order of severity. Therefore, when the amount of analysis results is large, only the top analysis results with high severity are displayed in the simple window W10. The user may be able to set which analysis result is displayed in the simple window W10.
  • the simple window W10 is preferably translucent. By doing this, even if the simple window W10 is displayed in the area surrounded by the selection frame W1, the electrocardiographic waveform at the position of the simple window W10 can be seen through. Further, the simple window W10 does not have to be displayed in the selection frame W1.
  • the method for displaying the simple window W10 is not limited to when the touch panel 121 is long pressed, and for example, the pointer is moved into the display area of any of the first to fourth candidates and the mouse button is moved at that position.
  • the simple window W10 may be displayed by clicking or double clicking. In this case, the operation of closing the simple window W10 may also be performed by the mouse.
  • the display area of the second candidate is surrounded by the selection frame W1, and the simple window W10 is displayed.
  • An analysis result on the second candidate interval waveform is displayed in W10.
  • the simple analysis result can be displayed in the simple window W10 by the same operation.
  • the analysis result on the electrocardiogram waveform can be confirmed without switching the screen. become able to.
  • the test result can be confirmed with a small number of procedures, and the electrocardiogram waveform can be compared with the analysis result on the same screen.
  • the analysis result with respect to the electrocardiographic waveform of each candidate area is selectively displayed on the same screen as the screen on which the electrocardiographic waveform of several candidate areas was displayed.
  • the analysis results regarding the electrocardiographic waveforms of two or more candidate sections selected by the user may be displayed on the same screen.
  • the electrocardiographic waveforms of a plurality of candidate sections displayed on the candidate list screen are extracted by the calculation unit 101.
  • the electrocardiogram waveform of the candidate section is a waveform of a section determined to be appropriate for analysis by the calculation unit 101.
  • a waveform batch movement mode for extracting a section suitable for waveform confirmation and waveform comparison of an electrocardiogram waveform.
  • the arithmetic operation unit 101 as an electrocardiogram waveform extraction unit extracts candidates 1 to 4 as shown in FIG. 18, for example, when set to the waveform batch movement mode by the user operation.
  • an electrocardiographic waveform having a length of 10 minutes is collected in the storage unit 103, and candidates 1 to 4 of a section length of 10 seconds are extracted from the electrocardiographic waveform.
  • the intervals between the candidates 1 to 4 are equal, and in the example of FIG. 18, it is 2.5 minutes.
  • candidate 1 is an electrocardiogram waveform from 0 seconds to 10 seconds
  • candidate 2 is an electrocardiogram waveform from 2 minutes 30 seconds to 2 minutes 40 seconds
  • candidate 3 is a heart from 5 minutes to 5 minutes 10 seconds
  • the candidate 4 is an electrocardiogram waveform from 7 minutes and 30 seconds to 7 minutes and 40 seconds.
  • the head of adjacent sections of a plurality of sections is the time length obtained by dividing the time length of the acquired electrocardiographic waveform (10 minutes in the example of the figure) by the number of sections (4 in the example of the figure) (2.5 minutes in the example shown).
  • FIG. 19A shows a state in which the electrocardiographic waveforms of the candidates 1 to 4 in FIG. 18 are displayed on the touch panel 121.
  • the scroll bar S1 is moved in the right direction from the state shown in FIG. 19A to FIG. 19A ⁇ FIG. 19B ⁇ FIG. 19C ⁇ FIG. 19D, all of the electrocardiogram waveforms of the first to fourth candidates move the scroll bar S1. Move to the right according to the amount.
  • the arithmetic operation unit 101 or the display / print control unit 106 shifts the extraction positions of the first to fourth candidate electrocardiographic waveforms in the direction indicated by the arrow in FIG. 18 according to the movement of the scroll bar S1.
  • the scroll bar S1 is moved in the left direction
  • all the electrocardiogram waveforms of the first to fourth candidates move in the left direction according to the movement amount of the scroll bar S1.
  • the ECG waveforms of a plurality of sections are extracted from the collected ECG waveforms, and the ECG waveforms of the plurality of sections extracted are displayed in one screen.
  • the electrocardiographic waveform of each candidate segment can be collectively moved equally in the time direction according to the user operation It can be done.
  • the amount of movement in the substantial time direction with respect to the operation can be expanded, and the cardiac radio wave that the user can see for the operation You can increase the shape.
  • the electrocardiogram waveform for the operation is compared with the case where the candidate electrocardiogram waveforms are individually moved.
  • the amount of movement in the time direction can be quadrupled.
  • the collection time is long. That is, when the collection time length is long, it takes time to visually check all collected electrocardiogram waveforms.
  • the electrocardiographic waveforms of a plurality of sections are displayed on one screen, and they are collected collectively if they are collectively moved in the time direction according to one operation. The time required to confirm all of the electrocardiogram waveforms can be shortened.
  • an electrocardiogram acquired over a long period of time for example, 10 minutes
  • an electrocardiogram near the start of acquisition and an electrocardiogram near the end of acquisition etc.
  • the electrocardiogram waveform can be confirmed while comparing the electrocardiogram waveform in the vicinity of the start and in the vicinity of the end.
  • the extraction positions of the electrocardiogram waveforms of a plurality of sections are limited by an amount according to the user operation. , To shift equally in the time direction.
  • Such processing is effective in addition to waveform confirmation and waveform comparison of a long-term electrocardiogram waveform as in the embodiment.
  • sections including the same type of arrhythmia waveform are extracted as the plurality of sections collected, and they are displayed side by side in the vertical direction of the screen so that the centers of the arrhythmias coincide with each other vertically, a plurality of the same temporally different Arrhythmic waveforms of various types are displayed in the vertical direction, and they are collectively displayed in the time direction equally in response to the user operation.
  • the user can view and compare the states of changes in multiple arrhythmias on the screen.
  • the batch movement process of the electrocardiogram waveform of the present embodiment is widely effective when confirming the state of the change in the time direction of the electrocardiogram waveform at different points in time while comparing each other.
  • the electrocardiographic waveforms of a plurality of candidate sections are extracted from the collected electrocardiogram waveforms, and the electrocardiographic waveforms of the plurality of candidate sections extracted are displayed on one screen.
  • the user can view the analysis result of which candidate section while viewing the ECG waveforms of a plurality of candidate sections simultaneously without switching the screen many times, and which candidate section should be recorded.
  • it is possible to determine an appropriate electrocardiogram analysis with easy operation.
  • the electrocardiogram analyzer and the electrocardiogram waveform display method according to the present invention are executed by the electrocardiograph 100
  • the electrocardiogram analyzer and the electrocardiogram waveform display method according to the present invention can also be performed by other devices other than the electrocardiograph having the display unit.
  • each process of the electrocardiogram analysis apparatus and the electrocardiogram waveform display method according to the present invention can also be realized by a device having an operation unit and a display unit executing a program.
  • a program for realizing each process of an electrocardiogram analysis apparatus and an electrocardiogram waveform display method according to the present invention is recorded in a computer-readable recording medium such as a memory, a disc, a tape, a CD, a DVD, etc.
  • the processing of the above-described embodiment may be executed by the computer of the device having the unit and the display unit reading this program.
  • the present invention can be applied to, for example, an electrocardiograph having a function of automatically analyzing an electrocardiogram.

