WO2018100727A1 - 磁性線状体の損傷評価装置および方法 - Google Patents

磁性線状体の損傷評価装置および方法 Download PDF

Info

Publication number
WO2018100727A1
WO2018100727A1 PCT/JP2016/085868 JP2016085868W WO2018100727A1 WO 2018100727 A1 WO2018100727 A1 WO 2018100727A1 JP 2016085868 W JP2016085868 W JP 2016085868W WO 2018100727 A1 WO2018100727 A1 WO 2018100727A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
pair
columnar
coil
damage evaluation
Prior art date
Application number
PCT/JP2016/085868
Other languages
English (en)
French (fr)
Inventor
宏明 糸井
博紀 金丸
佑太 橋目
Original Assignee
東京製綱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京製綱株式会社 filed Critical 東京製綱株式会社
Priority to PCT/JP2016/085868 priority Critical patent/WO2018100727A1/ja
Publication of WO2018100727A1 publication Critical patent/WO2018100727A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the present invention relates to an apparatus and method for evaluating damage (deterioration state) of a magnetic linear body.
  • Linear objects include cables, ropes, strands, cords, wires, rods, poles, shafts, and other forms that extend continuously in one direction and are not only twisted but also simply bundled Includes things and single items. Moreover, the magnitude
  • a magnetic linear body means a linear body made of a magnetic material, typically a ferromagnetic material.
  • Patent Document 1 discloses a wire rope damage detector to which a probe coil and a plurality of magnetic sensors are attached so as to surround the wire rope.
  • An object of the present invention is to make it possible to quickly inspect a magnetic linear body.
  • Another object of the present invention is to enable inspection of magnetic linear objects embedded in concrete while they are embedded in concrete.
  • An apparatus for evaluating damage of a magnetic linear body includes a magnetizer that generates a magnetic force, and a detector that detects a magnetic change amount generated from a damaged portion of the magnetic linear body magnetized by the magnetic force generated by the magnetizer.
  • the magnetizer includes an exciting coil, a yoke shaft inserted through a central hole of the exciting coil, a pair of columnar yokes connected to both ends of the yoke shaft and extending in the same direction at intervals.
  • a magnetic circuit including a magnetic linear body in a range located between the yoke shaft, the pair of columnar yokes, and the pair of columnar yokes is formed by passing a current through the excitation coil, and the detector
  • a search coil used by being wound around at least one of the pair of columnar yokes and detecting a magnetic flux (a change in magnetic flux or magnetic flux) in the columnar yoke. That. Damage includes wear, corrosion, and disconnection.
  • a magnetic linear body damage evaluation method includes a magnetizer that generates a magnetic force, and a detector that detects a magnetic change amount generated from a damaged portion of the magnetic linear body magnetized by the magnetic force generated by the magnetizer.
  • a magnetic circuit including a magnetic linear body is formed, and the detector is constituted by a search coil wound around at least one of the pair of columnar yokes, and the magnetic flux in the columnar yokes is increased. And it detects the search coil.
  • a magnetic circuit including the magnetic linear object to be inspected in the path is formed. If the magnetic linear body has a reduced cross-sectional area due to wear or corrosion, or a void due to breakage, the magnetic resistance in the magnetic circuit increases and the magnetic flux flowing through the magnetic circuit changes (decreases).
  • a detector for detecting the amount of magnetic change caused by a damaged portion of a magnetic linear body it is used by being wound around at least one of a pair of columnar yokes.
  • a search coil is used to detect (changes in). If the magnetic linear body is damaged, the magnetic flux in the columnar yoke constituting the magnetic circuit changes, and the magnetic flux or the change in magnetic flux is output as a voltage from the search coil. It is possible to detect that the body is damaged (deteriorated). Since the search coil is wound around the columnar yoke that constitutes the damage evaluation apparatus, the time required for installing the search coil is shorter than when the search coil is wound around a magnetic linear body (for example, a wire rope) actually used in the field. It can be shortened considerably, and rapid inspection of magnetic linear bodies is realized.
  • the search coil is wound around the columnar yoke instead of the magnetic linear body, so that even if the magnetic linear body is embedded in concrete, for example, it remains in the embedded state in the concrete. , Damage of magnetic linear bodies can be evaluated.
  • a power supply device that supplies current to the excitation coil and a control device that controls current supplied from the power supply device to the excitation coil are provided. Since the magnetic flux in the magnetic circuit fluctuates by increasing or decreasing the current supplied to the excitation coil, output (voltage) can be obtained from the search coil, and the magnetic flux (flux amount) calculated from the output from the search coil can be used for damage evaluation. Used for.
  • the magnetic linear body can be inspected by the damage evaluation apparatus in a stationary state.
  • a power supply device that supplies a constant current to the exciting coil and a moving device that moves the damage evaluation device along the magnetic linear body are provided. A signal can be output from the search coil when the damage evaluation device passes through a portion whose cross-sectional area is reduced due to damage. Magnetic flux (change in magnetic flux) calculated from the output from the search coil can be used for damage evaluation.
