WO2018100781A1 - 中密度繊維板の製造方法 - Google Patents

中密度繊維板の製造方法 Download PDF

Info

Publication number
WO2018100781A1
WO2018100781A1 PCT/JP2017/024309 JP2017024309W WO2018100781A1 WO 2018100781 A1 WO2018100781 A1 WO 2018100781A1 JP 2017024309 W JP2017024309 W JP 2017024309W WO 2018100781 A1 WO2018100781 A1 WO 2018100781A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
medium density
wood fiber
mass
isocyanate compound
Prior art date
Application number
PCT/JP2017/024309
Other languages
English (en)
French (fr)
Inventor
木村 光一
康三 遠藤
さおり 板橋
和子 牧野
大 古矢
Original Assignee
光洋産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋産業株式会社 filed Critical 光洋産業株式会社
Publication of WO2018100781A1 publication Critical patent/WO2018100781A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to a method for producing a medium density fiberboard (MDF) by spraying an adhesive onto a wood fiber, drying, and hot pressing.
  • MDF medium density fiberboard
  • urea resin, urea melamine resin, phenol resin, etc. have been used in large quantities as adhesives for wood and its secondary processed products, plywood, particle board, medium density fiber board, etc. Is an environmental problem because formaldehyde is released.
  • the NCO / OH index of the organic isocyanate compound NCO and the polyol OH is 0.7 or less.
  • the wood is defibrated using a defibrator or the like used in the production of ordinary MDF or IB (soft fiber board), and the wood Make a fiber.
  • the wood fiber is dried using a dryer, and the water content is adjusted to 3% by weight.
  • the wood fiber is put into a blender, and while rotating the blender blade, the organic isocyanate compound is gradually sprayed and uniformly dispersed on the wood fiber using a spray gun.
  • distilled water and the above polyol are similarly sprayed and uniformly dispersed using a spray gun. Furthermore, on the steel call board on which the release agent has been applied, the wood fiber is uniformly formed to a predetermined size, and the coated surface of the steel call board on which the release agent has been applied in advance, Cover the formed wood fiber surface and hot press to form a single layer wood fiber board.
  • the above adhesive composition lignocelluloses and inorganic materials can be easily bonded.
  • the above wood fiber board is a high quality wood fiber board with excellent water absorption and moisture absorption thickness expansion coefficient, moisture absorption length expansion coefficient, bending strength, secondary workability and peel strength, and excellent water resistance. Obtainable.
  • JP 2013-107311 A (Claim 1, paragraphs [0018], [0121], [0125] to [0128])
  • Patent Document 2 discloses The indicated adhesive composition has a problem that the curing reaction of the organic isocyanate compound is accelerated before hot pressing, and the mechanical strength of the board is lowered.
  • the first object of the present invention is to obtain a medium density fiberboard having high mechanical strength even in the production process of medium density fiberboard (MDF) even if there is a step of heating and drying after applying an adhesive. Another object is to provide a method for producing a medium density fiberboard.
  • a second object of the present invention is to provide a method for producing a medium density fiber board, which can obtain a medium density fiber board having high mechanical strength without using an isocyanurate-forming catalyst.
  • a first aspect of the present invention includes a step of preparing an organic isocyanate compound as a main component of an adhesive and a polyhydric alcohol having a weight average molecular weight of 60 to 200 as an additive of the adhesive, and does not include an isocyanuration catalyst. And a step of spraying the main components and additives of the adhesive onto the wood fiber so that the polyhydric alcohol is 5 to 30 parts by mass with respect to 100 parts by mass of the organic isocyanate compound, and the main components and additives of the adhesive The step of drying the sprayed wood fiber to adjust the moisture content of the wood fiber to 5.0 to 10.0%, and the dried wood fiber at a temperature of 150 to 250 ° C. and 0.5 to 5.0 MPa.
  • a method of producing a medium density fiberboard including a step of hot pressing with pressure.
  • the manufacturing method which sprays the liquid mixture which mixed the organic isocyanate compound and the polyhydric alcohol in the said ratio may be sufficient, or an organic isocyanate compound and a polyhydric alcohol may be used.
  • the manufacturing method which sprays separately in the said ratio may be sufficient.
  • a second aspect of the present invention is the invention based on the first aspect, wherein the polyhydric alcohol further comprises ethylene glycol having a weight average molecular weight of 62, propylene glycol having a weight average molecular weight of 76, and benzene having a weight average molecular weight of 138.17. It is characterized by being diethanol or polyethylene glycol having a weight average molecular weight of 200.
  • the method for producing a medium density fiberboard according to the first aspect of the present invention, 5 to 30 parts by mass of polyhydric alcohol as an additive of the adhesive is added to 100 parts by mass of the organic isocyanate compound as the main component of the adhesive. After spraying the main component and additive of the adhesive onto the wood fiber, the wood fiber sprayed with the main component and additive of the adhesive was dried, and the dried wood fiber was further hot-press molded. Therefore, after drying the wood fiber, the wood fiber is a small lump compared to the conventional adhesive composition for forming a water-resistant composite material in which an organic isocyanate compound and a polyol are dispersed in the wood fiber (so-called dama). Therefore, a medium density fiberboard having a uniform density after hot pressing can be obtained.
  • the weight average molecular weight of the polyhydric alcohol is as small as 60 to 200, the crosslink density when the polyhydric alcohol reacts with the organic isocyanate compound increases, that is, the crosslink of the reaction cured product of the polyhydric alcohol and the organic isocyanate compound. Density increases. As a result, the mechanical strength of the medium density fiberboard can be increased, the water absorption thickness expansion coefficient of the medium density fiberboard can be reduced, and the amount of polyhydric alcohol added without reducing the adhesive strength of the adhesive. Can be reduced.
  • the adhesive does not contain an isocyanurate-forming catalyst, the curing reaction of the organic isocyanate compound may be promoted too much after the main components and additives of the adhesive are sprayed on the wood fiber and before hot pressing. Absent. As a result, a medium density fiberboard with high mechanical strength can be obtained, and the types of components to be added to the adhesive are reduced, thereby reducing the number of manufacturing steps for the medium density fiberboard. Further, since the ratio of the polyhydric alcohol to 100 parts by mass of the organic isocyanate compound is 5 to 30 parts by mass, the mechanical strength of the medium density fiberboard can be further increased, and the water absorption thickness expansion coefficient of the medium density fiberboard can be increased. Can be further reduced.
  • a medium density fiber board can be produced without generating puncture by hot pressing.
