WO2018101312A1 - トリアジン化合物の製造方法 - Google Patents

トリアジン化合物の製造方法 Download PDF

Info

Publication number
WO2018101312A1
WO2018101312A1 PCT/JP2017/042769 JP2017042769W WO2018101312A1 WO 2018101312 A1 WO2018101312 A1 WO 2018101312A1 JP 2017042769 W JP2017042769 W JP 2017042769W WO 2018101312 A1 WO2018101312 A1 WO 2018101312A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
salt
formula
compound
Prior art date
Application number
PCT/JP2017/042769
Other languages
English (en)
French (fr)
Inventor
高史 山上
聡太 山崎
智文 説田
良 榊原
洋祐 松村
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Priority to US16/464,562 priority Critical patent/US11339135B2/en
Priority to JP2018554185A priority patent/JP6918828B2/ja
Priority to EP17875693.8A priority patent/EP3549935A4/en
Publication of WO2018101312A1 publication Critical patent/WO2018101312A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/061,2,4-Triazines
    • C07D253/0651,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members
    • C07D253/071,2,4-Triazines having three double bonds between ring members or between ring members and non-ring members with hetero atoms, or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms

Definitions

  • the present invention relates to an efficient method for producing a 3,5-disubstituted triazine compound.
  • the present invention relates to an industrially advantageous production method capable of obtaining 3-oxo-5-substituted triazine useful as an intermediate for pharmaceuticals or the like with high purity.
  • 3-Oxo-5-substituted triazine is a compound useful as an intermediate for drugs and the like.
  • it can be used for the synthesis of 3,5-disubstituted triazine compounds (Patent Document 1) having aldosterone synthase inhibitory activity.
  • 3-Oxo-5-substituted triazine which is a key intermediate in the synthesis of 3,5-disubstituted triazine compounds, can be obtained by ring-closing the corresponding imine (Non-patent Document 1).
  • These imine derivatives can be obtained by converting the corresponding alkanoyl group of the raw material into a glyoxal group (Non-patent Document 2) and reacting with aminourea (Non-patent Document 3).
  • the glyoxal derivative is purified and dried, and 1 mole of aminourea is added to 1 mole of the isolated glyoxal derivative, or the obtained imine is obtained.
  • the present invention relates to a method for producing a 3,5-disubstituted triazine compound.
  • the present invention provides an industrially advantageous production method in which 3-oxo-5-substituted triazine, which is a key intermediate, can be obtained with high purity.
  • the present inventors have found that the compound of formula I: (Wherein, ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group), or a method for producing a highly pure and highly efficient compound thereof or a salt thereof. And completed the invention. That is, the present invention provides a compound of formula IV: (Wherein ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group) or a salt thereof is reacted with a base in water, and if necessary, a salt Comprising the step of forming formula I: (Wherein, ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group), or a method for producing a salt thereof.
  • the present invention provides compounds of formula II: (Wherein ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group) or a salt thereof is reacted with a glyoxalating reagent to give a compound of formula III: (Wherein, ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group), a salt thereof or a derivative thereof is obtained. Used for reaction with urea or salts thereof, formula IV: (Wherein, ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group) or a salt thereof, and this is reacted with a base in water. Provides a process for preparing a compound of formula I or a salt thereof.
  • the compound represented by the formula I or a salt thereof can be obtained efficiently. Further, after completion of the reaction in the final step, the compound represented by the formula I or a salt thereof can be obtained with high purity simply by filtering the produced precipitate from the reaction mixture.
  • a 3-oxo-5-substituted triazine useful as an intermediate for pharmaceuticals and the like can be produced by a method suitable for industrial production. More specifically, a compound represented by the formula III derived from a compound represented by the formula II or a salt thereof or a salt thereof or a derivative thereof is represented by the formula IV by reacting with aminourea in water.
  • a 3-oxo-5-substituted triazine can be obtained with high purity and high efficiency by highly efficiently deriving into an imine derivative or a salt thereof and subsequently carrying out a ring-closing reaction in water under basic conditions. Since these reactions can be carried out using water as a solvent, they are industrially advantageous in terms of both safety and cost.
  • the imine derivative or a salt thereof can be easily filtered to improve the purity of the desired 3-oxo-5-substituted triazine by using it in the next step.
  • it is also industrially advantageous in that no isolation work that requires labor and time such as purification and drying is required throughout the entire process.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable, and a chlorine atom is particularly preferable.
  • examples of the “alkyl group” include linear or branched alkyl groups having 1 to 6 carbon atoms (C 1-6 ). Specific examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and a t-butyl group. A methyl group is particularly preferable.
  • examples of the “alkoxy group” include linear and branched alkoxy groups having 1 to 6 carbon atoms (C 1-6 ). Specific examples include a methoxy group, an ethoxy group, an n-propoxy group, and a t-butoxy group. A methoxy group is particularly preferable.
  • cycloalkyl group includes a monocyclic saturated hydrocarbon group and an adamantyl group 1-8 3 carbon atoms (C 3 - 8).
  • Cycloalkyl groups also include those in which two carbon atoms constituting the ring are bridged with an alkylene group to form a bicyclo ring. Specific examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a bicyclo [2.2.2] octyl group, and an adamantyl group.
  • examples of the “aryl group” include 6- to 10-membered aromatic carbocyclic groups. Specific examples include a monocyclic or bicyclic aryl group such as a phenyl group and a naphthyl group. A phenyl group is particularly preferable.
  • the “heteroaryl group” is a 5- to 10-membered aromatic heterocycle containing 1 to 4 hetero atoms independently selected from the group consisting of a sulfur atom, an oxygen atom, and a nitrogen atom.
  • a cyclic group, and a monocyclic or bicyclic heteroaryl group is preferred. More preferably, it is a 5- to 10-membered monocyclic or bicyclic heteroaryl group containing 1 to 2 hetero atoms independently selected from the group consisting of a sulfur atom, an oxygen atom, and a nitrogen atom. In addition, preferably, it contains at least one nitrogen atom, and may further contain one heteroatom selected from the group consisting of a sulfur atom, an oxygen atom, and a nitrogen atom.
  • a cyclic or bicyclic heteroaryl group Specifically, pyrrolyl group, furanyl group, thienyl group, imidazolyl group, pyrazolyl group, oxazolyl group, thiazolyl group, triazolyl group, tetrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, thiazinyl group, triazinyl group, Indolyl group, isoindolyl group, indazolyl group, benzoimidazolyl group, benzothiazolyl group, benzofuranyl group, quinolyl group, isoquinolyl group, imidazolpyridyl group, benzopyranyl group and the like can be mentioned.
  • the partially hydrogenated heteroaryl group includes those in which the above heteroaryl group is partially hydrogenated.
  • a cyclic group formed by condensation of a phenyl group and an aliphatic heterocyclic group include an imidazolinyl group, a dihydrobenzofuranyl group, a dihydrobenzopyranyl group, a tetrahydroimidazolopyridyl group, and an isoindolinyl group.
  • Heteroaryl groups that may be partially hydrogenated include pyrrolyl, furanyl, thienyl, imidazolyl, imidazolinyl, pyrazolyl, oxazolyl, thiazolyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl Group, pyrimidinyl group, pyridazinyl group, thiazinyl group, triazinyl group, indolyl group, isoindolyl group, isoindolinyl group, indazolyl group, benzoimidazolyl group, benzothiazolyl group, benzofuranyl group, dihydrobenzofuranyl group, quinolyl group, isoquinolyl group, imidazopyridyl group Tetrahydroimidazopyridyl group, benzopyranyl group, dihydrobenzopyranyl group, etc., and thienyl group,
  • the “aliphatic heterocyclic group” is a 4- to 9-membered cyclic group containing 1 to 3 hetero atoms independently selected from the group consisting of a sulfur atom, an oxygen atom, and a nitrogen atom. Groups.
