WO2018100892A1 - 位置推定装置及び位置推定方法 - Google Patents

位置推定装置及び位置推定方法 Download PDF

Info

Publication number
WO2018100892A1
WO2018100892A1 PCT/JP2017/036655 JP2017036655W WO2018100892A1 WO 2018100892 A1 WO2018100892 A1 WO 2018100892A1 JP 2017036655 W JP2017036655 W JP 2017036655W WO 2018100892 A1 WO2018100892 A1 WO 2018100892A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimated position
rssi
moving body
receivers
fixed station
Prior art date
Application number
PCT/JP2017/036655
Other languages
English (en)
French (fr)
Inventor
西村 哲
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018553697A priority Critical patent/JP6551615B2/ja
Publication of WO2018100892A1 publication Critical patent/WO2018100892A1/ja
Priority to US16/404,933 priority patent/US10859671B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning

Definitions

  • the present invention relates to a position estimation apparatus and a position estimation method for a moving body, and more particularly to a technique for estimating the position of the moving body based on reception strengths at a plurality of fixed stations of radio waves emitted from the moving body.
  • the distance from the fixed station to the moving body is measured based on, for example, the received signal strength indicator (RSSI) when the radio wave emitted by one of the fixed station and the moving body is received by the other.
  • RSSI received signal strength indicator
  • FIG. 1 is a diagram for explaining the basic concept of 3-sided surveying.
  • the distances d a distances from the fixed station a, the fixed station b, and the fixed station c to the moving body centered on the fixed station a, the fixed station b, and the fixed station c.
  • An intersection of three circles (hereinafter referred to as existence circles) having a radius of d b and a distance d c is specified as an estimated position of the moving object.
  • the estimated position of a moving object is narrowed down to an overlapping portion of a plurality of annular regions defined by a minimum distance and a maximum distance based on a different fixed station. Further, a distance difference from each of the plurality of fixed stations to the moving body is obtained based on the difference in RSSI, and the estimated position of the moving body is further narrowed down to an area where the obtained distance difference occurs.
  • an estimated position that minimizes an evaluation function related to an error between a calculated RSSI when the moving body is at the assumed position and an actually measured RSSI is set as the estimated position of the moving body.
  • the evaluation function is expressed as the sum of RSSI errors weighted according to the radio wave environment index for each fixed station, the importance of the RSSI error in the fixed station with poor radio wave environment is reduced, and the estimated position of the mobile object The accuracy has been improved.
  • the conventional calculation process includes a calculation process for geometrically narrowing down the region and a calculation process for searching for the minimum point of the evaluation function, the calculation load is high. For example, in a scene where power saving is important, such as management of the position of articles and personnel within a facility, it is required to estimate the position of the moving object with a low calculation load.
  • the present invention provides a position estimation device and a position estimation method for estimating the position of a moving object with a low calculation load.
  • a position estimation device includes a plurality of receivers that are installed at different known positions and that measure reception intensity of radio waves emitted from a moving body; Based on the received intensity measured by the target receiver that is one of the receivers, the existence circle having the estimated position of the moving body as the center and the distance based on the received intensity as the radius And a calculator that sequentially performs the process of updating to approach each of the plurality of receivers as target receivers.
  • the estimated position of the moving body it is possible to bring the estimated position of the moving body closer to the existing circle centered on the target receiver by a simple calculation process.
  • the estimated position of the moving object approaches the overlapping area of the existing circles centering on each of the plurality of receivers by sequentially performing the processing as each of the plurality of receivers as the target receiver, and the estimated position of the moving object Is identified.
  • a position estimation device that estimates the position of the moving object with a low calculation load is obtained.
  • the calculator may update the estimated position of the moving body so as to approach an intersection of a straight line passing through the target receiver and the current estimated position of the moving body and the existence circle.
  • the estimated position of the moving body can be brought close to the existing circle centered on the target receiver by calculation processing for obtaining the intersection of the straight line passing through the moving body and the target receiver and the existing circle.
  • the calculator may update the estimated position of the moving object to an internal dividing point of a line segment having both the current estimated position of the moving object and the intersection.
  • the vibration width of the estimated position of the moving object is reduced, so that a stable estimated position can be obtained.
  • the calculator may update the estimated position of the moving object only when the current estimated position of the moving object is outside the existence circle.
  • the existence circle may be remarkably increased. Even in such a case, according to the above-described configuration, it is possible to avoid the estimated position of the moving body following an incorrect existing circle, and thus a stable estimated position can be obtained.
  • the position estimation method measures the reception intensity of radio waves emitted from a mobile object with receivers installed at different known positions, and one of the plurality of receivers.
  • a process of updating the estimated position of the moving body based on the reception intensity measured by the target receiver that is a receiver so as to approach an existing circle centered on the target receiver and having a distance based on the reception intensity as a radius. are sequentially performed using each of the plurality of receivers as a target receiver.
  • the estimated position of the moving body it is possible to bring the estimated position of the moving body closer to the existing circle centered on the target receiver by a simple calculation process.
  • the estimated position of the moving object approaches the overlapping area of the existing circles centering on each of the plurality of receivers by sequentially performing the processing as each of the plurality of receivers as the target receiver, and the estimated position of the moving object Is identified.
  • a position estimation method for estimating the position of the moving body based on RSSI by a calculation process with a low calculation load is obtained.
  • a position estimation device and a position estimation method for estimating the position of a moving object with a low calculation load can be obtained.
  • FIG. 1 is a diagram for explaining the basic concept of 3-sided surveying.
  • FIG. 2 is a conceptual diagram illustrating an example of a facility in which the position estimation device is installed.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the position estimation apparatus according to Embodiment 1.
  • FIG. 4 is a flowchart showing an example of the operation of the position estimation apparatus according to the first embodiment.
  • FIG. 5 is a graph illustrating an example of correspondence information between RSSI and distance.
  • FIG. 6 is a diagram illustrating an example of one-time update processing of the estimated position according to the first embodiment.
  • FIG. 7A is a diagram showing an example of sequential update processing of estimated positions according to Embodiment 1.
