WO2018100626A1 - System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor - Google Patents

System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor Download PDF

Info

Publication number
WO2018100626A1
WO2018100626A1 PCT/JP2016/085376 JP2016085376W WO2018100626A1 WO 2018100626 A1 WO2018100626 A1 WO 2018100626A1 JP 2016085376 W JP2016085376 W JP 2016085376W WO 2018100626 A1 WO2018100626 A1 WO 2018100626A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
synchronous motor
axis voltage
magnetic pole
axis
Prior art date
Application number
PCT/JP2016/085376
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 高山
大沼 直人
智明 照沼
洋平 松本
弘行 齋藤
真輔 井上
Original Assignee
株式会社日立製作所
株式会社日立ビルシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 株式会社日立ビルシステム filed Critical 株式会社日立製作所
Priority to PCT/JP2016/085376 priority Critical patent/WO2018100626A1/en
Priority to JP2018504809A priority patent/JP6479255B2/en
Priority to CN201680047056.XA priority patent/CN108476009B/en
Publication of WO2018100626A1 publication Critical patent/WO2018100626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed

Definitions

  • the present invention relates to a control system for a permanent magnet type synchronous motor, and more particularly to a control system and a control method suitable for specifying a magnetic pole position.
  • Permanent magnet synchronous motors that use permanent magnets as a field can obtain a large torque with a small current, so electric vehicles, hybrid cars, trains and other railway vehicles, inverter-driven home appliances (air conditioners, refrigerators, washing machines) It is used in various fields such as elevator hoisting machines.
  • the permanent magnet type synchronous motor is driven by a sinusoidal current by a variable voltage / variable frequency inverter.
  • the current flowing through the motor is determined as a d-axis component and a q-axis component, and is independent of each other.
  • Current control means for controlling the output means for controlling the output voltage of the inverter in response to the voltage commands of the d-axis and q-axis which are outputs of the current control means, and the motor d-state is irrelevant to the d-axis of the motor
  • a phase on the rotation coordinate is created, a current having the same phase as the created phase is applied to the motor by the current control means, and the phase value at the time when the q-axis voltage command, which is the output of the current control means, becomes maximum is determined as the magnetic pole of the motor.
  • the synchronous motor control device disclosed in Japanese Patent Application Laid-Open No. 2015-15831 has an estimation accuracy of the magnetic pole position under the influence of disturbance or the like in a synchronous motor having no magnetic saliency or low magnetic saliency.
  • the bias current is applied to the motor temporarily.
  • a first magnetic pole position estimating unit for estimating the magnetic pole position, and a bias current is passed with the magnetic pole position ⁇ 1 as an initial phase, and a feature amount related to a phase difference between the bias current phase and the magnetic pole position is converged to a predetermined value by a convergence calculation.
  • a second magnetic pole position estimator that estimates the magnetic pole position ⁇ 2 and a drive controller that controls the driving of the motor based on the difference between the magnetic pole position ⁇ 1 and the magnetic pole position ⁇ 2. It is characterized.
  • the control device of Patent Document 1 estimates the magnetic pole position using the fact that the phase of the maximum value of the q-axis voltage becomes the S-pole phase of the motor, but this is a salient pole type permanent magnet synchronous motor. Is effective, but with a non-salient permanent magnet synchronous motor, it is difficult to estimate the maximum value of the q-axis voltage in the first place.
  • control device of Patent Document 2 enables estimation of the magnetic pole position for a non-salient permanent magnet type synchronous motor, but the process for estimation is considerably complicated, and the magnetic pole position can be determined quickly and reliably. There is a problem that it is difficult to estimate.
  • the present invention provides a control system for a permanent magnet type synchronous motor and a control method therefor, which make it possible to estimate the magnetic pole position of a non-saliency type permanent magnet type synchronous motor while using a q-axis voltage.
  • the purpose is to provide.
  • the present invention includes a controller for controlling a variable voltage / variable frequency inverter based on a d-axis voltage and a q-axis voltage, and the controller includes a d-axis voltage command and a q-axis voltage.
  • Command is generated, a DC component is removed from the q-axis voltage command, a magnetic pole position of a permanent magnet type synchronous motor is estimated based on a signal obtained by removing a DC component from the q-axis voltage command, and the estimated magnetic pole
  • It is a control system of a permanent magnet type synchronous motor which drives the permanent magnet type synchronous motor by controlling the inverter using a position.
  • FIG. 1 is a block diagram (embodiment of the present invention) of a permanent magnet type synchronous motor system including a permanent magnet type synchronous motor drive system and a permanent magnet type synchronous motor control system.
  • FIG. 2 is a block diagram showing a detailed configuration of the magnetic pole position estimation module of the permanent magnet type synchronous motor.
  • FIG. 3 is a current vector diagram when the rotating shaft of the permanent magnet type synchronous motor is constrained.
  • FIG. 4 is a vector diagram of the voltage at that time.
  • FIG. 5 is a waveform diagram for explaining the principle of estimating the magnetic pole position of the salient pole type permanent magnet synchronous motor.
  • FIG. 6 is a waveform diagram for explaining the principle of estimating the magnetic pole position of a non-salient permanent magnet type synchronous motor.
  • FIG. 7 is a flowchart of the operation of the control system including the operation of estimating the magnetic pole position from the q-axis voltage command Vq * .
  • FIG. 1 shows a block configuration diagram of a permanent magnet type synchronous motor system including a drive system 100 for the permanent magnet type synchronous motor 3 and a control system 110 for the permanent magnet type synchronous motor 3.
  • the DC voltage of the DC power source 1 of the drive system 100 is converted into an AC having a variable voltage and a variable frequency by an inverter 2.
  • the inverter 2 supplies the output to the permanent magnet type synchronous motor 3 to drive the motor 3 at a variable speed.
  • the same direction as the magnetic field is the d-axis, and the direction orthogonal to the magnetic field is the q-axis.
  • the “permanent magnet type synchronous motor” includes a non-salient pole type permanent magnet type synchronous motor and a salient pole type permanent magnet type synchronous motor.
  • a permanent magnet synchronous motor is preferred.
  • Non-saliency type means that there is no magnetic saliency or low magnetic saliency.
  • the encoder 4, the brake device 5, and the load device 6 are directly connected to the output shaft of the motor 3.
  • the encoder 4 generates pulse signals ⁇ A and ⁇ B for detecting the rotation angle, rotation direction, and rotation speed of the motor 3 and an origin signal ⁇ Z indicating a reference position in one rotation of the motor 3.
  • the brake device 5 is provided to keep the torque from the load device 6 stationary.
  • control system 110 in addition to the case where the load directly connected to the output shaft is unloaded and the motor 3 is stopped, load torque is generated in the output shaft, and the motor 3 is stopped by the brake 5 attached to the output shaft. , The rotational speed of the motor 3 is controlled based on the speed command ( ⁇ * of the speed command module 7) while controlling the release of the brake 5.
  • the speed command module 7 outputs a command ⁇ * of the rotation speed of the motor 3 to the speed control module 9.
  • the speed calculation module 8 determines the positive or negative rotation of the motor 3 from the phase relationship between the pulse signals ⁇ A and ⁇ B output from the encoder 4, and calculates the rotation speed of the motor 3 from the pulse width of ⁇ A. This is output to the speed control module 9 as a speed output signal ⁇ .
  • the speed control module 9 outputs the torque command signal T * of the motor 3 to the q-axis current command module 10 based on the deviation between the speed command ⁇ * and the speed output signal ⁇ .
  • the q-axis current command module 10 calculates a q-axis current command Iq * corresponding to the torque command signal T * and outputs this to the current control module 11.
  • the q-axis current command Iq * is a command for setting a component orthogonal to the magnetic field direction (N-pole direction of the motor magnet) of the armature current vector of the permanent magnet type synchronous motor 3.
  • the d-axis current command module 12 calculates a d-axis current command Id * that is a command having the same direction component as the magnetic field of the armature current vector of the motor 3, and outputs this to the current control module 11.
  • the d-axis current may be zero, so that the d-axis current command module 12 normally also has a d-axis current of zero. To d-axis current command Id * .
  • the uvw-dq coordinate conversion module 13 converts the output currents iu, iv, iw of the inverter 2 detected by the current detection module 14 based on the d-axis phase command signal ⁇ d * into the d-axis current value Id and the q-axis current value. Iq is converted and output to the current control module 11.
  • the current control module 11 calculates the d-axis DC voltage command Vd * so that the d-axis current value Id becomes the d-axis current command Id * , and further the q-axis current value Iq becomes the q-axis current command Iq *.
  • the q-axis DC voltage command Vq * is calculated and output to the dq-uvw coordinate conversion module 19.
  • the d-axis phase command signal ⁇ d * becomes the d-axis phase signal ⁇ d from the addition module 16.
  • the magnetic pole position calculation module 17 operates as an up counter / down counter that determines forward rotation or reverse rotation of the motor 3 based on the phase relationship between the pulse signals ⁇ A and ⁇ B output from the encoder 4. Is output to the addition module 16 as a phase signal ⁇ z from the origin signal ⁇ Z of the encoder 4. The magnetic pole position calculation module 17 resets the counter value to zero at the same time as the origin signal ⁇ Z is input so as to eliminate the error at the time of counting.