  • puncture means that when the medium density fiber board is hot-pressed and then decompressed, water vapor in the medium density fiber board rapidly expands and the medium density fiber board bursts.
  • the medium density fiberboard refers to a fiberboard having a density in the range of 0.35 to 0.80 g / cm 3 among fiberboards manufactured by a dry process based on JIS A 5905.
  • organic isocyanate compounds include 4,4′-diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene-1,4-diisocyanate, xylene- 1,3-diisocyanate, 2,4′-difelmethane diisocyanate, 2,2′-difelmethane diisocyanate, 4,4′-diphenyl ether diisocyanate, and the like. Furthermore, the weight average molecular weight of the polyhydric alcohol is 60-200.
  • the polyhydric alcohol is preferably ethylene glycol having a weight average molecular weight of 62, propylene glycol having a weight average molecular weight of 76, benzenediethanol having a weight average molecular weight of 138.17, or polyethylene glycol having a weight average molecular weight of 200.
  • the weight average molecular weight of the polyhydric alcohol is limited to the range of 60 to 200. If it is less than 60, the reaction with the organic isocyanate compound becomes too fast. This is because the cross-linking density of the reaction cured product becomes low, and the mechanical strength of the medium density fiberboard produced using the adhesive decreases.
  • the main components and additives of the adhesive are sprayed onto the wood fiber so as to contain 5 to 30 parts by mass of polyhydric alcohol with respect to 100 parts by mass of the organic isocyanate compound without containing the isocyanurate-forming catalyst.
  • the isocyanurate-forming catalyst is not included in the adhesive, the curing reaction of the organic isocyanate compound is not excessively promoted after the adhesive is sprayed on the wood fiber and before the hot press molding described later. Thereby, while being able to obtain a medium density fiber board with high mechanical strength, the kind of component added to an adhesive agent decreases, and the manufacturing man-hour of a medium density fiber board can be reduced.
  • the ratio of the polyhydric alcohol to 100 parts by mass of the organic isocyanate compound is limited to the range of 5 to 30 parts by mass. Outside this range, the mechanical strength of the medium density fiberboard decreases and the water absorption thickness expansion coefficient. This is because of the increase.
  • the NCO / OH index which is the ratio of “NCO” of the organic isocyanate compound to “OH” of the polyhydric alcohol, is preferably 0.5 to 15.0.
  • “42” is the molecular weight of NCO
  • “56100” is the molecular weight (mg) of KOH.
  • the reason why the NCO / OH index is limited to the range of 0.5 to 15.0 is the same as the reason why the ratio of the polyhydric alcohol to 100 parts by mass of the organic isocyanate compound is limited to the range of 5 to 30 parts by mass. In addition, if it is out of this range, the mechanical strength of the medium density fiberboard decreases and the water absorption thickness expansion coefficient increases.
  • wood fiber is obtained by defibrating wood chips using a defibrator, refiner, or the like.
  • the spray amount of the organic isocyanate compound onto the wood fiber is preferably 2 to 15 parts by mass with respect to 100 parts by mass (absolutely dry mass) of the wood fiber.
  • the amount sprayed onto the wood fiber of the organic isocyanate compound is limited to the range of 2 to 15 parts by mass with respect to 100 parts by mass (absolutely dry mass) of the wood fiber. This is because the mechanical strength of the glass fiber is extremely lowered, and if it exceeds 15 parts by mass, the adhesion of the wood fiber to the hot platen during hot press molding cannot be prevented even if a release agent is applied.
  • the organic isocyanate compound and the polyhydric alcohol may be mixed and sprayed in advance, or the organic isocyanate compound and the polyhydric alcohol may be sprayed respectively. You may spray separately on a wooden fiber. When spraying separately, the organic isocyanate compound may be sprayed after spraying the polyhydric alcohol, the polyhydric alcohol may be sprayed after spraying the organic isocyanate compound, or the organic isocyanate compound and the polyhydric alcohol may be sprayed. You may spray simultaneously.
  • the wood fiber sprayed with the main components and additives of the adhesive is dried by heating with a drier or the like to adjust the moisture content of the wood fiber to 5.0 to 10.0%.
  • the moisture content of the wood fiber is limited to the range of 5.0 to 10.0%. If it is less than 5.0%, the moisture content of the wood fiber is too low to allow the medium density fiberboard to be hot-pressed. This is because if the content exceeds 10.0%, so-called puncture occurs in which the water vapor in the medium density fiberboard rapidly expands and bursts when the pressure is released after hot pressing.
  • the dried wood fiber is hot-press molded at a temperature of 150 to 250 ° C. and a pressure of 0.5 to 5.0 MPa.
  • the temperature at the time of hot press molding was limited to the range of 150 to 250 ° C. If the temperature is lower than 150 ° C., the medium density fiberboard becomes poorly molded or insufficient in strength due to poor curing of the adhesive, and exceeds 250 ° C. This is because it will approach the ignition point of wooden materials.
  • the pressure at the time of hot-pressure molding is limited to the range of 0.5 to 5.0 MPa. If the pressure is less than 0.5 MPa, it cannot be molded to a specified thickness. This is because it is difficult for a medium-density fiberboard manufacturing facility, and when it is hot pressed at a pressure that is too high, the medium-density fiberboard tends to puncture.
  • the polyhydric alcohol that is an additive of the adhesive is 5 to 30 parts by mass with respect to 100 parts by mass of the organic isocyanate compound that is the main component of the adhesive.
  • the wood fibers sprayed with the main components and additives of the adhesive were dried, and further, the dried wood fibers were hot-press-molded.
  • the wood fibers are prevented from becoming lumps (so-called lumps).
  • a medium density fiberboard having a uniform density after hot pressing.
  • a wood fiber was prepared in advance. Specifically, wood fibers were defibrated to produce wood fibers with a refiner, which is a machine used to manufacture ordinary medium density fiber boards (MDF) and soft fiber boards (IB). The moisture content of the wood fiber was 15 parts by mass by the total dry method.
  • MDF medium density fiber boards
  • IB soft fiber boards
  • the moisture content of the wood fiber was 15 parts by mass by the total dry method.
  • AP NCO content: 31.1%) manufactured by Koyo Sangyo Co., Ltd. was prepared as an organic isocyanate compound as the main component of the adhesive, and a polyhydric alcohol having a weight average molecular weight of 60 to 200 as an additive for the adhesive.
  • ethylene glycol having a weight average molecular weight of 62 was prepared.
  • the main component and additive of the adhesive were sprayed separately on the wood fiber so that the polyhydric alcohol was 5 parts by mass with respect to 100 parts by mass of the organic isocyanate compound.
  • the main components and additives of the adhesive were uniformly sprayed and applied to the wood fiber using the spray gun in the above ratio.