Abstract

収集された心電波形から複数の候補区間(解析単位区間)の心電波形が抽出され、抽出された複数の候補区間(解析単位区間)の心電波形が1画面中に表示される。これにより、ユーザは、画面を何度も切り替えることなしに、複数の候補区間(解析単位区間)の心電波形を同時に見ながらどの候補区間(解析単位区間)の解析結果を見るか、及び、どの候補区間を収録すべきか等を判断でき、この結果、容易な操作で適切な心電図解析を行うことができるようになる。

Description

心電波形表示方法及び心電図解析装置
 本発明は、心電波形表示方法及び心電図解析装置に関する。
 従来、心臓疾患の診断指標として、心電図が広く用いられている。心電図は、心臓の電気的な活動を体表面で検出し、それを心電波形として表したものである。この心電波形(心電図)を解析することで、心臓の活動に関する様々な情報を得ることができる。
 近年では、心電図をデータ化して記録するデジタル心電計の開発により、コンピュータを用いて心電図を自動解析することが可能となっている(例えば特許文献1参照)。
 このような心電図の自動解析が可能な心電図解析装置においては、先ず医療従事者が被検者に電極を装着し、次いで心電図解析装置が心電波形を収集し、次いで心電図解析装置が収集した心電波形を自動解析するようになっている。
 なお、本明細書では、解析候補の心電波形を一時的に保存することを「収集」と言い、解析した心電波形や解析結果を記録することを「収録」と呼ぶ。
 ここで、心電波形の収集及び解析には、リアルタイムで心電波形を収集しながら解析を行う第1の方式と、一時的に保存した心電波形データから解析対象(収録対象と言ってもよい)の心電波形を選択する第2の方式がある。
 上記第1の方式では、ユーザが心電計を操作することで波形の収集が開始され、設定に従って収集が停止される。上記第2の方式では、装置によって収集された波形データから、収録したい波形エリアをユーザが任意に選ぶようになっている。
日本国特開2006-116207号公報
 ところで、上記第1の方式では、心電波形の収録(つまり解析)中に検査環境や被検者からノイズ(交流、筋電、ドリフト)の混入があったり、電極外れや接触不良が起きることがある。このような場合には、ノイズが混入しない波形が収録されるまで、心電波形の再収録を何度も繰り返す必要がある。
 一方、上記第2の方式は、収録に適した波形区間を見つけるために時間と手間がかかる欠点があった。ここで、収録に適した波形区間とは、ノイズが混入していない区間であり、正しく電極が付いた状態で計測された区間であり、かつ、不整脈等の異常な波形が含まれる場合はその異常波形が発生している区間であり、よって、ユーザにはこのような区間を適切に判断できる知識も必要となる。さらに、ユーザは、収録に適した波形領域を決めた後も、装置に波形の解析及び保存を実行させるための操作を行う必要があり、ユーザによる操作が多くなってしまっていた。そのため、上記第2の方式は、操作が複雑であり、使用頻度の低いユーザには敷居が高い方式となってしまっている。
 本発明は、以上の点を考慮してなされたものであり、容易な操作で適切な心電図検査を行うことができる心電波形表示方法及び心電図解析装置を提供する。
 本発明の心電波形表示方法の一つの態様は、
 心電図解析装置に用いられる心電波形表示方法であって、
 収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位区間抽出ステップと、
 前記解析単位区間抽出ステップで抽出した複数の解析単位区間の心電波形を、1画面中に表示する表示ステップと、
 を含む。
 本発明の心電図解析装置の一つの態様は、
 収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位波形抽出部と、
 前記解析単位波形抽出部によって抽出された複数の解析単位区間の心電波形を1画面中に表示する表示部と、
 を具備する。
 本発明によれば、容易な操作で適切な心電図検査を行うことができる。
実施の形態の心電計の外観構成を示す斜視図 心電計の要部構成を示すブロック図 12誘導検査の初期画面を示す図 心電波形の収集時の画面を示す図 候補一覧画面を示す図 解析結果画面を示す図 画面切り替えを行うためのウィンドウがポップアップ表示された画面を示す図 記録波形画面を示す図 各候補内に6チャネル×2の12誘導心電図と1チャネルのリズム波形が表示された候補一覧画面を示す図 各候補領域内に6チャネル×2の12誘導心電図が表示された候補一覧画面を示す図 各候補領域内に6チャネルの12誘導心電図と1チャネルのリズム波形が表示された候補一覧画面を示す図 各候補領域内に12チャネルの12誘導心電図が表示された候補一覧画面を示す図 ノイズ区間を除外した候補区間を抽出する方法の説明に供する図 不整脈波形が含まれる候補区間を抽出する方法の説明に供する図 波形データ不足や候補区間の重複があった場合に、候補区間をシフトさせる例を示す図 不整脈が生じている箇所が抽出しようとする候補区間の数よりも少ない場合の候補区間の抽出方法の説明に供する図 抽出しようとする候補区間に対して収集波形データが不足している場合における候補区間の抽出方法の説明に供する図 抽出しようとする候補区間に対して収集波形データが不足している場合における候補区間の抽出方法の説明に供する図 解析結果を表示する簡易ウィンドウが表示された画面を示す図 解析結果を表示する簡易ウィンドウが表示された画面を示す図 心電波形を一括移動させる場合の各区間の心電波形の抽出位置の例を示す図 心電波形の一括移動の説明に供する図 心電波形の一括移動の説明に供する図 心電波形の一括移動の説明に供する図 心電波形の一括移動の説明に供する図
 以下、本発明の実施の形態を、図面を参照して説明する。
 <1>全体構成
 図1は、本実施の形態の心電計の外観構成を示す斜視図である。心電計100は、本体部110と、表示部120と、から構成されている。本体部110には、入力キー104やプリンタ部105が設けられている。表示部120にはタッチパネル121が設けられている。
 本実施の形態の場合、タッチパネル121のサイズは、15インチとなっている。15インチのサイズは、概ねA4の用紙サイズに相当する。これにより、本実施の形態の心電計100では、A4サイズの用紙に記録したのと同様のレイアウト及び大きさの心電波形を、タッチパネル121上で見ることができるようになる。
 図2は、心電計100の要部構成を示すブロック図である。本体部110は、演算部101、測定部102、記憶部103、入力キー104、プリンタ部105及び表示/印刷制御部106を有する。