  • the addition module 16 adds the phase signal ⁇ z from the magnetic pole position calculation module 17 and the offset value ⁇ offset output from the magnetic pole position estimation module 18 to create the d-axis phase signal ⁇ d of the motor 3 and switches the signal Output to the switch 15.
  • the dq-uvw coordinate conversion module 19 converts the d-axis DC voltage command Vd * and the q-axis DC voltage command Vq * output from the current control module 11 to 3 based on the phase command signal ⁇ d * of the d-axis magnetic pole. It converts into phase alternating voltage command Vu * , Vv * , Vw * . That is, the dq-uvw coordinate conversion module 19 functions as an inverse conversion module of the uvw-dq coordinate conversion module 13.
  • the PWM pulse generation module 20 outputs a PWM pulse signal for driving the inverter 2 in accordance with the output signals Vu * , Vv * , Vw * of the dq-uvw coordinate conversion module 19.
  • the inverter 2 performs PWM control based on the PWM pulse signal from the PWM pulse generation module 20, controls the output voltage and output frequency to the motor 3, and controls the rotation speed of the motor 3.
  • the “module” is a component for exhibiting a predetermined function, and is realized by software resources and / or hardware.
  • the “module” may be rephrased as “device”, “unit”, “means”, “unit”, “unit”, “system”, “element”, or the like.
  • the position calculation module 17, the magnetic pole position estimation module 18, and the dq-uvw coordinate conversion module 19 are configured by microcomputer hardware (controller, memory), software executed by the hardware, and a program.
  • the controller is, for example, a CPU or an MPU. Software and various data are recorded in the memory.
  • the system shown in FIG. 1 may be controlled by the cooperation of a plurality of controllers in addition to being controlled by one controller.
  • FIG. 2 is a block diagram illustrating a detailed configuration of the magnetic pole position estimation module 18 of the motor 3.
  • the magnetic pole position estimation module 18 includes a DC component removal module 21 that removes a DC component of the q-axis voltage command Vq * of the current control module 11 based on the q-axis voltage command Vq * output from the current control module 11;
  • An integration module 22 that integrates the q-axis voltage command Vq * from which the component has been removed, and a phase at which the maximum value is reached from the integration value: ⁇ test (max) is detected, determined, selected, determined, or specified, etc.
  • the maximum value detection module 23 for storing this, the phase at which the minimum value is reached: ⁇ test (min) is detected, and the minimum value detection module 24 for recording this, and the maximum value phase: ⁇ test (max) and minimum value phase: the average value of the ⁇ test (min) seeking ( ⁇ test (Vq * max), and a mean value detection module 25 which stores the
  • the d-axis current command control module 28 controls the d-axis current command module 12, and the q-axis current command control module 29 controls the q-axis current command module 10.
  • the estimation phase signal generation module 26 outputs the estimation phase signal ⁇ test to the signal changeover switch 15. Further, the d-axis phase calculation module 27 calculates the d-axis phase from the average value ( ⁇ test (Vq * max)), and outputs this to the addition module 16 as ⁇ offset.
  • FIG. 3 is a vector diagram of current when the rotating shaft of the salient pole type non-salient pole type permanent magnet synchronous motor 3 is restrained by the brake device 5, and FIG. 4 shows the d axis DC voltage command Vd * and FIG. 6 is a voltage vector diagram of a q-axis DC voltage command Vq * .
  • FIGS. 3 is a vector diagram of current when the rotating shaft of the salient pole type non-salient pole type permanent magnet synchronous motor 3 is restrained by the brake device 5
  • FIG. 4 shows the d axis DC voltage command Vd *
  • FIG. 6 is a voltage vector diagram of a q-axis DC voltage command Vq * .
  • Id is a d-axis component of the armature current
  • Iq is a q-axis component of the armature current
  • Id * is the d-axis current command
  • Iq * is the q-axis current command
  • I 1 is the motor applied current
  • Vd is the d-axis component of the armature voltage
  • Vq is the q-axis component of the armature voltage
  • Vd * is the d-axis voltage command
  • Vq * is the q-axis voltage command
  • represents the angle of difference between the d-axis phase and the motor d-axis phase.
  • the d-axis voltage Vd * is a coordinate that rotates in a motor d-axis voltage Vd .omega.1 *
  • the motor q-axis voltage Vq is a coordinate that rotates at .omega.1 *
  • q-axis voltage Vq * is equation 1, and, equation 2 As shown.
  • FIG. 5 is a waveform diagram for explaining the principle of estimating the magnetic pole position of the salient pole type permanent magnet type synchronous motor 3.
  • the magnetic pole position estimation module 18 sets the magnetic pole position of the salient pole type permanent magnet type synchronous motor 3 in the phase on the rotational coordinate unrelated to the d axis of the motor 3 while the brake device 5 restrains the motor shaft.
  • the q-axis voltage command Vq * (waveform 26) when the current is applied is estimated to be the phase value that is the maximum value (27).
  • the magnetic pole position estimation module 18 P ⁇ when the voltage command Vq * reaches the maximum value is estimated as the phase of the south pole.
  • FIG. 6 is a waveform diagram for explaining the principle of estimating the magnetic pole position when the permanent magnet type synchronous motor 3 is a non-salient pole type motor.
  • FIG. 7 shows the magnetic pole position from the q-axis voltage command Vq *. It is a flowchart explaining the operation
  • the peak region 30 of the waveform 29 of the q-axis voltage command Vq * is that of the salient pole type permanent magnet synchronous motor 3.
  • the magnetic pole position estimation module 18 uses the fact that the waveform of the q-axis voltage command Vq * is substantially rectangular to estimate the magnetic pole position as follows.
  • step S ⁇ b> 1 the signal changeover switch 15 switches the contact point from the point a selected during the normal operation of the motor 3 to the point b in the estimation process.
  • the magnetic pole position estimation module 18 determines that the q-axis current command module 10 and the d-axis current command module 12 have a q-axis current command Iq * of “0” and a d-axis current command Id * of “100% ( It is controlled to output “corresponding to the rated current of the permanent magnet type synchronous motor 3)”.
  • the magnetic pole position estimation module 18 outputs an estimation phase signal ⁇ test to the signal changeover switch 15 so that the set current (q-axis current, d-axis current) flows to the permanent magnet type synchronous motor 3.
  • the module 11 is operated.
  • the estimation phase signal ⁇ test is created by the magnetic pole position estimation module 18 as an angular frequency setting value ( ⁇ test) at the time of magnetic pole estimation.
  • the waveform 29 in FIG. 6 has a shape in which the peak portion of the q-axis voltage command Vq * is crushed. Therefore, the magnetic pole position estimation module 18 uses the direct current component removal module 21 shown in FIG. 2 to obtain a direct current component ( ⁇ 1 * ⁇ Ld ⁇ I1 + (1/2 ) from the q-axis voltage command Vq * of the current control module 11 in step S2. ) ⁇ ⁇ 1 * ⁇ (Lq ⁇ Ld) ⁇ I1: Refer to Equation 2) to generate the waveform 30.
  • the magnetic pole position estimation module 18 uses the waveform 30 to estimate the magnetic pole position. For example, according to the waveform 30, the zero cross points 30 ⁇ / b > A and 30 ⁇ / b > B with the q-axis voltage command Vq * are displayed, so that the magnetic pole position estimation module 18 specifies the median value 34 of the two zero cross points as the S pole phase. Can do.
  • step S3 the integration module 22 (FIG. 2) integrates the waveform 30 from which the DC component is removed from the q-axis voltage command Vq * to generate the triangular wave 31 shown in FIG.
  • step S4 the maximum value detection module 23 (FIG. 2) specifies ⁇ test (max) 32 at the time when the integral value as the triangular wave 31 becomes the maximum value, and stores this. Further, the minimum value detection module 24 specifies ⁇ test (min) 33 at the time when the integral value becomes the minimum value, and stores this.
  • step S5 the average value detection module 25 (FIG. 2) calls the average value ⁇ test (Vq * max) 34 (median value) of the maximum value ⁇ test (max) 32 and the minimum value ⁇ test (min) 33. May be calculated and stored, and the current application is stopped.
  • step S6 the magnetic pole position estimation module 18 calculates the d-axis phase ⁇ d ⁇ from the ⁇ test (Vq * max) 34 stored in step S5 based on Equation 3.
  • the magnetic pole position estimation module 18 has a non-salient pole type.
  • the permanent magnet synchronous motor 3 can also estimate the magnetic pole position based on the q-axis voltage command Vq * .
  • step S ⁇ b> 7 the magnetic pole position estimation module 18 temporarily sets ⁇ d ⁇ as ⁇ offset and outputs it to the addition module 16.
  • the magnetic pole position calculation module 17 clears the phase ⁇ z of the origin signal ⁇ Z to zero.
  • step S8 the signal switching module (switch) 15 switches the contact from point b to point a.
  • the drive system 100 releases the brake 5 and rotates the permanent magnet synchronous motor 3 by the normal operation of the permanent magnet synchronous motor 3.
  • the magnetic pole position calculation module 17 waits for the origin signal ⁇ Z from the encoder 4 to be generated.
  • step S9 the magnetic pole position calculation module 17 stores the phase ⁇ z when the origin signal ⁇ Z is generated as ⁇ z ′, and stops the permanent magnet type synchronous motor 3.
  • ⁇ offset ⁇ d ⁇ + ⁇ z ′
  • the magnetic pole position can be estimated easily and with high accuracy from the q-axis voltage command Vq * even for the non-salient permanent magnet type synchronous motor 3. Can do.
  • the average value ⁇ test (Vq * max) of the maximum value ⁇ test (max) and the minimum value ⁇ test (min) was estimated as the phase of the S pole, but the phase delayed by 90 degrees from the maximum value, or 90 from the minimum value.
  • the advanced phase may be estimated as the S-pole phase.
  • the present invention is not limited to the above-described embodiment, and can include various modifications.