  • the spray amount of the organic isocyanate compound was 5 parts by mass with respect to 100 parts by mass (absolute dry mass) of the wood fiber.
  • the wood fiber on which the adhesive was uniformly applied was heated and dried until the moisture content of the mat reached a predetermined value.
  • this dried wood fiber was weighed so as to become a medium density fiberboard (MDF) of a predetermined density, and this weighed on a steel coke board in which a release agent was previously applied as an external release agent.
  • MDF medium density fiberboard
  • a wood fiber was formed, and the coated surface of a steel cauld board, which had been coated with a release agent as an external release agent in advance, was covered with the formed fiber surface and hot-press molded under the following conditions.
  • This medium density fiberboard was referred to as Example 1.
  • Examples 2 to 6 and Comparative Examples 1 to 8 Medium density fiberboards of Examples 2 to 6 and Comparative Examples 1 to 8 were produced under the blending and molding conditions shown in Table 1. In addition, it mix
  • MDI in Table 1 is an AP (NCO content: 31.1%) manufactured by Koyo Sangyo Co., Ltd. prepared as an organic isocyanate compound that is the main component of the adhesive, and “EG” is ethylene glycol. .
  • Comparative Example 4 in which the mat moisture content was too low, 3.3%, could not be hot-pressed
  • Comparative Example 5 in which the mat moisture content was too high, 13.9%, was hot-pressed medium density fiber.
  • the plate was punctured, and the bending strength, peel strength, and water absorption thickness expansion rate could not be measured, and all of them had insufficient performance as a medium density fiberboard.
  • the bending strength and peel strength were 32.0 to 33.1 N / mm 2 and 0, respectively. .84 as high as ⁇ 0.89N / mm 2, the water absorption thickness expansion coefficient as low as 8.72 to 8.93%, both density fiberboard is in a high performance was obtained.
  • Comparative Example 6 in which a metal-based catalyst (dibutyltin dilaurate) was added as an isocyanuration catalyst, the bending strength and peel strength were reduced to 25.8 N / mm 2 and 0.71 / mm 2 , respectively.
  • Comparative Example 7 in which an amine catalyst (2,4,6-tridimethylaminomethylphenol) was added as an isocyanuration catalyst, the bending strength and peel strength were 22.3 N / mm 2 and 0.61 / mm 2 , respectively. It became low and the water absorption thickness expansion coefficient became high with 10.64%, and all were inadequate performance as a medium density fiber board.
  • Example 2 where no isocyanurate-based catalyst was added (other conditions: substantially the same as Comparative Examples 6 and 7), the bending strength and peel strength were 34.6 N / mm 2 and 0.96 N /%, respectively. as high as mm 2, water thickness expansion rate is reduced 8.33% density fiberboard in high performance was obtained.
  • Comparative Example 8 in which the adhesive was applied after the wood fiber was dried, the bending strength and peel strength were reduced to 27.2 N / mm 2 and 0.77 / mm 2 , respectively. The performance was insufficient.
  • Example 3 in which the wood fiber was dried after the adhesive was applied to the wood fiber, the bending strength and peel strength were 38.9 N / mm 2 and 1 respectively. It was as high as .14 N / mm 2 , and the water absorption thickness expansion coefficient was as low as 7.27%, and a high-performance medium density fiberboard was obtained.
  • Examples 7 to 10 and Comparative Examples 9 to 10 Medium density fiberboards of Examples 7 to 10 and Comparative Examples 9 to 10 were produced under the blending and molding conditions shown in Table 2. In addition, it mix
  • MDI in Table 2 is AP (NCO content: 31.1%) manufactured by Koyo Sangyo Co., Ltd. prepared as an organic isocyanate compound that is the main component of the adhesive, and “PG” is propylene glycol. .
  • Examples 11 to 14 and Comparative Examples 11 to 12 Medium density fiberboards of Examples 11 to 14 and Comparative Examples 11 to 12 were produced under the blending and molding conditions shown in Table 3. In addition, it mix
  • FIG. “MDI” in Table 3 is an AP (NCO content: 31.1%) manufactured by Koyo Sangyo Co., Ltd. prepared as an organic isocyanate compound that is the main component of the adhesive, and “BDM” is benzenedimethanol. is there.
  • Examples 15 to 18 and Comparative Examples 13 to 20 Medium density fiberboards of Examples 15 to 18 and Comparative Examples 13 to 20 were produced under the blending and molding conditions shown in Table 4. In addition, it mix
  • MDI in Table 4 is AP (NCO content: 31.1%) manufactured by Koyo Sangyo Co., Ltd. prepared as an organic isocyanate compound that is the main component of the adhesive, and “PEG-200” is a weight average.
  • Polyethylene glycol having a molecular weight of 200 “PEG-300” is a polyethylene glycol having a weight average molecular weight of 300, and “PEG-2000” is a polyethylene glycol having a weight average molecular weight of 2000.
  • Metal in Comparative Example 19 indicates that dibutyltin dilaurate was used as the metal catalyst, and “Amine” in Comparative Example 20 is amine-based. This shows that 2,4,6-tridimethylaminomethylphenol was used as a catalyst.
  • Comparative Example 19 was added metal catalyst (dibutyltin dilaurate) as isocyanurate catalysts, will bend strength and peel strength becomes respectively lower and 24.8N / mm 2 and 0.66 N / mm 2, also in amine catalyst (2,4,6-dimethylaminomethyl phenol) Comparative example 20 were added, will bend strength and peel strength becomes respectively lower and 27.1N / mm 2 and 0.80 N / mm 2, All of them had insufficient performance as a medium density fiberboard.
  • metal catalyst dibutyltin dilaurate
  • Comparative Examples 15 and 16 to which polyethylene glycol (PEG-300) having a molecular weight of 300 was added even when the addition amount was within an appropriate range of 5 parts by mass (Comparative Example 15), the bending strength and peel strength were high. Respectively, it becomes as low as 22.7 N / mm 2 and 0.45 N / mm 2 , the water absorption thickness expansion coefficient becomes high as 12.27%, and even if the addition amount is within an appropriate range of 30 parts by mass.
  • bending strength and peel strength are low and 28.1N / mm 2 and 0.66 N / mm 2, the water absorption thickness expansion rate becomes high as 10.87%, any medium may density The performance as a fiberboard was insufficient.
  • Comparative Examples 17 and 18 to which polyethylene glycol having a molecular weight of 2000 (PEG-2000) was added even when the amount added was within an appropriate range of 5 parts by mass (Comparative Example 17), the bending strength and peel strength were high. each low and 19.8N / mm 2 and 0.38N / mm 2, the water absorption thickness expansion rate becomes high as 14.4%, the addition amount be a suitable range and 30 parts by weight ( Comparative example 18), bending strength and peel strength are as low as 24.5 N / mm 2 and 0.66 N / mm 2, the water absorption thickness expansion rate becomes high as 11.10%, the middle both density fiber The performance as a board was insufficient.
  • PEG-2000 polyethylene glycol having a molecular weight of 2000
  • the medium density fiberboard manufactured by the method of the present invention can be used for materials such as wooden houses and furniture as a material for using wood without waste.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

先ず、接着剤の主成分として有機イソシアネート化合物と、接着剤の添加剤として重量平均分子量60~200の多価アルコールとを用意する。次いで、イソシアヌレート化触媒を含まずかつ有機イソシアネート化合物100質量部に対して多価アルコールが5~30質量部となるように接着剤の主成分及び添加剤を木質ファイバーに噴霧する。次に、上記接着剤の主成分及び添加剤を噴霧した木質ファイバーを乾燥してこの木質ファイバーの含水率を5.0~10.0%に調整する。更に、この乾燥した木質ファイバーを150~250℃の温度及び0.5~5.0MPaの圧力で熱圧成形する。

Description

中密度繊維板の製造方法
 本発明は、接着剤を木質ファイバーに噴霧し乾燥し更に熱圧成形して中密度繊維板(Medium Density Fiberboard:MDF)を製造する方法に関するものである。なお、本国際出願は、2016年11月30日に出願した日本国特許出願第232104号(特願2016-232104)に基づく優先権を主張するものであり、特願2016-232104の全内容を本国際出願に援用する。
 従来、木材及びその二次加工品、合板、パーティクルボード、中密度繊維板等の接着剤として尿素樹脂、尿素メラミン樹脂、フェノール樹脂等が極めて多量に使用されているけれども、得られた成形品からはホルムアルデヒドが放出されるため、環境上問題となっている。
 この点を解消するために、非ホルマリン系接着剤が検討されており、接着剤として有機イソシアネート化合物と、イソシアヌレート化触媒及び活性水素基含有化合物をスプレー塗布する熱圧成形ボードの製造方法(例えば、特許文献1参照。)や、有機イソシアネート系化合物と、官能基数が2~8でありかつ重量平均分子量が60~1000であるポリオールを含む高耐水性の複合材料形成用接着剤組成物(例えば、特許文献2参照。)などが提案されている。
 上記特許文献1の熱圧成形ボードの製造方法では、先ず、木質チップを解繊して得られた木質ファイバーに有機イソシアネート化合物、イソシアヌレート化触媒及びポリオールをそれぞれスプレー塗布した後に、この木質ファイバーのマット含水率が10%になるまで乾燥させる。次に、この木質ファイバーを取り出して、成形後の熱圧成形体の密度が設定密度になるように計量し、鉄板上にボードサイズになるようにフォーミング成形装置を用いてフォーミングした後に、同形状の鉄板を上に載せ、所定の条件で熱圧成形する。この結果、機械的物性に優れたボードを得ることができる。
 一方、上記特許文献2の高耐水性の複合材料形成用接着剤組成物では、有機イソシアネート系化合物のNCOとポリオールのOHとのNCO/OHインデックスが0.7以下である。この接着剤組成物を用いて木質ファイバーボードを製造するには、先ず、通常のMDFやIB(軟質繊維板)の製造に用いられているディファイブレーター等を用いて木材を解繊し、木質ファイバーを作製する。このとき木質ファイバーを、乾燥機を用いて乾燥させ、含水率を3重量%に調整する。次いで、木質ファイバーをブレンダー中へ入れ、ブレンダー羽根を回転させながら、スプレーガンを用いて、木質ファイバーに上記有機イソシアネート系化合物を徐々に噴霧塗布し均一分散させる。次に、蒸留水及び上記ポリオールも同様に、スプレーガンを用いて、徐々に噴霧塗布し均一分散させる。更に、離型剤を塗布しておいた鋼製コール盤上に、木質ファイバーを所定の大きさに均一にフォーミングし、予め離型剤を塗布しておいた鋼製コール盤の塗布面を、フォーミングした木質ファイバー面へ被せ、熱圧プレスし、単層の木質ファイバーボードを成形する。
 上記接着剤組成物では、リグノセルロース類や無機材料を容易に接着できる。また、上記木質ファイバーボードでは、吸水及び吸湿厚さ膨張率、吸湿長さ膨張率、曲げ強さ、二次加工性及び剥離強度に優れ、かつ耐水性に優れた、高品質の木質ファイバーボードを得ることができる。
特開2003-276012号公報(請求項2、段落[0040]、[0043]) 特開2013-107311号公報(請求項1、段落[0018]、[0121]、[0125]~[0128])
 しかし、上記従来の特許文献1に示された熱圧成形ボードの製造方法では、有機イソシアネート化合物及び添加剤としてイソシアヌレート化触媒又はポリオールのいずれか一方又は双方を用いているが、分子量の小さいポリオールとイソシアヌレート化触媒を併用した場合、熱圧成形前に有機イソシアネート化合物の硬化反応が促進されて、ボードの機械的強度が低下する問題点があった。また、上記従来の特許文献2に示された高耐水性の複合材料形成用接着剤組成物では、木質ファイバーを乾燥した後に、接着剤の成分である有機イソシアネート系化合物及びポリオールを木質ファイバーに分散させているため、木質ファイバーが小さな塊(いわゆるダマ)になってしまい、熱圧成形後の木質ファイバーボードの密度が不均一になって、機械的強度が低下する不具合があった。更に、解繊した木質ファイバーに接着剤を塗布した後に、所定のマット含水率まで加熱乾燥させて、熱圧成形する一般的な中密度繊維板(MDF)の製造工程においては、特許文献2に示された接着剤組成物は、熱圧成形前に有機イソシアネート化合物の硬化反応が促進されて、ボードの機械的強度が低下する問題点があった。
 本発明の第1の目的は、中密度繊維板(MDF)の製造工程において、接着剤を塗布した後に加熱乾燥する工程があっても、機械的強度が高い中密度繊維板を得ることができる、中密度繊維板の製造方法を提供することにある。本発明の第2の目的は、イソシアヌレート化触媒を用いずに、機械的強度が高い中密度繊維板を得ることができる、中密度繊維板の製造方法を提供することにある。
 本発明の第1の観点は、接着剤の主成分として有機イソシアネート化合物と、接着剤の添加剤として重量平均分子量60~200の多価アルコールとを用意する工程と、イソシアヌレート化触媒を含まずかつ有機イソシアネート化合物100質量部に対して多価アルコールが5~30質量部となるように接着剤の主成分及び添加剤を木質ファイバーに噴霧する工程と、上記接着剤の主成分及び添加剤を噴霧した木質ファイバーを乾燥してこの木質ファイバーの含水率を5.0~10.0%に調整する工程と、この乾燥した木質ファイバーを150~250℃の温度及び0.5~5.0MPaの圧力で熱圧成形する工程とを含む中密度繊維板の製造方法である。なお、本発明の中密度繊維板の製造方法では、有機イソシアネート化合物と多価アルコールとを上記割合で混合した混合液を噴霧する製造方法であってもよく、或いは有機イソシアネート化合物と多価アルコールを上記割合で別々に噴霧する製造方法であってもよい。
 本発明の第2の観点は、第1の観点に基づく発明であって、更に多価アルコールが、重量平均分子量62のエチレングリコール、重量平均分子量76のプロピレングリコール、重量平均分子量138.17のベンゼンジエタノール、又は重量平均分子量200のポリエチレングリコールであることを特徴とする。