  • the search coil is wound around each of the pair of columnar yokes. Damage detection accuracy can be improved.
  • FIG. 1 shows the damage evaluation apparatus according to the first embodiment, partly broken and shown from the side.
  • FIG. 2 is a front view of an upper portion of a columnar yoke described later.
  • the damage evaluation apparatus 1 magnetizes a part of the wire rope 10 made of the ferromagnetic material to be inspected to form a magnetic circuit including a part of the wire rope 10 and the wire rope 10 is damaged.
  • the magnetic resistance change caused by the observation is observed using the magnetic flux or the magnetic flux change.
  • the damage evaluation apparatus 1 includes a cylindrical bobbin 21 and annular flange portions 22 fixed to both ends thereof, and an excitation coil 24 wound around the entire surface of the bobbin 21 between the annular flange portions 22 at both ends of the bobbin.
  • a pair of columnar columns that are detachably fixed to the outer surfaces of the circular flange portions 22 and inserted in the center hole 23 of the bobbin 21 and extend in the same direction at intervals.
  • Yokes 31F and 31R are provided. Referring to FIG. 2, a downwardly-facing concave surface 31a is formed at the tip of each of the pair of columnar yokes 31F and 31R, and the wire rope 10 to be inspected is housed in the concave surface 31a.
  • the wire rope 10 may be used by being inserted into a cylindrical polyethylene pipe (not shown). In this case, the appearance of the wire rope 10 cannot be inspected.
  • a passage hole 22 a communicating with the center hole 23 of the bobbin 21 is formed at the center of the annular flange portion 22.
  • the iron core 26 passes through the center hole 23 of the bobbin 21 and the passage holes 22a of the annular flange portions 22 on both sides, and has a length that protrudes from both the annular flange portions 22.
  • a cylindrical recess 31b is formed on the side surface of the columnar yokes 31F and 31R fixed to the outer surface of the annular flange portion 22, and the end of the iron core 26 is inserted into the recess 31b.
  • the iron core 26 is magnetized by a magnetic field generated by passing a current through the exciting coil 24.
  • a magnetic circuit is constituted by the exciting coil 24 (iron core 26), the columnar yoke 31F, the wire rope 10 which is a ferromagnetic material, and the columnar yoke 31R.
  • the cross-sectional area of the wire rope 10 decreases at the damaged portion, and the magnetic resistance in the magnetic circuit increases.
  • Increasing the reluctance reduces the magnetic flux in the magnetic circuit described above. That is, it is possible to detect that the wire rope 10 is damaged by observing the magnetic flux in the magnetic circuit.
  • Search coils 41F and 41R are wound around the pair of columnar yokes 31F and 31R, respectively. If the wire rope 10 has a reduced cross-sectional area due to wear or corrosion, or a gap due to breakage, the magnetic resistance of the magnetic circuit increases as described above, and the magnetic flux in the magnetic circuit decreases. Since the search coils 41F and 41R are wound around the columnar yokes 31F and 31R constituting the magnetic path of the magnetic circuit, the magnetic flux flowing in the magnetic circuit (columnar yokes 31F and 31R) is linked to the search coils 41F and 41R, and the magnetic flux An electromotive force is generated according to the change in. Damage generated in the wire rope 10 can be quantitatively evaluated based on output signals from the search coils 41F and 41R.
  • FIGS. 3 and 4 show that the current flowing through the exciting coil 24 is -7.6 (A) (ampere) to 0 (zero) (A), 0 (A) to +7.6 (A), +7.6 (A ) To 0 (A), and from 0 (A) to -7.6 (A), it is calculated based on the output signal output from one of the two search coils 41F and 41R.
  • a magnetic flux graph (fixed point measurement hysteresis) is shown. In the graphs of FIGS. 3 and 4, the horizontal axis indicates the magnetic field strength (kA / m) near the wire rope 10 at the intermediate position between the columnar yokes 41F and 41R, and the vertical axis indicates the magnetic flux (magnetic flux amount). Yes.
  • FIG. 3 shows a graph when an undamaged portion of the wire rope 10 is sandwiched between two magnetic poles (between a pair of columnar yokes 31F and 31R).
  • FIG. 4 shows a graph when a damaged portion 10A (see FIG. 1) is sandwiched between two magnetic poles.
  • the graphs in FIGS. 3 and 4 show the test results using a wire rope 10 having a 1 ⁇ 7 configuration (a configuration in which six side wires are twisted around one core wire). , Created by missing three adjacent sidelines over a length of 65mm.
  • the magnetic flux in the columnar yokes 31F and 31R can be changed, and signals can be output from the search coils 41F and 41R. 3 and 4, when attention is paid to the magnetic flux measured by the search coil 41F when a current that generates a magnetic field strength of 15 kA / m, for example, is applied to the exciting coil 24, an undamaged wire
  • the range of the rope 10 constitutes the magnetic path of the magnetic circuit, 258.62 ⁇ 10 ⁇ 8 (Wb) (FIG. 3)
  • the range of the wire rope 10 with the damaged portion 10A constitutes the magnetic path of the magnetic circuit 241.03 ⁇ 10 ⁇ 8 (Wb) (FIG.
  • the output signals of both of the two search coils 41F and 41R may be used for damage evaluation (judgment of presence / absence of damage and its degree).
  • the average value of the output signals of the two search coils 41F and 41R may be used for damage evaluation, or the two search coils 41F and 41R are differentially connected to provide one output signal from the two search coils 41F and 41R. May be used for damage evaluation.