  • the aliphatic heterocyclic group also includes those in which two carbon atoms constituting the ring are bridged with an alkylene group to form a bicyclo ring.
  • the 4- to 9-membered fat contains at least one nitrogen atom and may further contain one hetero atom selected from the group consisting of a sulfur atom, an oxygen atom, and a nitrogen atom.
  • Group heterocyclic group Specifically, azetidinyl group, pyrrolidinyl group, piperidinyl group, piperazinyl group, morpholinyl group, thiomorpholinyl group, homomorpholinyl group, azabicyclo [2.2.2] octyl group (quinuclidinyl group), azabicyclo [3.2.1] octyl Group, a diazabicyclo [2.2.1] heptyl group, and the like.
  • Still another preferred example is a 4- to 9-membered aliphatic heterocyclic group containing 1 to 2 hetero atoms selected from an oxygen atom and a nitrogen atom.
  • Specific examples include an oxetanyl group, a tetrahydrofuranyl group, a tetrahydropyranyl group, a pyrrolidinyl group, a piperidinyl group, and a homopiperidinyl group.
  • isolation means purification by recrystallization, various chromatographies, etc., drying of the obtained product, and the like.
  • filtration is not included in the isolation.
  • filtering means separating a solid component from a reaction mixture by an operation such as filtration or centrifugation. At this time, the solid component collected by filtration may be washed with water.
  • the compound of the formula IV has tautomerism and includes any of the following states.
  • the compound of formula III can be represented by formula III ′: (Wherein ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group), and is in equilibrium with the compound represented by Formula III herein.
  • Derivatives of the compounds represented include compounds represented by Formula III ′.
  • the present invention relates to the following production methods (1) to (6).
  • the present invention has the formula IV: (Wherein ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group) or a salt thereof is reacted with a base in water, and if necessary, a salt Comprising the step of forming formula I: (Wherein, ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group), or a method for producing a salt thereof.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and the like can be used.
  • Alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferred, and sodium hydroxide is particularly preferred.
  • the amount of the base used is, for example, preferably 1 mol to 2 mol with respect to 1 mol of the compound represented by the formula IV or a salt thereof.
  • the reaction suitably proceeds at 40 ° C. to 100 ° C., and 50 ° C. to 70 ° C. is particularly suitable.
  • the compound of formula I or a salt thereof can be obtained with high purity simply by neutralizing the reaction solution, if necessary, and filtering the produced precipitate from the reaction mixture. If desired, the compound of formula I or a salt thereof can be obtained with higher purity by washing the reaction solution before neutralization or the like with an organic solvent.
  • the present invention provides, as another embodiment, a compound of formula III:
  • ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • the production method according to (1) which comprises reacting to obtain a compound represented by formula IV or a salt thereof and then subjecting it to the step according to (1).
  • This reaction proceeds suitably under acidic conditions.
  • the acid to be used inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, and sulfuric acid, and organic acids such as acetic acid, trifluoroacetic acid, citric acid, and maleic acid are preferable.
  • Hydrochloric acid and hydrobromic acid are preferable.
  • the amount of the acid used is preferably, for example, 0.1 mol to 1.0 mol with respect to 1 mol of the compound represented by Formula III or a salt or derivative thereof.
  • the amount of aminourea or its salt used is preferably 0.95 mol to 1.2 mol per 1 mol of the compound represented by formula III or its salt or its derivative, for example.
  • the conversion reaction from glyoxal to an imine derivative such as a compound of formula IV or a salt thereof is usually carried out by converting the product imine derivative such as a compound of formula IV or a salt thereof and amino when an excess of aminourea is present in the system. Since urea or a salt thereof further reacts to produce a by-product, the amount of aminourea or a salt thereof must be strictly controlled.
  • Aminourea can be used as a salt.
  • the use of a salt of aminourea is preferable because it facilitates the handling of the aminourea having mutagenicity and an acid that forms a salt with aminourea promotes the progress of this reaction.
  • As the salt of aminourea hydrochloride, hydrobromide and the like are preferable, and hydrochloride is particularly preferable.
  • the reaction suitably proceeds at 30 ° C. to 100 ° C., and 50 ° C. to 70 ° C. is particularly suitable.
  • the compound represented by formula I or a salt thereof can be obtained with higher purity, which is preferable.
  • an excessive amount of aminourea or a salt thereof it is preferable to collect the product after completion of this step and use it for the next step. That is, since the compound of formula IV or a salt thereof is insoluble in water, it is possible to remove water-soluble impurities, particularly residual aminourea, simply by washing with water after filtration. As a result, not only the reaction in the next step proceeds with high efficiency, but also a purification work for removing water-soluble impurities after the reaction in the next step is not required. Even when the compound of formula IV or a salt thereof is collected by filtration, it is not necessary to carry out an isolation operation such as purification or drying in this step.
  • the compound represented by the formula IV or a salt thereof may be subjected to the step described in (1) without isolation, or may be subjected to the step described in (1) after being isolated. In a preferred embodiment, the compound represented by formula IV or a salt thereof is subjected to the step described in (1) without isolation.
  • the present invention provides, as another embodiment, a compound of formula II: (Wherein ring A represents an optionally substituted aryl group or an optionally substituted heteroaryl group) or a salt thereof is reacted with a glyoxalating reagent to give a compound of formula III
  • the production method according to (2) including obtaining the compound represented by the formula or a salt thereof or a derivative thereof and then subjecting the compound to a step according to (2).
  • Derivation from the compound represented by Formula II or a salt thereof to the compound represented by Formula III or a salt or derivative thereof may be carried out in a suitable solvent or without a solvent in the presence of a glyoxalating reagent.
  • a suitable solvent or without a solvent in the presence of a glyoxalating reagent for example, it can be performed according to the methods described in Patent Document 2 and Non-Patent Document 2.
  • reaction without solvent is preferable, but when a solvent is used, any reaction may be used as long as it does not interfere with the reaction.
  • aromatic hydrocarbons such as toluene, aliphatic hydrocarbons such as heptane, methylene chloride
  • halogenated aliphatic hydrocarbons such as nitriles such as acetonitrile, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, water, or a mixture thereof.
  • An excess amount of sulfoxide or water used as a reagent may be used in place of the solvent.
  • the amount of the solvent is preferably 5 to 10 times by volume with respect to the weight of the compound represented by Formula II or a salt thereof.
  • glyoxalating reagent a mixed solution of hydrobromic acid and sulfoxide, selenium oxide or the like can be used, and a mixed solution of hydrobromic acid and dimethyl sulfoxide is preferable.
  • the amount of the glyoxalating reagent used is preferably 3 mol to 5 mol with respect to 1 mol of the compound represented by the formula II or a salt thereof, for example.
  • the reaction suitably proceeds at 40 ° C. to 100 ° C., and 50 ° C. to 70 ° C. is particularly suitable. In order to achieve both acceleration of the reaction and suppression of decomposition of the product, 60 ° C. is particularly suitable. In the case where by-products are accumulated in the reaction system and the progress of the reaction is hindered, it is preferable to remove the by-products from the system. For example, when a compound that exists as a gas at the reaction temperature, such as dimethyl sulfide, is produced as a by-product, the conversion rate and the yield of the reaction are improved by flowing a gas that does not affect the reaction into the reaction vessel and ventilating the vessel. To do.