 本発明の第1の観点の中密度繊維板の製造方法では、接着剤の主成分である有機イソシアネート化合物100質量部に対して、接着剤の添加剤である多価アルコールが5~30質量部となるように、接着剤の主成分及び添加剤を木質ファイバーに噴霧した後に、この接着剤の主成分及び添加剤を噴霧した木質ファイバーを乾燥し、更にこの乾燥した木質ファイバーを熱圧成形したので、木質ファイバーを乾燥した後に、有機イソシアネート系化合物及びポリオールを木質ファイバーに分散させた従来の高耐水性の複合材料形成用接着剤組成物と比較して、木質ファイバーが小さな塊(いわゆるダマ)になることを防止でき、熱圧成形後に密度が均一な中密度繊維板を得ることができる。また、多価アルコールの重量平均分子量が60~200と小さいので、多価アルコールが有機イソシアネート化合物と反応したときの架橋密度が高くなる、即ち多価アルコールと有機イソシアネート化合物との反応硬化物の架橋密度が高くなる。この結果、中密度繊維板の機械的強度を高くすることができ、中密度繊維板の吸水厚さ膨張率を低減できるとともに、接着剤の接着力を低下させずに多価アルコールの添加量を低減できる。
 また、接着剤にイソシアヌレート化触媒を含まないので、接着剤の主成分及び添加剤を木質ファイバーに噴霧した後であって熱圧成形前に、有機イソシアネート化合物の硬化反応が促進され過ぎることがない。この結果、機械的強度が高い中密度繊維板を得ることができるとともに、接着剤に添加する成分の種類が少なくなり、中密度繊維板の製造工数を低減できる。また、有機イソシアネート化合物100質量部に対する多価アルコールの割合が5~30質量部であるので、中密度繊維板の機械的強度を更に高くすることができ、中密度繊維板の吸水厚さ膨張率を更に低減できる。更に、乾燥工程で木質ファイバーの含水率を5.0~10.0%に調整したので、熱圧成形によりパンクが発生することなく中密度繊維板を製造できる。ここで、パンクとは、中密度繊維板を熱圧成形した後、解圧したときに、中密度繊維板中の水蒸気が急激に膨張して中密度繊維板が破裂することをいう。
 次に本発明を実施するための形態を説明する。中密度繊維板を製造するために、先ず、接着剤の主成分として有機イソシアネート化合物と、接着剤の添加剤として多価アルコールとを用意する。ここで、中密度繊維板とは、JIS A 5905に基づきドライプロセスによって製造される繊維板のうち密度が0.35~0.80g/cm3の範囲内のものをいう。また、有機イソシアネート化合物としては、4,4'-ジフェルメタンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシレン-1,4-ジイソシアネート、キシレン-1,3-ジイソシアネート、2,4'-ジフェルメタンジイソシアネート、2,2'-ジフェルメタンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネート等が挙げられる。更に、多価アルコールの重量平均分子量は60~200である。具体的には、多価アルコールは、重量平均分子量62のエチレングリコール、重量平均分子量76のプロピレングリコール、重量平均分子量138.17のベンゼンジエタノール、又は重量平均分子量200のポリエチレングリコールであることが好ましい。ここで、多価アルコールの重量平均分子量を60~200の範囲内に限定したのは、60未満では有機イソシアネート化合物との反応が速くなり過ぎてしまい、200を超えると多価アルコールと有機イソシアネート化合物との反応硬化物の架橋密度が低くなり、接着剤を用いて製造される中密度繊維板の機械的強度が低下してしまうからである。
 次いで、イソシアヌレート化触媒を含まずかつ有機イソシアネート化合物100質量部に対して多価アルコールが5~30質量部となるように接着剤の主成分及び添加剤を木質ファイバーに噴霧する。ここで、接着剤にイソシアヌレート化触媒を含まないため、接着剤を木質ファイバーに噴霧した後であって後述の熱圧成形前に、有機イソシアネート化合物の硬化反応が促進され過ぎることがない。これにより、機械的強度が高い中密度繊維板を得ることができるとともに、接着剤に添加する成分の種類が少なくなり、中密度繊維板の製造工数を低減できる。また、有機イソシアネート化合物100質量部に対する多価アルコールの割合を5~30質量部の範囲内に限定したのは、この範囲外では中密度繊維板の機械的強度が低下するとともに吸水厚さ膨張率が増大してしまうからである。更に、有機イソシアネート化合物の「NCO」と多価アルコールの「OH」との比であるNCO/OHインデックスは0.5~15.0であることが好ましい。ここで、NCO/OHインデックスをIDとし、有機イソシアネート化合物の質量をA1とし、有機イソシアネート化合物中のNCO含有量をB1とし、多価アルコールの質量をA2とし、多価アルコールのOH含有量をB2とするとき、ID(NCO/OHインデックス)は次の式(1)で表される。
  ID=[(A1×B1/42)/(A2×B2/56100)]……(1)
 式(1)において、「42」はNCOの分子量であり、「56100」はKOHの分子量(mg)である。そして、NCO/OHインデックスを0.5~15.0の範囲内に限定したのは、有機イソシアネート化合物100質量部に対する多価アルコールの割合を5~30質量部の範囲内に限定した理由と同様に、この範囲を外れると、中密度繊維板の機械的強度が低下するとともに吸水厚さ膨張率が増大してしまうからである。
 一方、木質ファイバーは、木質チップをディファイブレーター、リファイナー等を用いて解繊することにより得られる。また、有機イソシアネート化合物の木質ファイバーへの噴霧量は、木質ファイバー100質量部(絶乾質量)に対して2~15質量部であることが好ましい。ここで、有機イソシアネート化合物の木質ファイバーへの噴霧量を木質ファイバー100質量部(絶乾質量)に対して2~15質量部の範囲内に限定したのは、2質量部未満では中密度繊維板の機械的強度が極端に低下してしまい、15質量部を超えると熱圧成形時における熱盤への木質ファイバーの付着が離型剤を塗布しても防ぎきれないからである。また、有機イソシアネート化合物及び多価アルコールを木質ファイバーに噴霧する方法としては、有機イソシアネート化合物と多価アルコールを予め混合してから噴霧してもよいし、或いは有機イソシアネート化合物と多価アルコールとをそれぞれ別々に木質ファイバーに噴霧してもよい。別々に噴霧する場合は、多価アルコールを噴霧した後に有機イソシアネート化合物を噴霧してもよく、有機イソシアネート化合物を噴霧した後に多価アルコールを噴霧してもよく、或いは有機イソシアネート化合物と多価アルコールを同時に噴霧してもよい。
 次に、接着剤の主成分及び添加剤を噴霧した木質ファイバーをドライヤー等で加熱乾燥して木質ファイバーの含水率を5.0~10.0%に調整する。ここで、木質ファイバーの含水率を5.0~10.0%の範囲内に限定したのは、5.0%未満では木質ファイバーの水分が少なすぎて中密度繊維板を熱圧成形できず、10.0%を超えると熱圧成形後に解圧したときに中密度繊維板中の水蒸気が急激に膨張して破裂するいわゆるパンクが発生してしまうからである。
 更に、上記乾燥した木質ファイバーを150~250℃の温度及び0.5~5.0MPaの圧力で熱圧成形する。ここで、熱圧成形時の温度を150~250℃の範囲内に限定したのは、150℃未満では接着剤の硬化不良により中密度繊維板が成形不良又は強度不足になり、250℃を超えると木質材料の発火点に近付いてしまうからである。また、熱圧成形時の圧力を0.5~5.0MPaの範囲内に限定したのは、0.5MPa未満では規定の厚さに成形できず、5.0MPaを超えることは、一般的な中密度繊維板の製造設備では難しく、また高すぎる圧力で熱圧すると中密度繊維板がパンクし易いからである。