Abstract

[Problem] To provide a device for controlling a permanent magnet synchronous motor and a method of control therefor that make it possible to estimate magnetic pole positions of a non-salient-pole permanent magnet synchronous motor even while using a q-axis voltage. [Solution] The present invention is a system for controlling a permanent magnet synchronous motor, in which a variable-voltage/variable-frequency inverter is controlled on the basis of a d-axis voltage and a q-axis voltage. The control system generates a d-axis voltage command and a q-axis voltage command, removes a direct current component from the q-axis voltage command, estimates magnetic pole positions of the permanent magnet synchronous motor on the basis of a signal obtained by removing the direct current component from the q-axis voltage command, and makes use of the estimated magnetic pole positions to control the inverter.

Description

永久磁石式同期モータの制御システム、及び、永久磁石式同期モータの制御方法Control system for permanent magnet type synchronous motor and control method for permanent magnet type synchronous motor
 本発明は、永久磁石式同期モータの制御システムに係り、磁極位置を特定するのに適した制御システム、及び、制御方法に関する。 The present invention relates to a control system for a permanent magnet type synchronous motor, and more particularly to a control system and a control method suitable for specifying a magnetic pole position.
 永久磁石を界磁に利用した永久磁石式同期モータは、少ない電流で大きなトルクを得られるため、電気自動車、ハイブリッドカー、電車等の鉄道車両、インバータ駆動の家電製品(エアコン、冷蔵庫、洗濯機)、エレベータ装置の巻上機等の様々な分野において利用されている。そして、永久磁石式同期モータは、可変電圧・可変周波数のインバータによって正弦波電流によって駆動されるようになってきている。 Permanent magnet synchronous motors that use permanent magnets as a field can obtain a large torque with a small current, so electric vehicles, hybrid cars, trains and other railway vehicles, inverter-driven home appliances (air conditioners, refrigerators, washing machines) It is used in various fields such as elevator hoisting machines. The permanent magnet type synchronous motor is driven by a sinusoidal current by a variable voltage / variable frequency inverter.
 このような永久磁石式同期モータを駆動するには、回転子の位置情報が必要であるために、永久磁石式同期モータに、回転子の磁極位置センサーを設けていた。しかしながら、センサーは高価であったり、そして、センサーからの出力値に基いて磁極位置を決定しても、実際の磁極位置との誤差を無視できないことから、センサーレスの永久磁石式同期モータが提案されている(特開2004-32907号公報)。 In order to drive such a permanent magnet type synchronous motor, position information of the rotor is necessary. Therefore, a rotor magnetic pole position sensor is provided in the permanent magnet type synchronous motor. However, the sensor is expensive, and even if the magnetic pole position is determined based on the output value from the sensor, the error from the actual magnetic pole position cannot be ignored. (Japanese Patent Laid-Open No. 2004-32907).
 この公報に係る永久磁石式同期モータの制御装置は、可変電圧・可変周波数のインバータによって駆動される永久磁石式同期モータにおいて、モータに流す電流をd軸成分とq軸成分とに定めてそれぞれ独立に制御を行う電流制御手段と、電流制御手段の出力であるd軸とq軸の電圧指令に応じてインバータの出力電圧を制御する手段と、モータの停止状態でモータのd軸とは無関係な回転座標上の位相を作成し、該作成した位相と同相の電流を電流制御手段によってモータに印加し、電流制御手段の出力であるq軸電圧指令が最大となる時点における位相値をモータの磁極位置として推定する磁極位置推定手段を備えることにより、永久磁石式同期モータがブレーキによって静止保持された停止状態でも、磁極位置情報を有するセンサを用いることなく、モータの磁極位置を推定することができる。 In the permanent magnet synchronous motor control apparatus according to this publication, in a permanent magnet synchronous motor driven by a variable voltage / variable frequency inverter, the current flowing through the motor is determined as a d-axis component and a q-axis component, and is independent of each other. Current control means for controlling the output, means for controlling the output voltage of the inverter in response to the voltage commands of the d-axis and q-axis which are outputs of the current control means, and the motor d-state is irrelevant to the d-axis of the motor A phase on the rotation coordinate is created, a current having the same phase as the created phase is applied to the motor by the current control means, and the phase value at the time when the q-axis voltage command, which is the output of the current control means, becomes maximum is determined as the magnetic pole of the motor. By providing the magnetic pole position estimation means for estimating the position, the sensor having the magnetic pole position information can be obtained even when the permanent magnet type synchronous motor is held stationary by the brake. Without there, it is possible to estimate the magnetic pole position of the motor.
 さらに、特開2015-15831号公報に係る同期電動機の制御装置は、磁気的突極性を有しない、もしくは、磁気的突極性が低い同期電動機において、外乱等の影響を受けて磁極位置の推定精度が悪化した場合に、電動機の制御を停止させるか、電動機の制御を行うに十分な精度が得られるように磁極位置の再度推定を行うことを目的として、バイアス電流をモータに印加して暫定的に磁極位置を推定する第一の磁極位置推定部と、磁極位置θ1を初期位相としてバイアス電流を流し、収斂演算によりバイアス電流位相と磁極位置との位相差に関連する特徴量を所定値に収斂させることで磁極位置θ2を推定する第二の磁極位置推定部と、磁極位置θ1と磁極位置θ2との差分に基いてモータの駆動を制御する駆動制御部とを備えることを特徴としている。 Furthermore, the synchronous motor control device disclosed in Japanese Patent Application Laid-Open No. 2015-15831 has an estimation accuracy of the magnetic pole position under the influence of disturbance or the like in a synchronous motor having no magnetic saliency or low magnetic saliency. In order to stop the control of the motor or to re-estimate the magnetic pole position so that sufficient accuracy can be obtained to control the motor, the bias current is applied to the motor temporarily. And a first magnetic pole position estimating unit for estimating the magnetic pole position, and a bias current is passed with the magnetic pole position θ1 as an initial phase, and a feature amount related to a phase difference between the bias current phase and the magnetic pole position is converged to a predetermined value by a convergence calculation. A second magnetic pole position estimator that estimates the magnetic pole position θ2 and a drive controller that controls the driving of the motor based on the difference between the magnetic pole position θ1 and the magnetic pole position θ2. It is characterized.
特開2004-32907号公報JP 2004-32907 A 特開2015-15831号公報JP 2015-15831 A
 特許文献1の制御装置は、q軸電圧の最大値の位相がモータのS極位相になることを利用して磁極位置を推定しているが、これは突極型の永久磁石式同期モータには有効であるものの、非突極型の永久磁石式同期モータでは、そもそもq軸電圧の最大値を把握し難いため、磁極位置の推定は容易でない。 The control device of Patent Document 1 estimates the magnetic pole position using the fact that the phase of the maximum value of the q-axis voltage becomes the S-pole phase of the motor, but this is a salient pole type permanent magnet synchronous motor. Is effective, but with a non-salient permanent magnet synchronous motor, it is difficult to estimate the maximum value of the q-axis voltage in the first place.
 一方、特許文献2の制御装置は、非突極型の永久磁石式同期モータにとって磁極位置の推定を可能にした反面、推定のための処理が相当に煩雑になり、磁極位置を迅速かつ確実に推定し難いという課題がある。 On the other hand, the control device of Patent Document 2 enables estimation of the magnetic pole position for a non-salient permanent magnet type synchronous motor, but the process for estimation is considerably complicated, and the magnetic pole position can be determined quickly and reliably. There is a problem that it is difficult to estimate.
 そこで、本発明は、q軸電圧を利用しながらでも、非突極型の永久磁石式同期モータの磁極位置を推定できるようにする、永久磁石式同期モータの制御システム、及び、その制御方法を提供することを目的とする。 Therefore, the present invention provides a control system for a permanent magnet type synchronous motor and a control method therefor, which make it possible to estimate the magnetic pole position of a non-saliency type permanent magnet type synchronous motor while using a q-axis voltage. The purpose is to provide.
 前記目的を達成するために、本発明は、d軸電圧とq軸電圧とに基いて、可変電圧・可変周波数のインバータを制御するコントローラを備え、前記コントローラは、d軸電圧指令とq軸電圧指令とを生成し、前記q軸電圧指令から直流成分を除去し、前記q軸電圧指令から直流成分を除去した信号に基いて、永久磁石式同期モータの磁極位置を推定し、前記推定した磁極位置を利用して前記インバータを制御することにより前記永久磁石式同期モータを駆動させる、永久磁石式同期モータの制御システムである。 In order to achieve the above object, the present invention includes a controller for controlling a variable voltage / variable frequency inverter based on a d-axis voltage and a q-axis voltage, and the controller includes a d-axis voltage command and a q-axis voltage. Command is generated, a DC component is removed from the q-axis voltage command, a magnetic pole position of a permanent magnet type synchronous motor is estimated based on a signal obtained by removing a DC component from the q-axis voltage command, and the estimated magnetic pole It is a control system of a permanent magnet type synchronous motor which drives the permanent magnet type synchronous motor by controlling the inverter using a position.
 本発明によれば、q軸電圧を利用しながらでも、非突極型の永久磁石式同期モータの磁極位置を推定できるようになる。 According to the present invention, it is possible to estimate the magnetic pole position of a non-salient-pole type permanent magnet synchronous motor while using the q-axis voltage.