  • FIG. 7B is a diagram illustrating an example of sequential update processing of the estimated position according to Embodiment 1.
  • FIG. 7C is a diagram illustrating an example of sequential update processing of the estimated position according to Embodiment 1.
  • FIG. 8 is a diagram illustrating an example of sequential update processing of the estimated position according to the comparative example of the second embodiment.
  • FIG. 9 is a diagram illustrating an example of sequential update processing of the estimated position according to the second embodiment.
  • the position estimation apparatus measures the received strength (hereinafter referred to as RSSI) of radio waves emitted from a moving body by a plurality of receivers installed at different known positions, and measures the measured RSSI. It is an apparatus which estimates the position of the said mobile body based on.
  • RSSI received strength
  • FIG. 2 is a conceptual diagram showing an example of a facility where a position estimation device is installed.
  • a transmitter that transmits a beacon is attached to a moving body 20 whose position is to be detected in the facility.
  • fixed stations 100a to 100f and a server 200 constituting the position estimation device are installed at predetermined positions in the facility.
  • the fixed stations 100a to 100f and the server 200 are communicably connected to each other via a communication network (not shown).
  • Each of the fixed stations 100a to 100f measures RSSI of beacons emitted from the mobile unit 20.
  • the server 200 acquires data representing RSSI measured by a plurality of fixed stations via the communication network, and estimates the position of the moving body 20 based on the RSSI represented by the data.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the position estimation apparatus according to the first embodiment.
  • the fixed stations 100 a, 100 b, 100 c and the server 200 are shown in the position estimation device 10 for simplicity, and the mobile body 20 and the communication network 30 are shown together with the position estimation device 10.
  • a transmitter 21 that transmits a beacon 22 is attached to the moving body 20.
  • the transmitter 21 periodically sends out a beacon 22 that is a radio signal including identification information for identifying the moving body 20 at a predetermined transmission intensity.
  • the transmitter 21 may transmit the beacon 22 every 0.1 seconds to 1 second, for example.
  • the transmitter 21 may be an active RF tag used in RFID (Radio Frequency Identity).
  • RFID Radio Frequency Identity
  • it may be a wireless device that transmits the beacon 22 in accordance with a short-range wireless communication standard excellent in power saving, such as Zigbee (registered trademark) or Bluetooth (registered trademark) Low Energy.
  • the fixed stations 100a, 100b, and 100c have the same configuration, only the fixed station 100a will be described below.
  • the letter a attached to the end of the reference referred to below is read as b and c, respectively.
  • the fixed station 100a includes a receiver 110a, a communication device 120a, and a calculator 130a.
  • the receiver 110a is a wireless device that operates in accordance with a wireless communication standard compatible with the transmitter 21, receives the beacon 22 periodically transmitted from the transmitter 21, and measures the RSSI of the beacon 22 each time it is received.
  • the communication device 120a is a communication device that connects the fixed station 100a, the fixed stations 100b and 100c, and the server 200 via the communication network 30 so that they can communicate with each other.
  • the communication device 120a notifies the server 200 of the RSSI of the beacon 22 measured by the receiver 110a via the communication network 30.
  • the communication network 30 may be either a wired or wireless network, and a communication device suitable for the communication network 30 is used for the communication device 120a.
  • the communication device 120a may be a network adapter connected to a wired LAN (Local Area Network).
  • the wireless apparatus which comprises a wireless mesh network according to the near field communication standard excellent in power saving, such as Zigbee (trademark) and Bluetooth (trademark) Low Energy, may be sufficient.
  • the communication device 120a performs wireless communication in accordance with the same wireless communication standard as the beacon 22 wireless communication standard, the communication device 120a and the receiver 110a may share part or all of them.
  • the calculator 130a is a controller that controls the operation of the fixed station 100a.
  • the calculator 130a may be a one-chip microcomputer having a processor, a memory, an input / output port, and the like.
  • the calculator 130a may control the operation of the fixed station 100a by a software function performed by the processor executing a program recorded in the memory.
  • the server 200 includes a communication device 220 and a calculator 230.
  • the communication device 220 is a communication device that connects the server 200 and the fixed stations 100a, 100b, and 100c through the communication network 30 so that they can communicate with each other.
  • the calculator 230 acquires the RSSI of the beacon 22 measured by the receivers 110a, 110b, and 110c via the communication device 220, and estimates the position of the moving body 20 based on the acquired RSSI.
  • the calculator 230 may be a general-purpose computer device in which a processor, a memory, and the like (not shown) are connected by a bus.
  • the calculator 230 may perform acquisition of RSSI of the beacon 22 and estimation of the position of the moving body 20 by a software function performed by the processor executing a program recorded in the memory.
  • FIG. 4 is a flowchart showing an example of the operation of the position estimation apparatus 10.
  • FIG. 4 is an example of a process for estimating the position of the mobile object 20. For example, the process is started when the mobile object 20 enters the position detection area and a beacon from the mobile object 20 is first received. The process of FIG. 4 may be performed in parallel for each of a plurality of moving objects including the moving object 20.
  • the server 200 sets the estimated position of the moving body 20 to the initial position (S101).
  • the initial position is arbitrary, and may be, for example, a point separated from the fixed stations 100a, 100b, and 100c by a predetermined distance or more.
  • Each of the fixed stations 100a, 100b, and 100c measures the RSSI of the beacon 22 and notifies the server 200 of data representing the measured RSSI (S102).
  • the server 200 When the server 200 receives data representing RSSI (YES in S103), the server 200 performs the following processing based on the received data.
  • the distance based on the RSSI represented by the received data that is, the distance from the fixed station that received the data to the moving body 20 is calculated (S104).
  • the server 200 stores correspondence information representing the relationship between the RSSI and the distance in the operational environment of the position estimation device 10 in advance in the form of a mathematical formula or a numerical table, and refers to the correspondence information to make the RSSI a distance. It may be converted. Correspondence information may be determined based on prior measured values in the operational environment.
  • FIG. 5 is a graph showing an example of correspondence information.
  • the horizontal axis is the distance from the fixed station to the moving body
  • the vertical axis is the RSSI of the beacon measured at the fixed station
  • the corresponding information is represented by a curve
  • the previous actual measurement value is represented by a dot.
  • Correspondence information is determined by applying a physical formula that RSSI follows to the maximum value of actual measurement values.