 このように製造された中密度繊維板では、接着剤の主成分である有機イソシアネート化合物100質量部に対して、接着剤の添加剤である多価アルコールが5~30質量部となるように、接着剤の主成分及び添加剤を木質ファイバーに噴霧した後に、この接着剤の主成分及び添加剤を噴霧した木質ファイバーを乾燥し、更にこの乾燥した木質ファイバーを熱圧成形したので、木質ファイバーを乾燥した後に、有機イソシアネート系化合物及びポリオールを木質ファイバーに分散させた従来の高耐水性の複合材料形成用接着剤組成物と比較して、木質ファイバーが小さな塊(いわゆるダマ)になることを防止でき、熱圧成形後に密度が均一な中密度繊維板を得ることができる。
 次に本発明の実施例を比較例とともに詳しく説明する。
 <実施例1>
 予め、木質ファイバーを作製しておいた。具体的には、通常の中密度繊維板(MDF)や軟質繊維板(IB)の製造に用いられる機械であるリファイナーにより、木材を解繊して木質ファイバーを作製しておいた。この木質ファイバーの含水率は全乾法で15質量部であった。先ず、接着剤の主成分である有機イソシアネート化合物として光洋産業社製のAP(NCO含有量:31.1%)を用意し、接着剤の添加剤である重量平均分子量60~200の多価アルコールとして重量平均分子量62のエチレングリコールを用意した。次いで、有機イソシアネート化合物100質量部に対して多価アルコールが5質量部となるように接着剤の主成分及び添加剤を木質ファイバーにそれぞれ別々に噴霧した。具体的には、ブレンダー(混合機)中で木質ファイバーに接着剤の主成分及び添加剤を上記割合でスプレーガン用いて均一にそれぞれ噴霧し塗布した。但し、上記有機イソシアネート化合物の噴霧量は木質ファイバー100質量部(絶乾質量)に対して5質量部であった。次に、上記接着剤を均一に塗布した木質ファイバーを、マット含水率が所定値になるまで加熱して乾燥させた。更に、この乾燥した木質ファイバーを、所定密度の中密度繊維板(MDF)になるように計量し、予め外部離型剤として離型剤を塗布しておいた鋼製コール盤上にこの計量した木質ファイバーをフォーミングし、予め外部離型剤として離型剤を塗布しておいた鋼製コール盤の塗布面を、上記フォーミングしたファイバー面に被せ、次の条件で熱圧成形した。この中密度繊維板を実施例1とした。
 中密度繊維板の熱圧成形条件
(1) 中密度繊維板のサイズ:縦300mm×横300mm
(2) 中密度繊維板の設定厚さ:12mm
(3) 中密度繊維板の設定密度:0.75g/cm3
(4) マット含水率:8%
(5) 熱圧成形時の温度:200℃
(6) 熱圧成形時の圧力:4.5MPa
(7) 単位厚さ当たりの熱圧時間:8秒/mm
 <実施例2~6及び比較例1~8>
 実施例2~6及び比較例1~8の中密度繊維板は、表1に示すような配合及び成形条件で製造した。なお、表1に示した配合及び成形条件以外は、実施例1と同様にして、配合し成形した。また、表1中の『MDI』は接着剤の主成分である有機イソシアネート化合物として用意した光洋産業社製のAP(NCO含有量:31.1%)であり、『EG』はエチレングリコールである。また、表1中の『イソシアヌレート化触媒』の欄において、比較例6の『金属系』は金属系触媒としてジラウリン酸ジブチルスズを用いたことを示し、比較例7の『アミン系』はアミン系触媒として2,4,6-トリジメチルアミノメチルフェノールを用いたことを示す。更に、表1中の『乾燥後接着剤塗布』の欄において、『YES』は実施例1に記載したように木質ファイバーに接着剤を塗布した後にこの木質ファイバーを乾燥した場合を示し、『NO』は木質ファイバーを含水率が10%になるまで乾燥した後に、ブレンダー(混合機)中で木質ファイバーに接着剤の主成分及び添加剤を比較例8に記載の割合で均一にそれぞれ噴霧し塗布した場合を示す。
 <比較試験1及び評価>
 実施例1~6及び比較例1~8の中密度繊維板について、パンクの有無の確認及び中密度繊維板の性能評価試験を行った。中密度繊維板の性能評価試験はJIS A 5905繊維板に準拠して、曲げ強度、剥離強度及び吸水厚さ膨張率の評価を行った。パンクの有無については、中密度繊維板を熱圧成形後、解圧したときに中密度繊維板中の水蒸気が急激に膨張して中密度繊維板が破裂した場合を『有り』とし、破裂しなかった場合を『無し』とした。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、エチレングリコール(EG)を全く添加しなかった比較例1では、熱圧成形後の中密度繊維板がパンクしてしまい、曲げ強度、剥離強度及び吸水厚さ膨張率を測定できず、またエチレングリコールの量が3質量部と少なすぎた比較例2では、曲げ強度及び剥離強度がそれぞれ27.9N/mm2及び0.68N/mm2と低くなり、吸水厚さ膨張率が11.14%と高くなってしまい、更にエチレングリコールの量が35質量部と多すぎた比較例3では、曲げ強度及び剥離強度がそれぞれ28.9N/mm2及び0.88/mm2と低くなってしまい、いずれも中密度繊維板としては性能が不十分であった。これらに対し、エチレングリコールの量が5~30質量部と適切な範囲内であった実施例1~4では、曲げ強度及び剥離強度がそれぞれ31.1~38.9N/mm2及び0.83~1.14N/mm2と高くなり、吸水厚さ膨張率が7.27~9.45%と低くなり、いずれもより高性能な中密度繊維板が得られた。特に、エチレングリコールの添加量が20~30質量部とより適切な範囲内であった実施例3及び4では、曲げ強度が37.3~38.9N/mm2と高くなり、剥離強度が0.98~1.14N/mm2と高くなり、吸水厚さ膨張率が7.27~8.11%と小さくなり、いずれも中密度繊維板としてより好ましい評価が得られた。
 一方、マット含水率が3.3%と低すぎた比較例4では、熱圧成形できず、またマット含水率が13.9%と高すぎた比較例5では、熱圧成形した中密度繊維板がパンクしてしまい、曲げ強度、剥離強度及び吸水厚さ膨張率を測定できず、いずれも中密度繊維板としては性能が不十分であった。これらに対し、マット含水率が5.3~9.7%と適切な範囲内であった実施例5及び6では、曲げ強度及び剥離強度がそれぞれ32.0~33.1N/mm2及び0.84~0.89N/mm2と高くなり、吸水厚さ膨張率が8.72~8.93%と低くなり、いずれも高性能な中密度繊維板が得られた。
 一方、イソシアヌレート化触媒として金属系触媒(ジラウリン酸ジブチルスズ)を添加した比較例6では、曲げ強度及び剥離強度がそれぞれ25.8N/mm2及び0.71/mm2と低くなってしまい、またイソシアヌレート化触媒としてアミン系触媒(2,4,6-トリジメチルアミノメチルフェノール)を添加した比較例7では、曲げ強度及び剥離強度がそれぞれ22.3N/mm2及び0.61/mm2と低くなり、吸水厚さ膨張率が10.64%と高くなってしまい、いずれも中密度繊維板としては性能が不十分であった。これらに対し、イソシアヌレート系触媒を添加しなかった実施例2(他の条件:比較例6及び7と略同一)では、曲げ強度及び剥離強度がそれぞれ34.6N/mm2及び0.96N/mm2と高くなり、吸水厚さ膨張率が8.33%と低くなり、高性能な中密度繊維板が得られた。