  • FIG. 5 shows the damage evaluation apparatus 2 of the second embodiment.
  • the damage evaluation apparatus 1 of the first embodiment no concave surface is formed at the tip portions of the columnar yokes 31F and 31R, and the plate yokes 32F and 32R are detachably fixed to the tips of the columnar yokes 31F and 31R, respectively.
  • the difference is that it has a moving mechanism.
  • the wire rope 10 is buried in the concrete 72.
  • the wire rope 10 embedded in the concrete 72 is inspected by the damage evaluation device 2 while being embedded in the concrete 72.
  • the columnar yokes 31F and 31R extend downward from both sides of the bobbin 21 (excitation coil 24) (direction toward the concrete surface), and plate-shaped yokes 32F and 32R are detachably fixed to the tips (lower surfaces).
  • the plate-like yokes 32F and 32R are rectangular when viewed from the plane, and have a horizontal direction, that is, spread along the concrete surface.
  • Frames 51 are fixed to both end surfaces of the plate-like yokes 32F and 32R, and rollers 52 are rotatably attached to both ends of each frame 51.
  • the roller 52 can move the damage evaluation device 2 linearly along the concrete surface.
  • the rotary encoder 63 (the rotary shaft) is attached to one rotary shaft of the plurality of rollers 52, and the movement amount of the damage evaluation device 2 is measured by the rotary encoder 63.
  • the wire rope 10 to be inspected is located below the bottom surfaces (surfaces facing the concrete surface) of the plate-like yokes 32F and 32R.
  • a magnetic circuit is constituted by the exciting coil 24 (iron core 26), the columnar yoke 31F, the plate-shaped yoke 32F, the wire rope 10 that is a ferromagnetic material, the plate-shaped yoke 32R, and the columnar yoke 31R.
  • the plate-like yokes 32F and 32R and the wire rope 10 are not continuous, and there is a gap between them.
  • This gap can be considered as a magnetoresistance in the magnetic circuit.
  • the magnetoresistance generated by the gap is inversely proportional to the cross-sectional area of the gap.
  • a constant current is passed through the exciting coil 24.
  • the damage evaluation device 2 is moved immediately above the wire rope 10.
  • a portion whose cross-sectional area is reduced due to wear or the like passes between the magnetic poles (columnar yokes 32F and 32R)
  • an electromotive force is generated in the search coils 41F and 41R due to a change in magnetic flux.
  • the average value of the output signals of the two search coils 41F and 41R may be used for damage evaluation, or the two search coils 41F and 41R are connected by differentially connecting the two search coils 41F and 41R. A single output signal may be output from and used for damage evaluation. Further, only one of the search coils 41F and 41R may be provided.
  • FIG. 6 shows a test specimen in which three adjacent side wires are missing over a length of 65 mm in a wire rope 10 having a 1 ⁇ 7 configuration (a configuration in which six side wires are twisted around one core wire).
  • 2 shows a magnetic flux signal waveform 92 (signal waveform of the number of interlinkage magnetic fluxes of the search coils 41F and 41R) calculated based on output signals (voltages) from the search coils 41F and 41R of the damage evaluation apparatus 2.
  • the horizontal axis represents the movement distance of the damage evaluation apparatus 2 measured by the rotary encoder 63.
  • the signal waveform 92 decreases the magnetic flux (a signal indicated by reference numeral 92a) while the damaged portion 10A is sandwiched between both magnetic poles (plate yokes 32F and 32R). Waveform part) is observed. Based on the decrease in the magnetic flux appearing in the signal waveform 92, it is possible to confirm whether or not the wire rope 10 is damaged.
  • FIG. 7 is a block diagram showing an electrical configuration of a processing apparatus (control apparatus) that can be commonly used for the damage evaluation apparatus 1 of the first embodiment and the damage processing apparatus 2 of the second embodiment.
  • a pulse signal is output according to the rotation of the roller 52 from the rotary encoder 63 provided on the roller 52 for moving the damage evaluation device 2, and is given to the signal processing device 81.
  • the signal processing device 81 includes a pulse counter, and the signal processing device 81 calculates movement amount data of the damage evaluation device 2 from the movement amount per pulse and the number of pulses. The movement amount data is recorded in the recording device 82.
  • the search coils 41F and 41R provided in the magnetic path of the magnetic circuit are connected to a flux meter provided in the signal processing device 81.
  • the voltage generated in the search coils 41F and 41R due to the change of the magnetic flux is time-integrated in the flux meter, whereby the magnetic flux (number of interlinkage magnetic fluxes) is calculated and applied to the recording device 82. Based on the magnetic flux or the change of the magnetic flux, the damage occurring in the wire rope 10 as described above can be quantitatively determined.
  • the signal processing device 81 is connected to a power supply device (for example, a bipolar power supply) 83 that supplies current to the excitation coil 24, and the current supplied from the power supply device 83 to the excitation coil 24 is controlled by the signal processing device 81.
  • a power supply device for example, a bipolar power supply
  • the current applied to the exciting coil 24 is increased or decreased as described above.
  • a constant current is applied to the exciting coil 24.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