  • the compound of formula I or a salt thereof can be obtained with higher purity. However, even in this case, it is not necessary to perform an isolation operation such as purification or drying.
  • the compound represented by the formula III or a salt thereof or a derivative thereof may be subjected to the step described in (2) without being isolated, or may be subjected to the step described in (2) after being isolated. Also good. In a preferred embodiment, the compound represented by Formula III or a salt or derivative thereof is subjected to the step described in (2) without isolation.
  • This invention includes the manufacturing method as described in (2) or (3) including filtering the compound or its salt represented by Formula IV as other embodiment.
  • the present invention includes the production method according to (3), which comprises filtering out the compound represented by Formula III or a salt thereof or a derivative thereof.
  • the present invention provides a compound represented by formula III or a salt thereof or a derivative thereof obtained by reacting a compound represented by formula II or a salt thereof with a glyoxalating reagent. React with aminourea or salt thereof in water without separation to obtain compound of formula IV or salt thereof, then react with base in water without isolation, forming salt if necessary
  • the production method according to any one of (1) to (3) comprising obtaining a compound of formula I or a salt thereof.
  • all the steps of the present invention are carried out in a common solvent of no solvent or water, and therefore, it is not necessary to dry the filtered intermediate.
  • the present invention provides the production method according to any one of (1) to (4), wherein ring A is a monocyclic or bicyclic aryl group which may be substituted. including.
  • the ring A is preferably a monocyclic or bicyclic aryl group which may be substituted with 1 to 3 groups independently selected from the group consisting of a halogen atom, an alkyl group, and an alkoxy group.
  • a compound represented by the formula I or a salt thereof is produced by the method described in any one of (1) to (5), and then a known method or a method thereof Formula V: (Wherein ring A represents a optionally substituted aryl group, or an optionally substituted heteroaryl group, R B represents. An optionally substituted aliphatic heterocyclic group) is represented by Or a pharmacologically acceptable salt thereof.
  • ring A is an optionally substituted monocyclic or bicyclic aryl group
  • R B is formula VI: Wherein X a represents CR 3a or N; (I) If X a represents CR 3a , X b represents CHR 3b and X c represents O or NR 4c , X b represents O, X c is or represents NR 4c, or X b represents NR 4b, X c represents O, NR 4c or CHR 3c, (Ii) when X a represents N, X b represents CHR 3b or C ( ⁇ O), X c represents NR 4c , or X b represents NR 4b , X c represents CHR 3c ; R 3a represents a hydrogen atom, a hydroxyl group, an alkyl group, or an amino group, R 3b and R 3c each represent a group independently selected from the group consisting of a hydrogen atom, a hydroxyl group, and an alky
  • Ring A is preferably a monocyclic or bicyclic aryl group which may be substituted with 1 to 3 groups independently selected from the group consisting of a halogen atom, an alkyl group and an alkoxy group.
  • a phenyl group or a naphthyl group which may be substituted with 1 to 3 groups independently selected from the group consisting of an alkyl group and an alkoxy group is particularly preferable.
  • R B is preferably a group represented by Formula VI, X a represents N, X b represents CHR 3b or C ( ⁇ O), X c represents NR 4c ;
  • R 3b represents a group independently selected from the group consisting of a hydrogen atom, a hydroxyl group, and an alkyl group;
  • R 4c represents a group independently selected from the group consisting of a hydrogen atom, an alkyl group, and a cycloalkyl group;
  • R 1 represents a hydrogen atom or an alkyl group;
  • R 2 is (i) an optionally substituted alkyl group, (Ii) an optionally substituted cycloalkyl group, (Iii) an optionally substituted aliphatic heterocyclic group, (Iv) represents a partially hydrogenated and optionally substituted heteroaryl group, or (v) represents a hydrogen atom, or R 2 and R 4c are bonded to each other at the end, and together with the nitrogen atom to which they are
  • the method for converting the compound represented by the formula I or a salt thereof into the compound represented by the formula V or a pharmaceutically acceptable salt thereof is a known method or a combination thereof known to those skilled in the art, for example, the above-mentioned patent document 1 or the method described in Patent Document 2.
  • the hydroxyl group (or carbonyl group) of the compound represented by Formula I or a salt thereof is converted into a suitable leaving group, for example, a halogen or alkoxy group according to a known method, and the compound represented by R B —H ( In the formula, R B represents an optionally substituted aliphatic heterocyclic group.) Or a derivative thereof to convert it into a compound represented by Formula V or a pharmaceutically acceptable salt thereof.
  • the carbonyl group (or hydroxyl group) of the compound represented by Formula I or a salt thereof is converted into a leaving group according to a known method, and then Formula VII: Wherein X a represents CR 3a or N; (I) If X a represents CR 3a , X b represents CHR 3b and X c represents O or NR 4c , X b represents O, X c is or represents NR 4c, or X b represents NR 4b, X c represents O, NR 4c or CHR 3c, (Ii) when X a represents N, X b represents CHR 3b or C ( ⁇ O), X c represents NR 4c , or X b represents NR 4b , X c represents CHR 3c ; R 3a represents a hydrogen atom, a hydroxyl group, an alkyl group, or an amino group, R 3b and R 3c each represent a group independently selected from the group consisting
  • All the compounds obtained in each step of the present invention can also be obtained as a salt.
  • Any salt can be used as long as it can be used industrially.
  • inorganic salts such as hydrochloride, sulfate, phosphate, and hydrobromide, acetate, fumarate, shu Organic acid salts such as acid salts, citrate salts, methanesulfonate salts, benzenesulfonate salts, tosylate salts, and maleate salts
  • alkali metal salts such as sodium salts and potassium salts.
  • Such conversion to a salt can be carried out according to a conventional method.
  • “pharmacologically acceptable salt” refers to inorganic acid salts such as hydrochloride, sulfate, phosphate, and hydrobromide, and acetate, fumarate, and oxalate. And organic acid salts such as citrate, methanesulfonate, benzenesulfonate, tosylate, and maleate.
  • Example 1 To a solution of compound 1 (4.61 g) in dimethyl sulfoxide (32.3 mL) was added hydrobromic acid (47% aqueous solution, 13.8 mL) at room temperature. Dimethyl sulfoxide (13.8 mL) was further added, and the mixture was stirred overnight at 60 to 70 ° C., then cooled to room temperature, water was added, and the resulting compound 2 was collected by filtration and washed with water. (2) The wet body of Compound 2 obtained in (1) above was suspended in water without drying, and an aqueous solution of aminourea hydrochloride (Compound 3, 1.51 g) was added at 55 to 65 ° C.
  • Compound 3 aqueous solution of aminourea hydrochloride
  • Example 2 (1) To a solution of compound 6 (100.77 g) in dimethyl sulfoxide (700 mL), hydrobromic acid (48% aqueous solution, 300 mL) was added at room temperature, and the mixture was stirred at 60 ° C. for 4 hours and 40 minutes. The precipitate formed by cooling and addition of water was collected by filtration to obtain Compound 7 as a wet substance. (2) The wet body of Compound 7 obtained in (1) above was suspended in water without drying, and an aqueous solution of aminourea hydrochloride (Compound 3, 149.73 g) was added at 59-60 ° C. After stirring for 1 hour, Compound 8 produced at the same temperature was collected by filtration and washed with water.
  • hydrobromic acid 48% aqueous solution, 300 mL
  • the production method of the present invention is useful as a method for producing a 3,5-disubstituted triazine compound useful as an intermediate of an active pharmaceutical ingredient or a synthetic intermediate thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、医薬品原薬として有用である3,5-二置換トリアジン化合物の工業的に有利な製造方法を提供する。より具体的には、本発明は、変異原性を有する可能性のある中間体を単離することなく、水中にて、3-オキソ-5-置換トリアジンを効率よく製造することができ、また複数の工程において生成物を単離することなく行うことが可能である製造方法を提供する。すなわち本発明は、下記式IVで表される化合物又はその塩を水中で塩基と反応させ、要すれば塩を形成させる工程を含む、式Iで表される化合物、又はその塩を製造する方法を提供する。具体的には、式IIで表される化合物又はその塩を、対応する式IIIで表される化合物又はその塩又はその誘導体へと誘導した後、水中で、アミノ尿素又はその塩と反応させ、次いで得られた式IVで表される化合物又はその塩を塩基の存在下に反応させることを含む、式Iで表される化合物又はその塩を製造する方法を提供する。 (式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)

Description

トリアジン化合物の製造方法
 本発明は、3,5-二置換トリアジン化合物の効率的な製造方法に関する。特に医薬等の中間体として有用な3-オキソ-5-置換トリアジンを高純度に得ることができる、工業的に有利な製造方法に関する。
 3-オキソ-5-置換トリアジンは、医薬等の中間体として有用な化合物である。例えば、アルドステロン合成酵素阻害活性を有する3,5-二置換トリアジン化合物(特許文献1)等の合成に用いることができる。
 3,5-二置換トリアジン化合物の合成における鍵中間体である3-オキソ-5-置換トリアジンは対応するイミンを閉環させることにより得ることができる(非特許文献1)。また、これらのイミン誘導体は、対応する原料のアルカノイル基をグリオキサール基へと変換し(非特許文献2)、アミノ尿素と反応させることにより得ることができる(非特許文献3)。しかし、これらの方法により高純度のイミン誘導体を得るためには、グリオキサール誘導体を精製、乾燥し、単離したグリオキサール誘導体1モルに対してアミノ尿素を正確に1モル加えることや、得られたイミン誘導体の精製を行うことが必須である。イミン誘導体での精製なしに閉環を行った場合、残存するアミノ尿素等による副反応が進行し、閉環後に副生した不純物をクロマトグラフィー等により精製することが必要となる(特許文献2及び非特許文献4)。つまり、従来技術は、最終物である3-オキソ-5-置換トリアジンのクロマトグラフィー等による精製や、各種中間体における乾燥、精製等の単離作業が必須であるため、アルカノイル基を有する対応原料から3-オキソ-5-置換トリアジンを高純度で得る工業的な生産に適した方法とは言い難い。また、各工程で単離を行うこれらの手法は、グリオキサール基を持つ各種中間体やアミノ尿素等が変異原性及び/又は昇華性を有する場合もあり、大量生産における作業者への安全性に問題があった。
WO2015/163427 WO2010/001220
Chinese J. Org. Chem., 2001, 21, 392. J. Org. Chem., 1985, 50, 5022. J. Indian Chem. Soc., 1993, 70, 539. J. Med. Chem., 2013, 56, 1418.
 本発明は、3,5-二置換トリアジン化合物の製造方法に関する。特に、鍵中間体である3-オキソ-5-置換トリアジンを高純度で得られる工業的に有利な製造方法を提供する。
 本発明者等は、鋭意研究の結果、式I:
Figure JPOXMLDOC01-appb-C000007
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物、又はその塩を高純度かつ高効率的に製造する方法を見出し、発明を完成させた。すなわち本発明は、式IV:
Figure JPOXMLDOC01-appb-C000008
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩を水中で塩基と反応させ、要すれば塩を形成させる工程を含む、式I:
Figure JPOXMLDOC01-appb-C000009
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物、又はその塩を製造する方法を提供する。
 より具体的には、本発明は、式II:
Figure JPOXMLDOC01-appb-C000010
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩をグリオキサール化試薬と反応させて、式III:
Figure JPOXMLDOC01-appb-C000011
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩又はその誘導体を得、これを水中でのアミノ尿素又はその塩との反応に用い、式IV:
Figure JPOXMLDOC01-appb-C000012
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩を得、これを水中で塩基と反応させることにより、式Iで表される化合物又はその塩を製造する方法を提供する。本発明の方法により、式Iで表される化合物又はその塩を効率よく得ることができる。また、最終工程の反応終了後、生成した沈殿を反応混合物から濾取するだけで高純度にて式Iで表される化合物又はその塩を得ることができる。
 本発明によれば、医薬等の中間体として有用な3-オキソ-5-置換トリアジンを工業的生産に適した方法で製造することができる。より具体的には、式IIで表される化合物又はその塩から誘導される式IIIで表される化合物又はその塩又はその誘導体を、水中でアミノ尿素と反応させることにより式IVで表されるイミン誘導体又はその塩に高効率的に誘導し、引き続き水中にて塩基性条件下閉環反応を行うことによって、高純度かつ高効率的に3-オキソ-5-置換トリアジンを得ることができる。これらの反応は水を溶媒として行うことができるため、安全性及びコストの両面で工業的に有利である。また、変異原性及び/又は昇華性を有する可能性のある中間体を単離する必要がない点でも安全性の高い製法である。さらに、イミン誘導体又はその塩は必要に応じて濾取した後に次工程に用いることで目的とする3-オキソ-5-置換トリアジンの純度を簡便に向上させることができるが、その場合であっても精製や乾燥等、手間と時間を要する単離作業が全行程を通じて一切不要である点でも工業的に有利である。
 本明細書における各基の定義は、特に明記しない限り、自由に組み合わせることができる。
 本明細書において、「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子及び塩素原子が好ましく、特に塩素原子が好ましい。
 本明細書において、「アルキル基」としては、炭素数1~6(C1~6)の直鎖状又は分岐鎖状のアルキル基が挙げられる。具体的にはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が挙げられる。特にメチル基が好ましい。
 本明細書において、「アルコキシ基」としては、炭素数1~6(C1~6)の直鎖状、及び分岐鎖状のアルコキシ基が挙げられる。具体的にはメトキシ基、エトキシ基、n-プロポキシ基、及びt-ブトキシ基等が挙げられる。特にメトキシ基が好ましい。
 本明細書において、「シクロアルキル基」としては、炭素数3~8(C3~8)の単環式飽和炭化水素基及びアダマンチル基が挙げられる。また、シクロアルキル基は、環を構成する2個の炭素原子がアルキレン基で架橋されてビシクロ環を形成しているものも含む。具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ビシクロ[2.2.2]オクチル基、アダマンチル基等が挙げられる。
 本明細書において、「アリール基」としては、6~10員の芳香族炭素環式基が挙げられる。具体的には単環式又は二環式アリール基、例えばフェニル基及びナフチル基が挙げられる。特にフェニル基が好ましい。
 本明細書において、「ヘテロアリール基」としては、硫黄原子、酸素原子、及び窒素原子からなる群より独立して選ばれる1~4個の異項原子を含む5~10員の芳香族性複素環式基が挙げられ、単環式又は二環式のヘテロアリール基が好ましい。より好ましくは、硫黄原子、酸素原子、及び窒素原子からなる群より独立して選ばれる1~2個の異項原子を含む5~10員単環式又は二環式のヘテロアリール基である。また、他に好ましくは、少なくとも1個の窒素原子を含み、さらに硫黄原子、酸素原子、及び窒素原子からなる群より選ばれる1個の異項原子を含んでいてもよい、5~10員単環式又は二環式ヘテロアリール基である。具体的には、ピロリル基、フラニル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、トリアゾリル基、テトラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、チアジニル基、トリアジニル基、インドリル基、イソインドリル基、インダゾリル基、ベンゾイミダゾリル基、ベンゾチアゾリル基、ベンゾフラニル基、キノリル基、イソキノリル基、イミダゾピリジル基、ベンゾピラニル基等が挙げられる。
 本明細書において、「部分的に水素化されていてもよいヘテロアリール基」のうち部分的に水素化されたヘテロアリール基としては、上記のヘテロアリール基が部分的に水素化されたものが挙げられ、フェニル基と脂肪族複素環基が縮合して形成する環状基等も含まれる。具体的には、イミダゾリニル基、ジヒドロベンゾフラニル基、ジヒドロベンゾピラニル基、テトラヒドロイミダゾピリジル基、イソインドリニル基等が挙げられる。
 部分的に水素化されていてもよいヘテロアリール基としては、ピロリル基、フラニル基、チエニル基、イミダゾリル基、イミダゾリニル基、ピラゾリル基、オキサゾリル基、チアゾリル基、トリアゾリル基、テトラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、チアジニル基、トリアジニル基、インドリル基、イソインドリル基、イソインドリニル基、インダゾリル基、ベンゾイミダゾリル基、ベンゾチアゾリル基、ベンゾフラニル基、ジヒドロベンゾフラニル基、キノリル基、イソキノリル基、イミダゾピリジル基、テトラヒドロイミダゾピリジル基、ベンゾピラニル基、ジヒドロベンゾピラニル基等が挙げられ、チエニル基、ピリジル基、インドリル基、インダゾリル基、イソキノリル基、ジヒドロベンゾフラニル基、ジヒドロベンゾピラニル基、及びベンゾチアゾリル基が好ましい。
 本明細書において、「脂肪族複素環基」としては、硫黄原子、酸素原子、及び窒素原子からなる群より独立して選ばれる1~3個の異項原子を含む4~9員の環式基が挙げられる。また、脂肪族複素環基は、環を構成する2個の炭素原子がアルキレン基で架橋されてビシクロ環を形成しているものも含む。具体的には、アゼチジニル基、オキセタニル基、ピロリジニル基、テトラヒドロチオフェニル基、テトラヒドロフラニル基、ピペリジニル基、ホモピペリジニル基、ピペラジニル基、モルホリニル基、チオモルホリニル基、ホモモルホリニル基、テトラヒドロチオピラニル基、テトラヒドロピラニル基、アザビシクロ[2.2.2]オクチル基(キヌクリジニル基)、アザビシクロ[3.2.1]オクチル基、オキサビシクロ[3.3.1]ノニル基、ジアザビシクロ[2.2.1]ヘプチル基、オキソ-9-アザビシクロ[3.3.1]ノニル基等が好ましい。