 一方、木質ファイバーを乾燥した後に接着剤を塗布した比較例8では、曲げ強度及び剥離強度がそれぞれ27.2N/mm2及び0.77/mm2と低くなってしまい、中密度繊維板としては性能が不十分であった。これに対し、木質ファイバーに接着剤を塗布した後に木質ファイバーを乾燥した実施例3(他の条件:比較例8と略同一)では、曲げ強度及び剥離強度がそれぞれ38.9N/mm2及び1.14N/mm2と高くなり、吸水厚さ膨張率が7.27%と低くなり、高性能な中密度繊維板が得られた。
 <実施例7~10及び比較例9~10>
 実施例7~10及び比較例9~10の中密度繊維板は、表2に示すような配合及び成形条件で製造した。なお、表2に示した配合及び成形条件以外は、実施例1と同様にして、配合し成形した。また、表2中の『MDI』は接着剤の主成分である有機イソシアネート化合物として用意した光洋産業社製のAP(NCO含有量:31.1%)であり、『PG』はプロピレングリコールである。
 <比較試験2及び評価>
 実施例7~10及び比較例9~10の中密度繊維板について、上記比較試験1と同様に、パンクの有無、曲げ強度、剥離強度及び吸水厚さ膨張率の評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、分子量76のプロピレングリコール(PG)を添加した場合においても、添加量が3質量部と少なすぎた比較例9では、曲げ強度及び剥離強度がそれぞれ29.1N/mm2及び0.59N/mm2と低くなってしまい、またプロピレングリコールの量が35質量部と多すぎた比較例10では、曲げ強度及び剥離強度が29.7N/mm2及び0.84/mm2と低くなってしまい、いずれも中密度繊維板としては性能が不十分であった。これらに対し、プロピレングリコールの量が5~30質量部と適切な範囲内であった実施例7~10では、曲げ強度及び剥離強度がそれぞれ32.3~38.7N/mm2及び0.92~1.10N/mm2と高くなり、吸水厚さ膨張率が7.93~8.82%と低くなり、いずれも高性能な中密度繊維板が得られた。
 <実施例11~14及び比較例11~12>
 実施例11~14及び比較例11~12の中密度繊維板は、表3に示すような配合及び成形条件で製造した。なお、表3に示した配合及び成形条件以外は、実施例1と同様にして、配合し成形した。また、表3中の『MDI』は接着剤の主成分である有機イソシアネート化合物として用意した光洋産業社製のAP(NCO含有量:31.1%)であり、『BDM』はベンゼンジメタノールである。
 <比較試験3及び評価>
 実施例11~14及び比較例11~12の中密度繊維板について、上記比較試験1と同様に、パンクの有無、曲げ強度、剥離強度及び吸水厚さ膨張率の評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、ベンゼンジメタノール(BDM)を添加した場合においても、添加量が3質量部と少なすぎた比較例11では、曲げ強度及び剥離強度がそれぞれ26.7N/mm2及び0.71N/mm2と低くなってしまい、またベンゼンジメタノールの量が35質量部と多すぎた比較例12では、剥離強度が0.71/mm2と低くなってしまい、いずれも中密度繊維板としては性能が不十分であった。これらに対し、ベンゼンジメタノールの量が5~30質量部と適切な範囲内であった実施例11~14では、曲げ強度及び剥離強度がそれぞれ32.1~38.3N/mm2及び0.88~1.04N/mm2と高くなり、吸水厚さ膨張率が7.97~8.58%と低くなり、いずれも高性能な中密度繊維板が得られた。
 <実施例15~18及び比較例13~20>
 実施例15~18及び比較例13~20の中密度繊維板は、表4に示すような配合及び成形条件で製造した。なお、表4に示した配合及び成形条件以外は、実施例1と同様にして、配合し成形した。また、表4中の『MDI』は接着剤の主成分である有機イソシアネート化合物として用意した光洋産業社製のAP(NCO含有量:31.1%)であり、『PEG-200』は重量平均分子量200のポリエチレングリコールであり、『PEG-300』は重量平均分子量300のポリエチレングリコールであり、『PEG-2000』は重量平均分子量2000のポリエチレングリコールである。更に、表4中の『イソシアヌレート化触媒』の欄において、比較例19の『金属系』は金属系触媒としてジラウリン酸ジブチルスズを用いたことを示し、比較例20の『アミン系』はアミン系触媒として2,4,6-トリジメチルアミノメチルフェノールを用いたことを示す。
 <比較試験4及び評価>
 実施例15~18及び比較例13~20の中密度繊維板について、上記比較試験1と同様に、パンクの有無、曲げ強度、剥離強度及び吸水厚さ膨張率の評価を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、分子量200のポリエチレングリコール(PEG-200)を添加した場合においても、添加量が3質量部と少なすぎた比較例13では、曲げ強度及び剥離強度がそれぞれ27.6N/mm2及び0.77N/mm2と低くなってしまい、また分子量200のポリエチレングリコール(PEG-200)の量が35質量部と多すぎた比較例14では、剥離強度が0.67/mm2と低くなってしまい、いずれも中密度繊維板としては性能が不十分であった。これらに対し、分子量200のポリエチレングリコール(PEG-200)の量が5~30質量部と適切な範囲内であった実施例15~18では、曲げ強度及び剥離強度がそれぞれ31.7~38.3N/mm2及び0.93~1.07N/mm2と高くなり、吸水厚さ膨張率が7.79~8.82%と低くなり、いずれも高性能な中密度繊維板が得られた。
 一方、イソシアヌレート化触媒として金属系触媒(ジラウリン酸ジブチルスズ)を添加した比較例19では、曲げ強度及び剥離強度がそれぞれ24.8N/mm2及び0.66N/mm2と低くなってしまい、またアミン系触媒(2,4,6-トリジメチルアミノメチルフェノール)を添加した比較例20では、曲げ強度及び剥離強度がそれぞれ27.1N/mm2及び0.80N/mm2と低くなってしまい、いずれも中密度繊維板としては性能が不十分であった。また、分子量300のポリエチレングリコール(PEG-300)を添加した比較例15及び16では、その添加量が5質量部と適切な範囲内であっても(比較例15)、曲げ強度及び剥離強度がそれぞれ22.7N/mm2及び0.45N/mm2と低くなり、吸水厚さ膨張率は12.27%と高くなってしまい、その添加量が30質量部と適切な範囲内であっても(比較例16)、曲げ強度及び剥離強度がそれぞれ28.1N/mm2及び0.66N/mm2と低くなり、吸水厚さ膨張率は10.87%と高くなってしまい、いずれも中密度繊維板としては性能が不十分であった。更に、分子量2000のポリエチレングリコール(PEG-2000)を添加した比較例17及び18では、その添加量が5質量部と適切な範囲内であっても(比較例17)、曲げ強度及び剥離強度がそれぞれ19.8N/mm2及び0.38N/mm2と低くなり、吸水厚さ膨張率は14.4%と高くなってしまい、その添加量が30質量部と適切な範囲であっても(比較例18)、曲げ強度及び剥離強度がそれぞれ24.5N/mm2及び0.66N/mm2と低くなり、吸水厚さ膨張率は11.10%と高くなってしまい、いずれも中密度繊維板としては性能が不十分であった。
 本発明の方法で製造された中密度繊維板は、木材を無駄なく活用する素材として、木造住宅や家具などの材料に利用できる。