損傷評価装置(1)は,磁力を発生する磁化器,および発生した磁力によって磁化されるワイヤロープ(10)の損傷箇所から生じる磁気変化量を検出する検出器(41F,41R)を含む。磁化器は,励磁コイル(24)と,励磁コイルの中心孔に挿通された鉄心(26)と,鉄心の両端に接続され,間隔をあけて同方向にそれぞれのびる一対の柱状ヨーク(31F,31R)を含む。励磁コイルに電流を流すことによって,ヨーク軸,一対の柱状ヨーク,および一対の柱状ヨークの間に位置する範囲のワイヤロープによって磁気回路が形成される。検出器として一対の柱状ヨークのそれぞれに巻き付けられたサーチコイル(41F,41R)が用いられる。

Description

磁性線状体の損傷評価装置および方法
 この発明は,磁性線状体の損傷(劣化状態)を評価する装置および方法に関する。線状体は,ケーブル,ロープ,ストランド,コード,ワイヤ,ロッド,ポール,シャフト,その他の一方向に連続してのびる形態のものを含み,撚ってあるもののみならず,単に束ねただけのものや単体のものも含む。また,径の大きさ,断面形状は問わない。磁性線状体とは磁性材料,典型的には強磁性材料によってつくられた線状体を意味する。
 特許文献1は,ワイヤロープを取り巻くようにプローブコイルや複数の磁気センサを取り付けるワイヤロープの損傷検出器を開示する。
特開2002-5896号公報
 特許文献1に記載の損傷検出器によってワイヤロープを検査する場合,ワイヤロープの周囲にプローブコイルや複数の磁気センサを配置しなければならない。ワイヤロープが実際に使用されている現場における測定準備に比較的長い時間がかかってしまう。
 この発明は,磁性線状体を迅速に検査できるようにすることを目的とする。
 この発明はまた,コンクリートに埋め込まれている磁性線状体を,コンクリートに埋め込まれた状態のままで検査できるようにすることを目的とする。
 この発明による磁性線状体の損傷評価装置は,磁力を発生する磁化器,および磁化器が発生した磁力によって磁化される磁性線状体の損傷箇所から生じる磁気変化量を検出する検出器を含むものであて,上記磁化器が,励磁コイルと,上記励磁コイルの中心孔に挿通されたヨーク軸と,上記ヨーク軸の両端に接続され,間隔をあけて同方向にそれぞれのびる一対の柱状ヨークとを含み,上記励磁コイルに電流を流すことによって,上記ヨーク軸,一対の柱状ヨーク,および一対の柱状ヨークの間に位置する範囲の磁性線状体を含む磁気回路が形成され,上記検出器が,上記一対の柱状ヨークの少なくとも一方に巻き付けられて用いられ,上記柱状ヨークにおける磁束(磁束量または磁束の変化)を検出するサーチコイルであることを特徴とする。損傷には,摩耗,腐食,断線などが含まれる。
 この発明による磁性線状体の損傷評価方法は,磁力を発生する磁化器,および磁化器が発生した磁力によって磁化される上記磁性線状体の損傷箇所から生じる磁気変化量を検出する検出器を含む損傷評価装置を用いた上記磁性線状体の損傷評価方法であって,上記磁化器が,励磁コイルと,上記励磁コイルの中心孔に挿通されたヨーク軸と,上記ヨーク軸の両端に接続され,間隔をあけて同方向にそれぞれのびる一対の柱状ヨークとを含み,上記励磁コイルに電流を流すことによって,上記ヨーク軸,一対の柱状ヨーク,および一対の柱状ヨークの間に位置する範囲の磁性線状体を含む磁気回路を形成し,上記検出器を,上記一対の柱状ヨークの少なくとも一方に巻き付けたサーチコイルによって構成し,上記柱状ヨークにおける磁束を上記サーチコイルによって検出するものである。
 検査対象である磁性線状体を経路に含む磁気回路が形成される。磁性線状体に摩耗や腐食による断面積減少,断線による空隙があると,磁気回路における磁気抵抗が増加し,磁気回路を流れる磁束が変化する(減少する)。
 この発明によると,磁性線状体の損傷箇所に起因して生じる磁気変化量を検出する検出器として,一対の柱状ヨークの少なくとも一方に巻き付けられて用いられ,柱状ヨークにおける磁束(磁束量または磁束の変化)を検出するサーチコイルが用いられる。磁性線状体に損傷があると,磁気回路を構成する柱状ヨークにおける磁束に変化が生じ,磁束または磁束の変化がサーチコイルから電圧として出力されるので,サーチコイルの出力に基づいて磁性線状体に損傷(劣化)が発生していることを検出することができる。サーチコイルは損傷評価装置を構成する柱状ヨークに巻き付けられるので,現場において実際に用いられている磁性線状体(たとえばワイヤロープ)にサーチコイルを巻き付けるのに比べてサーチコイルの設置に要する時間をかなり短縮することができ,磁性線状体の迅速な検査が実現される。
 また,この発明によると,サーチコイルが磁性線状体ではなく,柱状ヨークに巻き付けられるので,磁性線状体がたとえばコンクリート中に埋め込まれているとしても,コンクリート中に埋め込まれた状態のままで,磁性線状体の損傷を評価することができる。
 一実施態様では,上記励磁コイルに電流を供給する電源装置,および上記電源装置から上記励磁コイルに供給される電流を制御する制御装置を備えている。励磁コイルに供給する電流を増減することによって磁気回路の磁束が変動するので,サーチコイルから出力(電圧)を得ることができ,サーチコイルからの出力から算出される磁束(磁束量)が損傷評価に用いられる。静止させた状態の損傷評価装置によって磁性線状体を検査することができる。他の実施態様では,上記励磁コイルに定電流を供給する電源装置,および上記損傷評価装置を上記磁性線状体に沿って移動させる移動装置を備えている。損傷によって断面積が小さくなっている箇所を損傷評価装置が通過したときに,サーチコイルから信号を出力させることができる。サーチコイルからの出力から算出される磁束(磁束の変化)を損傷評価に用いることができる。
 一実施態様では,上記一対の柱状ヨークのそれぞれに上記サーチコイルが巻き付けられている。損傷の検出精度を向上させることができる。