  • the actual measurement values there are extremely small actual measurement values due to the influence of, for example, multipath. Therefore, by applying the physical formula to the maximum value of the actual measurement value, correspondence information representing the relationship between the original RSSI and the distance in the operating environment can be obtained.
  • the correspondence information in FIG. 5 for example, when the RSSI is measured as ⁇ 60 dBm, the distance to the moving object is calculated as 4 m.
  • server 200 uses the position of the fixed station (more precisely, the target receiver) that measured the RSSI and the distance calculated from the RSSI, An intersection (hereinafter also referred to as a target point) between the straight line passing through and the existing circle is calculated (S105), and the estimated position of the moving body 20 is updated so as to approach the calculated intersection (S106).
  • the server 200 receives the RSSI from any one of the fixed stations 100a, 100b, 100c (YES in S103).
  • the estimated position update processing (S104 to S106) is sequentially performed.
  • FIG. 6 is a diagram illustrating an example of an update process of the estimated position performed once based on RSSI received from one fixed station.
  • the position of the fixed station is represented by coordinate values (x BS , y BS )
  • the current estimated position P 0 and the update target point P 1 of the mobile object are represented by coordinate values (x P0 , y P0 ), (x P1 , Y P1 ).
  • the current estimated position P0 in FIG. 6 corresponds to the initial position set in step S101 or the estimated position in each sequential process.
  • the server 200 calculates the distance d based on RSSI, for example, referring to the correspondence information (FIG. 5) described above.
  • the server 200 calculates a target point P1 that is on a straight line L passing through the fixed station (target receiver) and the current estimated position P0 of the moving body 20 and is separated from the fixed station by a distance d based on RSSI. Specifically, the coordinate value (x P1 , y P1 ) of the target point P1 is calculated by using the distance D from the fixed station to the current estimated position P0 ((d / D) x BS + (1 ⁇ d / D) x P0, is calculated by (d / D) y BS + (1-d / D) y P0).
  • the server 200 updates the estimated position of the moving body 20 to the calculated target point P1.
  • the target point P1 is the intersection of the straight line L and the existing circle centered on the fixed station.
  • the target point P1 is the point with the shortest distance to the current estimated position P0 on the existing circle centered on the fixed station (the closest point). ). That is, the estimated position of the moving body 20 is updated to the nearest point on the existence circle.
  • the estimated position of the moving body 20 is updated by a calculation process with a low calculation load, which is merely to determine the internal dividing points of the line segment having the fixed station and the current estimated position P0 as both ends. .
  • FIG. 6 shows a case where the distance from the fixed station to the current estimated position P0 of the moving body 20 is longer than the distance from the fixed station to the target point P1.
  • the update of the estimated position of the moving body 20 is performed only in such a case, that is, when the current estimated position P0 is outside the existing circle, and the current estimated position P0 is on or within the existing circle. In some cases, the update of the estimated position may be prohibited.
  • the fixed station a, fixed station b, and fixed station c are not limited, but may correspond to, for example, the fixed stations 100a, 100b, and 100c in FIG. 7A, 7B, and 7C, in order to explain that the estimated position of the moving body converges on the overlapping region (shaded portion) of the existing circle regardless of the initial position, different estimated positions P0, Q0, An example in which sequential processing is started from each of R0 is shown at a time.
  • the target points P1, Q1, and R1 are calculated for the current estimated positions P0, Q0, and R0 based on the RSSI of the fixed station a.
  • the estimated positions P0, Q0, and R0 are updated to the calculated target points P1, Q1, and R1, respectively.
  • target points P2, Q2, and R2 ' are calculated for the current estimated positions P1, Q1, and R1, respectively.
  • target points P3 ', Q3, and R3 are calculated for the current estimated positions P2, Q2, and R2, respectively.
  • the estimated position of the moving object can be obtained by sequentially performing several update processes regardless of where the estimated position of the moving object is initially P0, Q0, R0. Is updated to the side or inside of the overlapping area of the existing circles centered on each of the fixed station a, the fixed station b, and the fixed station c.
  • each update process is performed by obtaining the internal dividing point of the line segment having substantially the fixed station and the current estimated position as both ends, and the conventional calculation for narrowing the region geometrically. This does not include processing or calculation processing for searching for the minimum point of the evaluation function.
  • a position estimation apparatus that estimates the position of the moving body by a calculation process with a low calculation load can be obtained.
  • the process of updating the estimated position of the moving object is sequentially performed using the RSSI of one receiver, when the estimated position is updated, the RSSI at three or more receivers is different from the three-side survey. There is no need to wait for them to be ready. As a result, even if there is a missing RSSI in a certain receiver, the processing can continue with the RSSI of another receiver.
  • the position estimation apparatus is effective when, for example, an ISM (Industry Science Medical) band with much interference is used for transmission of data representing beacons and RSSIs.
  • ISM Industry Science Medical
  • the target point is set on the existence circle, and the estimated position is updated to the target point.
  • the RSSI increases for some reason and the existing circles centering on each of the adjacent fixed stations become smaller and away from each other, the estimated position goes back and forth between the existing circles every time it is updated. .
  • FIG. 8 is a diagram illustrating an example of sequential update processing of the estimated position according to the comparative example of the second embodiment.
  • the estimated position of the moving object is updated from the estimated position S0 by alternately using the RSSI of the fixed station a and the RSSI of the fixed station b.
  • the estimated position is updated to the target point described in Embodiment 1 (the closest point from the current estimated position on the existing circle).
  • the estimated positions S1 to S5 move back and forth on existing circles centered on the fixed station a and the fixed station b each time they are updated, and a stable estimated position cannot be obtained.
  • the estimated position of the moving object is updated to the internal dividing point of the line segment having both ends of the current estimated position and the target point.
  • FIG. 9 is a diagram illustrating an example of the sequential update process of the estimated position according to the second embodiment.
  • FIG. 9 is different from FIG. 8 in that the estimated position is updated to a midpoint that is an example of an internal dividing point between the current estimated position and the target point (indicated by a broken line circle).
  • a target point S1 for the current estimated position S0 is calculated, and the estimated position is an estimated position T1 that is a midpoint between the estimated position S0 and the target point S1 (that is, an internal dividing point at 1: 1).
  • the internal ratio is not limited to 1: 1, and may be appropriately selected according to the convergence speed of the estimated position and the vibration suppressing effect.
  • the present invention can be widely used for position estimation of a moving object, for example, management of positions of articles and personnel in various facilities.