Claims (2)

  1.  接着剤の主成分として有機イソシアネート化合物と、前記接着剤の添加剤として重量平均分子量60~200の多価アルコールとを用意する工程と、
     イソシアヌレート化触媒を含まずかつ前記有機イソシアネート化合物100質量部に対して前記多価アルコールが5~30質量部となるように前記接着剤の主成分及び添加剤を木質ファイバーに噴霧する工程と、
     前記接着剤の主成分及び添加剤を噴霧した木質ファイバーを乾燥してこの木質ファイバーの含水率を5.0~10.0%に調整する工程と、
     前記乾燥した木質ファイバーを150~250℃の温度及び0.5~5.0MPaの圧力で熱圧成形する工程と
     を含む中密度繊維板の製造方法。
  2.  前記多価アルコールが、重量平均分子量62のエチレングリコール、重量平均分子量76のプロピレングリコール、重量平均分子量138.17のベンゼンジエタノール、又は重量平均分子量200のポリエチレングリコールである請求項1記載の中密度繊維板の製造方法。
PCT/JP2017/024309 2016-11-30 2017-07-03 中密度繊維板の製造方法 WO2018100781A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232104 2016-11-30
JP2016232104A JP6169770B1 (ja) 2016-11-30 2016-11-30 中密度繊維板の製造方法

Publications (1)

Publication Number Publication Date
WO2018100781A1 true WO2018100781A1 (ja) 2018-06-07

Family

ID=59384315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024309 WO2018100781A1 (ja) 2016-11-30 2017-07-03 中密度繊維板の製造方法

Country Status (2)

Country Link
JP (1) JP6169770B1 (ja)
WO (1) WO2018100781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115592763A (zh) * 2022-10-18 2023-01-13 东营东康人造板有限公司(Cn) 一种零甲醛添加无醛中高密度纤维板及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420034B1 (en) * 1998-10-13 2002-07-16 Mitsui Chemicals, Inc. Binder composition and process for manufacturing board by using the binder composition
JP2003276012A (ja) * 2002-03-26 2003-09-30 Nippon Polyurethane Ind Co Ltd 熱圧成形ボードの製造方法
JP2013107311A (ja) * 2011-11-22 2013-06-06 Mitsui Chemicals Inc 高耐水性の複合材料形成用接着剤組成物、複合材料、それらの製造方法および高耐水性の複合材料形成用接着剤
US20150284568A1 (en) * 2014-04-02 2015-10-08 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420034B1 (en) * 1998-10-13 2002-07-16 Mitsui Chemicals, Inc. Binder composition and process for manufacturing board by using the binder composition
JP2003276012A (ja) * 2002-03-26 2003-09-30 Nippon Polyurethane Ind Co Ltd 熱圧成形ボードの製造方法
JP2013107311A (ja) * 2011-11-22 2013-06-06 Mitsui Chemicals Inc 高耐水性の複合材料形成用接着剤組成物、複合材料、それらの製造方法および高耐水性の複合材料形成用接着剤
US20150284568A1 (en) * 2014-04-02 2015-10-08 Georgia-Pacific Chemicals Llc Methods for making lignocellulose composite products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115592763A (zh) * 2022-10-18 2023-01-13 东营东康人造板有限公司(Cn) 一种零甲醛添加无醛中高密度纤维板及制作方法

Also Published As

Publication number Publication date
JP6169770B1 (ja) 2017-07-26
JP2018086817A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
US8865287B2 (en) Rapid curing aldehyde resin-polyisocyanate composition and method for producing hybrid polymer
KR101713104B1 (ko) 리그노셀룰로즈계 제품 및 이의 형성 방법
CN1147519C (zh) 使用混合的多亚甲基二异氰酸酯/固体酚醛清漆树脂粘合剂生产木材复合物的方法
US8895643B2 (en) Cold-pressed mats of lignocellulosic material having improved cold tack and a process for their production
DE69407306T2 (de) Feuchtigkeitsaktivierbare klebstoffzusammensetzungen
JPS60260617A (ja) リグノセルロース複合材料の製造方法
EP2184144A1 (en) Polyisocyanate composition used for binding lignocellulosic materials
EP2807201B1 (en) Wood adhesive formulation
US11306228B2 (en) Hardening of bonding systems
US6297313B1 (en) Adhesive systems and products formed using same and methods for producing said adhesive systems and products
CN111448041B (zh) 木材复合面板产品的木质素强化粘附性
PL220852B1 (pl) Kompozycja poliizocyjanianowa oraz sposób wiązania substancji lignocelulozowej
CN113574084A (zh) 木质纤维素复合制品
WO1990015834A1 (en) Binder composition for chip like and/or fibrous material
JP6169770B1 (ja) 中密度繊維板の製造方法
JP5783888B2 (ja) 高耐水性の複合材料形成用接着剤組成物、複合材料、それらの製造方法および高耐水性の複合材料形成用接着剤
US8907037B2 (en) Preparation of lignocellulosic products
JP5828673B2 (ja) 木質繊維板、該木質繊維板を用いた木質複合板および床材ならびにこれらの製造方法
JP2999013B2 (ja) 高強度高耐水性リグノセルロース成形板
EP2184143A1 (en) Polyisocyanate composition used for binding lignocellulosic materials
JP2013107311A (ja) 高耐水性の複合材料形成用接着剤組成物、複合材料、それらの製造方法および高耐水性の複合材料形成用接着剤
JPH093429A (ja) 通気性被着体用接着剤
JP2015193145A (ja) 木質ボードの製造方法
JPH0687106A (ja) 天然木化粧板の製造方法
JP2006272663A (ja) リグノセルロース系物質成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876713

Country of ref document: EP

Kind code of ref document: A1