第1実施例の損傷評価装置の一部破断側面図である。 柱状ヨークの上部の正面図である。 第1実施例の損傷評価装置によって計測された,損傷のないワイヤロープの検査結果を示すグラフである。 第1実施例の損傷評価装置によって計測された,損傷のあるワイヤロープの検査結果を示すグラフである。 第2実施例の損傷評価装置の一部破断側面図である。 第2実施例の損傷評価装置によって計測された,損傷のあるワイヤロープの検査結果を示すグラフである。 出力信号を処理する処理装置の電気的構成を示すブロック図である。
 図1は,第1実施例の損傷評価装置を,一部を破断して側方から示している。図2は後述する柱状ヨークの上部の正面図である。
 損傷評価装置1は,検査対象である強磁性体材料によって構成されるワイヤロープ10の一部を磁化し,ワイヤロープ10の一部を含む磁気回路を形成するとともに,ワイヤロープ10に損傷が存在することによって生じる磁気抵抗の変化を,磁束または磁束の変化を用いて観察するものである。
 損傷評価装置1は,円筒状のボビン21およびその両端に固定された環状のフランジ部22と,ボビン21の周面に,ボビン両端の環状フランジ部22間の全体にわたって巻回された励磁コイル24と,ボビン21の中心孔23に挿通された断面円形の鉄心(ヨーク軸)26と,両環状フランジ部22の外面のそれぞれに着脱自在に固定され,間隔をあけて同じ向きにのびる一対の柱状ヨーク31F,31Rとを備えている。図2を参照して,一対の柱状ヨーク31F,31Rのそれぞれの先端部分には下向きの凹面31aが形成されており,検査対象のワイヤロープ10は凹面31a内に納められている。ワイヤロープ10は円筒状のポリエチレン管(図示略)内に挿入されて用いられることがあり,この場合にはワイヤロープ10を外観検査することができない。
 環状フランジ部22の中心にボビン21の中心孔23と連通する通過孔22aがあけられている。鉄心26はボビン21の中心孔23および両側の環状フランジ部22の通過孔22aを通り,両環状フランジ部22のそれぞれの外にはみ出る長さを持つ。環状フランジ部22の外面に固定される柱状ヨーク31F,31Rの側面に円柱状の凹部31bが形成されており,この凹部31bに鉄心26の端部が差し込まれている。励磁コイル24に電流を流すことで発生する磁界によって鉄心26が磁化される。励磁コイル24(鉄心26),柱状ヨーク31F,強磁性体であるワイヤロープ10,柱状ヨーク31Rによって磁気回路が構成される。
 ワイヤロープ10に損傷(欠損)があると,損傷箇所においてワイヤロープ10の断面積が減少し,磁気回路における磁気抵抗が増加する。磁気抵抗の増加は上述した磁気回路における磁束を減少させる。すなわち,磁気回路における磁束を観察することで,ワイヤロープ10に損傷があることを検出することができる。
 一対の柱状ヨーク31F,31Rのそれぞれにサーチコイル41F,41Rがそれぞれ巻き付けられている。ワイヤロープ10に摩耗や腐食による断面積減少や,断線による空隙があると,上述したように磁気回路の磁気抵抗が増加し,磁気回路における磁束が減少する。サーチコイル41F,41Rは磁気回路の磁路を構成する柱状ヨーク31F,31Rに巻き付けられているので,磁気回路(柱状ヨーク31F,31R)に流れる磁束はサーチコイル41F,41Rと鎖交し,磁束の変化にしたがって起電力を生じる。サーチコイル41F,41Rからの出力信号に基づいてワイヤロープ10に発生している損傷を定量的に評価することができる。
 図3および図4は,いずれも励磁コイル24に流す電流を-7.6(A)(アンペア)から0(ゼロ)(A),0(A)から+7.6(A),+7.6(A)から0(A),0(A)から-7.6(A)に変化させたときに,2つのサーチコイル41F,41Rのうちの一方のサーチコイル41Fから出力される出力信号に基づいて算出される磁束のグラフ(定点測定ヒステリシス)を示している。図3および図4のグラフにおいて横軸は,柱状ヨーク41F,41Rの中間位置におけるワイヤロープ10の近傍の磁界の強さ(kA/m)を,縦軸は磁束(磁束量)をそれぞれ示している。
 図3は,2つの磁極間(一対の柱状ヨーク31F,31Rの間)にワイヤロープ10の損傷の無い箇所が挟まれているときのグラフを示している。他方,図4は2つの磁極間に損傷箇所10A(図1参照)が挟まれているときのグラフを示している。図3および図4のグラフは,1×7構成(1本の心線の周囲に6本の側線が撚り合わされている構成)のワイヤロープ10を用いた試験結果を示しており,損傷箇所は,長さ65mmにわたって3本の隣り合う側線を欠落することで作成した。
 上述のように励磁コイル24に流す電流を連続的に変化させることで,柱状ヨーク31F,31Rにおける磁束を変化させ,サーチコイル41F,41Rから信号を出力させることができる。ここで図3,図4を参照して,たとえば15kA/mの磁界の強さを生じさせる電流を励磁コイル24に通電したときにサーチコイル41Fによって計測される磁束に着目すると,損傷のないワイヤロープ10の範囲が磁気回路の磁路を構成するときに258.62×10-8(Wb)であり(図3),損傷箇所10Aのあるワイヤロープ10の範囲が磁気回路の磁路を構成するときに241.03×10-8(Wb)であり(図4),ワイヤロープ10における損傷の有無によって計測される磁束に有意な差が生じることが確認される。すなわち,サーチコイル41F,41Rによって計測される磁束からワイヤロープ10において損傷が発生しているかどうかを確認することができる。また,ワイヤロープ10に発生している損傷の程度が大きいほど磁気抵抗は大きくなるので,ワイヤロープ10の損傷のない範囲が磁気回路の磁路に含まれるときの磁束と,ワイヤロープ10の損傷箇所のある範囲が磁気回路の磁路に含まれるときの磁束の差はさらに広がる。ワイヤロープ10において発生している損傷の程度も十分に確認することができる。
 また,図3に示すグラフと図4に示すグラフを比較すると,グラフの傾きにも違いがあることが分かる。グラフの傾きを用いることによって損傷の有無および程度を確認することもできる。