Abstract

位置推定装置(10)は、互いに異なる既知の位置に設置され、移動体(20)から発せられる電波の受信強度を測定する受信器(110a、110b、110c)と、受信器(110a、110b、110c)のうちの1つの受信器で測定された受信強度に基づき、移動体(20)の推定位置を、前記受信器を中心とし前記受信強度に基づく距離を半径とする存在円に近づくように更新する処理を、受信器(110a、110b、110c)の各々について逐次行う計算器(230)と、を備える。

Description

位置推定装置及び位置推定方法
 本発明は移動体の位置推定装置及び位置推定方法に関し、特には、移動体から発せられる電波の複数の固定局における受信強度に基づいて当該移動体の位置を推定する技術に関する。
 位置が既知である複数の固定局のそれぞれから移動体までの距離を測定し、測定された距離に基づいて当該移動体の位置を特定する、3辺測量と呼ばれる技術がある。固定局から移動体までの距離は、例えば、固定局及び移動体の一方が発した電波を他方で受信したときの当該電波の受信強度(RSSI:Received Signal Strength Indicator)に基づいて測定される。
 図1は、3辺測量の基本的な考え方を説明する図である。図1に示されるように、3辺測量では、固定局a、固定局b、固定局cを中心とし、かつ固定局a、固定局b、固定局cから移動体までの距離d、距離d、距離dを半径とする3つの円(以下、存在円と言う)の交点を、移動体の推定位置として特定する。
 実際的な3辺測量では、距離d、距離d、距離dは測定誤差を含むため、3つの存在円は必ずしも1点で交わらない。そのため、移動体の推定位置を絞り込み、特定するための計算処理が必要になる。特に、距離の測定にRSSIを用いる位置推定では、RSSIの変動が大きく得られる距離の精度が低いことから、各種の計算処理の適用が検討されている(例えば、特許文献1、2)。
 特許文献1では、移動体の推定位置を、互いに異なる固定局を中心とし、RSSIに基づく最小距離と最大距離とで規定される複数の円環領域の重複部分に絞り込んでいる。また、RSSIの差に基づいて複数の固定局の各々から移動体までの距離差を求め、移動体の推定位置を、求めた距離差が生じる領域にさらに絞り込んでいる。
 特許文献2では、移動体が仮定位置にあるときの計算上のRSSIと、実際に測定されたRSSIとの誤差に関する評価関数を極小化する仮定位置を、移動体の推定位置としている。評価関数を、固定局ごとに電波環境指標に応じて重み付けをしたRSSIの誤差の総和で表すことで、電波環境が悪い固定局におけるRSSIの誤差の重要度を下げて、移動体の推定位置の精度を向上している。
特開2012-255673号公報 特開2012-173070号公報
 しかしながら、従来の計算処理は、幾何学的に領域を絞り込む計算処理や、評価関数の極小点を探索する計算処理を含むため、演算負荷が高い。例えば、施設内での物品や人員の位置の管理など、省電力性が重視される場面では、低い演算負荷で、移動体の位置を推定することが求められる。
 そこで、本発明は、低い演算負荷で移動体の位置を推定する位置推定装置及び位置推定方法を提供する。
 上記目的を達成するために、本発明の一態様に係る位置推定装置は、互いに異なる既知の位置に設置され、移動体から発せられる電波の受信強度を測定する複数の受信器と、前記複数の受信器のうちの1つの受信器である対象受信器で測定された受信強度に基づき、前記移動体の推定位置を、前記対象受信器を中心とし前記受信強度に基づく距離を半径とする存在円に近づくように更新する処理を、前記複数の受信器の各々を対象受信器として逐次行う計算器と、を備える。
 この構成によれば、単純な計算処理により、移動体の推定位置を、対象受信器を中心とする存在円に近づけることができる。当該処理を、複数の受信器の各々を対象受信器として逐次行うことで、移動体の推定位置は、複数の受信器の各々を中心とする存在円の重複領域に近づき、移動体の推定位置が特定される。その結果、低い演算負荷で移動体の位置を推定する位置推定装置が得られる。
 また、1つの受信器のRSSIを用いて移動体の推定位置を更新する処理を逐次に行うので、ある受信器でRSSIの欠測があっても、他の受信器のRSSIで処理を続行できる。その結果、電波環境が安定せず、欠測が頻繁に生じる環境への適用に優れた位置推定装置が得られる。
 また、前記計算器は、前記移動体の推定位置を、前記対象受信器と前記移動体の現在の推定位置とを通る直線と前記存在円との交点に近づくように更新してもよい。
 この構成によれば、移動体と対象受信器とを通る直線と存在円との交点を求める計算処理により、移動体の推定位置を、対象受信器を中心とする存在円に近づけることができる。
 また、前記計算器は、前記移動体の推定位置を、前記移動体の現在の推定位置と前記交点とを両端とする線分の内分点に更新してもよい。
 RSSIが、何らかの要因で大きくなると、RSSIに基づく距離が小さくなり、隣接する受信器のそれぞれを中心とする存在円が離れることがある。その場合、移動体の推定位置は更新のたびに存在円間を行き来するが、上述の構成によれば、移動体の推定位置の振動の幅が縮小されるので、安定した推定位置が得られる。
 また、前記計算器は、前記移動体の現在の推定位置が、前記存在円の外にある場合のみ、前記移動体の推定位置を更新してもよい。
 RSSIが、障害物やマルチパスなどによって減衰すると、存在円が著しく大きくなることがある。その場合でも、上述の構成によれば、移動体の推定位置が誤った存在円に追従することが避けられるので、安定した推定位置が得られる。
 また、本発明の一態様に係る位置推定方法は、移動体から発せられる電波の受信強度を、互いに異なる既知の位置に設置された受信器で測定し、前記複数の受信器のうちの1つの受信器である対象受信器で測定された受信強度に基づき、前記移動体の推定位置を、前記対象受信器を中心とし前記受信強度に基づく距離を半径とする存在円に近づくように更新する処理を、前記複数の受信器の各々を対象受信器として逐次行うものである。
 この構成によれば、単純な計算処理により、移動体の推定位置を、対象受信器を中心とする存在円に近づけることができる。当該処理を、複数の受信器の各々を対象受信器として逐次行うことで、移動体の推定位置は、複数の受信器の各々を中心とする存在円の重複領域に近づき、移動体の推定位置が特定される。その結果、移動体の位置を、RSSIに基づき、演算負荷が低い計算処理で推定する位置推定方法が得られる。
 また、1つの受信器のRSSIを用いて移動体の推定位置を更新する処理を逐次に行うので、ある受信器でRSSIの欠測があっても、他の受信器のRSSIで処理を続行できる。その結果、電波障害への耐性に優れた位置推定方法が得られる。
 本発明によれば、低い演算負荷で移動体の位置を推定する位置推定装置及び位置推定方法が得られる。
図1は、3辺測量の基本的な考え方を説明する図である。 図2は、位置推定装置が設置される施設の一例を示す概念図である。 図3は、実施の形態1に係る位置推定装置の機能的な構成の一例を示すブロック図である。 図4は、実施の形態1に係る位置推定装置の動作の一例を示すフローチャートである。 図5は、RSSIと距離との対応情報の一例を示すグラフである。 図6は、実施の形態1に係る推定位置の1回の更新処理の一例を示す図である。 図7Aは、実施の形態1に係る推定位置の逐次の更新処理の一例を示す図である。 図7Bは、実施の形態1に係る推定位置の逐次の更新処理の一例を示す図である。 図7Cは、実施の形態1に係る推定位置の逐次の更新処理の一例を示す図である。 図8は、実施の形態2の比較例に係る推定位置の逐次の更新処理の一例を示す図である。 図9は、実施の形態2に係る推定位置の逐次の更新処理の一例を示す図である。