 演算部101は、CPU(Central Processing Unit)などにより構成されており、心電図データ処理プログラムを実行することにより、心電波形の形成、及び、心電波形の解析などを行う。また、演算部101は、心電図データ処理プログラムの実行開始、実行停止及び実行条件(閾値など)設定、測定部102などの各種計測機器制御、タッチパネル121やプリンタ部105などの各種周辺機器制御を、入力コマンドに従って行う。
 測定部102は、被検者(つまり、心電図計測の対象者)に装着される電極部に接続されており、電極部から入力される測定電圧に対して増幅処理などを施し、処理後の測定電圧を演算部101に出力する。因みに、測定部102には、通常、四肢用電極部及び胸部用電極部が接続されており、12誘導心電図を得るために必要な電圧が入力される。
 記憶部103は、ハードディスクドライブや半導体メモリなどにより構成される。記憶部103は、演算部101により得られた心電波形のデータ及びその解析データを記憶する。また、記憶部103は、測定部102から出力される測定データも記憶しておく。
 さらに、記憶部103には、タッチパネル121又は入力キー104からユーザによって入力された、心電計100の設定データも記憶される。心電計100は、記憶部103に記憶された設定データに基づいて動作する。
 タッチパネル121には、メニュー画面や各種の設定画面が表示され、ユーザは、タッチパネル121をタッチ操作することで、メニューの選択や各種の設定を行うことができる。また、タッチパネル121には、演算部101により得られた心電波形及び解析結果などが表示される。
 プリンタ部105は、レーザ式やサーマルヘッド式などのプリンタであり、演算部101により得られた心電波形及び解析結果などを、ユーザによる指示に従って印刷する。
 表示/印刷制御部106は、タッチパネル121の画面に表示する、及び、プリンタ部105で記録用紙に印刷する、心電波形のレイアウトなどを制御する。本実施の形態における心電波形及び解析結果の表示制御は、主に、表示/印刷制御部106によって行われる。
 <2>検査の流れと、検査時の画面表示
 次に、本実施の形態の心電計100を用いた場合の心電図解析検査と、心電計100における画面表示について説明する。なお、本実施の形態では、心電図解析検査として、標準12誘導検査を行う場合について説明するが、本発明は標準12誘導検査以外の心電図解析検査に用いることもできる。
 心電図解析検査が開始されると、先ず、タッチパネル121には図3に示すような12誘導検査の初期画面が表示される。この状態で被検者に電極が装着されると、心電波形の収集が開始され、タッチパネル121には図4に示すような心電波形が表示される。ここで、心電波形の収集時間は、例えば30秒~10分(1秒刻み)で設定可能となっている。この収集時間が収集完了までの待ち時間となり、収集時間を長く設定すれば、多くの心電波形データを収集できるので検査精度の向上を期待できる一方で、待ち時間も長くなるので、ユーザはこれらを加味しつつ収集時間を設定することになる。
 本実施の形態の心電計100は、波形の収集が完了すると、自動的に候補波形の抽出を行い、その波形に対して解析を行うとともに候補波形を表示する。具体的には、収集された波形は記憶部103に記憶されているので、演算部101がその収集波形の中から解析を行うのに適した複数の候補区間の波形を抽出し、抽出した複数の候補区間の波形を解析する。また、抽出された複数の候補区間の波形はタッチパネル121に表示される。
 本実施の形態において、候補区間とは解析単位区間のことを意味する。本実施の形態では、この解析単位区間を単位としてユーザが種々の選択を行うことができるようになっているので、候補区間と呼んでいる。なお、この演算部101による複数の候補区間の波形抽出処理については、後で詳しく説明する。
 図5は、タッチパネル121に表示される候補一覧画面の例を示す。図5の例では、波形表示領域を4分割して、第1~第4候補の4つの候補区間が表示されている。具体的には、第1候補は左上に、第2候補は右上に、第3候補は左下に、第4候補は右下に表示されている。
 本実施の形態では、1画面中に複数の候補区間の心電波形を表示するようにしたので、ユーザは、複数の候補区間を1画面内で比較して、複数の候補区間の中から収録すべき区間の心電波形を容易に選択できるようになる。
 本実施の形態では、第1候補から第4候補への候補区間波形の並び順は、解析所見において重症度が高い順とされている。これにより、ユーザは重症度が高い波形から順に見ることができるようになる。因みに、重症度が同程度の場合には、時系列で早いもの順に並べる。ただし、並び順はこれに限らず、例えば重症度に拘わらず時系列で早いもの順に並べてもよい。
 この候補一覧画面においては、候補区間波形の1つが選択枠W1で囲まれている。選択枠W1の表示位置は、ユーザが第1~第4候補の候補区間波形が表示されている表示領域のいずれか1つの表示領域を指でタッチすることにより選択できる。図5の例では、第1候補の波形表示領域が選択枠W1で囲まれているが、例えば第2候補の波形表示領域がタッチされると、第2候補の波形表示領域が選択枠W1で囲まれる。
 なお、実施の形態における説明では、表示画面上での選択を行う場合に、指でのタッチによって選択することとするが、勿論、タッチに代えてタッチ位置にポインタを移動してマウスをクリックしても同様の選択を行うことができる。
 図5の候補一覧画面において、ユーザが解析結果ボタンB1をタッチすると、選択枠W1で囲まれた波形の解析結果画面が表示される。図6は、遷移先の解析結果画面の例を示す。解析結果画面には、所見A1、所見解説A2、計測値A3などが含まれる。図6の解析結果画面において、ユーザが「候補波形へ」のボタンB2をタッチすると、タッチパネルには図5の候補一覧画面が再び表示される。これにより、ユーザは図5の画面において候補波形の選び直しができる。
 ユーザが図6の解析結果画面において「画面」のボタンB3をタッチすると、図7に示すように、画面切り替えを行うためのウィンドウW2がポップアップ表示された画面が表示される。さらに、ユーザがウィンドウW2の「記録波形」のボタンB4をタッチすると、図8に示したように、記録波形画面が表示される。この記録波形画面は、図5の選択枠W1で囲まれた波形を元の収録サイズに戻した波形を表示する画面である。
 また、図6の解析結果画面において「保存」のボタンB5がタッチされると、心電計100は、現在選択されている候補区間の解析結果及び波形データを記憶部103に保存する処理に移る。また、「サーマル」のボタンB6がタッチされると、心電計100は、現在選択されている候補区間の解析結果をプリンタ部105によって印刷する処理に移る。
 現在の検査を終了したい場合には、ユーザが例えば図6の解析結果画面における「検査へ」のボタンB7をタッチ、あるいは、図5の候補一覧画面における「戻る」のボタンB8をタッチすればよい。このような操作を行うと、タッチパネルには図3に示した初期画面が表示される。