 2つのサーチコイル41F,41Rの両方の出力信号を損傷評価(損傷の有無およびその程度の判断)に用いてよい。たとえば,2つのサーチコイル41F,41Rの出力信号の平均値を損傷評価に用いてもよいし,2つのサーチコイル41F,41Rを差動接続して2つのサーチコイル41F,41Rから一つの出力信号を出力させ,これを損傷評価に用いてもよい。2つのサーチコイル41F,41Rの両方を用いることによって損傷検出の感度を向上させることができ,検出信号の安定化を図ることができる。
 図5は第2実施例の損傷評価装置2を示している。第1実施例の損傷評価装置1とは,柱状ヨーク31F,31Rの先端部分に凹面が形成されていず,柱状ヨーク31F,31Rの先端に板状ヨーク32F,32Rがそれぞれ着脱自在に固定されている点,および移動機構を備えている点が異なる。
 ワイヤロープ10がコンクリート72中に埋設されている。コンクリート72に埋設されているワイヤロープ10が,コンクリート72に埋設されている状態のまま,損傷評価装置2によって検査される。
 柱状ヨーク31F,31Rはボビン21(励磁コイル24)の両側から下向き(コンクリート面に向かう方向)のびており,その先端(下面)に板状ヨーク32F,32Rが着脱自在に固定されている。板状ヨーク32F,32Rは平面から見て方形のもので,水平方向,すなわちコンクリート面に沿う広がりを持つ。
 板状ヨーク32F,32Rのそれぞれの両側端面にフレーム51が固定されており,各フレーム51の両端にローラ52が回転自在に取り付けられている。ローラ52によって損傷評価装置2をコンクリート面に沿って直線移動させることができる。
 複数のローラ52のうちの一つの回転軸にロータリーエンコーダ63(その回転軸)が取り付けられており,損傷評価装置2の移動量がロータリーエンコーダ63によって計測される。
 板状ヨーク32F,32Rの底面(コンクリート面と対向する面)の下方に,検査すべきワイヤロープ10が位置する。励磁コイル24(鉄心26),柱状ヨーク31F,板状ヨーク32F,強磁性体であるワイヤロープ10,板状ヨーク32R,柱状ヨーク31Rによって磁気回路が構成される。
 ワイヤロープ10はコンクリート中に埋められているので,板状ヨーク32F,32Rとワイヤロープ10は連続していず,これらの間にはギャップが存在する。このギャップは磁気回路における磁気抵抗と考えることができる。ギャップによって発生する磁気抵抗はギャップの断面積に反比例する。広がりを持つ板状ヨーク32F,32Rを用いることによって,ギャップによって発生する磁気抵抗が小さくされ,励磁コイル24における起磁力の損失を小さくすることができる。
 第2実施例においては,励磁コイル24に一定の電流が通電される。損傷評価装置2をワイヤロープ10の直上において移動させる。摩耗などによって断面積が小さくなっている部分が磁極間(柱状ヨーク32F,32R)を通過すると,磁束の変化によってサーチコイル41F,41Rに起電力が発生する。サーチコイル41F,41Rにおける起電力の時間積分値を算出することによって,磁束の減少,すなわちワイヤロープ10における断面積の減少を知ることができる。第2実施例においても,2つのサーチコイル41F,41Rの出力信号の平均値を損傷評価に用いてもよいし,2つのサーチコイル41F,41Rを差動接続して2つのサーチコイル41F,41Rから一つの出力信号を出力させて,これを損傷評価に用いてもよい。また,サーチコイル41F,41Rのいずれか一方のみを設けるようにしてもよい。
 図6は,1×7構成(1本の心線の周囲に6本の側線が撚り合わされている構成)のワイヤロープ10において長さ65mmにわたって3本の隣り合う側線を欠落させた試験体について,損傷評価装置2のサーチコイル41F,41Rからの出力信号(電圧)に基づいて算出される磁束の信号波形92(サーチコイル41F,41Rの鎖交磁束数の信号波形)を示している。横軸はロータリーエンコーダ63によって計測される損傷評価装置2の移動距離である。ワイヤロープ10に損傷箇所10Aがあると(図5参照),損傷箇所10Aが両磁極(板状ヨーク32F,32R)によって挟まれている間の信号波形92に磁束の減少(符号92aで示す信号波形部分)が観察される。信号波形92に表れる磁束の減少に基づいてワイヤロープ10に生じている損傷の有無および程度を確認することができる。
 図7は,第1実施例の損傷評価装置1および第2実施例の損傷処理装置2に共通に用いることができる処理装置(制御装置)の電気的構成を示すブロック図である。
 損傷評価装置2を移動させるためのローラ52に設けられたロータリーエンコーダ63からローラ52の回転に応じてパルス信号が出力され,信号処理装置81に与えられる。信号処理装置81はパルスカウンタを備え,信号処理装置81において1パルス当たりの移動量とパルス数とから損傷評価装置2の移動量データが算出される。移動量データは記録装置82に記録される。
 磁気回路の磁路に設けられたサーチコイル41F,41Rは,信号処理装置81が備えるフラックスメータに接続されている。磁束の変化によってサーチコイル41F,41Rに生じる電圧がフラックスメータにおいて時間積分されることで,磁束(鎖交磁束数)が算出され,これが記録装置82に与えられる。磁束または磁束の変化に基づいて,上述のようにワイヤロープ10に発生している損傷を定量的に判断することができる。
 信号処理装置81は励磁コイル24に電流を供給する電源装置(たとえばバイポーラ電源)83に接続されており,電源装置83から励磁コイル24に与えられる電流が,信号処理装置81によって制御される。第1実施例の損傷評価装置1では上述したように励磁コイル24に与えられる電流が増減される。第2実施例の損傷評価装置2では定電流が励磁コイル24に与えられる。
1 損傷評価装置
10 ワイヤロープ
21 ボビン
23 中心孔
24 励磁コイル
26 鉄心(ヨーク軸)
31F,31R 柱状ヨーク
32F,32R 板状ヨーク
41F,41R サーチコイル
51 フレーム
52 ローラ
63 ロータリーエンコーダ
81 信号処理装置
83 電源装置