 以下、本発明に係る実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ又は大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 実施の形態1に係る位置推定装置は、互いに異なる既知の位置に設置された複数の受信器で移動体から発せられる電波の受信強度(以下ではRSSIと表記する)を測定し、測定されたRSSIに基づいて当該移動体の位置を推定する装置である。
 図2は、位置推定装置が設置される施設の一例を示す概念図である。図2に示されるように、施設内において位置を検知したい移動体20に、ビーコンを送出する発信器が取り付けられる。また、施設内のあらかじめ定められた位置に、位置推定装置を構成する固定局100a~100f、及びサーバ200が設置される。
 固定局100a~100f、及びサーバ200は、図示していない通信ネットワークで互いに通信可能に接続されている。固定局100a~100fの各々は、移動体20から発せられたビーコンのRSSIを測定する。そして、サーバ200は、当該通信ネットワークを介して、複数の固定局で測定されたRSSIを表すデータを取得し、当該データで表されるRSSIに基づいて移動体20の位置を推定する。
 図3は、実施の形態1に係る位置推定装置の機能的な構成の一例を示すブロック図である。図3では、簡明のため、位置推定装置10において、固定局100a、100b、100c、及びサーバ200のみを示し、また位置推定装置10とともに、移動体20及び通信ネットワーク30を示している。
 移動体20には、ビーコン22を送出する発信器21が取り付けられる。
 発信器21は、移動体20を識別する識別情報を含む無線信号であるビーコン22を、所定の送信強度で周期的に送出する。発信器21は、例えば、0.1秒~1秒おきに、ビーコン22を送出してもよい。発信器21は、一例として、RFID(Radio Frequency Identifire)で用いられるアクティブRFタグであってもよい。また、Zigbee(登録商標)やBluetooth(登録商標) Low Energyといった、省電力性に優れた近距離無線通信規格に従ってビーコン22を送出する無線装置であってもよい。
 固定局100a、100b、100cは、互いに同一の構成を有するため、以下では、固定局100aについてのみ説明する。固定局100b及び100cについては、以下で参照する符号の末尾に付した英字aを、それぞれb及びcと読み替える。
 固定局100aは、受信器110a、通信器120a、及び計算器130aを有する。
 受信器110aは、発信器21と互換の無線通信規格に従って動作する無線装置であり、発信器21から周期的に送出されるビーコン22を受信し、受信のつど、ビーコン22のRSSIを測定する。
 通信器120aは、固定局100aと、固定局100b、100c及びサーバ200とを、通信ネットワーク30を介して通信可能に接続する通信装置である。通信器120aは、受信器110aで測定されたビーコン22のRSSIを、通信ネットワーク30を介してサーバ200へ通知する。通信ネットワーク30は、有線及び無線の何れのネットワークであってもよく、通信器120aには、通信ネットワーク30に適した通信装置が用いられる。
 通信器120aは、一例として、有線LAN(Local Area Network)に接続するネットワークアダプタであってもよい。また、Zigbee(登録商標)やBluetooth(登録商標) Low Energyといった、省電力性に優れた近距離無線通信規格に従って無線メッシュネットワークを構成する無線装置であってもよい。通信器120aが、ビーコン22用の無線通信規格と同一の無線通信規格に従って無線通信を行う場合、通信器120aと受信器110aとは、その一部又は全部を兼用してもよい。
 計算器130aは、固定局100aの動作を制御するコントローラである。
 計算器130aは、一例として、プロセッサ、メモリ、入出力ポートなどを有するワンチップマイコンであってもよい。計算器130aは、固定局100aの動作を、前記メモリに記録されているプログラムを前記プロセッサが実行することにより果たされるソフトウェア機能によって制御してもよい。
 サーバ200は、通信器220及び計算器230を有する。
 通信器220は、サーバ200と固定局100a、100b、100cとを、通信ネットワーク30を介して通信可能に接続する通信装置である。
 計算器230は、受信器110a、110b、110cで測定されたビーコン22のRSSIを、通信器220を介して取得し、取得したRSSIに基づいて、移動体20の位置を推定する。
 計算器230は、一例として、図示していないプロセッサ、メモリなどを、バスで接続してなる汎用のコンピュータ装置であってもよい。計算器230は、ビーコン22のRSSIの取得及び移動体20の位置の推定を、前記メモリに記録されているプログラムを前記プロセッサが実行することにより果たされるソフトウェア機能によって行ってもよい。
 次に、上記のように構成される位置推定装置10の動作について説明する。
 図4は、位置推定装置10の動作の一例を示すフローチャートである。図4は、移動体20について位置推定を行う処理の一例であり、例えば、移動体20が位置検出エリアに進入し、移動体20からのビーコンが最初に受信されたときに起動される。図4の処理は、移動体20を含む複数の移動体の各々について並行して行われてもよい。
 サーバ200は、移動体20の推定位置を初期位置に設定する(S101)。初期位置は任意であり、例えば、固定局100a、100b、100cの何れからも所定距離以上離れた地点であってもよい。
 固定局100a、100b、100cのそれぞれが、ビーコン22のRSSIを測定し、測定されたRSSIを表すデータをサーバ200へ通知する(S102)。
 サーバ200は、RSSIを表すデータを受信すると(S103でYES)、受信されたデータに基づいて、次の処理を行う。
 受信されたデータで表されるRSSIに基づく距離、つまり、データを受信した固定局から移動体20までの距離を算出する(S104)。サーバ200は、例えば、位置推定装置10の運用環境におけるRSSIと距離との関係を表す対応情報を、数式や数表の態様で予め保持しておき、当該対応情報を参照してRSSIを距離に変換してもよい。対応情報は、運用環境での事前の実測値をもとに決定されてもよい。
 図5は、対応情報の一例を示すグラフである。図5では、横軸を固定局から移動体までの距離とし、縦軸を固定局で測定されるビーコンのRSSIとして、対応情報を曲線で表し、事前の実測値をドットで表している。対応情報は、RSSIが従う物理式を、実測値の最大値に当てはめて決定されている。実測値の中には、例えばマルチパスなどの影響のために、著しく小さい実測値がある。そのため、物理式を実測値の最大値に当てはめることで、運用環境での本来のRSSIと距離との関係を表す対応情報が得られる。図5の対応情報の例によれば、例えば、RSSIが-60dBmと測定されたとき、移動体までの距離は4mと算出される。
 再び図4を参照して、サーバ200は、RSSIを測定した固定局(より厳密には対象受信器)の位置と当該RSSIから算出した距離とを用いて、当該固定局と現在の推定位置とを通る直線と存在円との交点(以下では、目標点とも言う)を算出し(S105)、移動体20の推定位置を、算出した交点に近づくように更新する(S106)。
 サーバ200は、移動体20が位置検出エリア内にいる間(S107でYES)、固定局100a、100b、100cの何れか1つからRSSIが取得されるたびに(S103でYES)移動体20の推定位置の更新処理(S104~S106)を、逐次に行う。
 図6は、1つの固定局から受信されたRSSIに基づいて行われる、推定位置の1回の更新処理の一例を示す図である。図6において、固定局の位置を座標値(xBS,yBS)で表し、移動体の現在の推定位置P0及び更新の目標点P1を、座標値(xP0,yP0)、(xP1,yP1)で、それぞれ表している。図6での現在の推定位置P0は、ステップS101で設定した初期位置、又は逐次の処理における都度の推定位置に対応する。
 サーバ200は、RSSIに基づく距離dを、例えば、前述した対応情報(図5)を参照して、算出する。
 サーバ200は、固定局(対象受信器)と移動体20の現在の推定位置P0とを通る直線L上にあって、固定局からRSSIに基づく距離d離れた目標点P1を算出する。目標点P1の座標値(xP1,yP1)は、具体的には、固定局から現在の推定位置P0までの距離Dを用いて、((d/D)xBS+(1-d/D)xP0,(d/D)yBS+(1-d/D)yP0)により算出される。
 サーバ200は、移動体20の推定位置を、算出された目標点P1に更新する。
 目標点P1は、直線Lと固定局を中心とする存在円との交点であり、言い換えれば、固定局を中心とする存在円上における現在の推定位置P0までの距離が最短の点(最近点)である。つまり、移動体20の推定位置は、存在円上の最近点に更新される。
 このようにして、移動体20の推定位置は、実質的に固定局と現在の推定位置P0とを両端とする線分の内分点を求めるだけの、演算負荷が低い計算処理によって更新される。
 なお、図6では、固定局から移動体20の現在の推定位置P0までの距離が、固定局から目標点P1までの距離より長い場合を示している。移動体20の推定位置の更新は、このような場合、つまり、現在の推定位置P0が存在円の外にある場合にのみ行うこととし、現在の推定位置P0が当該存在円の上又は内にある場合、推定位置の更新を禁止してもよい。
 現在の推定位置が存在円の外にある場合のみ推定位置を更新することで、例えば、障害物やマルチパスなどによってRSSIが減衰して著しく大きい誤った存在円が設定された場合に、推定位置が当該誤った存在円上の目標点に更新されることを回避できる。これにより、安定した推定位置を得ることができる。
 移動体20の推定位置の逐次の更新処理について説明を続ける。
 図7A、図7B、図7Cは、固定局a、固定局b、固定局cから通知されたRSSIに基づく逐次の更新処理の一例を示している。固定局a、固定局b、固定局cは、限定はされないが、例えば、図3の固定局100a、100b、100cにそれぞれ対応してもよい。なお、図7A、図7B、図7Cでは、移動体の推定位置が、初期位置に依らず存在円の重複領域(斜線部分)に収束することを説明するため、互いに異なる推定位置P0、Q0、R0の各々から逐次処理を開始した場合の例を一度に示している。
 図7Aでは、固定局aのRSSIに基づき、現在の推定位置P0、Q0、R0に対し、目標点P1、Q1、R1がそれぞれ算出される。推定位置P0、Q0、R0は、算出された目標点P1、Q1、R1にそれぞれ更新される。
 図7Bでは、固定局bのRSSIに基づき、現在の推定位置P1、Q1、R1に対し、目標点P2、Q2、R2’がそれぞれ算出される。ここで、推定位置R1は、既に、固定局bを中心とする存在円の内部にあり、固定局bから現在の推定位置R1までの距離は、固定局bから目標点R2’までの距離より短い。そのため、推定位置P1、Q1は、算出された目標点P2、Q2にそれぞれ更新されるが、推定位置R1は更新されず、推定位置R1がそのまま推定位置R2(=R1)となる。
 図7Cでは、固定局cのRSSIに基づき、現在の推定位置P2、Q2、R2に対し、目標点P3’、Q3、R3がそれぞれ算出される。ここで、推定位置P2は、既に、固定局cを中心とする存在円の内部にあり、固定局cから現在の推定位置P2までの距離は、固定局cから目標点P3’までの距離より短い。そのため、推定位置Q2、R2は、算出された目標点Q3、R3にそれぞれ更新されるが、推定位置P2は更新されず、推定位置P2がそのまま推定位置P3(=P2)となる。
 図7A、図7B、図7Cから分かるように、移動体の推定位置が、最初、P0、Q0、R0のどこにあっても、数回の更新処理を逐次に行うことで、移動体の推定位置は、固定局a、固定局b、固定局cの各々を中心とする存在円の重複領域の辺又は内部に更新される。
 各回の更新処理は、上述したように、実質的に固定局と現在の推定位置とを両端とする線分の内分点を求めることで行われ、従来の、幾何学的に領域を絞り込む計算処理や、評価関数の極小点を探索する計算処理を含まない。
 以上説明した位置推定装置によれば、演算負荷が低い計算処理で移動体の位置を推定する位置推定装置が得られる。
 また、1つの受信器のRSSIを用いて移動体の推定位置を更新する処理を逐次に行うので、3辺測量と異なり、推定位置を更新する際に、3つ以上の受信器でのRSSIが揃うのを待つ必要がない。これにより、ある受信器でRSSIの欠測があっても、他の受信器のRSSIで処理を続行できる。
 その結果、電波環境が安定せず頻繁に欠測が生じる環境での利用に優れた位置推定装置が得られる。当該位置推定装置は、例えば、ビーコンやRSSIを表すデータの送信に、干渉の多いISM(Industry Science Medical)バンドを使用する場合に、有効である。
 また、位置検出エリアの端部などで、移動体の周囲に1つ又は2つの受信器しか存在しない状況にも適用できる。
 (実施の形態2)
 実施の形態1では、存在円上に目標点を設定し、推定位置を当該目標点に更新した。この構成によれば、RSSIが何らかの要因で大きくなり、隣接する固定局のそれぞれを中心とする存在円が小さくなって互いに離れると、推定位置は更新のたびに存在円間を行き来することになる。
 図8は、実施の形態2の比較例に係る推定位置の逐次の更新処理の一例を示す図である。
 図8では、移動体の推定位置を、推定位置S0から開始して、固定局aのRSSIと固定局bのRSSIとを交互に用いて更新している。推定位置は、実施の形態1で説明した目標点(存在円上における現在の推定位置からの最近点)に更新される。
 図8に見られるように、推定位置S1~S5は、更新のたびに、固定局a及び固定局bをそれぞれ中心とする存在円上を行き来し、安定した推定位置が得られない。
 そこで、移動体の推定位置を、現在の推定位置と目標点とを両端とする線分の内分点に更新する。
 図9は、実施の形態2に係る推定位置の逐次の更新処理の一例を示す図である。
 図9では、図8と比べて、推定位置を、現在の推定位置と目標点(破線円で示す)との内分点の一例である中点に更新する点で相違する。初回の更新では、現在の推定位置S0に対する目標点S1が算出され、推定位置は、推定位置S0と目標点S1との中点(つまり、1:1での内分点)である推定位置T1に更新される。詳細な符号は省略しているが、2回目以降も、推定位置は同様に更新される。なお、内分の比率は、1:1には限られず、推定位置の収束速度と振動の抑制効果とに応じて、適宜選択されればよい。
 図9に見られるように、推定位置を、現在の推定位置と目標点との内分点(一例として中点)に更新することで、推定位置T1~T5の振動が抑制され、より安定した推定位置が得られる。
 以上、本発明の実施の形態に係る位置推定装置及び位置推定方法について説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。
 本発明は、例えば、各種施設における物品及び人員の位置の管理など、移動体の位置推定に広く利用できる。
 10  位置推定装置
 20  移動体
 21  発信器
 22  ビーコン
 30  通信ネットワーク
 100a~100f 固定局
 110a~110c 受信器
 120a~120c 通信器
 130a~130c 計算器
 200  サーバ
 220  通信器
 230  計算器

Claims (5)

  1.  互いに異なる既知の位置に設置され、移動体から発せられる電波の受信強度を測定する複数の受信器と、
     前記複数の受信器のうちの1つの受信器である対象受信器で測定された受信強度に基づき、前記移動体の推定位置を、前記対象受信器を中心とし前記受信強度に基づく距離を半径とする存在円に近づくように更新する処理を、前記複数の受信器の各々を対象受信器として逐次行う計算器と、
     を備える位置推定装置。
  2.  前記計算器は、前記移動体の推定位置を、前記対象受信器と前記移動体の現在の推定位置とを通る直線と前記存在円との交点に近づくように更新する、
     請求項1に記載の位置推定装置。
  3.  前記計算器は、前記移動体の推定位置を、前記移動体の現在の推定位置と前記交点とを両端とする線分の内分点に更新する、
     請求項2に記載の位置推定装置。
  4.  前記計算器は、前記移動体の現在の推定位置が、前記存在円の外にある場合のみ、前記移動体の推定位置を更新する、
     請求項1から3の何れか1項に記載の位置推定装置。
  5.  移動体から発せられる電波の受信強度を、互いに異なる既知の位置に設置された受信器で測定し、
     前記複数の受信器のうちの1つの受信器である対象受信器で測定された受信強度に基づき、前記移動体の推定位置を、前記対象受信器を中心とし前記受信強度に基づく距離を半径とする存在円に近づくように更新する処理を、前記複数の受信器の各々を対象受信器として逐次行う、
     位置推定方法。
PCT/JP2017/036655 2016-11-29 2017-10-10 位置推定装置及び位置推定方法 WO2018100892A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018553697A JP6551615B2 (ja) 2016-11-29 2017-10-10 位置推定装置及び位置推定方法
US16/404,933 US10859671B2 (en) 2016-11-29 2019-05-07 Position estimation apparatus and position estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016231688 2016-11-29
JP2016-231688 2016-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/404,933 Continuation US10859671B2 (en) 2016-11-29 2019-05-07 Position estimation apparatus and position estimation method

Publications (1)

Publication Number Publication Date
WO2018100892A1 true WO2018100892A1 (ja) 2018-06-07

Family

ID=62242617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036655 WO2018100892A1 (ja) 2016-11-29 2017-10-10 位置推定装置及び位置推定方法

Country Status (3)

Country Link
US (1) US10859671B2 (ja)
JP (1) JP6551615B2 (ja)
WO (1) WO2018100892A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122742A (ja) * 2019-01-31 2020-08-13 大井電気株式会社 測位装置
JP2021001833A (ja) * 2019-06-24 2021-01-07 アライドテレシスホールディングス株式会社 位置推定装置および方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493731B (zh) * 2019-09-09 2022-03-29 腾讯科技(深圳)有限公司 移动轨迹获取方法、装置、存储介质以及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508773A (ja) * 2003-10-15 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 物体の位置を示すための方法および装置
JP2009210582A (ja) * 2008-03-04 2009-09-17 Nec (China) Co Ltd Toa(到達時刻)とrss(受信信号強度)の融合による適応型測位法、装置、およびシステム
US20140004878A1 (en) * 2012-06-28 2014-01-02 Electronics And Telecommunications Research Institute Location measurement apparatus and method
JP2016503492A (ja) * 2012-10-19 2016-02-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ofdmによって採用されるサブキャリアのサブセットに基づく屋内無線測距

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683835B2 (en) * 2006-08-15 2010-03-23 Computer Associates Think, Inc. System and method for locating wireless devices
US8669902B2 (en) * 2010-09-03 2014-03-11 Cisco Technology, Inc. Location estimation for wireless devices
JP5691613B2 (ja) 2011-02-18 2015-04-01 富士通株式会社 移動端末位置推定装置、移動端末位置推定方法及び電波環境指標算出方法
JP5712803B2 (ja) 2011-06-08 2015-05-07 富士通株式会社 測位方法、測位システム及びプログラム
US9933509B2 (en) * 2011-11-10 2018-04-03 Position Imaging, Inc. System for tracking an object using pulsed frequency hopping
IL227285A0 (en) * 2013-07-01 2013-12-31 Rami Goldreich Multipath interference reduction for geo-location based on time-of-arrival

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508773A (ja) * 2003-10-15 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 物体の位置を示すための方法および装置
JP2009210582A (ja) * 2008-03-04 2009-09-17 Nec (China) Co Ltd Toa(到達時刻)とrss(受信信号強度)の融合による適応型測位法、装置、およびシステム
US20140004878A1 (en) * 2012-06-28 2014-01-02 Electronics And Telecommunications Research Institute Location measurement apparatus and method
JP2016503492A (ja) * 2012-10-19 2016-02-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated Ofdmによって採用されるサブキャリアのサブセットに基づく屋内無線測距

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122742A (ja) * 2019-01-31 2020-08-13 大井電気株式会社 測位装置
JP7125359B2 (ja) 2019-01-31 2022-08-24 大井電気株式会社 測位装置
JP2021001833A (ja) * 2019-06-24 2021-01-07 アライドテレシスホールディングス株式会社 位置推定装置および方法

Also Published As

Publication number Publication date
US10859671B2 (en) 2020-12-08
US20190257917A1 (en) 2019-08-22
JPWO2018100892A1 (ja) 2019-10-17
JP6551615B2 (ja) 2019-07-31

Similar Documents

Publication Publication Date Title
Thaljaoui et al. BLE localization using RSSI measurements and iRingLA
US9584981B2 (en) Method and apparatus for real-time, mobile-based positioning according to sensor and radio frequency measurements
US9154904B2 (en) Method and system for accurate straight line distance estimation between two communication devices
KR102082634B1 (ko) 강건하고 정확한 rssi 기반 위치 추정을 위한 시스템 및 방법
US20090213009A1 (en) Position detection system, position detection server, and terminal
US10859671B2 (en) Position estimation apparatus and position estimation method
JP2005176386A (ja) モバイル機器
US20190075540A1 (en) Autonomous positioning systems
JP5025675B2 (ja) 移動体検知システム
JP2001359146A (ja) 無線移動端末の位置検出方法
Booranawong et al. An autonomous RSSI filtering method for dealing with human movement effects in an RSSI-based indoor localization system
KR101283749B1 (ko) Ap의 위치정보를 이용한 측위 장치
KR20110041166A (ko) 위치 측정용 무선 단말기와 이를 이용한 위치 측정 시스템 및 방법, 위치 측정 장치 및 방법
KR101342215B1 (ko) Rfid를 기반으로 한 위치 측정 방법 및 시스템
JP2015507172A (ja) 距離推定
KR20200071891A (ko) 실내 위치 측정 장치 및 방법 및 방법
KR101762510B1 (ko) 위치 추정 정확도 향상을 위한 이동형 기준 노드 위치 결정 방법
JP2014190721A (ja) 測距システム
Zimmermann et al. Dynamic live wireless communication monitoring for jamming and interference detection in industry 4.0
JP2021009123A (ja) 測位装置
Cecílio et al. RobustPathFinder: handling uncertainty in indoor positioning techniques
JP2020122742A (ja) 測位装置
KR101793637B1 (ko) 단말 장치 및 단말 장치의 위치 측정에 관한 정보를 저장하는 서버
Wahid et al. Mobile indoor localization based on rssi using kalman filter and trilateration technique
KR101374717B1 (ko) 선형 회귀 기법을 이용한 실시간 위치 판별 가능한 모바일 단말 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877229

Country of ref document: EP

Kind code of ref document: A1