 <3>候補一覧画面の表示形式変更
 本実施の形態では、候補一覧画面における心電波形の表示形式を変更できるようになっている。具体的には、ユーザが図5に示した候補一覧画面の「画面選択」のボタンB10をタッチする回数に応じて、候補一覧画面が図9A-図9Dに示すように順に変更される。
 図9Aの候補一覧画面では、各候補領域(つまり選択枠W1で囲まれ得る1つの領域)内に6チャネル×2の12誘導心電図と1チャネルのリズム波形が表示されている。より詳細には、図9Aの候補一覧画面では、各候補領域において、コンティニュアス方式又はコヒーレント方式で心電波形が表示される。コンティニュアス方式又はコヒーレント方式の心電波形では、12誘導心電波形のうち、四肢誘導波形I、II、III、aVR、aVL、aVFが左側に配置され、胸部誘導波形V1、V2、V3、V4、V5、V6が右側に配置される。コンティニュアス方式では、10秒間の心電波形のうち、前半の0~5秒の四肢誘導波形を左側に表示し、続く後半の5~10秒の胸部誘導波形を右側に表示するようになっている。一方、コヒーレント方式では、10秒間の波形のうち、前半の0~5秒の四肢誘導波形を左側に表示し、前半の0~5秒の胸部誘導波形を右側に表示するようになっている。このコンティニュアス方式及びコヒーレント方式は、限られた大きさの1画面の中に、できるだけ波形の振幅を縮めずに、ユーザが診断し易いよう、12誘導波形を一括して表示可能に心電波形を配置したものであり、従来から広く用いられている表示方式である。
 図9Bの候補一覧画面では、各候補領域内に6チャネル×2の12誘導心電図がコンティニュアス方式又はコヒーレント方式で表示されている。図9Aとの違いは、リズム波形が表示されていない点である。
 図9Cの候補一覧画面では、各候補領域内に6チャネルの12誘導心電図と1チャネルのリズム波形が表示されている。より詳細には、図9Cの候補一覧画面では、各候補領域において、12誘導心電波形のうち、四肢誘導波形I、II、III、aVR、aVL、aVFを、コンティニュアス方式(又はコヒーレント方式)で削減した一部の区間の波形を削減せずに、つまり、所定期間内(例えば10秒間)の全波形を表示するようになっている。
 図9Dの候補一覧画面では、各候補領域内に12チャネルの12誘導心電図が表示されている。より詳細には、図9Dの候補一覧画面では、各候補領域において、12誘導心電波形のうち、四肢誘導波形I、II、III、aVR、aVL、aVF及び胸部誘導波形V1、V2、V3、V4、V5、V6を感度(波形振幅)方向を縮小して全て縦に並べて、コンティニュアス方式(又はコヒーレント方式)で削減した一部の区間の波形を削減せずに、つまり、所定期間内(例えば10秒間)の全波形を表示するようになっている。
 <4>収集波形からの候補区間の抽出
 次に、記憶部103に一時的に保存された収集波形から、候補区間の波形を抽出する本実施の形態の抽出方法について説明する。ここでは、収集時間が60秒であり、1つの候補区間が10秒であり、4つの候補区間を抽出する例について説明する。なお、上述したように収集時間は例えば30秒~10分(1秒刻み)で設定可能であり、候補区間の区間長も例えば8~24秒で設定可能であり、一覧表示及び解析を行う候補区間の数も4に限らない。
 本実施の形態では、抽出の方法として、ノイズ区間を除外して抽出する方法と、不整脈波形を含めて抽出する方法を提示する。ここで、演算部101は、収集された心電波形から複数の候補区間の心電波形を抽出する候補波形抽出部として機能する。
 <4-1>ノイズ区間を除外して抽出する方法
 図10は、候補区間の心電波形を、ノイズ区間を除外して抽出する方法の説明に供する図である。図の最上段の波形は記憶部103に一時的に保存されている60秒間の収集波形を示す。2段目は収集波形を先頭から10秒毎に区切って4つの候補区間を形成した様子を示す図であり、3段目は本実施の形態によるノイズ区間を除外して候補区間を抽出した様子を示す図である。
 2段目に示したように先頭から10秒毎に区切って4つの候補区間を形成した例では、2番目、3番目、4番目の候補区間にはノイズが含まれている。この結果、2番目、3番目、4番目の候補区間の心電波形を解析すると、その解析結果はノイズによる影響を大きく受けるので、心電波形が正しく反映された解析結果を得ることができなくなる。
 そこで、本実施の形態では、ノイズ区間を除外して候補区間を抽出することで、全ての候補区間について、ノイズの影響が小さく、心電波形が正しく反映された解析結果を得ることができるようになっている。具体的には、演算部101が記憶部103に保存されている収集波形の中で、想定される心電波形に対して極端な高周波波形が現れている区間(例えば交流、筋電、ドリフトが発生している区間)、或いは、極端な低周波波形が現れている区間(例えば電極外れや接触不良によるノイズが発生している区間)をノイズ区間として検出し、このノイズ区間を除外して候補区間の心電波形を抽出する。なお、ノイズ検出方法はこれに限らず、要は想定される人の心電波形とは異なる波形をノイズとして検出すればよい。
 図10の例では、演算部101によって、網掛けで示した候補1~4の4つの候補区間の心電波形が、候補一覧画面(図5)に表示される心電波形として、及び、解析対象の心電波形として、抽出される。
 <4-2>不整脈波形を含めて抽出する方法
 図11は、不整脈波形が含まれる候補区間を抽出する方法の説明に供する図である。図11に示すように、演算部101は不整脈が発生している位置を検出し、その位置を中心にして、網掛けで示した候補1~4の4つの候補区間の心電波形を、候補一覧画面(図5)に表示される心電波形として、及び、解析対象の心電波形として、抽出する。このように、不整脈波形が含まれる候補区間を表示及び解析する候補区間として抽出することにより、心電図検査に適した表示及び解析を行うことができるようになる。
 ここで、不整脈波形は候補区間の中心に配置されることが好ましい。何故なら、不整脈波形の前後の波形があると、不整脈波形の前後の波形を見ながら、不整脈が突然発生したのか、或いは、予兆があったのかも確認することができるためである。
 なお、図12に示すように、不整脈位置を中心に候補区間を抽出しようとした際に、波形データが足りない場合(候補1と候補4)は候補区間の位置を波形データが存在する方向にシフトさせ、候補区間が重なる場合(候補2と候補3)にはいずれかの候補区間の位置を重ならない方向にシフトさせた抽出を行うようにすればよい。
 また、図13に示すように、不整脈が生じている箇所が抽出しようとする候補区間の数よりも少ない場合には、不整脈を含む候補区間(図の場合は候補2)を中心にして、その時間的に前後に隣接する区間を候補区間(図の場合は候補1と候補3)として抽出してもよい。さらに、このように抽出した候補1~3の3つのみを表示してもよいが、候補4として、例えば不整脈が生じていない0~10秒の区間の心電波形を抽出してこれを加えて表示してもよい。
 <4-3>収集波形データが不足している場合
 抽出しようとする候補区間に対して、収集波形データが不足している場合には、候補区間が重複するように候補区間を抽出してもよい。図14及び図15にその例を示す。図14及び図15の例では、抽出しようとする候補区間の合計時間が10秒×4=40秒なのに対して、収集波形の長さは35秒なので、収集波形データが不足している。
 そこで、図14の例では、候補4を候補3と重複するようにして抽出する。図15の例では、全ての候補1~4の一部が均等な長さだけ重複するように候補1~4を抽出する。なお、重複を許容しない場合は、候補1~3の3つのみを抽出してもよい。
 <4-4>抽出の優先度
 実際上、設定により決められた長さの収集波形から、決められた数の候補区間を抽出するにあたっては、様々な状況が想定される。例えば収集波形の中に不整脈波形が候補区間の数よりも多い場合などが想定される。そこで、ここでは候補区間を抽出する際の優先度について説明する。
 本実施の形態では、例えば、(i)ノイズの除外、(ii)重複禁止、(iii)不整脈を中心にした抽出、の順の優先度で候補区間の抽出を行う。つまり、ノイズがあると正しい解析結果を得ることができないのでノイズ除外を最優先する。また、不整脈を中心に抽出を行った際に重複が生じた場合には、不整脈を中心にした抽出よりも重複禁止を優先する。図12の例がこれに相当する。
 また、収集波形に候補区間の数に、抽出しようとする候補区間の数よりも多くの不整脈が存在した場合には、重症度のより高い不整脈を含む区間から順に抽出するとよい。例えば抽出しようとする候補区間の数が4個なのに対して、収集波形の中に6個の不整脈が含まれ、6個の不整脈が重症度(高)2個、重症度(中)2個、重症度(低)2個からなる場合には、重症度の高い4個、つまり重症度(高)2個、重症度(中)2個の不整脈を含む候補区間を優先的に抽出するとよい。さらに重症度(高)2個の不整脈が同じ種類である場合、重症度以外の優先度によりどちらか1つを候補区間とし、重症度(中)2個、重症度(低)1個を加えた4個の候補区間を抽出してもよい。
 勿論、どのパラメータを優先するのが好ましいかは、医療現場等に応じて異なる可能性もあるので、優先度を設定可能とするようにしてもよい。
 上述したように、本実施の形態の心電計100では、図5の候補一覧画面において、ユーザが解析結果ボタンB1をタッチすると、選択枠W1で囲まれた波形の解析結果画面が表示される。
 これに加えて、本実施の形態の心電計100では、心電波形を画面表示した状態で、その心電波形を表示している画面と同一画面に、表示している心電波形に関する解析結果を表示できるようになっている。
 図16及び図17は、その表示例を示すものである。図16に示すように、ユーザが第1候補の表示領域を指で長押しすると(つまり所定時間以上タッチし続けると)、第1候補の表示領域が選択枠W1で囲まれるとともに、簡易ウィンドウW10が表示され、この簡易ウィンドウW10内に第1候補の区間波形に関する解析結果が表示される。簡易ウィンドウW10に表示される解析結果は第1候補の区間波形に関する解析所見である。なお、簡易ウィンドウW10に表示されるのは、計測値や代表波形等のその他の解析結果であってもよい。タッチパネルから指を離すと、簡易ウィンドウW10は閉じられる。
 簡易ウィンドウW10に表示される解析結果は重症度順となっている。従って、解析結果の量が多い場合には、重症度の高い上位の解析結果のみが簡易ウィンドウW10内に表示される。なお、簡易ウィンドウW10内にどの解析結果を表示するかを、ユーザが設定できるようにしてもよい。
 ここで、簡易ウィンドウW10は半透明であることが好ましい。このようにすることで、選択枠W1で囲まれた領域内に簡易ウィンドウW10を表示しても、簡易ウィンドウW10の位置の心電波形を透かせて見せることができる。また、簡易ウィンドウW10は、必ずしも選択枠W1内に表示する必要はない。
 また、簡易ウィンドウW10を表示させるための方法は、タッチパネル121を長押しする場合に限らず、例えば第1~第4候補のいずれかの表示領域内にポインタを移動しその位置でマウスのボタンをクリック或いはダブルクリックすることで簡易ウィンドウW10を表示するようにしてもよい。この場合、簡易ウィンドウW10を閉じる操作もマウスによって行うようにすればよい。
 実施の形態のように、指によるタッチパネル121の長押しによって簡易ウィンドウW10を開き、タッチパネル121から指を離すと簡易ウィンドウW10を閉じるようにすると、1アクションでウィンドウの表示及び非表示が可能となるので、複数の候補区間の解析結果を迅速に見ていくことができるといった利点がある。
 同様に、図17に示すように、ユーザが第2候補の表示領域を指で長押しすると、第2候補の表示領域が選択枠W1で囲まれるとともに、簡易ウィンドウW10が表示され、この簡易ウィンドウW10内に第2候補の区間波形に関する解析結果が表示される。第3候補及び第4候補についても、同様の操作によって簡易ウィンドウW10内に簡易解析結果を表示することができる。
 このように、本実施の形態においては、心電波形と同一画面上に、その心電波形に関する解析結果が表示される簡易ウィンドウW10を表示したことにより、画面を切り替えなくても解析結果を確認できるようになる。この結果、少ない手順で検査結果を確認できるとともに、同一画面上で心電波形とその解析結果とを比較できるようになる。
 また、複数の候補区間の心電波形を一画面に表示するとともに、各候補区間の心電波形に対する解析結果を複数の候補区間の心電波形が表示された画面と同一画面に選択的に表示できるようにしたことにより、複数の収録波形を一画面に表示した状態で、収録波形同士の比較を行いながら、解析所見の確認も行えるようになるので、より少ない手順で検査結果を確認することができるようになる。
 なお、本実施の形態では、同一画面に表示された複数の候補区間の心電波形のうち、ユーザによって選択された1つの候補区間の心電波形に関する解析結果のみを同一画面に表示する場合について述べたが、ユーザによって選択された2つ以上の候補区間の心電波形に関する解析結果を同一画面に表示するようにしてもよい。
 <5>心電波形の一括移動
 上述したように、候補一覧画面に表示される複数の候補区間の心電波形は、演算部101によって抽出される。この候補区間の心電波形は、上述したように、演算部101によって解析を行うのに適切であると判断された区間の波形である。
 本実施の形態では、このような解析を行うのに適切な候補区間を設定するモード以外に、心電波形の波形確認や波形比較を行うのに好適な区間を抽出する波形一括移動モードを有する。心電波形抽出部としての演算部101は、ユーザ操作により、波形一括移動モードに設定されると、例えば図18に示すような候補1~4を抽出する。図18の例では、記憶部103に10分の長さの心電波形が収集されており、この心電波形からそれぞれ10秒の区間長の候補1~候補4を抽出する。ここで、各候補1~4の間の間隔は等しくされており、図18の例では2.5分となっている。つまり、候補1は0秒から10秒までの心電波形であり、候補2は2分30秒から2分40秒までの心電波形であり、候補3は5分から5分10秒までの心電波形であり、候補4は7分30秒から7分40秒までの心電波形である。厳密に言うと、複数区間の隣り合う区間の先頭は、収集された心電波形の時間長(図の例の場合は10分)を区間数(図の例の場合は4)で除した時間(図の例の場合は2.5分)だけ離れている。
 図19Aは、図18の候補1~4の心電波形をタッチパネル121に表示した状態を示す。図19Aに示す状態から図19A→図19B→図19C→図19Dのように、スクロールバーS1を右方向に移動操作すると、第1~第4候補の心電波形の全てがスクロールバーS1の移動量に応じて右方向に移動する。具体的には、演算部101又は表示/印刷制御部106が第1~第4候補の心電波形の抽出位置をスクロールバーS1の移動に応じて、図18の矢印で示す方向にシフトさせる。勿論、スクロールバーS1が左方向に移動されると、第1~第4候補の心電波形の全てがスクロールバーS1の移動量に応じて左方向に移動する。
 このように、本実施の形態では、収集された心電波形から複数区間(候補1~4)の心電波形を抽出し、抽出した複数区間の心電波形を1画面中に表示し、複数区間の心電波形の抽出位置をユーザ操作に応じた量だけ時間方向に等しくシフトしたことにより、ユーザ操作に応じて、各候補区間の心電波形を一括して時間方向に等しく移動させることができるようになっている。
 これにより、各区間の心電波形をそれぞれ単独で移動させる場合と比較して、操作に対する実質的な時間方向への移動量を拡大し得、操作に対してユーザが見ることが可能な心電波形を増加させることができる。例えば、図19A~図19Dの例では、4つの心電波形を一括して時間方向に移動させるので、各候補の心電波形をそれぞれ単独で移動させる場合と比較して、操作に対する心電波形の時間方向への移動量を4倍とすることができる。
 特に収集時間長が長い場合に効果的である。つまり、収集時間長が長いと、収集した全ての心電波形を目視確認する場合に時間がかかる。このような場合、本実施の形態のように、一画面に複数区間の心電波形を表示し、さらにそれを1つの操作に応じて一括して時間方向に移動させるようにすれば、収集した全ての心電波形を確認するのに要する時間を短くできる。
 また、本実施の形態では、例えば10分のように長時間に亘って収集された心電波形においても、収集の開始付近の心電波形と、収集の終了付近の心電波形といったように、離れた時間の心電波形でも同一画面に表示することができ、これらを比較しながら心電波形を確認できるようになる。この結果、ストレステストのときのように収集された心電波形が長時間に及ぶ場合でも、開始付近と終了付近の心電波形を比較しながら、心電波形を確認できるようになる。
 さらに、本実施の形態の処理は、本質的には、抽出した複数区間の心電波形を1画面中に表示するにあたって、複数区間の心電波形の抽出位置を、ユーザ操作に応じた量だけ、時間方向に等しくシフトすることである。このような処理は、実施の形態のような長時間の心電波形の波形確認及び波形比較以外にも有効である。
 例えば、収集された複数区間としてそれぞれ同じ種類の不整脈波形を含む区間を抽出し、それらを不整脈の中心が上下に一致するように画面の縦方向に並べて表示すれば、時間的に異なる複数の同じ種類の不整脈波形が縦方向に表示され、それらがユーザ操作に応じて一括して時間方向に等しく移動表示されることになる。これにより、ユーザは画面上で複数の不整脈の変化の様子を比較しながら見ることができるようになる。
 このように本実施の形態の心電波形の一括移動処理は、異なる時点の心電波形の時間方向での変化の様子を、互いに比較しながら確認する場合に広く有効である。
 <6>まとめ
 以上説明したように、本実施の形態によれば、収集された心電波形から複数の候補区間の心電波形を抽出し、抽出した複数の候補区間の心電波形を1画面中に表示したことにより、ユーザは、画面を何度も切り替えることなしに、複数の候補区間の心電波形を同時に見ながらどの候補区間の解析結果を見るか、及び、どの候補区間を収録すべきか等を判断でき、この結果、容易な操作で適切な心電図解析を行うことができるようになる。
 また、演算部101が、収集波形からノイズ区間を除去し、及び又は、不整脈を含むように、複数の候補区間を抽出するようにしたことにより、ユーザが解析に適した波形領域を判断する必要がなくなり、装置の使用頻度の低いユーザでも容易に適切な心電図検査を行うことができるようになる。
 上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することの無い範囲で、様々な形で実施することができる。
 例えば上述の実施の形態では、本発明による心電図解析装置及び心電波形表示方法を、心電計100により実行した場合について述べたが、本発明による心電図解析装置及び心電波形表示方法は演算部及び表示部を有する心電計以外の他のデバイスにより実行することもできる。
 また、本発明による心電図解析装置及び心電波形表示方法の各処理は、演算部及び表示部を有するデバイスがプログラムを実行することによっても実現することが可能である。例えば、本発明による心電図解析装置及び心電波形表示方法の各処理を実現するためのプログラムを、メモリ、ディスク、テープ、CD、DVD等のコンピュータが読み取り可能な記録媒体に記録しておき、演算部及び表示部を有するデバイスのコンピュータがこのプログラムを読み出すことにより、上述の実施の形態の各処理を実行するようにしてもよい。
 2016年11月30日出願の特願2016-233324の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明は、例えば心電図を自動解析する機能を有する心電計に適用し得る。
 100 心電計
 101 演算部
 102 測定部
 103 記憶部
 104 入力キー
 105 プリンタ部
 106 表示/印刷制御部
 110 本体部
 120 表示部
 121 タッチパネル
 A1 所見
 A2 所見解説
 A3 計測値
 W1 選択枠
 W10 簡易ウィンドウ

Claims (8)

  1.  心電図解析装置に用いられる心電波形表示方法であって、
     収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位区間抽出ステップと、
     前記解析単位区間抽出ステップで抽出した複数の解析単位区間の心電波形を、1画面中に表示する表示ステップと、
     を含む心電波形表示方法。
  2.  前記解析単位区間抽出ステップで抽出され、前記表示ステップで1画面中に表示される前記複数の解析単位区間は、ノイズ区間が除外されたものである、
     請求項1に記載の心電波形表示方法。
  3.  前記解析単位区間抽出ステップで抽出され、前記表示ステップで1画面中に表示される前記複数の解析単位区間は、不整脈波形を含むものである、
     請求項1に記載の心電波形表示方法。
  4.  前記複数の解析単位区間は、互いに重複しない区間である、
     請求項1に記載の心電波形表示方法。
  5.  収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位波形抽出部と、
     前記解析単位波形抽出部によって抽出された複数の解析単位区間の心電波形を1画面中に表示する表示部と、
     を具備する心電図解析装置。
  6.  前記解析単位波形抽出部は、収集された心電波形からノイズ区間を除外して、前記複数の解析単位区間の心電波形を抽出する、
     請求項5に記載の心電図解析装置。
  7.  前記解析単位波形抽出部は、不整脈波形を検出し、区間内に不整脈波形が含まれるようにして、前記複数の解析単位区間の心電波形を抽出する、
     請求項5に記載の心電図解析装置。
  8.  心電図解析装置に用いられる心電波形表示プログラムを格納し、コンピュータにより読み取り可能な記録媒体であって、
     前記心電波形表示プログラムは、収集された心電波形から複数の解析単位区間の心電波形を抽出する解析単位区間抽出ステップと、前記解析単位区間抽出ステップで抽出した複数の解析単位区間の心電波形を1画面中に表示する表示ステップと、を含む、
     記録媒体。
PCT/JP2017/043079 2016-11-30 2017-11-30 心電波形表示方法及び心電図解析装置 WO2018101413A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/465,202 US20200000354A1 (en) 2016-11-30 2017-11-30 Electrocardiographic waveform display method and electrocardiogram analysis device
EP17875368.7A EP3549521A4 (en) 2016-11-30 2017-11-30 ELECTROCARDIOGRAPHIC WAVEFORM DISPLAY METHOD AND ELECTROCARDIOGRAM MANALYSIS DEVICE
RU2019113456A RU2748821C2 (ru) 2016-11-30 2017-11-30 Способ отображения электрокардиографического волнового сигнала и устройство для анализа электрокардиограмм
CN201780073688.8A CN110022765B (zh) 2016-11-30 2017-11-30 心电波形显示方法及心电图分析装置
JP2018554249A JP7018401B2 (ja) 2016-11-30 2017-11-30 心電波形表示方法及び心電図解析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233324 2016-11-30
JP2016233324 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101413A1 true WO2018101413A1 (ja) 2018-06-07

Family

ID=62241706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043079 WO2018101413A1 (ja) 2016-11-30 2017-11-30 心電波形表示方法及び心電図解析装置

Country Status (6)

Country Link
US (1) US20200000354A1 (ja)
EP (1) EP3549521A4 (ja)
JP (1) JP7018401B2 (ja)
CN (1) CN110022765B (ja)
RU (1) RU2748821C2 (ja)
WO (1) WO2018101413A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109171704A (zh) * 2018-09-19 2019-01-11 深圳市理邦精密仪器股份有限公司 心电波形分析的方法、装置、终端和计算机可读存储介质
JP2020156851A (ja) * 2019-03-27 2020-10-01 フクダ電子株式会社 心電計
CN114109697A (zh) * 2021-11-03 2022-03-01 江苏科技大学 一种漂浮式水轮机运动模拟实验装置及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3549520A4 (en) * 2016-11-30 2020-04-22 Fukuda Denshi Co., Ltd. METHOD FOR DISPLAYING AN ELECTROCARDIOGRAPHIC CURVE AND APPARATUS FOR ANALYZING AN ELECTROCARDIOGRAM
CN113160943B (zh) * 2020-01-20 2023-11-14 深圳市理邦精密仪器股份有限公司 一种心电波形的显示方法、心电图机及计算机存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061445A (ja) * 2004-08-27 2006-03-09 Omron Healthcare Co Ltd 携帯型心電計
JP2006116207A (ja) 2004-10-25 2006-05-11 Fukuda Denshi Co Ltd 心電図の分類装置
JP2010233953A (ja) * 2009-03-31 2010-10-21 Fukuda Denshi Co Ltd 心電図解析レポート、心電図解析装置、心電図解析方法、および心電図解析プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989610A (en) * 1987-11-16 1991-02-05 Spacelabs, Inc. Method and system of ECG data review and analysis
JPH0951880A (ja) * 1995-08-15 1997-02-25 Nec Corp 不整脈リコール波形表示方法及び表示装置
US7463922B1 (en) * 2000-07-13 2008-12-09 Koninklijke Philips Electronics, N.V. Circuit and method for analyzing a patient's heart function using overlapping analysis windows
TW200642660A (en) * 2005-06-14 2006-12-16 We Gene Technologies Inc Auto diagnosing method and device thereof for high mountain disease
WO2007012996A2 (en) * 2005-07-26 2007-02-01 Koninklijke Philips Electronics, N.V. Revolutionary series control for medical imaging archive manager
EP2020913A4 (en) * 2006-05-08 2010-02-24 A M P S Llc METHOD AND DEVICE FOR EXTRACTING OPTICAL ECG HOLTER READING
JP6405090B2 (ja) * 2010-09-23 2018-10-17 シー・アール・バード・インコーポレーテッドC R Bard Incorporated 患者の血管系内で医療装置の位置を追跡するための医療システム及び医療システムを作動するための方法
RU2546080C2 (ru) * 2012-12-25 2015-04-10 Пётр Павлович Кузнецов Способ визуализации функционального состояния индивида и система для реализации способа

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061445A (ja) * 2004-08-27 2006-03-09 Omron Healthcare Co Ltd 携帯型心電計
JP2006116207A (ja) 2004-10-25 2006-05-11 Fukuda Denshi Co Ltd 心電図の分類装置
JP2010233953A (ja) * 2009-03-31 2010-10-21 Fukuda Denshi Co Ltd 心電図解析レポート、心電図解析装置、心電図解析方法、および心電図解析プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3549521A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109171704A (zh) * 2018-09-19 2019-01-11 深圳市理邦精密仪器股份有限公司 心电波形分析的方法、装置、终端和计算机可读存储介质
JP2020156851A (ja) * 2019-03-27 2020-10-01 フクダ電子株式会社 心電計
JP7220609B2 (ja) 2019-03-27 2023-02-10 フクダ電子株式会社 心電計
CN114109697A (zh) * 2021-11-03 2022-03-01 江苏科技大学 一种漂浮式水轮机运动模拟实验装置及其控制方法
CN114109697B (zh) * 2021-11-03 2024-02-27 江苏科技大学 一种漂浮式水轮机运动模拟实验装置及其控制方法

Also Published As

Publication number Publication date
RU2019113456A (ru) 2021-01-11
JP7018401B2 (ja) 2022-02-10
CN110022765B (zh) 2022-04-08
EP3549521A1 (en) 2019-10-09
CN110022765A (zh) 2019-07-16
JPWO2018101413A1 (ja) 2019-10-24
RU2019113456A3 (ja) 2021-01-11
RU2748821C2 (ru) 2021-05-31
US20200000354A1 (en) 2020-01-02
EP3549521A4 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP7229771B2 (ja) 心電波形表示方法及び心電図解析装置
WO2018101413A1 (ja) 心電波形表示方法及び心電図解析装置
CN108471942B (zh) 定量心脏测试
JP6407871B2 (ja) Ecgを解釈するためのシステム及び該システムの作動方法
JP6339677B2 (ja) 長期生理的信号品質インジケーションに関する方法及びディスプレイ
EP3188655B1 (en) User feedback to control ischemia monitoring ecg algorithm
JP2019534092A (ja) 心電図データを取り扱うコンピュータ実装方法
JP6077343B2 (ja) 心電図データ処理装置及びその制御方法
JP5425647B2 (ja) 心電図解析装置
JP2020151082A (ja) 情報処理装置、情報処理方法、プログラムおよび生体信号計測システム
JP6803733B2 (ja) 心電波形表示方法及び心電波形表示装置
US20230200709A1 (en) Systems and Methods of Analyzing and Displaying Ambulatory ECG Data
JP7038521B2 (ja) 生体情報測定装置、及び、生体情報測定装置における被検者取違い検出方法
JP4931638B2 (ja) エクササイズテスト解釈
JP2014033935A (ja) 心電計及びその設定方法
JP6080425B2 (ja) 心電波形出力方法及び心電計
JP7291566B2 (ja) 心電図検査装置、及び、心電図検査装置の作動方法
JP6192268B2 (ja) 心電計及び心電波形の印刷方法
JP2018089003A (ja) 画面表示方法及び検査装置
KR100880004B1 (ko) 심전도 판독을 위한 보조정보 제시방법
WO2021262171A1 (en) Systems and methods of analyzing and displaying ambulatory ecg data
JP2014033936A (ja) 心電計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019113456

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017875368

Country of ref document: EP

Effective date: 20190701