Claims (5)

  1.  磁力を発生する磁化器,および磁化器が発生した磁力によって磁化される磁性線状体の損傷箇所から生じる磁気変化量を検出する検出器を含む損傷評価装置であって,
     上記磁化器が,励磁コイルと,上記励磁コイルの中心孔に挿通されたヨーク軸と,上記ヨーク軸の両端に接続され,間隔をあけて同方向にそれぞれのびる一対の柱状ヨークとを含み,
     上記励磁コイルに電流を流すことによって,上記ヨーク軸,一対の柱状ヨーク,および一対の柱状ヨークの間に位置する範囲の磁性線状体を含む磁気回路が形成され,
     上記検出器が,上記一対の柱状ヨークの少なくとも一方に巻き付けられて用いられ,上記柱状ヨークにおける磁束を検出するサーチコイルである,
     磁性線状体の損傷評価装置。
  2.  上記一対の柱状ヨークのそれぞれに,上記サーチコイルが巻き付けられている,
     請求項1に記載の磁性線状体の損傷評価装置。
  3.  上記励磁コイルに電流を供給する電源装置,および
     上記電源装置から上記励磁コイルに供給される電流を制御する制御装置を備えている,
     請求項1に記載の磁性線状体の損傷評価装置。
  4.  上記励磁コイルに定電流を供給する電源装置,および
     上記損傷評価装置を上記磁性線状体に沿って移動させる移動装置を備えている,
     請求項1に記載の磁性線状体の損傷評価装置。
  5.  磁力を発生する磁化器,および磁化器が発生した磁力によって磁化される上記磁性線状体の損傷箇所から生じる磁気変化量を検出する検出器を含む損傷評価装置を用いた上記磁性線状体の損傷評価方法であって,
     上記磁化器が,励磁コイルと,上記励磁コイルの中心孔に挿通されたヨーク軸と,上記ヨーク軸の両端に接続され,間隔をあけて同方向にそれぞれのびる一対の柱状ヨークとを含み,
     上記励磁コイルに電流を流すことによって,上記ヨーク軸,一対の柱状ヨーク,および一対の柱状ヨークの間に位置する範囲の磁性線状体を含む磁気回路を形成し,
     上記検出器を,上記一対の柱状ヨークの少なくとも一方に巻き付けたサーチコイルによって構成し,
     上記柱状ヨークにおける磁束を上記サーチコイルによって検出する,
     磁性線状体の損傷評価方法。
PCT/JP2016/085868 2016-12-02 2016-12-02 磁性線状体の損傷評価装置および方法 WO2018100727A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085868 WO2018100727A1 (ja) 2016-12-02 2016-12-02 磁性線状体の損傷評価装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085868 WO2018100727A1 (ja) 2016-12-02 2016-12-02 磁性線状体の損傷評価装置および方法