図1は、永久磁石式同期モータの駆動システムと、永久磁石式同期モータの制御システムと、を含む永久磁石式同期モータシステムのブロック構成図(本発明の実施形態)である。FIG. 1 is a block diagram (embodiment of the present invention) of a permanent magnet type synchronous motor system including a permanent magnet type synchronous motor drive system and a permanent magnet type synchronous motor control system. 図2は、永久磁石式同期モータの磁極位置推定モジュールの詳細構成を示すブロック図である。FIG. 2 is a block diagram showing a detailed configuration of the magnetic pole position estimation module of the permanent magnet type synchronous motor. 図3は、永久磁石式同期モータの回転軸を拘束したときの電流ベクトル図である。FIG. 3 is a current vector diagram when the rotating shaft of the permanent magnet type synchronous motor is constrained. 図4は、その際の電圧のベクトル図である。FIG. 4 is a vector diagram of the voltage at that time. 図5は、突極型の永久磁石式同期モータの磁極位置を推定することの原理を説明するための波形図である。FIG. 5 is a waveform diagram for explaining the principle of estimating the magnetic pole position of the salient pole type permanent magnet synchronous motor. 図6は、非突極型の永久磁石式同期モータの磁極位置を推定することの原理を説明するための波形図である。FIG. 6 is a waveform diagram for explaining the principle of estimating the magnetic pole position of a non-salient permanent magnet type synchronous motor. 図7は、q軸電圧指令Vqから磁極位置を推定する動作を含む、制御システムの動作のフローチャートである。FIG. 7 is a flowchart of the operation of the control system including the operation of estimating the magnetic pole position from the q-axis voltage command Vq * .
 以下、本発明の実施形態を図面に基いて説明する。図1に、永久磁石式同期モータ3の駆動システム100と、永久磁石式同期モータ3の制御システム110と、を含む永久磁石式同期モータシステムのブロック構成図を示す。図1において、駆動システム100の直流電源1の直流電圧は、インバータ2によって可変電圧・可変周波数の交流に変換される。インバータ2は、その出力を永久磁石式同期モータ3に供給して、モータ3を可変速駆動させる。永久磁石式同期モータ3では、磁界と同方向がd軸になり、磁界に直交する方向がq軸になる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a block configuration diagram of a permanent magnet type synchronous motor system including a drive system 100 for the permanent magnet type synchronous motor 3 and a control system 110 for the permanent magnet type synchronous motor 3. In FIG. 1, the DC voltage of the DC power source 1 of the drive system 100 is converted into an AC having a variable voltage and a variable frequency by an inverter 2. The inverter 2 supplies the output to the permanent magnet type synchronous motor 3 to drive the motor 3 at a variable speed. In the permanent magnet type synchronous motor 3, the same direction as the magnetic field is the d-axis, and the direction orthogonal to the magnetic field is the q-axis.
 “永久磁石式同期モータ”には、非突極型永久磁石式同期モータ、そして、突極型永久磁石式同期モータが含まれるが、本発明の効果を喚起させるためには、非突極型永久磁石式同期モータであることが好ましい。“非突極型”とは、磁気的突極性を有しない、もしくは、磁気的突極性が低い、ことをいう。 The “permanent magnet type synchronous motor” includes a non-salient pole type permanent magnet type synchronous motor and a salient pole type permanent magnet type synchronous motor. A permanent magnet synchronous motor is preferred. “Non-saliency type” means that there is no magnetic saliency or low magnetic saliency.
 モータ3の出力軸には、エンコーダ4、ブレーキ装置5、負荷装置6が直結されている。エンコーダ4は、モータ3の回転角、回転方向および回転速度を検出するためのパルス信号ΦA、ΦBと、モータ3の1回転における基準位置を表す原点信号ΦZを発生する。ブレーキ装置5は負荷装置6からのトルクを静止保持するために設けられている。 The encoder 4, the brake device 5, and the load device 6 are directly connected to the output shaft of the motor 3. The encoder 4 generates pulse signals ΦA and ΦB for detecting the rotation angle, rotation direction, and rotation speed of the motor 3 and an origin signal ΦZ indicating a reference position in one rotation of the motor 3. The brake device 5 is provided to keep the torque from the load device 6 stationary.
 制御システム110は、出力軸に直結される負荷が無負荷状態でモータ3が停止している場合のほか、出力軸に負荷トルクが生じており、出力軸に付いたブレーキ5によってモータ3の静止が保持している場合、ブレーキ5の解放を制御しながら、速度指令(速度指令モジュール7のω)に基いて、モータ3の回転速度を制御する。 In the control system 110, in addition to the case where the load directly connected to the output shaft is unloaded and the motor 3 is stopped, load torque is generated in the output shaft, and the motor 3 is stopped by the brake 5 attached to the output shaft. , The rotational speed of the motor 3 is controlled based on the speed command (ω * of the speed command module 7) while controlling the release of the brake 5.
 速度指令モジュール7は、モータ3の回転速度の指令ωを速度制御モジュール9に出力する。速度演算モジュール8は、エンコーダ4から出力されたパルス信号ΦA、ΦBの位相関係から、モータ3の正回転又は負回転を判断し、そして、ΦAのパルス幅からモータ3の回転速度を演算し、これを、速度制御モジュール9に、速度出力信号ωとして、出力する。 The speed command module 7 outputs a command ω * of the rotation speed of the motor 3 to the speed control module 9. The speed calculation module 8 determines the positive or negative rotation of the motor 3 from the phase relationship between the pulse signals ΦA and ΦB output from the encoder 4, and calculates the rotation speed of the motor 3 from the pulse width of ΦA. This is output to the speed control module 9 as a speed output signal ω.
 速度制御モジュール9は、速度指令ωと速度出力信号ωとの偏差に基いてモータ3のトルク指令信号Tをq軸電流指令モジュール10に出力する。q軸電流指令モジュール10はトルク指令信号Tに応じたq軸電流指令Iqを演算して、これを電流制御モジュール11に出力する。q軸電流指令Iqは、永久磁石式同期モータ3の電機子電流ベクトルの磁界方向(モータ磁石のN極方向)と直交する成分を設定するための指令である。 The speed control module 9 outputs the torque command signal T * of the motor 3 to the q-axis current command module 10 based on the deviation between the speed command ω * and the speed output signal ω. The q-axis current command module 10 calculates a q-axis current command Iq * corresponding to the torque command signal T * and outputs this to the current control module 11. The q-axis current command Iq * is a command for setting a component orthogonal to the magnetic field direction (N-pole direction of the motor magnet) of the armature current vector of the permanent magnet type synchronous motor 3.
 d軸電流指令モジュール12は、モータ3の電機子電流ベクトルの磁界と同方向成分の指令であるd軸電流指令Idを演算し、これを電流制御モジュール11に出力する。永久磁石式同期モータ3は、永久磁石により電機子に対する磁界が常時確立しているので、d軸電流は零でよいため、d軸電流指令モジュール12も、通常、d軸電流が零になるようにd軸電流指令Idを設定する。 The d-axis current command module 12 calculates a d-axis current command Id * that is a command having the same direction component as the magnetic field of the armature current vector of the motor 3, and outputs this to the current control module 11. In the permanent magnet type synchronous motor 3, since the magnetic field for the armature is always established by the permanent magnet, the d-axis current may be zero, so that the d-axis current command module 12 normally also has a d-axis current of zero. To d-axis current command Id * .
 uvw-dq座標変換モジュール13は、d軸位相指令信号θdに基いて、電流検出モジュール14が検出したインバータ2の出力電流iu、iv、iwをd軸電流値Id、および、q軸電流値Iqに変換して、電流制御モジュール11に出力する。 The uvw-dq coordinate conversion module 13 converts the output currents iu, iv, iw of the inverter 2 detected by the current detection module 14 based on the d-axis phase command signal θd * into the d-axis current value Id and the q-axis current value. Iq is converted and output to the current control module 11.
 電流制御モジュール11は、d軸電流値Idがd軸電流指令Idになるようにd軸直流電圧指令Vdを演算し、さらに、q軸電流値Iqがq軸電流指令Iqになるようにq軸直流電圧指令Vqを演算して、dq-uvw座標変換モジュール19に出力する。 The current control module 11 calculates the d-axis DC voltage command Vd * so that the d-axis current value Id becomes the d-axis current command Id * , and further the q-axis current value Iq becomes the q-axis current command Iq *. The q-axis DC voltage command Vq * is calculated and output to the dq-uvw coordinate conversion module 19.
 モータ3の通常動作において、信号切替スイッチ15は、a側の接点に入っているため、d軸位相指令信号θdは、加算モジュール16からのd軸位相信号θdになる。 In the normal operation of the motor 3, since the signal changeover switch 15 is in the contact on the a side, the d-axis phase command signal θd * becomes the d-axis phase signal θd from the addition module 16.
 磁極位置演算モジュール17は、エンコーダ4から出力されるパルス信号ΦA、ΦBの位相関係に基いて、モータ3の正転、又は、その逆転を判断するアップカウンタ/ダウンカウンタとして動作し、このカウンタ値をエンコーダ4の原点信号ΦZからの位相信号θzとして加算モジュール16に出力する。磁極位置演算モジュール17は原点信号ΦZが入力されると同時にカウンタ値をゼロにリセットし、カウント時の誤差を無くようにしている。 The magnetic pole position calculation module 17 operates as an up counter / down counter that determines forward rotation or reverse rotation of the motor 3 based on the phase relationship between the pulse signals ΦA and ΦB output from the encoder 4. Is output to the addition module 16 as a phase signal θz from the origin signal ΦZ of the encoder 4. The magnetic pole position calculation module 17 resets the counter value to zero at the same time as the origin signal ΦZ is input so as to eliminate the error at the time of counting.
 加算モジュール16は、磁極位置演算モジュール17からの位相信号θzと、磁極位置推定モジュール18から出力されるオフセット値θoffsetと、を加算して、モータ3のd軸位相信号θdを作成し、信号切替スイッチ15に出力する。 The addition module 16 adds the phase signal θz from the magnetic pole position calculation module 17 and the offset value θoffset output from the magnetic pole position estimation module 18 to create the d-axis phase signal θd of the motor 3 and switches the signal Output to the switch 15.
 dq-uvw座標変換モジュール19は、d軸磁極の位相指令信号θdに基いて、電流制御モジュール11から出力された、d軸直流電圧指令Vd、および、q軸直流電圧指令Vqを3相交流電圧指令Vu、Vv、Vwに変換する。すなわち、dq-uvw座標変換モジュール19は、uvw-dq座標変換モジュール13の逆変換モジュールとして機能する。 The dq-uvw coordinate conversion module 19 converts the d-axis DC voltage command Vd * and the q-axis DC voltage command Vq * output from the current control module 11 to 3 based on the phase command signal θd * of the d-axis magnetic pole. It converts into phase alternating voltage command Vu * , Vv * , Vw * . That is, the dq-uvw coordinate conversion module 19 functions as an inverse conversion module of the uvw-dq coordinate conversion module 13.
 PWMパルス発生モジュール20は、dq-uvw座標変換モジュール19の出力信号Vu、Vv、Vwに応じて、インバータ2を駆動するPWMパルス信号を出力する。インバータ2は、PWMパルス発生モジュール20からのPWMパルス信号に基いて、PWM制御を行い、モータ3への出力電圧、出力周波数を制御して、モータ3の回転速度を制御する。 The PWM pulse generation module 20 outputs a PWM pulse signal for driving the inverter 2 in accordance with the output signals Vu * , Vv * , Vw * of the dq-uvw coordinate conversion module 19. The inverter 2 performs PWM control based on the PWM pulse signal from the PWM pulse generation module 20, controls the output voltage and output frequency to the motor 3, and controls the rotation speed of the motor 3.
 “モジュール”とは、所定の機能を発揮するための構成要素であり、ソフトウェア資源、及び/又は、ハードウェアに、よって実現される。“モジュール”を、“装置”、“器”、“手段”、“部”、“ユニット”、“システム”、又は、“エレメント”等に言い換えてもよい。 The “module” is a component for exhibiting a predetermined function, and is realized by software resources and / or hardware. The “module” may be rephrased as “device”, “unit”, “means”, “unit”, “unit”, “system”, “element”, or the like.
 図1において、例えば、速度指令モジュール7、速度演算モジュール8、速度制御モジュール9、q軸電流指令モジュール10、電流制御モジュール11、d軸電流指令モジュール12、uvw-dq座標変換モジュール13、d極位置演算モジュール17、磁極位置推定モジュール18、及び、dq-uvw座標変換モジュール19は、マイクロコンピュータのハードウェア(コントローラ、メモリ)と、ハードウェアによって実行されるソフトウェア、プログラムによって構成される。コントローラは、例えば、CPU、又は、MPUである。ソフトウェアや各種データは、メモリに記録される。図1に示すシステムは、一つのコントローラによって制御されるほか、複数のコントローラの協同によって制御されてもよい。 In FIG. 1, for example, a speed command module 7, a speed calculation module 8, a speed control module 9, a q-axis current command module 10, a current control module 11, a d-axis current command module 12, a uvw-dq coordinate conversion module 13, and a d pole The position calculation module 17, the magnetic pole position estimation module 18, and the dq-uvw coordinate conversion module 19 are configured by microcomputer hardware (controller, memory), software executed by the hardware, and a program. The controller is, for example, a CPU or an MPU. Software and various data are recorded in the memory. The system shown in FIG. 1 may be controlled by the cooperation of a plurality of controllers in addition to being controlled by one controller.
 図2は、モータ3の磁極位置推定モジュール18の詳細構成を説明するブロック図である。磁極位置推定モジュール18は、電流制御モジュール11から出力されたq軸電圧指令Vqに基いて、電流制御モジュール11のq軸電圧指令Vqの直流成分を除去する直流成分除去モジュール21と、直流成分が除去されたq軸電圧指令Vqを積分する積分モジュール22と、積分値から、最大値となる時点の位相:θtest(max)を検出、判定、選択、決定、或いは、特定する等し、これを記憶する最大値検出モジュール23と、最小値となる時点の位相:θtest(min)を検出等し、これを記録する最小値検出モジュール24と、最大値位相:θtest(max)と最小値位相:θtest(min)との平均値(θtest(Vqmax)を求めて、これを記憶する平均値検出モジュール25とを有している。 FIG. 2 is a block diagram illustrating a detailed configuration of the magnetic pole position estimation module 18 of the motor 3. The magnetic pole position estimation module 18 includes a DC component removal module 21 that removes a DC component of the q-axis voltage command Vq * of the current control module 11 based on the q-axis voltage command Vq * output from the current control module 11; An integration module 22 that integrates the q-axis voltage command Vq * from which the component has been removed, and a phase at which the maximum value is reached from the integration value: θtest (max) is detected, determined, selected, determined, or specified, etc. The maximum value detection module 23 for storing this, the phase at which the minimum value is reached: θtest (min) is detected, and the minimum value detection module 24 for recording this, and the maximum value phase: θtest (max) and minimum value phase: the average value of the θtest (min) seeking (θtest (Vq * max), and a mean value detection module 25 which stores the
 そして、d軸電流指令制御モジュール28はd軸電流指令モジュール12を制御し、q軸電流指令制御モジュール29はq軸電流指令モジュール10を制御する。推定用位相信号生成モジュール26は、信号切替スイッチ15に、推定用位相信号θtestを出力する。さらに、d軸位相算出モジュール27は、平均値(θtest(Vqmax)からd軸位相を算出して、これをθoffsetとして加算モジュール16に出力する。 The d-axis current command control module 28 controls the d-axis current command module 12, and the q-axis current command control module 29 controls the q-axis current command module 10. The estimation phase signal generation module 26 outputs the estimation phase signal θtest to the signal changeover switch 15. Further, the d-axis phase calculation module 27 calculates the d-axis phase from the average value (θtest (Vq * max)), and outputs this to the addition module 16 as θoffset.
 図3は、突極型、非突極型の永久磁石式同期モータ3の回転軸をブレーキ装置5で拘束した際の電流のベクトル図であり、図4はd軸直流電圧指令Vd、及び、q軸直流電圧指令Vqの電圧ベクトル図である。図3、図4において、Idは電機子電流のd軸成分、Iqは電機子電流のq軸成分、Idはd軸電流指令、Iqはq軸電流指令、Iはモータ印可電流の大きさ、Vdは電機子電圧のd軸成分、Vqは電機子電圧のq軸成分、Vdはd軸電圧指令、Vqはq軸電圧指令、ω は角周波数指令(=2πf1)、そして、δはd軸位相とモータd軸位相との差の角度を表している。 FIG. 3 is a vector diagram of current when the rotating shaft of the salient pole type non-salient pole type permanent magnet synchronous motor 3 is restrained by the brake device 5, and FIG. 4 shows the d axis DC voltage command Vd * and FIG. 6 is a voltage vector diagram of a q-axis DC voltage command Vq * . In FIGS. 3 and 4, Id is a d-axis component of the armature current, Iq is a q-axis component of the armature current, Id * is the d-axis current command, Iq * is the q-axis current command, I 1 is the motor applied current Magnitude, Vd is the d-axis component of the armature voltage, Vq is the q-axis component of the armature voltage, Vd * is the d-axis voltage command, Vq * is the q-axis voltage command, ω 1 * is the angular frequency command (= 2πf1) Δ represents the angle of difference between the d-axis phase and the motor d-axis phase.
 モータd軸電圧Vd、及び、モータq軸電圧Vqと、d軸電圧Vd、及び、q軸電圧Vqと、の関係は、図4に示したベクトル図のようになる。δをd軸位相とモータd軸位相との差の角度、Raを1相分の電機子抵抗とし、Ldをd軸の電機子自己インダクタンスとし、Lqをq軸の電機子自己インダクタンスとすると、モータd軸電圧Vdをω1で回転する座標であるd軸電圧Vdと、モータq軸電圧Vqをω1で回転する座標であるq軸電圧Vqは、数式1、及び、数式2のように示される。 The relationship between the motor d-axis voltage Vd and the motor q-axis voltage Vq and the d * -axis voltage Vd * and the q * -axis voltage Vq * is as shown in the vector diagram shown in FIG. If δ is the angle of the difference between the d * -axis phase and the motor d-axis phase, Ra is the armature resistance for one phase, Ld is the d-axis armature self-inductance, and Lq is the q-axis armature self-inductance. , the d-axis voltage Vd * is a coordinate that rotates in a motor d-axis voltage Vd .omega.1 *, the motor q-axis voltage Vq is a coordinate that rotates at .omega.1 * q-axis voltage Vq * is equation 1, and, equation 2 As shown.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図5は、突極型の永久磁石式同期モータ3の磁極位置を推定することの原理を説明するための波形図である。磁極位置推定モジュール18は、突極型の永久磁石式同期モータ3の磁極位置を、ブレーキ装置5がモータ軸を拘束している状態で、モータ3のd軸とは無関係な回転座標上の位相電流が印加されたときのq軸電圧指令Vq(波形26)が最大値(27)となる位相値に推定している。即ち、数式2において、q軸電圧指令Vqが最大値になる点に着目して、位相θdがモータ3のS極位相になることを利用して、磁極位置推定モジュール18は、q軸電圧指令Vqが最大値になるときのPθをS極の位相として推定している。 FIG. 5 is a waveform diagram for explaining the principle of estimating the magnetic pole position of the salient pole type permanent magnet type synchronous motor 3. The magnetic pole position estimation module 18 sets the magnetic pole position of the salient pole type permanent magnet type synchronous motor 3 in the phase on the rotational coordinate unrelated to the d axis of the motor 3 while the brake device 5 restrains the motor shaft. The q-axis voltage command Vq * (waveform 26) when the current is applied is estimated to be the phase value that is the maximum value (27). That is, paying attention to the point that the q-axis voltage command Vq * becomes the maximum value in Formula 2, using the fact that the phase θd * becomes the S-pole phase of the motor 3, the magnetic pole position estimation module 18 Pθ when the voltage command Vq * reaches the maximum value is estimated as the phase of the south pole.
 この手法は突極型の永久磁石式同期モータ3の場合には有効であるが、非突極型の永久磁石式同期モータ3では、q軸電圧指令Vqの最大値を捉えにくいため磁極位置推定の精度が低くなってしまう。 This method is effective in the case of the salient pole type permanent magnet type synchronous motor 3, but the non-salient type permanent magnet type synchronous motor 3 is difficult to capture the maximum value of the q-axis voltage command Vq * , so that the magnetic pole position The accuracy of estimation is reduced.
 図6は、永久磁石式同期モータ3が非突極型モータである場合での磁極位置を推定することの原理を説明する波形図であり、図7は、q軸電圧指令Vqから磁極位置を推定する動作を含む、制御システム110の動作を説明するフローチャートである。 FIG. 6 is a waveform diagram for explaining the principle of estimating the magnetic pole position when the permanent magnet type synchronous motor 3 is a non-salient pole type motor. FIG. 7 shows the magnetic pole position from the q-axis voltage command Vq *. It is a flowchart explaining the operation | movement of the control system 110 including the operation | movement which estimates this.
 図6に示すように、非突極型永久磁石式同期モータ3では、リアクタンス成分がないため、q軸電圧指令Vqの波形29のピーク領域30は、突極型永久磁石式同期モータ3の、q軸電圧指令Vqの波形26のピーク27に比較して、緩慢なほぼ平坦状になり、最大値を特定し難い。一方、磁極位置推定モジュール18は、q軸電圧指令Vqの波形がほぼ矩形波状であることを利用して、次のように、磁極位置を推定している。 As shown in FIG. 6, since the non-saliency permanent magnet type synchronous motor 3 has no reactance component, the peak region 30 of the waveform 29 of the q-axis voltage command Vq * is that of the salient pole type permanent magnet synchronous motor 3. Compared with the peak 27 of the waveform 26 of the q-axis voltage command Vq * , it becomes a slow and almost flat shape, and it is difficult to specify the maximum value. On the other hand, the magnetic pole position estimation module 18 uses the fact that the waveform of the q-axis voltage command Vq * is substantially rectangular to estimate the magnetic pole position as follows.
 磁極位置推定モジュール18は、この推定を、図1に示した原点信号ΦZの位置(θz=0°)と磁極位置θdとの関係(θoffset)を喪失させている場合に開始する。例えば、製品製作時やエンコーダ交換時では、θoffsetがキャンセルされるため、制御システム110は、推定開始指令を契機に、図7のステップS1からステップS7までの処理を開始する。 The magnetic pole position estimation module 18 starts this estimation when the relationship (θoffset) between the position of the origin signal ΦZ (θz = 0 °) and the magnetic pole position θd shown in FIG. 1 is lost. For example, since θoffset is canceled at the time of product manufacture or encoder replacement, the control system 110 starts processing from step S1 to step S7 in FIG. 7 in response to the estimation start command.
 ステップS1において、信号切替スイッチ15は、接点を、モータ3の通常動作時に選択されるa点から、推定処理の際のb点に切換える。次に、磁極位置推定モジュール18は、q軸電流指令モジュール10と、d軸電流指令モジュール12とを、q軸電流指令Iqが“0”に、d軸電流指令Idが“100%(永久磁石式同期モータ3の定格電流に相当)”が出力させるように制御する。 In step S <b> 1, the signal changeover switch 15 switches the contact point from the point a selected during the normal operation of the motor 3 to the point b in the estimation process. Next, the magnetic pole position estimation module 18 determines that the q-axis current command module 10 and the d-axis current command module 12 have a q-axis current command Iq * of “0” and a d-axis current command Id * of “100% ( It is controlled to output “corresponding to the rated current of the permanent magnet type synchronous motor 3)”.
 さらに、磁極位置推定モジュール18は、信号切替スイッチ15に、推定用位相信号θtestを出力し、設定された電流(q軸電流、d軸電流)が永久磁石式同期モータ3に流れるように電流制御モジュール11等を動作させる。ここで、推定用位相信号θtestは、磁極推定用時の角周波数設定値(ωtest)として、磁極位置推定モジュール18によって作成される。 Further, the magnetic pole position estimation module 18 outputs an estimation phase signal θtest to the signal changeover switch 15 so that the set current (q-axis current, d-axis current) flows to the permanent magnet type synchronous motor 3. The module 11 is operated. Here, the estimation phase signal θtest is created by the magnetic pole position estimation module 18 as an angular frequency setting value (ωtest) at the time of magnetic pole estimation.
 図6の波形29は、q軸電圧指令Vqのピーク部分が潰れた形状になる。そこで、磁極位置推定モジュール18は、図2に示した直流成分除去モジュール21において、ステップS2で、電流制御モジュール11のq軸電圧指令Vqから直流成分(ω1・Ld・I1+(1/2)・ω1・(Lq-Ld)・I1:数式2を参照)を除去した波形30を生成する。 The waveform 29 in FIG. 6 has a shape in which the peak portion of the q-axis voltage command Vq * is crushed. Therefore, the magnetic pole position estimation module 18 uses the direct current component removal module 21 shown in FIG. 2 to obtain a direct current component (ω1 * · Ld · I1 + (1/2 ) from the q-axis voltage command Vq * of the current control module 11 in step S2. ) · Ω1 * · (Lq−Ld) · I1: Refer to Equation 2) to generate the waveform 30.
 磁極位置推定モジュール18は、波形30を利用して、磁極位置を推定する。例えば、波形30によれば、q軸電圧指令Vqとのゼロクロス点30A,30Bが表出されるため、磁極位置推定モジュール18は、二つのゼロクロス点の中央値34をS極位相として特定することができる。 The magnetic pole position estimation module 18 uses the waveform 30 to estimate the magnetic pole position. For example, according to the waveform 30, the zero cross points 30 </ b > A and 30 </ b > B with the q-axis voltage command Vq * are displayed, so that the magnetic pole position estimation module 18 specifies the median value 34 of the two zero cross points as the S pole phase. Can do.
 一方、積分モジュール22(図2)は、ステップS3で、q軸電圧指令Vqから直流成分を除去した波形30を積分して図6に示した三角波31を生成する。
On the other hand, in step S3, the integration module 22 (FIG. 2) integrates the waveform 30 from which the DC component is removed from the q-axis voltage command Vq * to generate the triangular wave 31 shown in FIG.
 その後、最大値検出モジュール23(図2)は、ステップS4において、三角波31である積分値が最大値となる時点のθtest(max)32を特定し、これを記憶する。さらに、最小値検出モジュール24は、積分値が最小値となる時点のθtest(min)33を特定し、これを記憶する。 Thereafter, in step S4, the maximum value detection module 23 (FIG. 2) specifies θtest (max) 32 at the time when the integral value as the triangular wave 31 becomes the maximum value, and stores this. Further, the minimum value detection module 24 specifies θtest (min) 33 at the time when the integral value becomes the minimum value, and stores this.
 次いで、平均値検出モジュール25(図2)は、ステップS5において、最大値θtest(max)32と最小値θtest(min)33との平均値θtest(Vqmax)34(中央値、といってもよい)を算出して、これを記憶して電流印加を停止する。 Next, in step S5, the average value detection module 25 (FIG. 2) calls the average value θtest (Vq * max) 34 (median value) of the maximum value θtest (max) 32 and the minimum value θtest (min) 33. May be calculated and stored, and the current application is stopped.
 次に、磁極位置推定モジュール18は、ステップS6において、ステップS5で記憶したθtest(Vqmax)34からd軸位相θd^を数式3に基いて計算する。 Next, in step S6, the magnetic pole position estimation module 18 calculates the d-axis phase θd ^ from the θtest (Vq * max) 34 stored in step S5 based on Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このようにして、平均値θtest(Vqmax)34がS極(270°)の位相として推定、特定、決定、又は、判定等されるために、磁極位置推定モジュール18は、非突極型の永久磁石式同期モータ3に対しても、q軸電圧指令Vqに基いて、磁極位置を推定することができる。 In this way, since the average value θtest (Vq * max) 34 is estimated, specified, determined, or determined as the phase of the S pole (270 °), the magnetic pole position estimation module 18 has a non-salient pole type. The permanent magnet synchronous motor 3 can also estimate the magnetic pole position based on the q-axis voltage command Vq * .
 次に、制御システム110は、エンコーダ4の原点信号ΦZと磁極位置との関係を求める動作に移る。ステップS7において、磁極位置推定モジュール18は、θd^をθoffsetとして仮に設定し、加算モジュール16に出力する。磁極位置演算モジュール17は原点信号ΦZの位相θzをゼロクリアする。 Next, the control system 110 moves to an operation for obtaining the relationship between the origin signal ΦZ of the encoder 4 and the magnetic pole position. In step S <b> 7, the magnetic pole position estimation module 18 temporarily sets θd ^ as θoffset and outputs it to the addition module 16. The magnetic pole position calculation module 17 clears the phase θz of the origin signal ΦZ to zero.
 ステップS8では、信号切替モジュール(スイッチ)15が接点をb点からa点に切り換える。駆動システム100は、永久磁石式同期モータ3の通常運転動作により、ブレーキ5を解放して、永久磁石式同期モータ3を回転させる。磁極位置演算モジュール17は、エンコーダ4からの原点信号ΦZが発生するのを待つ。 In step S8, the signal switching module (switch) 15 switches the contact from point b to point a. The drive system 100 releases the brake 5 and rotates the permanent magnet synchronous motor 3 by the normal operation of the permanent magnet synchronous motor 3. The magnetic pole position calculation module 17 waits for the origin signal ΦZ from the encoder 4 to be generated.
 ステップS9において、磁極位置演算モジュール17は、原点信号ΦZ発生時の位相θzをθz’として記憶し、永久磁石式同期モータ3を停止させる。 In step S9, the magnetic pole position calculation module 17 stores the phase θz when the origin signal ΦZ is generated as θz ′, and stops the permanent magnet type synchronous motor 3.
 次いで、ステップS10において磁極位置推定モジュール18は、原点信号発生時の位相θz’とd軸位相θd^との和をθoffset(=θd^+θz’)として設定し、加算モジュール16に出力する。以上によって、図7のフローチャートを終了する。 Next, in step S 10, the magnetic pole position estimation module 18 sets the sum of the phase θz ′ and the d-axis phase θd ^ when the origin signal is generated as θoffset (= θd ^ + θz ′), and outputs it to the addition module 16. Thus, the flowchart of FIG. 7 ends.
 以上説明したように、図1に説明するシステムによれば、非突極型の永久磁石式同期モータ3についても、q軸電圧指令Vqから容易、かつ、高精度に磁極位置を推定することができる。 As described above, according to the system illustrated in FIG. 1, the magnetic pole position can be estimated easily and with high accuracy from the q-axis voltage command Vq * even for the non-salient permanent magnet type synchronous motor 3. Can do.
 なお、最大値θtest(max)と最小値θtest(min)との平均値θtest(Vqmax)をS極の位相として推定したが、最大値から90度遅れた位相、あるいは、最小値から90度進んだ位相をS極の位相として推定されてもよい。 The average value θtest (Vq * max) of the maximum value θtest (max) and the minimum value θtest (min) was estimated as the phase of the S pole, but the phase delayed by 90 degrees from the maximum value, or 90 from the minimum value. The advanced phase may be estimated as the S-pole phase.
 本発明は、上述した実施形態に限定するものではなく、様々な変形例を含むことができる。 The present invention is not limited to the above-described embodiment, and can include various modifications.
 2  インバータ
 3   永久磁石式同期モータ
 11 電流制御モジュール
 18 磁極位置推定モジュール
 21 直流成分除去モジュール
 22 積分モジュール
 23 最大値検出モジュール
 24 最小値検出モジュール
 25 平均値検出モジュール
DESCRIPTION OF SYMBOLS 2 Inverter 3 Permanent magnet type synchronous motor 11 Current control module 18 Magnetic pole position estimation module 21 DC component removal module 22 Integration module 23 Maximum value detection module 24 Minimum value detection module 25 Average value detection module

Claims (7)

  1.  d軸電圧とq軸電圧とに基いて、可変電圧・可変周波数のインバータを制御するコントローラを備え、
     前記コントローラは、
     d軸電圧指令とq軸電圧指令とを生成し、
     前記q軸電圧指令から直流成分を除去し、
     前記q軸電圧指令から直流成分を除去した信号に基いて、永久磁石式同期モータの磁極位置を推定し、
     前記推定した磁極位置を利用して前記インバータを制御することにより前記永久磁石式同期モータを駆動させる、
     永久磁石式同期モータの制御システム。
    A controller for controlling a variable voltage / variable frequency inverter based on the d-axis voltage and the q-axis voltage,
    The controller is
    d-axis voltage command and q-axis voltage command are generated,
    Removing a DC component from the q-axis voltage command,
    Based on the signal obtained by removing the DC component from the q-axis voltage command, the magnetic pole position of the permanent magnet synchronous motor is estimated,
    Driving the permanent magnet synchronous motor by controlling the inverter using the estimated magnetic pole position;
    Permanent magnet synchronous motor control system.
  2.  前記コントローラは、
     前記信号を利用して、S極の位相を決定する、
     請求項1記載の永久磁石式同期モータの制御システム。
    The controller is
    Determining the phase of the south pole using the signal;
    The control system of the permanent-magnet-type synchronous motor of Claim 1.
  3.  前記コントローラは、
     前記信号を積分し、
     積分値を利用して、前記S極の位相を決定する、
     請求項2記載の永久磁石式同期モータの制御システム。
    The controller is
    Integrating the signal,
    Determining the phase of the S pole using an integral value;
    The control system of the permanent magnet type synchronous motor according to claim 2.
  4.  前記コントローラは、
     前記積分値の最大値と最小値とを決定し、
     前記最大値と最小値との平均値を前記S極の位相として決定する、
     請求項3記載の永久磁石式同期モータの制御システム。
    The controller is
    Determining the maximum and minimum values of the integral value;
    Determining an average value of the maximum value and the minimum value as the phase of the south pole;
    The control system for a permanent magnet type synchronous motor according to claim 3.
  5.  前記コントローラは、
     前記最大値から90度遅れた位相をS極の位相として決定する、
     請求項4記載の永久磁石式同期モータの制御システム。
    The controller is
    A phase delayed by 90 degrees from the maximum value is determined as the S-pole phase;
    The control system for a permanent magnet type synchronous motor according to claim 4.
  6.  前記コントローラは、
     前記最小値から90度進んだ位相をS極の位相として決定する、
     請求項4記載の永久磁石式同期モータの制御システム。
    The controller is
    A phase advanced by 90 degrees from the minimum value is determined as the phase of the south pole,
    The control system for a permanent magnet type synchronous motor according to claim 4.
  7.  d軸電圧とq軸電圧とに基いて、可変電圧・可変周波数のインバータを制御するコントローラが、
     d軸電圧指令とq軸電圧指令とを生成するステップと、
     前記q軸電圧指令から直流成分を除去するステップと、
     前記q軸電圧指令から直流成分を除去した信号に基いて、永久磁石式同期モータの磁極位置を推定するステップと、そして、
     前記推定した磁極位置を利用して前記インバータを制御することにより前記永久磁石式同期モータを駆動させるステップと、
     を実行する、
     永久磁石式同期モータの制御方法。
    Based on the d-axis voltage and the q-axis voltage, a controller that controls a variable voltage / variable frequency inverter,
    generating a d-axis voltage command and a q-axis voltage command;
    Removing a DC component from the q-axis voltage command;
    Estimating a magnetic pole position of a permanent magnet synchronous motor based on a signal obtained by removing a DC component from the q-axis voltage command; and
    Driving the permanent magnet synchronous motor by controlling the inverter using the estimated magnetic pole position;
    Run the
    Control method of permanent magnet type synchronous motor.
PCT/JP2016/085376 2016-11-29 2016-11-29 System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor WO2018100626A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/085376 WO2018100626A1 (en) 2016-11-29 2016-11-29 System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor
JP2018504809A JP6479255B2 (en) 2016-11-29 2016-11-29 Control system for permanent magnet type synchronous motor and control method for permanent magnet type synchronous motor
CN201680047056.XA CN108476009B (en) 2016-11-29 2016-11-29 Control system of permanent magnet synchronous motor and control method of permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085376 WO2018100626A1 (en) 2016-11-29 2016-11-29 System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
WO2018100626A1 true WO2018100626A1 (en) 2018-06-07

Family

ID=62241304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085376 WO2018100626A1 (en) 2016-11-29 2016-11-29 System for controlling permanent magnet synchronous motor, and method for controlling permanent magnet synchronous motor

Country Status (3)

Country Link
JP (1) JP6479255B2 (en)
CN (1) CN108476009B (en)
WO (1) WO2018100626A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805989C2 (en) * 2022-03-29 2023-10-24 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Сибирский Государственный Университет Водного Транспорта" (Фгбоу Во "Сгувт") Control method for synchronous electric motor with excitation from permanent magnets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112088485A (en) * 2018-05-07 2020-12-15 松下知识产权经营株式会社 Drive device and drive system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331883A (en) * 1995-03-31 1996-12-13 Seiko Epson Corp Driver of brushless dc motor
JP2000125589A (en) * 1998-10-13 2000-04-28 Fuji Electric Co Ltd Controller for ac motor
JP2006014496A (en) * 2004-06-25 2006-01-12 Daikin Ind Ltd Method and device for estimating rotational position angle of motor, inverter control method and inverter controller

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351278B2 (en) * 1997-02-24 2002-11-25 株式会社日立製作所 Electric vehicle control method and control device using the same
JP4010195B2 (en) * 2002-06-26 2007-11-21 株式会社日立製作所 Control device for permanent magnet synchronous motor
CN1310416C (en) * 2003-11-20 2007-04-11 株式会社日立制作所 Control device for permanent magnet type synchronous motor
JP5619225B1 (en) * 2013-07-04 2014-11-05 東芝エレベータ株式会社 Control device for synchronous motor
CN104022711B (en) * 2014-06-06 2016-08-17 南京航空航天大学 A kind of surface-mount type permagnetic synchronous motor initial position detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331883A (en) * 1995-03-31 1996-12-13 Seiko Epson Corp Driver of brushless dc motor
JP2000125589A (en) * 1998-10-13 2000-04-28 Fuji Electric Co Ltd Controller for ac motor
JP2006014496A (en) * 2004-06-25 2006-01-12 Daikin Ind Ltd Method and device for estimating rotational position angle of motor, inverter control method and inverter controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2805989C2 (en) * 2022-03-29 2023-10-24 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Сибирский Государственный Университет Водного Транспорта" (Фгбоу Во "Сгувт") Control method for synchronous electric motor with excitation from permanent magnets

Also Published As

Publication number Publication date
CN108476009B (en) 2021-08-20
JPWO2018100626A1 (en) 2018-11-29
CN108476009A (en) 2018-08-31
JP6479255B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
US8174219B2 (en) Motor control unit and air conditioner having the same
US9590552B2 (en) Motor drive device and electric compressor
JP5155344B2 (en) Electric motor magnetic pole position estimation device
WO2018089581A1 (en) System and method for starting synchronous motors
JP5025142B2 (en) Motor control device
JP4926492B2 (en) Motor control device
JP2007259551A (en) Controller of motor
WO2014118958A1 (en) Demagnetization diagnosis device for permanent magnet synchronous motor
JP2010200430A (en) Drive controller for motors
US20180241333A1 (en) Electric motor control device
JP2018007473A (en) Control device for permanent magnet type synchronous motor
WO2013035382A1 (en) Control system for synchronous motor
JP2010041868A (en) Rotor rotation monitor for synchronous motor, and control system
JP2007068354A (en) Controller of permanent magnet-type rotary electric machine
JP5250603B2 (en) Motor control device
JP4735439B2 (en) Initial magnetic pole position estimation device for permanent magnet type synchronous motor
JP4777051B2 (en) AC motor control device
JP6479255B2 (en) Control system for permanent magnet type synchronous motor and control method for permanent magnet type synchronous motor
JP6541092B2 (en) Control device of permanent magnet synchronous motor
JP5726273B2 (en) Synchronous machine control device having permanent magnet state estimation function and method thereof
JP2013146155A (en) Winding temperature estimating device and winding temperature estimating method
JP2003033075A (en) Synchronous motor controller and electric automobile
JP2007089336A (en) Revolution detection device and revolution detection method of turbocharger with electric motor
JP2014057385A (en) Controller of dynamo-electric machine and dynamo-electric machine drive system including the same
US20230006586A1 (en) Power conversion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504809

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922810

Country of ref document: EP

Kind code of ref document: A1