 また、他に好ましくは、少なくとも1個の窒素原子を含み、さらに硫黄原子、酸素原子、及び窒素原子からなる群より選ばれる1個の異項原子を含んでいてもよい、4~9員脂肪族複素環基が挙げられる。具体的には、アゼチジニル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、モルホリニル基、チオモルホリニル基、ホモモルホリニル基、アザビシクロ[2.2.2]オクチル基(キヌクリジニル基)、アザビシクロ[3.2.1]オクチル基、ジアザビシクロ[2.2.1]ヘプチル基等が挙げられる。
 さらにまた他の好ましい例としては、酸素原子及び窒素原子から選ばれる1~2個の異項原子を含む4~9員脂肪族複素環基が挙げられる。具体的には、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル基、ピロリジニル基、ピペリジニル基、及びホモピペリジニル基等が挙げられる。
 本明細書において、「単離」とは、再結晶、各種クロマトグラフィー等による精製を行うことや、得られた生成物を乾燥させること等をいう。本明細書においては、濾取は単離に含まれない。
 本明細書において、「濾取」とは、濾過や遠心分離等の操作により反応混合物から固体成分を分離することをいう。このとき、濾取した固体成分を水で洗浄してもよい。
 本明細書において、式Iの化合物は互変異性を有し、以下のいずれの表記の状態をも含む。
Figure JPOXMLDOC01-appb-C000013
そのため、本明細書において「式Iで表される化合物のカルボニル基」といった場合には、「式Iで表される化合物のヒドロキシル基」と同じ置換基を指す。
 また、本明細書において、式IVの化合物は互変異性を有し、以下のいずれの表記の状態をも含む。
Figure JPOXMLDOC01-appb-C000014
 さらに、式IIIで表される化合物は、水の存在下で式III’:
Figure JPOXMLDOC01-appb-C000015
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物と平衡状態であるため、本明細書において、式IIIで表される化合物の誘導体としては式III’で表される化合物を含む。
 本発明は、以下の製造方法(1)~(6)に関する。
(1)本発明は1つの実施態様として、式IV:
Figure JPOXMLDOC01-appb-C000016
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩を水中で塩基と反応させ、要すれば塩を形成させる工程を含む、式I:
Figure JPOXMLDOC01-appb-C000017
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物、又はその塩の製造方法を含む。
 塩基としては、水酸化ナトリウム及び水酸化カリウムの如き水酸化アルカリ金属類、水酸化カルシウムの如き水酸化アルカリ土類金属類等を用いることができる。水酸化ナトリウム及び水酸化カリウムの如き水酸化アルカリ金属類が好ましく、水酸化ナトリウムがとりわけ好ましい。
 塩基の使用量は、例えば、式IVで表される化合物又はその塩1モルに対して1モル~2モルが好適である。
 反応は、40℃~100℃で好適に進行し、50℃~70℃が特に好適である。
 反応終了後は、要すれば反応液を中和等し、生成した沈殿物を反応混合物から濾取することだけで式Iの化合物又はその塩を高純度に得ることができる。所望により、中和等行う前の反応液を有機溶媒で洗浄することで、式Iの化合物又はその塩をより高純度に得ることが可能である。
(2)本発明は、他の実施態様として、式III:
Figure JPOXMLDOC01-appb-C000018
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩又はその誘導体を水中でアミノ尿素又はその塩と反応させて、式IVで表される化合物又はその塩を得、次いで(1)に記載の工程に供することを含む、(1)に記載の製造方法を含む。
 本反応は酸性条件下に好適に進行する。用いる酸としては、塩酸、臭化水素酸、リン酸、及び硫酸の如き無機酸類、酢酸、トリフルオロ酢酸、クエン酸、マレイン酸の如き有機酸類等が好ましく、塩化水素酸及び臭化水素酸がとりわけ好ましい。酸の使用量は、例えば、式IIIで表される化合物又はその塩又はその誘導体1モルに対して0.1モル~1.0モルが好適である。
 アミノ尿素又はその塩の使用量は、例えば、式IIIで表される化合物又はその塩又はその誘導体1モルに対して0.95モル~1.2モルが好適である。ただし、通常、グリオキサールからイミン誘導体、例えば式IVの化合物又はその塩への変換反応は、過剰のアミノ尿素が系中に存在すると生成物であるイミン誘導体、例えば式IVの化合物又はその塩とアミノ尿素又はその塩がさらに反応して副生成物を生じるため、アミノ尿素又はその塩の使用量は厳密に制御する必要があるが、本反応は水中で行うことから、水不溶性である式IVの化合物又はその塩は生成すると同時に析出し、水溶性のアミノ尿素又はその塩との副反応が進行する恐れがないため、アミノ尿素又はその塩の使用量を厳密に制御する必要はない。
 アミノ尿素は塩として用いることができる。アミノ尿素の塩を用いることは、変異原性を有するアミノ尿素の取り扱いを容易にし、また、アミノ尿素と塩を形成する酸が本反応の進行を促進するため、好ましい。アミノ尿素の塩としては、塩酸塩、臭化水素酸塩等が好適であり、とりわけ塩酸塩が好ましい。
 反応は、30℃~100℃で好適に進行し、50℃~70℃が特に好適である。
 得られた式IVで表される化合物又はその塩を濾取した後に次工程に用いると、式Iで表される化合物又はその塩をより高純度に得ることができるため好ましい。特に、過剰量のアミノ尿素又はその塩を用いた場合には、本工程終了後に生成物を濾取し、次工程に供することが好ましい。すなわち、式IVの化合物又はその塩は水不溶性であるため、濾取した後に水で洗浄するだけで、水溶性の不純物、特に残存するアミノ尿素を除くことができる。このことにより、次工程の反応が高効率的に進行するのみならず、次工程の反応終了後に水溶性の不純物を除去するための精製作業が不要となる。式IVの化合物又はその塩を濾取する場合であっても、本工程において精製や乾燥等の単離作業を行う必要はない。
 また、式IVで表される化合物又はその塩は、単離することなく(1)に記載の工程に供してもよく、また単離した後に(1)に記載の工程に供してもよい。好ましい実施態様では、式IVで表される化合物又はその塩は、単離することなく(1)に記載の工程に供される。
(3)本発明は、他の実施態様として、式II:
Figure JPOXMLDOC01-appb-C000019
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩をグリオキサール化試薬と反応させて、式IIIで表される化合物又はその塩又はその誘導体を得、次いで(2)に記載の工程に供することを含む、(2)に記載の製造方法を含む。
 式IIで表される化合物又はその塩から式IIIで表される化合物又はその塩又はその誘導体への誘導は、適当な溶媒中、又は無溶媒で、グリオキサール化試薬の存在下に実施することができ、例えば特許文献2、非特許文献2に記載の方法等に従って行うことができる。
 無溶媒での反応が好ましいが、溶媒を用いる場合には、本反応に支障のないものであればよく、例えば、トルエンの如き芳香族炭化水素類、ヘプタンの如き脂肪族炭化水素類、塩化メチレンの如きハロゲン化脂肪族炭化水素類、アセトニトリルの如きニトリル類、ジメチルスルホキシドの如きスルホキシド類、テトラヒドロフランの如きエーテル類、水、又はそれらの混合物等が好適である。試薬として用いるスルホキシドや水等を過剰量で用いて溶媒に代用してもよい。溶媒を用いる場合における溶媒の量は、式IIで示される化合物又はその塩の重量に対して、体積比で5倍量~10倍量が好適である。
 グリオキサール化試薬としては、臭化水素酸とスルホキシド類の混合液、酸化セレン等を用いることができ、臭化水素酸とジメチルスルホキシドの混合液が好ましい。グリオキサール化試薬の使用量は、例えば、式IIで表される化合物又はその塩1モルに対して3モル~5モルが好適である。
 反応は、40℃~100℃で好適に進行し、50℃~70℃が特に好適である。反応の促進と生成物の分解抑制を両立するためには、60℃がとりわけ好適である。
 反応の系中に副生物が貯留し、反応の進行を妨げる場合には副生物を系中から除去することが好ましい。例えば、ジメチルスルフィド等反応温度にて気体で存在する化合物が副生する場合には、反応容器に反応に影響を及ぼさないガスを流し、容器内の換気をすると転換率及び反応の収率が向上する。
 得られた式IIIの化合物又はその塩又はその誘導体を濾取した後に次工程に用いると、式Iの化合物又はその塩をより高純度に得ることができる。ただし、この場合であっても、精製や乾燥等の単離作業を行う必要はない。
 また、式IIIで表される化合物又はその塩又はその誘導体は、単離することなく(2)に記載の工程に供してもよく、また単離した後に(2)に記載の工程に供してもよい。好ましい実施態様では、式IIIで表される化合物又はその塩又はその誘導体は、単離することなく(2)に記載の工程に供される。
(4)本発明は、他の実施態様として、式IVで表される化合物又はその塩を濾取することを含む、(2)又は(3)に記載の製造方法を含む。また、他の実施態様として、本発明は、式IIIで表される化合物又はその塩又はその誘導体を濾取することを含む、(3)に記載の製造方法を含む。さらに、他の実施態様として、本発明は、式IIで表される化合物又はその塩をグリオキサール化試薬と反応させて式IIIで表される化合物又はその塩又はその誘導体を得、次いでこれを単離することなく水中でアミノ尿素又はその塩と反応させて式IVで表される化合物又はその塩を得、次いでこれを単離することなく水中で塩基と反応させて、要すれば塩を形成させて式Iで表される化合物又はその塩を得ることを含む、(1)~(3)のいずれか1つに記載の製造方法を含む。ただし、これらの場合であっても、本発明の全ての工程は無溶媒又は水という共通溶媒中で行われるため、濾取した中間体の乾燥は一切不要である。
(5)本発明は、他の実施態様として、環Aが置換されていてもよい単環式又は二環式アリール基である(1)~(4)のいずれか1つに記載の製造方法を含む。とりわけ、環Aはハロゲン原子、アルキル基、及びアルコキシ基からなる群より独立して選ばれる1~3個の基で置換されていてもよい単環式又は二環式アリール基が好適である。
(6)本発明は、他の実施態様として、(1)~(5)のいずれか1つに記載の方法により式Iで表される化合物又はその塩を製造し、次いで公知の方法又はその組み合せ等により式V:
Figure JPOXMLDOC01-appb-C000020
(式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表し、Rは置換されていてもよい脂肪族複素環基を表す。)で表される化合物、又はその薬理的に許容し得る塩を製造する方法を含む。
 ここにおいて、環Aが置換されていてもよい単環式又は二環式アリール基であり、
 Rが式VI:
Figure JPOXMLDOC01-appb-C000021
(式中、XはCR3a又はNを表し、
(i)XがCR3aを表す場合には、
 XはCHR3bを表し、XはO、又はNR4cを表すか、
 XはOを表し、XはNR4cを表すか、又は
 XはNR4bを表し、XはO、NR4c、又はCHR3cを表し、
(ii)XがNを表す場合には、
 XはCHR3bもしくはC(=O)を表し、XはNR4cを表すか、又は
 XはNR4bを表し、XはCHR3cを表し;
 R3aは水素原子、水酸基、アルキル基、又はアミノ基を表し、
 R3b、及びR3cは各々、水素原子、水酸基、及びアルキル基からなる群より独立して選ばれる基を表し、
 R4b及びR4cは各々、水素原子、アルキル基、及びシクロアルキル基からなる群より独立して選ばれる基を表し;
 Rは水素原子、又はアルキル基を表し;
 R
(i)置換されていてもよいアルキル基、
(ii)置換されていてもよいシクロアルキル基、
(iii)置換されていてもよい脂肪族複素環基、
(iv)部分的に水素化されていてもよく、置換されていてもよいヘテロアリール基、又は
(v)水素原子を表すか、あるいは、
 XがNR4cを表す場合には、RとR4cは、互いに末端で結合し、これらが結合する窒素原子と共に、置換されていてもよいアルキル基で置換されていてもよい脂肪族複素環基を形成し、
 波線は分子の残部との結合点を示す。)で表される基である化合物V又はその薬理的に許容し得る塩を製造する方法が好ましい。
 環Aとしては、ハロゲン原子、アルキル基、及びアルコキシ基からなる群より独立して選ばれる1~3個の基で置換されていてもよい単環式又は二環式アリール基が好ましく、ハロゲン原子、アルキル基、及びアルコキシ基からなる群より独立して選ばれる1~3個の基で置換されていてもよいフェニル基又はナフチル基がとりわけ好ましい。
 Rは式VIで表される基が好ましく、
 XがNを表し、
 XがCHR3bもしくはC(=O)を表し、
 XがNR4cを表し;
 R3bが水素原子、水酸基、及びアルキル基からなる群より独立して選ばれる基を表し、
 R4cが水素原子、アルキル基、及びシクロアルキル基からなる群より独立して選ばれる基を表し;
 Rが水素原子、又はアルキル基を表し;
 R
(i)置換されていてもよいアルキル基、
(ii)置換されていてもよいシクロアルキル基、
(iii)置換されていてもよい脂肪族複素環基、
(iv)部分的に水素化されていてもよく、置換されていてもよいヘテロアリール基、又は
(v)水素原子を表すか、あるいは、
 RとR4cが互いに末端で結合し、これらが結合する窒素原子と共に、置換されていてもよいアルキル基で置換されていてもよい脂肪族複素環基を形成する基が好ましい。
 式Iで表される化合物又はその塩から式Vで表される化合物又はその薬理的に許容し得る塩への変換方法は、当業者に周知の公知の方法又はその組み合せ、例えば、前記特許文献1や特許文献2に記載の方法等に従って行うことができる。例えば、式Iで表される化合物又はその塩のヒドロキシル基(又はカルボニル基)を、公知の方法に従って適当な脱離基、例えばハロゲン又はアルコキシ基に変換し、R-Hで示される化合物(式中、Rは置換されていてもよい脂肪族複素環基を表す。)又はその誘導体と反応させることにより、式Vで表される化合物又はその薬理的に許容し得る塩へ変換することができる。
 一例として、式Iで表される化合物又はその塩のカルボニル基(又はヒドロキシル基)を公知の方法に従って脱離基へと変換し、次いで式VII:
Figure JPOXMLDOC01-appb-C000022
(式中、XはCR3a又はNを表し、
(i)XがCR3aを表す場合には、
 XはCHR3bを表し、XはO、又はNR4cを表すか、
 XはOを表し、XはNR4cを表すか、又は
 XはNR4bを表し、XはO、NR4c、又はCHR3cを表し、
(ii)XがNを表す場合には、
 XはCHR3bもしくはC(=O)を表し、XはNR4cを表すか、又は
 XはNR4bを表し、XはCHR3cを表し;
 R3aは水素原子、水酸基、アルキル基、又はアミノ基を表し、
 R3b、及びR3cは各々、水素原子、水酸基、及びアルキル基からなる群より独立して選ばれる基を表し、
 R4b及びR4cは各々、水素原子、アルキル基、及びシクロアルキル基からなる群より独立して選ばれる基を表し;
 Rは水素原子、又はアルキル基を表し;
 R
(i)置換されていてもよいアルキル基、
(ii)置換されていてもよいシクロアルキル基、
(iii)置換されていてもよい脂肪族複素環基、
(iv)部分的に水素化されていてもよく、置換されていてもよいヘテロアリール基、又は
(v)水素原子を表すか、あるいは、
 XがNR4cを表す場合には、RとR4cは、互いに末端で結合し、これらが結合する窒素原子と共に、置換されていてもよいアルキル基で置換されていてもよい脂肪族複素環基を形成する。)で表される化合物又はその塩と反応させ、生成した化合物又はその塩に適宜、官能基の保護・脱保護等を行って、式Vで表される化合物又はその薬理的に許容し得る塩を得る方法が挙げられる。保護基及びそれらの使用の一般的な記述については、T.W.Greeneら、”Protective Groups in Organic Synthesis”, John Wiley & Sons, New York, 2006に記載されている。
 本発明の各工程で得られる全ての化合物は塩として得ることもできる。塩としては、工業的に通常使用することができるものであればよく、例えば、塩酸塩、硫酸塩、リン酸塩及び臭化水素酸塩の如き無機酸塩、酢酸塩、フマル酸塩、シュウ酸塩、クエン酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トシル酸塩、及びマレイン酸塩の如き有機酸塩、ならびにナトリウム塩及びカリウム塩の如きアルカリ金属塩等が挙げられる。このような塩への変換は、常法に従って実施することができる。
 本明細書において、「薬理的に許容し得る塩」とは、塩酸塩、硫酸塩、リン酸塩、及び臭化水素酸塩等の無機酸塩、ならびに酢酸塩、フマル酸塩、シュウ酸塩、クエン酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トシル酸塩、及びマレイン酸塩等の有機酸塩等をいう。
 以下、実施例等で本発明を具体的に説明するが、本発明はこれらによって何ら限定されるものではない。
 なお、実施例に記載したMSは、以下の条件によって測定した。
(1)HPLC/LRMS
 装置:Waters ZQ2000
 操作条件:[カラム]CAPCELLPACK C18 MGIII 5μ 4.6x50mm,[溶媒]A:10mM(NHCO水溶液,B:CHCN,[グラジエント]A:B=90:10→0:100,5min,[流速]2mL/min
 測定範囲:0~8分
実施例1
Figure JPOXMLDOC01-appb-C000023
(1)化合物1(4.61g)のジメチルスルホキシド(32.3mL)溶液に、室温にて臭化水素酸(47%水溶液、13.8mL)を添加した。更にジメチルスルホキシド(13.8mL)を追加し、60~70℃で終夜撹拌した後、室温まで冷却し、水を加えて生じた化合物2を濾取し、水で洗浄した。
(2)上記(1)で得た化合物2の湿体を乾燥させることなく、そのまま水に懸濁させ、アミノ尿素塩酸塩(化合物3、1.51g)の水溶液を加えて55~65℃で終夜撹拌した後、同温度で生成した化合物4を濾取し、水で洗浄した。
(3)上記(2)で得た化合物4の湿体を乾燥させることなく、そのまま水に懸濁させ、室温にて8mol/Lの水酸化ナトリウム水溶液(4.27mL)を添加し、60~62℃で1時間撹拌した。水を追加し、同温度で終夜撹拌した。更に水を追加し、同温度で6時間撹拌した。反応終了後に系中にトルエンと水を添加し、室温にて不溶物をろ過し、その後有機層を分離した。同温度で水層に酢酸(8mL)を添加し、室温にて終夜撹拌した。生じた沈殿を濾取し、乾燥することにより、化合物5(1.12g)を淡黄白色の粉体として得た(化合物3を基準として40%収率)。(H NMR(DMSO-d):δ7.68(d,J=8.5Hz,2H),8.24(d,J=8.5Hz,2H),8.75(s,1H),13.4(s,1H),LRMS(ESI)m/z:Calcd for C10O[M+H]208/210 Found:207.9/209.9.)
実施例2
Figure JPOXMLDOC01-appb-C000024
(1)化合物6(100.77g)のジメチルスルホキシド(700mL)溶液に、室温にて臭化水素酸(48%水溶液、300mL)を添加し、60℃で4時間40分撹拌した後、室温まで冷却し、水を加えて生じた沈殿を濾取することにより、化合物7を湿体として得た。
(2)上記(1)で得た化合物7の湿体を乾燥させることなく、そのまま水に懸濁させ、アミノ尿素塩酸塩(化合物3、149.73g)の水溶液を加えて59~60℃で1時間撹拌した後、同温度で生成した化合物8を濾取し、水で洗浄した。
(3)上記(2)で得た化合物8の湿体を乾燥させることなく、そのまま水に懸濁させ、55~60℃で8mol/Lの水酸化ナトリウム水溶液(164.89mL)を添加し、59~60℃で2時間40分撹拌した。反応終了後に系中にトルエンを添加し、有機層を分離した。同温度で水層に酢酸(100mL)を添加し、室温にて撹拌した。生じた沈殿を濾取し、乾燥することにより、化合物9(92.81g)を淡黄白色の粉体として得た(化合物3を基準として75%収率)。(H NMR(DMSO-d):δ2.31(s,3H),7.40(d,J=8.5Hz,2H),8.13(d,J=8.5Hz,2H),8.70(s,1H),13.3(bs,1H),LRMS(ESI)m/z:Calcd for C10O[M+H]188 Found:187.9.)
実施例3~5
 対応原料化合物を、前記実施例1と同様に処理することにより、下記表1に記載の化合物を得た。
Figure JPOXMLDOC01-appb-T000025
 本発明の製造方法は、医薬品原薬の中間体として有用な3,5-二置換トリアジン化合物又はその合成中間体の製法として有用である。

Claims (11)

  1.  式IV:
    Figure JPOXMLDOC01-appb-C000001
    (式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩を水中で塩基と反応させ、要すれば塩を形成させる工程を含む、式I:
    Figure JPOXMLDOC01-appb-C000002
    (式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物、又はその塩を製造する方法。
  2.  式III:
    Figure JPOXMLDOC01-appb-C000003
    (式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩又はその誘導体を水中でアミノ尿素又はその塩と反応させて、式IVで表される化合物又はその塩を得、次いで請求項1に記載の工程に供することを含む、請求項1に記載の製造方法。
  3.  式IVで表される化合物又はその塩を単離することなく請求項1に記載の工程に供することを含む、請求項2に記載の製造方法。
  4.  式IVで表される化合物又はその塩を濾取することを含む、請求項3に記載の製造方法。
  5.  式II:
    Figure JPOXMLDOC01-appb-C000004
    (式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表す。)で表される化合物又はその塩をグリオキサール化試薬と反応させて式IIIで表される化合物又はその塩又はその誘導体を得、次いで請求項2に記載の工程に供することを含む、請求項2~4のいずれか1項に記載の製造方法。
  6.  式IIIで表される化合物又はその塩又はその誘導体を単離することなく請求項2に記載の工程に供することを含む、請求項5に記載の製造方法。
  7.  環Aが置換されていてもよい単環式又は二環式アリール基である請求項1~6のいずれか1項に記載の製造方法。
  8.  環Aがハロゲン原子、アルキル基、及びアルコキシ基からなる群より独立して選ばれる1~3個の基で置換されていてもよい単環式又は二環式アリール基である請求項7に記載の製造方法。
  9.  請求項1~8のいずれか1項に記載の方法により式Iで表される化合物又はその塩を製造し、次いで公知の方法に従って式V:
    Figure JPOXMLDOC01-appb-C000005
    (式中、環Aは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を表し、Rは置換されていてもよい脂肪族複素環基を表す。)で表される化合物、又はその薬理的に許容し得る塩を製造する方法。
  10.  環Aが置換されていてもよい単環式又は二環式アリール基であり、
     Rが式VI:
    Figure JPOXMLDOC01-appb-C000006
    (式中、XはCR3a又はNを表し、
    (i)XがCR3aを表す場合には、
     XはCHR3bを表し、XはO、又はNR4cを表すか、
     XはOを表し、XはNR4cを表すか、又は
     XはNR4bを表し、XはO、NR4c、又はCHR3cを表し、
    (ii)XがNを表す場合には、
     XはCHR3bもしくはC(=O)を表し、XはNR4cを表すか、又は
     XはNR4bを表し、XはCHR3cを表し;
     R3aは水素原子、水酸基、アルキル基、又はアミノ基を表し、
     R3b、及びR3cは各々、水素原子、水酸基、及びアルキル基からなる群より独立して選ばれる基を表し、
     R4b及びR4cは各々、水素原子、アルキル基、及びシクロアルキル基からなる群より独立して選ばれる基を表し;
     Rは水素原子、又はアルキル基を表し;
     R
    (i)置換されていてもよいアルキル基、
    (ii)置換されていてもよいシクロアルキル基、
    (iii)置換されていてもよい脂肪族複素環基、
    (iv)部分的に水素化されていてもよく、置換されていてもよいヘテロアリール基、又は
    (v)水素原子を表すか、あるいは、
     XがNR4cを表す場合には、RとR4cは、互いに末端で結合し、これらが結合する窒素原子と共に、置換されていてもよいアルキル基で置換されていてもよい脂肪族複素環基を形成し、
     波線は分子の残部との結合点を示す。)で表される基である請求項9に記載の製造方法。
  11.  環Aがハロゲン原子、アルキル基、及びアルコキシ基からなる群より独立して選ばれる1~3個の基で置換されていてもよい単環式又は二環式アリール基であり、
     Rが式VIで表される基であり、
     XがNを表し、
     XがCHR3bもしくはC(=O)を表し、
     XがNR4cを表し;
     R3bが水素原子、水酸基、及びアルキル基からなる群より独立して選ばれる基を表し、
     R4cが水素原子、アルキル基、及びシクロアルキル基からなる群より独立して選ばれる基を表し;
     Rが水素原子、又はアルキル基を表し;
     R
    (i)置換されていてもよいアルキル基、
    (ii)置換されていてもよいシクロアルキル基、
    (iii)置換されていてもよい脂肪族複素環基、
    (iv)部分的に水素化されていてもよく、置換されていてもよいヘテロアリール基、又は
    (v)水素原子を表すか、あるいは、
     RとR4cが互いに末端で結合し、これらが結合する窒素原子と共に、置換されていてもよいアルキル基で置換されていてもよい脂肪族複素環基を形成する、請求項10に記載の製造方法。
PCT/JP2017/042769 2016-11-30 2017-11-29 トリアジン化合物の製造方法 WO2018101312A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/464,562 US11339135B2 (en) 2016-11-30 2017-11-29 Method for producing triazine compound
JP2018554185A JP6918828B2 (ja) 2016-11-30 2017-11-29 トリアジン化合物の製造方法
EP17875693.8A EP3549935A4 (en) 2016-11-30 2017-11-29 PROCESS FOR PRODUCING TRIAZINE COMPOUNDS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232890 2016-11-30
JP2016232890 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101312A1 true WO2018101312A1 (ja) 2018-06-07

Family

ID=62241416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042769 WO2018101312A1 (ja) 2016-11-30 2017-11-29 トリアジン化合物の製造方法

Country Status (4)

Country Link
US (1) US11339135B2 (ja)
EP (1) EP3549935A4 (ja)
JP (1) JP6918828B2 (ja)
WO (1) WO2018101312A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478417A (zh) * 2022-02-18 2022-05-13 郑州萃智医药科技有限公司 5-对甲苯基-1,2,4-三嗪-3(2h)-酮的合成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024049885A1 (en) 2022-09-02 2024-03-07 Apnimed, Inc. (Delaware) Methods and compositions for treating sleep apnea

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162582A (ja) * 1982-03-05 1983-09-27 イーライ・リリー・アンド・カンパニー 1,2,4−トリアジンおよびピラジン誘導体
JPH01117875A (ja) * 1986-01-16 1989-05-10 Pf Medicament Sa 2位置に置換基を有するモノアリ−ル−5非均整トリアジノン−3とその製造方法
WO2010001220A1 (en) 2008-07-01 2010-01-07 Mutabilis Sa New 1,2,4-triazine derivatives and biological applications thereof
WO2015163427A1 (ja) 2014-04-24 2015-10-29 田辺三菱製薬株式会社 新規二置換1,2,4-トリアジン化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162582A (ja) * 1982-03-05 1983-09-27 イーライ・リリー・アンド・カンパニー 1,2,4−トリアジンおよびピラジン誘導体
JPH01117875A (ja) * 1986-01-16 1989-05-10 Pf Medicament Sa 2位置に置換基を有するモノアリ−ル−5非均整トリアジノン−3とその製造方法
WO2010001220A1 (en) 2008-07-01 2010-01-07 Mutabilis Sa New 1,2,4-triazine derivatives and biological applications thereof
WO2015163427A1 (ja) 2014-04-24 2015-10-29 田辺三菱製薬株式会社 新規二置換1,2,4-トリアジン化合物

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHINESE J. ORG. CHEM., vol. 21, 2001, pages 392
FATUTTA,S.: "2-Glyoxylylcoumarone and its derivatives", GAZZETTA CHIMICA ITALIANA, vol. 89, 1959, pages 1598 - 607, XP9514995, ISSN: 0016-5603 *
J. INDIAN CHEM. SOC., vol. 70, 1993, pages 539
J. MED. CHEM., vol. 56, 2013, pages 1418
J. ORG. CHEM., vol. 50, 1985, pages 5022
OLEINIK,A.F. ET AL.: "Synthesis and antimicrobial action of substances prepared from 5-aryl furyl-2-carbonyl compounds", KHIMIKO-FARMATSEVTICHESKII ZHURNAL, vol. 8, no. 5, 1974, pages 7 - 13, XP9514990, ISSN: 0023-1134 *
PATHAK, V. N. ET AL.: "Synthesis of some new fluorine containing oxazoles, oxadiazoles, thiadiazoles and triazines", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 70, no. 6, 1993, pages 539 - 42, XP009515140, ISSN: 0019-4522 *
See also references of EP3549935A4
T. W. GREENE ET AL.: "Protective Groups in Organic Synthesis", 2006, JOHN WILEY & SONS
VINOT, N. ET AL.: "Preparation and properties of 5, 6-disubstituted as-triazin-3-ones", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1972, pages 4637 - 42, XP9514994, ISSN: 0037-8968 *
YUR EV, Y. K. ET AL.: "Chemistry of selenophene. XIX. 2-Acetoselenophene in the synthesis of alpha and beta -ketoaldehydes of the selenophene series", JOURNAL OF GENERAL CHEMISTRY OF THE USSR (ZHURNAL OBSHCHEI KHIMII, vol. 29, no. 8, 1959, pages 2561 - 2564, XP009515138 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478417A (zh) * 2022-02-18 2022-05-13 郑州萃智医药科技有限公司 5-对甲苯基-1,2,4-三嗪-3(2h)-酮的合成方法

Also Published As

Publication number Publication date
EP3549935A1 (en) 2019-10-09
JPWO2018101312A1 (ja) 2019-10-24
US11339135B2 (en) 2022-05-24
US20210380541A1 (en) 2021-12-09
JP6918828B2 (ja) 2021-08-11
EP3549935A4 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
AU2018274883B2 (en) Salt(s) of 7-Cyclopentyl-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide and processes of making thereof
JP6514398B2 (ja) メチル{4,6−ジアミノ−2−[1−(2−フルオロベンジル)−1H−ピラゾロ[3,4−b]ピリジン−3−イル]ピリミジン−5−イル}メチルカルバメートの調製方法および医薬上活性な化合物として用いるためのその精製方法
AU2015341788B2 (en) Synthesis of copanlisib and its dihydrochloride salt
US20150353525A1 (en) Anhydrous lenalidomide form-i
TW201609694A (zh) 用於製備3-(3-氯-1h-吡唑-1-基)吡啶的方法(一)
HUE026357T2 (en) Process for the preparation of a 1-triazole-2-butanol derivative
WO2015006875A1 (en) Process for the preparation of substituted pyrimidines
KR20120098815A (ko) 메틸-{4,6-디아미노-2-[1-(2-플루오로벤질)-1h-피라졸로[3,4-b]피리디노-3-일]피리미디노-5-일}카르바메이트의 제조 방법 및 제약 물질로서의 그의 사용을 위한 그의 정제
CA2931606A1 (en) Improved process for the preparation of pomalidomide and its purification
KR102547709B1 (ko) 아제티딘 유도체
WO2018101312A1 (ja) トリアジン化合物の製造方法
WO2021074138A1 (en) Synthesis of 6-methyl-n1-(4-(pyridin-3-yl)pyrimidin-2-yl)benzene-1,3-diamine
US9663518B1 (en) Process for preparation of (2S, 5R)-1,6-diaza-bicyclo[3.2.1]octane-2-carbonitrile-7-oxo-6-(sulfooxy)-mono sodium salt
US11161851B2 (en) Processes to produce acalabrutinib
KR100788529B1 (ko) 3-(1-히드록시-펜틸리덴)-5-니트로-3h-벤조푸란-2-온,그의 제조 방법 및 용도
JP6228210B2 (ja) フルボキサミン遊離塩基の精製方法およびそれを用いた高純度フルボキサミンマレイン酸塩の製造方法
CN115160321A (zh) 一种伐地那非类似物及其合成方法和应用
JP5065020B2 (ja) レボフロキサシンまたはその水和物の製造方法
KR20090028682A (ko) 1-할로-2,7-나프티리디닐 유도체를 제조하는 방법
EP2139899B1 (en) Crystalline forms of topotecan hydrochloride and processes for making the same
WO2016071382A1 (en) Synthesis of pi3k inhibitor and salts thereof
JP6777542B2 (ja) 置換尿素化合物の合成のためのプロセス
CA2858778A1 (en) Process for the preparation of 2-phenyl-[1,2,4]triazolo[1,5-a]pyridine derivatives
EP2935250B1 (en) Process for the preparation of pazopanib or salts thereof
Rozhkov et al. Transformations of 2-aryl-4, 6-dinitroindoles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875693

Country of ref document: EP

Effective date: 20190701