Publications (1)

Publication Number Publication Date
WO2018100727A1 true WO2018100727A1 (ja) 2018-06-07

Family

ID=62242184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085868 WO2018100727A1 (ja) 2016-12-02 2016-12-02 磁性線状体の損傷評価装置および方法

Country Status (1)

Country Link
WO (1) WO2018100727A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276454A (ja) * 1986-02-05 1987-12-01 Furukawa Electric Co Ltd:The 強磁性体の異物の検出方法
JPH1019852A (ja) * 1996-07-03 1998-01-23 Hitachi Building Syst Co Ltd ワイヤロープ探傷装置
JP2005292111A (ja) * 2004-04-01 2005-10-20 Shige Ishikawa 鉄筋コンクリートの鉄骨材の非破壊検査装置
JP2007333577A (ja) * 2006-06-15 2007-12-27 Dia Consultant:Kk コンクリート構造物の機能診断方法
JP2014062745A (ja) * 2012-09-20 2014-04-10 Sensor System Co Ltd 母材表面に形成した磁性異質層厚さの検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276454A (ja) * 1986-02-05 1987-12-01 Furukawa Electric Co Ltd:The 強磁性体の異物の検出方法
JPH1019852A (ja) * 1996-07-03 1998-01-23 Hitachi Building Syst Co Ltd ワイヤロープ探傷装置
JP2005292111A (ja) * 2004-04-01 2005-10-20 Shige Ishikawa 鉄筋コンクリートの鉄骨材の非破壊検査装置
JP2007333577A (ja) * 2006-06-15 2007-12-27 Dia Consultant:Kk コンクリート構造物の機能診断方法
JP2014062745A (ja) * 2012-09-20 2014-04-10 Sensor System Co Ltd 母材表面に形成した磁性異質層厚さの検査装置

Similar Documents

Publication Publication Date Title
JP4741734B2 (ja) 磁気エネルギを用いてエレベータロープの劣化を検出する方法および装置
US11016060B2 (en) Method and apparatus for evaluating damage to magnetic linear body
CN110234988B (zh) 磁性体的检查装置和磁性体的检查方法
US4827215A (en) Method of and apparatus for magnetic saturation testing a wire rope for defects
EP2117976B1 (en) Monitoring of conveyor belts
US11016061B2 (en) Method and apparatus for evaluating damage to magnetic linear body
JP6289732B2 (ja) ロープ損傷診断検査装置およびロープ損傷診断検査方法
KR102027102B1 (ko) 와이어 로프 탐상 장치
JP2007192803A (ja) 腐食評価装置及び腐食評価方法
KR20120091724A (ko) 와이어로프 결함 탐지장치
JP3545369B2 (ja) 線状体の腐食箇所検出方法および装置
JP3734822B1 (ja) 非破壊検査方法
JP7434150B2 (ja) 磁性体検査装置および磁性体検査方法
CN113567540A (zh) 一种钢丝绳无损检测设备、系统及方法
WO2018100727A1 (ja) 磁性線状体の損傷評価装置および方法
JP4175181B2 (ja) 漏洩磁束探傷装置
JP4192708B2 (ja) 磁気センサ
KR20100108034A (ko) 강판의 강도 측정장치 및 측정방법
JP3223991U (ja) 非破壊検査装置
RU2645830C1 (ru) Измеритель магнитного дефектоскопа протяженного изделия сложной формы
WO1992021964A1 (fr) Procede de detection d'un flux magnetique et dispositif conçu a cet effet
JP2011252787A (ja) 焼入れ品質検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP