WO2018099468A1 - 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法 - Google Patents

电动汽车及其dc-dc变换器和dc-dc变换器的控制方法 Download PDF

Info

Publication number
WO2018099468A1
WO2018099468A1 PCT/CN2017/114234 CN2017114234W WO2018099468A1 WO 2018099468 A1 WO2018099468 A1 WO 2018099468A1 CN 2017114234 W CN2017114234 W CN 2017114234W WO 2018099468 A1 WO2018099468 A1 WO 2018099468A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
switch tube
mode
converter
total time
Prior art date
Application number
PCT/CN2017/114234
Other languages
English (en)
French (fr)
Inventor
张妮
王兴辉
王超
沈晓峰
邬白贺
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/465,944 priority Critical patent/US10958181B2/en
Priority to EP17875909.8A priority patent/EP3550709B1/en
Publication of WO2018099468A1 publication Critical patent/WO2018099468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the field of electric vehicle technology, and in particular, to a control method of a DC-DC converter, a DC-DC converter, and an electric vehicle.
  • DC-DC converters have always been an important part of the power electronics industry. With the development of electric vehicles, DC-DC converters have become one of the important parts of electric vehicles. There are many topologies for DC-DC converters. In the medium and large power range, full-bridge PWM converters are the most used ones.
  • phase shift modulation control mode the super forearm is easy to realize soft switching, and the hysteresis arm is not easy to realize soft switching, so that the hysteresis arm is more hot than the super forearm
  • the lower tube modulation control mode the upper tube is easy to realize soft switching.
  • the lower tube is not easy to achieve soft switching, so that the lower tube is more hot than the upper tube.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned techniques to some extent. Therefore, the first object of the present invention is to provide a control method for a DC-DC converter, which can make the heat generation of the first to fourth switching tubes in the H-bridge relatively balanced, and improve the working life of the switching tubes in the H-bridge. .
  • a second object of the present invention is to provide a DC-DC converter.
  • a third object of the present invention is to provide an electric vehicle.
  • an embodiment of the present invention provides a control method of a DC-DC converter, where the DC-DC converter includes an H-bridge, and the H-bridge includes a first switch tube and a second switch tube. a third switch tube and a fourth switch tube, the control method comprising the steps of: converting the DC-DC Each time the device is operated, the total time TC of controlling the H-bridge in a third manner is acquired, and the total time TD of the H-bridge is controlled in a fourth manner, and each working process of the DC-DC converter is acquired.
  • the total time TC of controlling the H bridge in the third mode and the total time TD of controlling the H bridge in the fourth mode are acquired each time the DC-DC converter operates. And obtaining the set time Ti of the H bridge in the third mode in each working cycle in the working process of the DC-DC converter, and controlling the set time Tm of the H bridge in the fourth manner, and then determining the total time TC and the total time TD The relationship between the final time and the total time TD is selected according to the relationship between the total time TC and the total time TD to control the H-bridge when the DC-DC converter is started, and according to the Ti and Tm pairs during the operation of the DC-DC converter.
  • the H-bridge is alternately controlled to perform temperature equalization control on the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube, so that the heat generation of each switch tube is relatively balanced, without increasing the cost. Improve the working life of the switching tube in the H-bridge, thereby extending the life cycle of the DC-DC converter.
  • a DC-DC converter includes: an H-bridge including a first switch tube, a second switch tube, a third switch tube, and a fourth switch a control module, configured to acquire a total time TC for controlling the H-bridge in a third manner and a total control of the H-bridge in a fourth manner each time the DC-DC converter performs operation Time TD, and acquiring a set time Ti for controlling the H bridge in the third manner in each working cycle in the working process of the DC-DC converter, and controlling the setting of the H bridge in the fourth manner Time Tm, And determining the manner in which the H-bridge is controlled when the DC-DC converter is started by determining a relationship between the total time TC and the total time TD, and according to the set time Ti and the setting The time Tm alternately controls the H-bridge to perform temperature equalization control on the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube, wherein the third manner is controlled in the third manner
  • an H-bridge including a first switch tube, a second
  • the control unit acquires the total time TC of the H-bridge in a third manner and the total time TD of the H-bridge in a fourth manner, and acquires the work.
  • the set time Ti of the H bridge is controlled in a third manner in each working cycle, and the set time Tm of the H bridge is controlled in a fourth manner, and then the relationship between the total time TC and the total time TD is determined to select a DC.
  • the switch tube and the fourth switch tube perform temperature equalization control, so that the heat generation of each switch tube is relatively balanced, and the working life of the switch tube in the H bridge is improved without increasing the cost, thereby prolonging the life cycle.
  • an embodiment of the present invention also proposes an electric vehicle including the above-described DC-DC converter.
  • the electric vehicle can realize temperature equalization of the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube in the H bridge each time the DC-DC converter is operated.
  • the control makes the heat generation of each switch tube relatively balanced, and improves the working life of the switch tube in the H bridge without increasing the cost, thereby prolonging the life cycle of the DC-DC converter.
  • FIG. 1 is a circuit diagram of a DC-DC converter in accordance with one embodiment of the present invention.
  • FIG. 2 is a flow chart of a control method of a DC-DC converter according to an embodiment of the present invention
  • FIG. 3 is a diagram showing four ways of controlling an H-bridge in a third manner according to an embodiment of the present invention. Schematic diagram of the driving waveform of the switch tube;
  • FIG. 4 is a schematic diagram showing driving waveforms of four switching tubes when the H-bridge is controlled by the fourth method according to an embodiment of the present invention
  • FIG. 5 is a flow chart of a control method of a DC-DC converter according to an embodiment of the present invention.
  • FIG. 6 is a block schematic diagram of an electric vehicle in accordance with an embodiment of the present invention.
  • a DC-DC converter includes an H-bridge, which may include a first switching transistor Q1, a second switching transistor Q2, a third switching transistor Q3, and a fourth switching transistor Q4. There is a first node A between the first switch tube Q1 and the second switch tube Q2, and a second node B between the third switch tube Q3 and the fourth switch tube Q4.
  • the DC-DC converter further includes a transformer, a first inductor L1, a first capacitor C1, a second inductor L2 and a second capacitor C2, a fifth switch transistor Q5, and a sixth switch transistor Q6.
  • One end of the first inductor L1 is connected to the first node A
  • the other end of the first inductor L1 is connected to one end of the first capacitor C1
  • the other end of the first capacitor C1 is connected to one end of the primary winding of the transformer, and the primary winding of the transformer
  • the other end is connected to the second node B.
  • the secondary winding of the transformer is connected to the fifth switching transistor Q5 and the sixth switching transistor Q6, respectively, and the second inductor L2 and the second capacitor C2 are connected to the output end of the DC-DC converter.
  • the above control method of the DC-DC converter includes the following steps:
  • the first switch tube and the third switch tube are used as an upper tube and the second switch tube and the fourth switch tube are used as a down tube And controlling the first switch tube to the fourth switch tube by using a control mode of the lower tube modulation;
  • the H bridge is controlled in the fourth manner, the first switch tube and the first The third switch tube is used as the lower tube and the second switch tube and the fourth switch tube are used as the upper tube, and the first switch tube to the fourth switch tube are controlled by a control method of the lower tube modulation;
  • a control signal outputted to the first switching transistor Q1 is complementary to a control signal outputted to the third switching transistor Q3 and is a fixed duty ratio.
  • the PWM control is performed on the falling edge of the control signal output to the second switching transistor Q2 and the fourth switching transistor Q4.
  • the driving waveform of the first switching transistor Q1, the driving waveform of the second switching transistor Q2, the driving waveform of the third switching transistor Q3, the driving waveform of the fourth switching transistor Q4, and the voltage between the two bridge arms of the H-bridge The UAB waveform is shown in Figure 3. It can be concluded from Fig. 3 that the control signals of Q1 and Q3 in the four switching tubes of the H-bridge are complementary and fixed at 50% duty cycle, and the falling edges of Q2 and Q4 are modulated according to the PWM law, and the lower tube is adjusted. The output voltage is adjusted by the falling edge of the drive voltage.
  • control signal output to the second switching transistor Q2 is complementary to the control signal output to the fourth switching transistor Q4 and is a fixed duty ratio, and is output to the first
  • the falling edges of the control signals of the switching transistor Q1 and the third switching transistor Q3 are PWM-controlled.
  • the driving waveform of the first switching transistor Q1, the driving waveform of the second switching transistor Q2, the driving waveform of the third switching transistor Q3, the driving waveform of the fourth switching transistor Q4, and the voltage between the two bridge arms of the H-bridge The UAB waveform is shown in Figure 4. It can be concluded from Fig. 4 that the control signals of Q2 and Q4 in the four switching tubes of the H-bridge are complementary and fixed at 50% duty cycle, and the falling edges of Q1 and Q3 are modulated according to the PWM law, and the lower tube is adjusted. The output voltage is adjusted by the falling edge of the drive voltage.
  • the manner of controlling the H bridge when the DC-DC converter is started is selected, and the H bridge is alternately controlled according to the set time Ti and the set time Tm, so as to be the first
  • the switch tube, the second switch tube, the third switch tube and the fourth switch tube perform temperature equalization control.
  • Mode C controls the H-bridge. Since the resonant-discharge phase can only utilize the primary-side resonant inductor, it is difficult to implement soft-switching or zero-voltage switching as the switching transistors Q2 and Q4 of the lower tube, so that the switching losses of the switching transistors Q2 and Q4 are large. Causes overheating.
  • the switching transistors Q1 and Q3 as the lower tubes are very It is difficult to realize a soft switch, that is, a zero voltage switch, so that the switching losses of the switch tubes Q1 and Q3 are large, resulting in overheating.
  • the time for controlling the H-bridge by the third mode C is recorded, so that the The three modes control the total time TC of the H-bridge, and then store;
  • the fourth-mode D controls the H-bridge to operate the DC-DC converter, the time for controlling the H-bridge by the fourth mode D is recorded, thereby The total time TD of controlling the H-bridge in the fourth way can be obtained and then stored.
  • each time the DC-DC converter is started the relationship between the total time TC and the total time TD is judged.
  • the H-bridge is selected when the DC-DC converter is started. The way to control.
  • the manner in which the H-bridge is controlled when the DC-DC converter is started is selected according to a relationship between the total time TC and the total time TD, wherein
  • the fourth mode is selected to control the H-bridge when the DC-DC converter is started, until the total time TC is equal to the total time TD
  • the third mode is selected to control the H-bridge when the DC-DC converter is started, until the total time TC is equal to the total time TD; when the total time TC is equal to the total time TD, selecting the third mode or the fourth mode when the DC-DC converter is started to alternate the H-bridge according to Ti and Tm control.
  • the alternately controlling the H-bridge according to the set time Ti and the set time Tm including: when the time of controlling the H-bridge by using the third mode reaches Ti, adopting the fourth
  • the method controls the H-bridge until the time when the H-bridge is controlled by using the fourth mode reaches Tm; or when the time when the H-bridge is controlled by the fourth mode reaches Tm, the third is adopted. Controlling the H-bridge until the H-bridge is controlled by the third mode Time reaches Ti.
  • the total time TC of controlling the H bridge in the third manner and the total time TD of controlling the H bridge in the fourth manner are acquired from the storage area, and then Ti and Tm are set, and then the total is The time TC and the total time TD are determined. According to the judgment result, it is determined whether the third method is used to control the H bridge or the fourth method is used to control the H bridge, that is, the total time for controlling the H bridge in the third manner is obtained from the storage area.
  • the third mode C is used to control the H-bridge to operate the DC-DC converter until the time for controlling the H-bridge by the third mode C reaches Ti, and then switches to control the H-bridge by using the fourth mode D.
  • the DC-DC converter is operated until the time when the H-bridge is controlled by the fourth mode D reaches Tm, ..., and so on, the H-bridge is alternately controlled, thereby implementing the first switch tube and the second Switch tube, third switch tube and fourth switch tube Perform temperature equalization control.
  • the DC-DC converter first selects the third mode C to control the H-bridge to make the DC-DC converter start working, and at 2 After a minute, switch to the fourth mode D to control the H-bridge to make the DC-DC converter work until the time for controlling the H-bridge by the fourth mode D reaches Tm, and then switch to the third mode C to H.
  • the fourth mode D controls the H-bridge to operate the DC-DC converter until the time for controlling the H-bridge by the fourth mode D reaches Tm, and then switches to control the H-bridge by using the third mode C.
  • the DC-DC converter works until the time when the H-bridge is controlled by the third mode C reaches Ti, ..., and so on, and the H-bridge is alternately controlled, thereby realizing the first switch tube and the second switch. Tube, number The three switch tubes and the fourth switch tube perform temperature equalization control.
  • the DC mode can be directly controlled by the third mode C when the DC-DC converter is started to operate the DC-DC converter until the third stage is adopted.
  • Mode C controls the time of the H bridge to reach Ti, and switches to control the H-bridge by using the fourth mode D to operate the DC-DC converter until the time for controlling the H-bridge by the fourth mode D reaches Tm.
  • the control time reaches Ti, and then switches to control the H-bridge by the fourth mode D to make the DC-DC converter work until the time of controlling the H-bridge by the fourth mode D reaches Tm, ..., and so on.
  • the H-bridge can be directly controlled by the fourth mode D when the DC-DC converter is started to operate the DC-DC converter until the first stage is adopted.
  • the four-mode D controls the H-bridge to a time of Tm, and switches to the third mode C to control the H-bridge to operate the DC-DC converter until the third mode C controls the H-bridge to a time of Ti.
  • a duty cycle is completed and repeated in accordance with such a duty cycle until the DC-DC converter stops operating.
  • the H-bridge is controlled according to a fixed mode, that is, the third mode or the fourth mode, and the total time is recorded in the switching mode.
  • a fixed mode that is, the third mode or the fourth mode
  • the switching mode is recorded.
  • the total time for controlling the H-bridge in the third mode is the total time of the H-bridge controlled by the third mode from the storage area at the beginning of the DC-DC converter at the beginning of the work plus the recording of the DC-DC converter in this working cycle. The time to control the H-bridge in the third way.
  • the set time Ti for controlling the H-bridge in the third manner may be equal to the set time Tm for controlling the H-bridge in the fourth manner, so that When the H-bridge is alternately controlled in the third mode and the fourth mode, the first switch tube Q1, the second switch tube Q2, the third switch tube Q3, and the fourth switch tube Q4 are relatively balanced in heat generation.
  • Tm can also be unequal.
  • the DC-DC converter adopts the control mode of the down-tube modulation.
  • the two switching tubes of the upper tube are turned on according to the 50% duty ratio, and there is no dead time, and the falling edge of the driving voltage of the two switching tubes of the lower tube is adjusted. Adjustment of the output voltage.
  • the two switch tubes of the upper tube are easy to implement a soft switch, that is, a zero voltage switch, corresponding to the lead bridge arm in the phase shift modulation control mode, and the two switch tubes of the down tube correspond to The lag bridge arm in the phase shift modulation control mode makes it difficult to achieve zero voltage switching.
  • the first to fourth switching tubes are alternately used as the upper tube and the lower tube, that is, Q1, Q3, and Q2, Q4 are alternately used as the upper tube.
  • the lower tube allows the temperature stress to be evenly distributed in the four switching tubes of the H-bridge, so that the heat generation of each switching tube is relatively balanced, achieving an overall heat balance and prolonging the service life of the DC-DC converter.
  • the above control method of the DC-DC converter includes the following steps:
  • step S504. Determine whether the TC is greater than TD. If yes, go to step S505; if no, go to step S506.
  • step S506. Determine whether the TC is smaller than TD. If yes, go to step S507; if no, go to step S508.
  • step S508 the H-bridge is controlled by the third mode C to operate the DC-DC converter, and step S512 is performed.
  • Step S513 is performed.
  • step S510 Determine whether the time for controlling the H bridge in the third mode C reaches Ti. If yes, go to step S509; if no, go back to step S508.
  • step S511 Determine whether the time for controlling the H bridge by using the fourth mode D reaches Tm. If yes, go back to step S508; if no, go back to step S509.
  • step S512 it is determined whether a control command for stopping the H-bridge operation is received, and if no, the process proceeds to step S510, and if YES, the process proceeds to step S514.
  • step S513 it is judged whether or not the control command for stopping the operation of the H-bridge is received. If not, the process proceeds to step S511, and if YES, the process proceeds to step S514.
  • step S509 may be performed after step S509, that is, the execution order of step S509 and step S508 may be replaced.
  • control method of the DC-DC converter can ensure that the DC-DC converter ensures the first switch tube, the second switch tube, the third switch tube, and the fourth during each work process.
  • the switch tube is relatively balanced in heat generation, eliminating the need for additional components, reducing costs, and increasing the operating life of the DC-DC converter.
  • the total time TC of controlling the H bridge in the third mode and the total time TD of controlling the H bridge in the fourth mode are acquired each time the DC-DC converter operates. And obtaining the set time Ti of the H bridge in the third mode in each working cycle in the working process of the DC-DC converter, and controlling the set time Tm of the H bridge in the fourth manner, and then determining the total time TC and the total time TD The relationship between the final time and the total time TD is selected according to the relationship between the total time TC and the total time TD to control the H-bridge when the DC-DC converter is started, and according to the Ti and Tm pairs during the operation of the DC-DC converter.
  • the H-bridge is alternately controlled to perform temperature equalization control on the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube, so that the heat generation of each switch tube is relatively balanced, without increasing the cost. Improve the working life of the switching tube in the H-bridge, thereby extending the life cycle of the DC-DC converter.
  • a DC-DC converter includes an H-bridge and a control module 100 such as a Micro Control Unit (MCU).
  • the H-bridge includes a first switch tube Q1, a second switch tube Q2, a third switch tube Q3, and a fourth switch tube Q4, and the first switch tube Q1 and the second switch tube
  • the control module 100 is configured to acquire a total time TC for controlling the H bridge in a third manner and a total time TD for controlling the H bridge in a fourth manner when the DC-DC converter performs work, and acquire The set time Ti of the H bridge is controlled in the third manner in each working cycle in the working process of the DC-DC converter, and the set time Tm of the H bridge is controlled in the fourth manner, and a relationship between the total time TC and the total time TD to select a manner of controlling the H-bridge when the DC-DC converter is started, and according to the set time Ti and the set time Tm
  • the H-bridge is alternately controlled to perform temperature equalization control on the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube, wherein when the H-bridge is controlled in the third manner
  • the control module uses the first switch tube and the third switch tube as an upper tube and the second switch tube and the fourth switch tube as a down tube, and adopts a control method of the lower tube modulation Controlling the first switch tube to
  • the control module 100 controls the H-bridge by using the third mode C to operate the DC-DC converter
  • the time for controlling the H-bridge by using the third mode C is recorded, so that The third mode controls the total time TC of the H-bridge, and then stores;
  • the control module controls the H-bridge by using the fourth mode D to make the DC-DC converter work, the fourth mode D is used to control the H-bridge. Time, so that the total time TD of controlling the H-bridge in the fourth way can be obtained and then stored.
  • the control module determines the relationship between the total time TC and the total time TD, and selects the DC-DC converter when starting according to the relationship between the total time TC and the total time TD. The way the H bridge controls.
  • the control module selects a manner of controlling the H-bridge when the DC-DC converter is started according to a relationship between the total time TC and the total time TD. And, when the total time TC is greater than the total time TD, the control module selects the fourth mode to control the H bridge when the DC-DC converter is started, until the total The time TC is equal to the total time TD; when the total time TC is less than the total time TD, the control module selects the third mode to perform the H bridge when the DC-DC converter is started.
  • control module selects the third mode when the DC-DC converter is started or The fourth mode alternately controls the H-bridge according to Ti and Tm.
  • control module alternately controls the H-bridge according to the set time Ti and the set time Tm, wherein when the time of controlling the H-bridge by using the third mode reaches Ti, the fourth mode is adopted. Controlling the H-bridge until the time when the H-bridge is controlled by the fourth mode reaches Tm; or when the time of controlling the H-bridge by using the fourth mode reaches Tm, adopting the third mode The H-bridge is controlled until the time when the H-bridge is controlled by the third mode reaches Ti.
  • the control module acquires the total time TC of controlling the H-bridge in the third manner from the storage area and the total time TD of the H-bridge in the fourth mode, and then sets Ti and Tm, and then sets Ti and Tm, and then Judging the total time TC and the total time TD, according to the judgment result, determining whether to use the third mode to control the H bridge or the second control mode first to control the H bridge, that is, to obtain the third way to control the H bridge from the storage area.
  • the total time TC and the total time TD of the H-bridge are controlled in the fourth manner, and the relationship between the total time TC and the total time TD is judged to confirm the control of the H-bridge selected first when the DC-DC converter is started.
  • the third mode C is used to control the H-bridge to operate the DC-DC converter until the time for controlling the H-bridge by the third mode C reaches Ti, and then switches to control the H-bridge by using the fourth mode D.
  • the DC-DC converter is operated until the time when the H-bridge is controlled by the fourth mode D reaches Tm, ..., and so on, the H-bridge is alternately controlled, thereby implementing the first switch tube and the second Switch tube, third switch tube and fourth switch tube Perform temperature equalization control.
  • the DC-DC converter first selects the third mode C to control the H-bridge to make the DC-DC converter start working, and at 2 Switch to the fourth mode after minutes
  • the H-bridge is controlled to operate the DC-DC converter until the time for controlling the H-bridge by the fourth mode D reaches Tm, and then switches to control the H-bridge by the third mode C to make the DC-DC conversion
  • the DC-DC converter is operated until the time when the H-bridge is controlled by the fourth mode D reaches Tm, and then switched to control the H-bridge by the third mode C to operate the DC-DC converter until The time for controlling the H-bridge by the third mode C reaches Ti, ..., and so on, and the H-bridge is alternately controlled, thereby realizing the first switch tube,
  • the DC mode can be directly controlled by the third mode C when the DC-DC converter is started to operate the DC-DC converter until the third stage is adopted.
  • Mode C controls the time of the H bridge to reach Ti, and switches to control the H-bridge by using the fourth mode D to operate the DC-DC converter until the time for controlling the H-bridge by the fourth mode D reaches Tm.
  • the control time reaches Ti, and then switches to control the H-bridge by the fourth mode D to make the DC-DC converter work until the time of controlling the H-bridge by the fourth mode D reaches Tm, ..., and so on.
  • the H-bridge can be directly controlled by the fourth mode D when the DC-DC converter is started to operate the DC-DC converter until the first stage is adopted.
  • the four-mode D controls the H-bridge to a time of Tm, and switches to the third mode C to control the H-bridge to operate the DC-DC converter until the third mode C controls the H-bridge to a time of Ti.
  • a duty cycle is completed and repeated in accordance with such a duty cycle until the DC-DC converter stops operating.
  • the H-bridge is controlled according to a fixed mode, that is, the third mode or the fourth mode, and the total time is recorded in the switching mode.
  • a fixed mode that is, the third mode or the fourth mode
  • the switching mode is recorded.
  • the total time for controlling the H-bridge in the third mode is the total time of the H-bridge controlled by the third mode from the storage area at the beginning of the DC-DC converter plus the DC-DC converter. The time of controlling the H-bridge in the third way recorded in this work cycle.
  • a control signal output by the control module to the first switch tube is complementary to a control signal output to the third switch tube.
  • PWM control is performed on the falling edge of the control signal outputted to the second switching transistor and the fourth switching transistor.
  • a control signal output by the control module to the second switch tube is complementary to a control signal output to the fourth switch tube and is a fixed duty ratio. And performing PWM control on the falling edge of the control signal outputted to the first switching transistor and the third switching transistor.
  • the first switching transistor Q1, the second switching transistor Q2, the third switching transistor Q3, and the fourth switching transistor Q4 are insulated gate bipolar transistors (IGBT, Insulated Gate). Bipolar Transistor), of course, in other embodiments of the present invention, the first switching transistor Q1, the second switching transistor Q2, the third switching transistor Q3, and the fourth switching transistor Q4 may also be MOS transistors.
  • the set time Ti for controlling the H bridge in the third manner may be equal to the set time Tm for controlling the H bridge in the fourth manner, so that It is ensured that the first switch tube Q1, the second switch tube Q2, the third switch tube Q3 and the fourth switch tube Q4 are relatively balanced when the H-bridge is alternately controlled in the third mode and the fourth mode.
  • Tm can also be unequal.
  • the control unit acquires the total time TC of the H-bridge in a third manner and the total time TD of the H-bridge in a fourth manner, and acquires the work.
  • the set time Ti of the H bridge is controlled in a third manner in each working cycle, and the set time Tm of the H bridge is controlled in a fourth manner, and then the relationship between the total time TC and the total time TD is determined to select a DC.
  • the switch tube and the fourth switch tube perform temperature equalization control, so that the heat generation of each switch tube is relatively balanced, and the working life of the switch tube in the H bridge is improved without increasing the cost, thereby prolonging the life cycle.
  • an embodiment of the present invention also proposes an electric vehicle 10 including the above-described DC-DC converter 20.
  • the electric vehicle can realize temperature equalization of the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube in the H bridge each time the DC-DC converter is operated.
  • the control makes the heat generation of each switch tube relatively balanced, and improves the working life of the switch tube in the H bridge without increasing the cost, thereby prolonging the life cycle of the DC-DC converter.

Abstract

一种电动汽车及其DC-DC变换器和DC-DC变换器的控制方法,控制方法包括以下步骤:在DC-DC变换器每次工作时,获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并获取DC-DC变换器工作过程中每个工作循环内以第三方式控制H桥的设置时间Ti和以第四方式控制H桥的设置时间Tm(S1);判断TC与TD之间的关系(S2);根据总时间TC与总时间TD之间的关系选择DC-DC变换器启动时对H桥进行控制的方式,并根据Ti和Tm对H桥进行交替控制,以对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制(S3),从而能够使得H桥中的第一至第四开关管的发热相对平衡,提高H桥中开关管的工作寿命。

Description

电动汽车及其DC-DC变换器和DC-DC变换器的控制方法
本申请要求于2016年12月02日提交中国专利局、申请号为201611109744.2、发明名称为“电动汽车及其DC-DC变换器和DC-DC变换器的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车技术领域,特别涉及一种DC-DC变换器的控制方法、一种DC-DC变换器以及一种电动汽车。
背景技术
DC-DC变换器一直是电力电子领域重要的组成部分,伴随着电动汽车商业化的发展,DC-DC变换器也已成为电动汽车上重要零部件之一。DC-DC变换器的拓扑结构有很多,在中大型功率领域,全桥PWM变换器是使用最多的一种拓扑。
其中,全桥脉冲宽度调制(PWM,Pulse Width Modulation)变换器的控制方式有很多,而相关技术中大多采用移相调制的控制方式和下管调制的控制方式。然而,采用移相调制的控制方式时,超前臂容易实现软开关,而滞后臂不易实现软开关,从而滞后臂比超前臂发热严重;采用下管调制的控制方式时,上管容易实现软开关,而下管不易实现软开关,从而下管比上管发热严重。
因此,以上两种控制方式均会导致开关管发热严重问题,影响开关管的工作寿命。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的第一个目的在于提出一种DC-DC变换器的控制方法,能够使得H桥中的第一至第四开关管的发热相对平衡,提高H桥中开关管的工作寿命。
本发明的第二个目的在于提出一种DC-DC变换器。本发明的第三个目的在于提出一种电动汽车。
为达到上述目的,本发明一方面实施例提出了一种DC-DC变换器的控制方法,所述DC-DC变换器包括H桥,所述H桥包括第一开关管、第二开关管、第三开关管和第四开关管,所述控制方法包括以下步骤:在所述DC-DC变换 器每次进行工作时,获取以第三方式控制所述H桥的总时间TC和以第四方式控制所述H桥的总时间TD,并获取所述DC-DC变换器的工作过程中每个工作循环内以所述第三方式控制所述H桥的设置时间Ti和以所述第四方式控制所述H桥的设置时间Tm,其中,以所述第三方式控制所述H桥时,将所述第一开关管和所述第三开关管作为上管以及将所述第二开关管和所述第四开关管作为下管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;以所述第四方式控制所述H桥时,将所述第一开关管和所述第三开关管作为下管以及将所述第二开关管和所述第四开关管作为上管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;判断所述总时间TC与所述总时间TD之间的关系;根据所述总时间TC与所述总时间TD之间的关系选择所述DC-DC变换器启动时对所述H桥进行控制的方式,并根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,以对所述第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。
根据本发明实施例的DC-DC变换器的控制方法,在DC-DC变换器每次工作时,获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并获取DC-DC变换器的工作过程中每个工作循环内以第三方式控制H桥的设置时间Ti和以第四方式控制H桥的设置时间Tm,然后判断总时间TC与总时间TD之间的关系,最后根据总时间TC与总时间TD之间的关系选择DC-DC变换器启动时对H桥进行控制的方式,并在DC-DC变换器的工作过程中根据Ti和Tm对H桥进行交替控制,以对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,使得每个开关管的发热相对平衡,在不增加成本的情况下,提高H桥中开关管的工作寿命,从而可延长DC-DC变换器的生命周期。
为达到上述目的,本发明另一方面实施例提出的一种DC-DC变换器,包括:H桥,所述H桥包括第一开关管、第二开关管、第三开关管和第四开关管;控制模块,所述控制模块用于在所述DC-DC变换器每次进行工作时获取以第三方式控制所述H桥的总时间TC和以第四方式控制所述H桥的总时间TD,并获取所述DC-DC变换器的工作过程中每个工作循环内以所述第三方式控制所述H桥的设置时间Ti和以所述第四方式控制所述H桥的设置时间Tm, 以及通过判断所述总时间TC与所述总时间TD之间的关系以选择所述DC-DC变换器启动时对所述H桥进行控制的方式,并根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,以对所述第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,其中,以所述第三方式控制所述H桥时,所述控制模块将所述第一开关管和所述第三开关管作为上管以及将所述第二开关管和所述第四开关管作为下管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;以所述第四方式控制所述H桥时,所述控制模块将所述第一开关管和所述第三开关管作为下管以及将所述第二开关管和所述第四开关管作为上管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制。
根据本发明实施例的DC-DC变换器,在每次进行工作时,通过控制模块获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并获取工作过程中每个工作循环内以第三方式控制所述H桥的设置时间Ti和以第四方式控制H桥的设置时间Tm,然后通过判断总时间TC与总时间TD之间的关系以选择DC-DC变换器启动时对H桥进行控制的方式,并在DC-DC变换器的工作过程中根据Ti和Tm对H桥进行交替控制,以对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,使得每个开关管的发热相对平衡,在不增加成本的情况下,提高H桥中开关管的工作寿命,从而延长了生命周期。
此外,本发明的实施例还提出了一种电动汽车,其包括上述的DC-DC变换器。
本发明实施例的电动汽车,在上述的DC-DC变换器每次工作时,能够实现对H桥中的第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,使得每个开关管的发热相对平衡,在不增加成本的情况下,提高H桥中开关管的工作寿命,从而延长了DC-DC变换器的生命周期。
附图说明
图1为根据本发明一个实施例的DC-DC变换器的电路示意图;
图2为根据本发明实施例的DC-DC变换器的控制方法的流程图;
图3为根据本发明一个实施例的采用第三方式对H桥进行控制时的四个 开关管的驱动波形示意图;
图4为根据本发明一个实施例的采用第四方式对H桥进行控制时的四个开关管的驱动波形示意图;
图5为根据本发明一个具体实施例的DC-DC变换器的控制方法的流程图;
图6为根据本发明实施例的电动汽车的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述本发明实施例提出的DC-DC变换器的控制方法、DC-DC变换器以及具有该DC-DC变换器的电动汽车。
如图1所示,根据本发明一个实施例的DC-DC变换器包括H桥,H桥可包括第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4。其中,第一开关管Q1与第二开关管Q2之间具有第一节点A,第三开关管Q3与第四开关管Q4之间具有第二节点B。
并且,如图1所示,该DC-DC变换器还包括变压器、第一电感L1、第一电容C1、第二电感L2和第二电容C2、第五开关管Q5、第六开关管Q6,第一电感L1的一端与第一节点A相连,第一电感L1的另一端与第一电容C1的一端相连,第一电容C1的另一端与变压器的初级绕组的一端相连,变压器的初级绕组的另一端与第二节点B相连。变压器的次级绕组分别连接第五开关管Q5和第六开关管Q6,第二电感L2和第二电容C2连接在DC-DC变换器的输出端。
在本发明的实施例中,如图2所示,上述的DC-DC变换器的控制方法包括以下步骤:
S1,在DC-DC变换器每次进行工作时,获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并获取DC-DC变换器的工作过程中每个工作循环内以第三方式控制H桥的设置时间Ti和以第四方式控制H桥的设置时间Tm。
其中,以所述第三方式控制所述H桥时,将所述第一开关管和所述第三开关管作为上管以及将所述第二开关管和所述第四开关管作为下管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;以所述第四方式控制所述H桥时,将所述第一开关管和所述第三开关管作为下管以及将所述第二开关管和所述第四开关管作为上管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;
根据本发明的一个实施例,以所述第三方式控制所述H桥时,输出至第一开关管Q1的控制信号与输出至第三开关管Q3的控制信号互补且为固定占空比,并对输出至第二开关管Q2和第四开关管Q4的控制信号的下降沿进行PWM控制。
具体地,第一开关管Q1的驱动波形、第二开关管Q2的驱动波形、第三开关管Q3的驱动波形、第四开关管Q4的驱动波形以及H桥的两个桥臂之间的电压UAB波形如图3所示。从图3可以得出,H桥的四个开关管中Q1、Q3的控制信号互补且为固定50%占空比,Q2、Q4的下降沿按PWM规律进行调制,并且是通过调节下管的驱动电压下降沿来调节输出电压。
并且,以所述第四方式控制所述H桥时,输出至第二开关管Q2的控制信号与输出至第四开关管Q4的控制信号互补且为固定占空比,并对输出至第一开关管Q1和第三开关管Q3的控制信号的下降沿进行PWM控制。
具体地,第一开关管Q1的驱动波形、第二开关管Q2的驱动波形、第三开关管Q3的驱动波形、第四开关管Q4的驱动波形以及H桥的两个桥臂之间的电压UAB波形如图4所示。从图4可以得出,H桥的四个开关管中Q2、Q4的控制信号互补且为固定50%占空比,Q1、Q3的下降沿按PWM规律进行调制,并且是通过调节下管的驱动电压下降沿来调节输出电压。
S2,判断总时间TC与总时间TD之间的关系。
S3,根据总时间TC与总时间TD之间的关系选择DC-DC变换器启动时对H桥进行控制的方式,并根据设置时间Ti和设置时间Tm对H桥进行交替控制,以对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。
其中,需要说明的是,在DC-DC变换器的工作过程中,如果仅采用第三 方式C对H桥进行控制,由于谐振放电阶段只能利用初级侧谐振电感,因此作为下管的开关管Q2、Q4很难实现软开关即零电压开关,从而开关管Q2、Q4的开关损耗大,导致过热。
同样地,在DC-DC变换器的工作过程中,如果仅采用第四方式D对H桥进行控制,由于谐振放电阶段只能利用初级侧谐振电感,因此作为下管的开关管Q1、Q3很难实现软开关即零电压开关,从而开关管Q1、Q3的开关损耗大,导致过热。
因此,在本发明的实施例中,采用第三方式C对H桥进行控制以使DC-DC变换器进行工作时,记录采用第三方式C对H桥进行控制的时间,从而可得到以第三方式控制H桥的总时间TC,然后进行存储;采用第四方式D对H桥进行控制以使DC-DC变换器进行工作时,记录采用第四方式D对H桥进行控制的时间,从而可得到以第四方式控制H桥的总时间TD,然后进行存储。然后在DC-DC变换器每次启动时,判断总时间TC与总时间TD之间的关系,最后根据总时间TC与总时间TD之间的关系选择DC-DC变换器启动时对H桥进行控制的方式。
具体地,根据本发明的一个实施例,根据所述总时间TC与所述总时间TD之间的关系选择所述DC-DC变换器启动时对所述H桥进行控制的方式时,其中,当所述总时间TC大于所述总时间TD时,在所述DC-DC变换器启动时选择所述第四方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;当所述总时间TC小于所述总时间TD时,在所述DC-DC变换器启动时选择所述第三方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;当所述总时间TC等于所述总时间TD时,在所述DC-DC变换器启动时选择所述第三方式或所述第四方式以根据Ti和Tm对所述H桥进行交替控制。
其中,所述根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,包括:当采用所述第三方式控制所述H桥的时间达到Ti时,采用所述第四方式对所述H桥进行控制,直至采用所述第四方式控制所述H桥的时间达到Tm;或者当采用所述第四方式控制所述H桥的时间达到Tm时,采用所述第三方式对所述H桥进行控制,直至采用所述第三方式控制所述H桥的 时间达到Ti。
也就是说,在DC-DC变换器工作之前,从存储区域获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,再设置Ti和Tm,然后对总时间TC和总时间TD进行判断,根据判断结果来确定是先采用第三方式来控制H桥还是先采用第四方式来控制H桥,即从存储区域获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并对总时间TC与总时间TD之间的关系进行判断的目的是确认DC-DC变换器启动时先选择的对H桥控制的方式。例如,如果获取到的TC=20分钟、TD=18分钟,则DC-DC变换器在本次工作时先选择第四方式D对H桥进行控制以使DC-DC变换器启动工作,并在2分钟后切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,再切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,如此完成一个工作循环(即一个工作循环时间=Ti+Tm),再切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,然后切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,……,如此反复进行,实现对H桥进行交替控制,从而实现对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。而如果获取到的TC=18分钟、TD=20分钟,则DC-DC变换器在本次工作时先选择第三方式C对H桥进行控制以使DC-DC变换器启动工作,并在2分钟后切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,再切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,如此完成一个工作循环(即一个工作循环时间=Ti+Tm),再切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,然后切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,……,如此反复进行,实现对H桥进行交替控制,从而实现对第一开关管、第二开关管、第 三开关管和第四开关管进行温度均衡控制。
当然,在获取到的总时间TC等于总时间TD时,在DC-DC变换器启动时可直接先采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,如此完成一个工作循环(即一个工作循环时间=Ti+Tm),再切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,然后切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,……,如此反复进行,实现对H桥进行交替控制,从而实现对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。或者,在获取到的总时间TC等于总时间TD时,在DC-DC变换器启动时也可直接先采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,如此完成一个工作循环,并按照这样的工作循环反复进行,直至DC-DC变换器停止工作。
其中,每个工作循环内选择好方式之后就按照固定方式即第三方式或第四方式控制H桥,切换方式时记录总时间,例如,当先采用第三方式控制H桥时,切换方式时记录的以第三方式控制H桥的总时间为DC-DC变换器本次工作开始时从存储区域获取的以第三方式控制H桥的总时间加上DC-DC变换器本次工作循环内记录的以第三方式控制H桥的时间。
在本发明的一个实施例中,以所述第三方式对所述H桥进行控制的设置时间Ti可等于以所述第四方式对所述H桥进行控制的设置时间Tm,这样可以保证以第三方式和第四方式交替控制H桥时保证第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4发热相对平衡。
当然,可以理解的是,在本发明的其他实施例中,以所述第三方式对所述H桥进行控制的设置时间Ti与以所述第四方式对所述H桥进行控制的设置时间Tm也可以不相等。
需要说明的是,在本发明的实施例中,不管是以第三方式来控制H桥,还是以第四方式来控制H桥,DC-DC变换器采用的都是下管调制的控制方式。其中,采用下管调制的控制方式时,上管的两个开关管是按50%占空比轮流开通,并没有死区时间,通过调节下管的两个开关管驱动电压的下降沿,实现输出电压的调节。
并且,在下管调制的控制方式中,上管的两个开关管容易实现软开关即零电压开关,对应于移相调制的控制方式中的超前桥臂,而下管的两个开关管对应于移相调制的控制方式中的滞后桥臂,很难实现零电压开关。
本发明的实施例中,在整个生命周期中DC-DC变换器启动工作过程中,通过将第一至第四开关管交替作为上管和下管即Q1、Q3和Q2、Q4轮流做上管、下管,使温度应力在H桥四个开关管中等效均匀分布,从而使得每个开关管的发热相对平衡,实现整体的热平衡,延长DC-DC变换器的使用寿命。
具体而言,根据本发明的一个实施例,如图5所示,上述的DC-DC变换器的控制方法包括以下步骤:
S501,工作开始,即DC-DC变换器开始启动工作。
S502,读取以第三方式C控制H桥的总时间TC和以第四方式D控制H桥的总时间TD。
S503,设置Ti和Tm。
S504,判断TC是否大于TD。如果是,执行步骤S505;如果否,执行步骤S506。
S505,选择第四方式D对H桥进行控制,直至TC=TD,然后执行步骤S508。
S506,判断TC是否小于TD。如果是,执行步骤S507;如果否,执行步骤S508。
S507,选择第三方式C对H桥进行控制,直至TC=TD,然后执行步骤S509。
S508,采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,执行步骤S512。
S509,采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,执 行步骤S513。
S510,判断采用第三方式C控制H桥的时间是否达到Ti。如果是,执行步骤S509;如果否,返回步骤S508。
S511,判断采用第四方式D控制H桥的时间是否达到Tm。如果是,返回执行步骤S508;如果否,返回步骤S509。
S512,判断是否接收到H桥工作停止的控制指令,如果否,进入步骤S510,如果是,进入步骤S514。
S513,判断是否接收到H桥工作停止的控制指令,如果否,进入步骤S511,如果是,进入步骤S514。
S514,H桥工作停止,记录更新后的工作总时间TC和TD。
在步骤S506中,如果判断结果是TC等于TD,也可以先执行步骤S509之后再执行步骤S508,即步骤S509和步骤S508的执行顺序可以替换。
综上所述,本发明实施例的DC-DC变换器的控制方法,可以使DC-DC变换器在每次工作过程中保证第一开关管、第二开关管、第三开关管和第四开关管发热相对平衡,无需增加额外的元器件,降低成本,并提高DC-DC变换器的工作寿命。
根据本发明实施例的DC-DC变换器的控制方法,在DC-DC变换器每次工作时,获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并获取DC-DC变换器的工作过程中每个工作循环内以第三方式控制H桥的设置时间Ti和以第四方式控制H桥的设置时间Tm,然后判断总时间TC与总时间TD之间的关系,最后根据总时间TC与总时间TD之间的关系选择DC-DC变换器启动时对H桥进行控制的方式,并在DC-DC变换器的工作过程中根据Ti和Tm对H桥进行交替控制,以对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,使得每个开关管的发热相对平衡,在不增加成本的情况下,提高H桥中开关管的工作寿命,从而可延长DC-DC变换器的生命周期。
如图1所示,根据本发明实施例的DC-DC变换器包括H桥和控制模块100例如微控制器(MCU,Micro Control Unit)。其中,H桥包括第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4,第一开关管Q1与第二开 关管Q2之间具有第一节点A,第三开关管Q3与第四开关管Q4之间具有第二节点B。控制模块100用于在所述DC-DC变换器每次进行工作时获取以第三方式控制所述H桥的总时间TC和以第四方式控制所述H桥的总时间TD,并获取所述DC-DC变换器的工作过程中每个工作循环内以所述第三方式控制所述H桥的设置时间Ti和以所述第四方式控制所述H桥的设置时间Tm,以及通过判断所述总时间TC与所述总时间TD之间的关系以选择所述DC-DC变换器启动时对所述H桥进行控制的方式,并根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,以对所述第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,其中,以所述第三方式控制所述H桥时,所述控制模块将所述第一开关管和所述第三开关管作为上管以及将所述第二开关管和所述第四开关管作为下管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;以所述第四方式控制所述H桥时,所述控制模块将所述第一开关管和所述第三开关管作为下管以及将所述第二开关管和所述第四开关管作为上管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制。
在本发明的实施例中,控制模块100采用第三方式C对H桥进行控制以使DC-DC变换器进行工作时,记录采用第三方式C对H桥进行控制的时间,从而可得到以第三方式控制H桥的总时间TC,然后进行存储;控制模块采用第四方式D对H桥进行控制以使DC-DC变换器进行工作时,记录采用第四方式D对H桥进行控制的时间,从而可得到以第四方式控制H桥的总时间TD,然后进行存储。然后在DC-DC变换器每次启动工作时,控制模块判断总时间TC与总时间TD之间的关系,并根据总时间TC与总时间TD之间的关系选择DC-DC变换器启动时对H桥进行控制的方式。
具体地,根据本发明的一个实施例,所述控制模块根据所述总时间TC与所述总时间TD之间的关系选择所述DC-DC变换器启动时对所述H桥进行控制的方式时,其中,当所述总时间TC大于所述总时间TD时,所述控制模块在所述DC-DC变换器启动时选择所述第四方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;当所述总时间TC小于所述总时间TD时,所述控制模块在所述DC-DC变换器启动时选择所述第三方式对所述H桥进行 控制,直至所述总时间TC等于所述总时间TD;当所述总时间TC等于所述总时间TD时,所述控制模块在所述DC-DC变换器启动时选择所述第三方式或所述第四方式以根据Ti和Tm对所述H桥进行交替控制。
并且,所述控制模块根据设置时间Ti和设置时间Tm对所述H桥进行交替控制时,其中,当采用所述第三方式控制所述H桥的时间达到Ti时,采用所述第四方式对所述H桥进行控制,直至采用所述第四方式控制所述H桥的时间达到Tm;或者当采用所述第四方式控制所述H桥的时间达到Tm时,采用所述第三方式对所述H桥进行控制,直至采用所述第三方式控制所述H桥的时间达到Ti。
也就是说,在DC-DC变换器工作之前,控制模块从存储区域获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,再设置Ti和Tm,然后对总时间TC和总时间TD进行判断,根据判断结果来确定是先采用第三方式来控制H桥还是先采用第二控制方式来控制H桥,即从存储区域获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并对总时间TC与总时间TD之间的关系进行判断的目的是确认DC-DC变换器启动时先选择的对H桥控制的方式。例如,如果获取到的TC=20分钟、TD=18分钟,则DC-DC变换器在本次工作时先选择第四方式D对H桥进行控制以使DC-DC变换器启动工作,并在2分钟后切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,再切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,如此完成一个工作循环(即一个工作循环时间=Ti+Tm),再切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,然后切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,……,如此反复进行,实现对H桥进行交替控制,从而实现对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。而如果获取到的TC=18分钟、TD=20分钟,则DC-DC变换器在本次工作时先选择第三方式C对H桥进行控制以使DC-DC变换器启动工作,并在2分钟后切换到采用第四方式D 对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,再切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,如此完成一个工作循环(即一个工作循环时间=Ti+Tm),再切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,然后切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,……,如此反复进行,实现对H桥进行交替控制,从而实现对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。
当然,在获取到的总时间TC等于总时间TD时,在DC-DC变换器启动时可直接先采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,如此完成一个工作循环(即一个工作循环时间=Ti+Tm),再切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,然后切换到采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,……,如此反复进行,实现对H桥进行交替控制,从而实现对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。或者,在获取到的总时间TC等于总时间TD时,在DC-DC变换器启动时也可直接先采用第四方式D对H桥进行控制以使DC-DC变换器进行工作,直至采用第四方式D对H桥进行控制的时间达到Tm,切换到采用第三方式C对H桥进行控制以使DC-DC变换器进行工作,直至采用第三方式C对H桥进行控制的时间达到Ti,如此完成一个工作循环,并按照这样的工作循环反复进行,直至DC-DC变换器停止工作。
其中,每个工作循环内选择好方式之后就按照固定方式即第三方式或第四方式控制H桥,切换方式时记录总时间,例如,当先采用第三方式控制H桥时,切换方式时记录的以第三方式控制H桥的总时间为DC-DC变换器本次工作开始时从存储区域获取的以第三方式控制H桥的总时间加上DC-DC变换器 本次工作循环内记录的以第三方式控制H桥的时间。
根据本发明的一个实施例,以所述第三方式控制所述H桥时,所述控制模块输出至所述第一开关管的控制信号与输出至所述第三开关管的控制信号互补且为固定占空比,并对输出至所述第二开关管和所述第四开关管的控制信号的下降沿进行PWM控制。
并且,以所述第四方式控制所述H桥时,所述控制模块输出至所述第二开关管的控制信号与输出至所述第四开关管的控制信号互补且为固定占空比,并对输出至所述第一开关管和所述第三开关管的控制信号的下降沿进行PWM控制。
在本发明的实施例中,如图1所示,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4均为绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor),当然,在本发明的其他实施例中,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4也可以为MOS管。
优选地,根据本发明的一个实施例,以所述第三方式对所述H桥进行控制的设置时间Ti可等于以所述第四方式对所述H桥进行控制的设置时间Tm,这样可以保证以第三方式和第四方式交替控制H桥时保证第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4发热相对平衡。
当然,可以理解的是,在本发明的其他实施例中,以所述第三方式对所述H桥进行控制的设置时间Ti与以所述第四方式对所述H桥进行控制的设置时间Tm也可以不相等。
根据本发明实施例的DC-DC变换器,在每次进行工作时,通过控制模块获取以第三方式控制H桥的总时间TC和以第四方式控制H桥的总时间TD,并获取工作过程中每个工作循环内以第三方式控制所述H桥的设置时间Ti和以第四方式控制H桥的设置时间Tm,然后通过判断总时间TC与总时间TD之间的关系以选择DC-DC变换器启动时对H桥进行控制的方式,并在DC-DC变换器的工作过程中根据Ti和Tm对H桥进行交替控制,以对第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,使得每个开关管的发热相对平衡,在不增加成本的情况下,提高H桥中开关管的工作寿命,从而延长了生命周期。
此外,如图6所示,本发明的实施例还提出了一种电动汽车10,其包括上述的DC-DC变换器20。
本发明实施例的电动汽车,在上述的DC-DC变换器每次工作时,能够实现对H桥中的第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,使得每个开关管的发热相对平衡,在不增加成本的情况下,提高H桥中开关管的工作寿命,从而延长了DC-DC变换器的生命周期。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (11)

  1. 一种DC-DC变换器的控制方法,其特征在于,所述DC-DC变换器包括H桥,所述H桥包括第一开关管、第二开关管、第三开关管和第四开关管,所述控制方法包括以下步骤:
    在所述DC-DC变换器工作时,获取以第三方式控制所述H桥的总时间TC和以第四方式控制所述H桥的总时间TD,并获取所述DC-DC变换器的工作过程中每个工作循环内以所述第三方式控制所述H桥的设置时间Ti和以所述第四方式控制所述H桥的设置时间Tm,其中,以所述第三方式控制所述H桥时,将所述第一开关管和所述第三开关管作为上管以及将所述第二开关管和所述第四开关管作为下管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;以所述第四方式控制所述H桥时,将所述第一开关管和所述第三开关管作为下管以及将所述第二开关管和所述第四开关管作为上管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;
    判断所述总时间TC与所述总时间TD之间的关系;
    根据所述总时间TC与所述总时间TD之间的关系选择所述DC-DC变换器启动时对所述H桥进行控制的方式,并根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,以对所述第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制。
  2. 如权利要求1所述的DC-DC变换器的控制方法,其特征在于,根据所述总时间TC与所述总时间TD之间的关系选择所述DC-DC变换器启动时对所述H桥进行控制的方式时,其中,
    当所述总时间TC大于所述总时间TD时,在所述DC-DC变换器启动时选择所述第四方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;
    当所述总时间TC小于所述总时间TD时,在所述DC-DC变换器启动时选择所述第三方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;
    当所述总时间TC等于所述总时间TD时,在所述DC-DC变换器启动时 选择所述第三方式或所述第四方式以根据所述Ti和Tm对所述H桥进行交替控制。
  3. 如权利要求1或2所述的DC-DC变换器的控制方法,其特征在于,其中,
    以所述第三方式控制所述H桥时,输出至所述第一开关管的控制信号与输出至所述第三开关管的控制信号互补且为固定占空比,并对输出至所述第二开关管和所述第四开关管的控制信号的下降沿进行PWM控制;
    以所述第四方式控制所述H桥时,输出至所述第二开关管的控制信号与输出至所述第四开关管的控制信号互补且为固定占空比,并对输出至所述第一开关管和所述第三开关管的控制信号的下降沿进行PWM控制。
  4. 如权利要求1或2所述的DC-DC变换器的控制方法,其特征在于,所述根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,包括:
    当采用所述第三方式控制所述H桥的时间达到所述Ti时,采用所述第四方式对所述H桥进行控制,直至采用所述第四方式控制所述H桥的时间达到所述Tm;
    或者,
    当采用所述第四方式控制所述H桥的时间达到所述Tm时,采用所述第三方式对所述H桥进行控制,直至采用所述第三方式控制所述H桥的时间达到所述Ti。
  5. 如权利要求1-4中任一项所述的DC-DC变换器的控制方法,其特征在于,以所述第三方式对所述H桥进行控制的设置时间Ti等于以所述第四方式对所述H桥进行控制的设置时间Tm。
  6. 一种DC-DC变换器,其特征在于,包括:
    H桥,所述H桥包括第一开关管、第二开关管、第三开关管和第四开关管;
    控制模块,所述控制模块用于在所述DC-DC变换器工作时获取以第三方式控制所述H桥的总时间TC和以第四方式控制所述H桥的总时间TD,并获取所述DC-DC变换器的工作过程中每个工作循环内以所述第三方式控制所述H桥的设置时间Ti和以所述第四方式控制所述H桥的设置时间Tm,以及通 过判断所述总时间TC与所述总时间TD之间的关系以选择所述DC-DC变换器启动时对所述H桥进行控制的方式,并根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制,以对所述第一开关管、第二开关管、第三开关管和第四开关管进行温度均衡控制,其中,
    以所述第三方式控制所述H桥时,所述控制模块将所述第一开关管和所述第三开关管作为上管以及将所述第二开关管和所述第四开关管作为下管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制;
    以所述第四方式控制所述H桥时,所述控制模块将所述第一开关管和所述第三开关管作为下管以及将所述第二开关管和所述第四开关管作为上管,并采用下管调制的控制方式对所述第一开关管至所述第四开关管进行控制。
  7. 如权利要求6所述的DC-DC变换器,其特征在于,所述控制模块根据所述总时间TC与所述总时间TD之间的关系选择所述DC-DC变换器启动时对所述H桥进行控制的方式时,其中,
    当所述总时间TC大于所述总时间TD时,所述控制模块在所述DC-DC变换器启动时选择所述第四方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;
    当所述总时间TC小于所述总时间TD时,所述控制模块在所述DC-DC变换器启动时选择所述第三方式对所述H桥进行控制,直至所述总时间TC等于所述总时间TD;
    当所述总时间TC等于所述总时间TD时,所述控制模块在所述DC-DC变换器启动时选择所述第三方式或所述第四方式以根据所述Ti和Tm对所述H桥进行交替控制。
  8. 如权利要求6或7所述的DC-DC变换器,其特征在于,其中,
    以所述第三方式控制所述H桥时,所述控制模块输出至所述第一开关管的控制信号与输出至所述第三开关管的控制信号互补且为固定占空比,并对输出至所述第二开关管和所述第四开关管的控制信号的下降沿进行PWM控制;
    以所述第四方式控制所述H桥时,所述控制模块输出至所述第二开关管的控制信号与输出至所述第四开关管的控制信号互补且为固定占空比,并对输出至所述第一开关管和所述第三开关管的控制信号的下降沿进行PWM控制。
  9. 如权利要求6或7所述的DC-DC变换器,其特征在于,所述控制模块根据所述设置时间Ti和所述设置时间Tm对所述H桥进行交替控制时,其中,
    当采用所述第三方式控制所述H桥的时间达到Ti时,所述控制模块采用所述第四方式对所述H桥进行控制,直至采用所述第四方式控制所述H桥的时间达到Tm;或者
    当采用所述第四方式控制所述H桥的时间达到Tm时,所述控制模块采用所述第三方式对所述H桥进行控制,直至采用所述第三方式控制所述H桥的时间达到Ti。
  10. 如权利要求6-9中任一项所述的DC-DC变换器,其特征在于,以所述第三方式对所述H桥进行控制的设置时间Ti等于以所述第四方式对所述H桥进行控制的设置时间Tm。
  11. 一种电动汽车,其特征在于,包括如权利要求6-10中任一项所述的DC-DC变换器。
PCT/CN2017/114234 2016-12-02 2017-12-01 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法 WO2018099468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/465,944 US10958181B2 (en) 2016-12-02 2017-12-01 Electric vehicle, DC-DC convertor, and control method for DC-DC convertor
EP17875909.8A EP3550709B1 (en) 2016-12-02 2017-12-01 Electric vehicle, dc-dc convertor, and control method for dc-dc convertor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611109744.2 2016-12-02
CN201611109744.2A CN108155802B (zh) 2016-12-02 2016-12-02 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法

Publications (1)

Publication Number Publication Date
WO2018099468A1 true WO2018099468A1 (zh) 2018-06-07

Family

ID=62241224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114234 WO2018099468A1 (zh) 2016-12-02 2017-12-01 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法

Country Status (4)

Country Link
US (1) US10958181B2 (zh)
EP (1) EP3550709B1 (zh)
CN (1) CN108155802B (zh)
WO (1) WO2018099468A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682598A (zh) * 2020-04-27 2020-09-18 宁波三星智能电气有限公司 一种充电桩的充电模块启动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102703A1 (en) * 2021-06-09 2022-12-14 Delta Electronics (Thailand) Public Co., Ltd. Alternating asymmetrical phase-shift modulation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162874A (zh) * 2007-10-18 2008-04-16 西北工业大学 应用于无刷直流电机的谐振极软开关逆变电路及控制方法
US20130051083A1 (en) * 2011-08-30 2013-02-28 Silergy Semiconductor Technology (Hangzhou) Ltd Magnetic coupling and contactless power transmission apparatus
CN104868765A (zh) * 2014-02-24 2015-08-26 湖南南车时代电动汽车股份有限公司 一种逆变器脉宽调制方法
CN106169873A (zh) * 2016-07-21 2016-11-30 连云港杰瑞电子有限公司 适用于高压或大电流输出的混合串并联全桥电路及其控制方法
CN106891740A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891745A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891751A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891752A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891750A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891742A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891737A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106904083A (zh) * 2015-12-18 2017-06-30 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286184B2 (ja) 2009-07-28 2013-09-11 株式会社日立製作所 電力変換制御装置,電力変換装置及び電力変換制御方法
CN101800472A (zh) 2010-01-28 2010-08-11 中电电气(江苏)股份有限公司 一种单极性驱动电路
CN102611348B (zh) * 2012-03-21 2014-10-01 福州大学 解决单相全桥逆变电路桥臂开关发热不均的pwm输出法
TW201427246A (zh) 2012-12-26 2014-07-01 Yen-Shin Lai 相移全橋轉換裝置及控制方法
CN103259443B (zh) 2013-05-23 2015-02-11 吕莹 一种有限双极性控制的全桥逆变器
US9584024B2 (en) 2013-06-24 2017-02-28 Illinois Tool Works Inc. Metal working power supply converter system and method
CN103441692B (zh) * 2013-07-30 2016-03-30 飞利浦(中国)投资有限公司 串联谐振逆变器及其实现方法
US20150055374A1 (en) * 2013-08-22 2015-02-26 Fujitsu Telecom Networks Limited Switching power supply apparatus corresponding to zero voltage switching system
CN203423529U (zh) 2013-09-12 2014-02-05 河北博联通讯科技有限责任公司 一种新能源汽车锂电池智能车载充电机
CN103795233B (zh) * 2014-02-21 2016-08-24 南京冠亚电源设备有限公司 一种智能启停轮询机制的模块化逆变器电源控制方法
CN104600998A (zh) * 2015-02-10 2015-05-06 四川英杰电气股份有限公司 一种开关电源开关器件均匀发热的控制方法
CN104898486A (zh) * 2015-05-19 2015-09-09 合肥天鹅制冷科技有限公司 多模块启动控制系统和方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162874A (zh) * 2007-10-18 2008-04-16 西北工业大学 应用于无刷直流电机的谐振极软开关逆变电路及控制方法
US20130051083A1 (en) * 2011-08-30 2013-02-28 Silergy Semiconductor Technology (Hangzhou) Ltd Magnetic coupling and contactless power transmission apparatus
CN104868765A (zh) * 2014-02-24 2015-08-26 湖南南车时代电动汽车股份有限公司 一种逆变器脉宽调制方法
CN106891740A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891745A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891751A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891752A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891750A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891742A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106891737A (zh) * 2015-12-18 2017-06-27 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106904083A (zh) * 2015-12-18 2017-06-30 比亚迪股份有限公司 电动汽车及其车载充电器和车载充电器的控制方法
CN106169873A (zh) * 2016-07-21 2016-11-30 连云港杰瑞电子有限公司 适用于高压或大电流输出的混合串并联全桥电路及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682598A (zh) * 2020-04-27 2020-09-18 宁波三星智能电气有限公司 一种充电桩的充电模块启动方法

Also Published As

Publication number Publication date
EP3550709A4 (en) 2019-12-11
EP3550709A1 (en) 2019-10-09
CN108155802B (zh) 2020-03-31
US10958181B2 (en) 2021-03-23
CN108155802A (zh) 2018-06-12
US20200083815A1 (en) 2020-03-12
EP3550709B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6731829B2 (ja) 電力変換装置および空気調和機
JP4995277B2 (ja) 双方向dc/dcコンバータ
TWI436574B (zh) 直流交流轉換器
JP5909402B2 (ja) 電力変換装置およびそれを用いた誘導加熱装置
JP2010011625A (ja) Dcdcコンバータ、スイッチング電源および無停電電源装置
JP2008289228A (ja) 電力変換装置
JPWO2015174123A1 (ja) 電力変換装置
WO2018099468A1 (zh) 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
JP5210824B2 (ja) 双方向dc/dcコンバータ
JP5362466B2 (ja) 電力変換回路の制御装置
JP2016152687A (ja) Dcdcコンバータ
CN110572041B (zh) 一种双有源全桥变流器的双边pwm加移相控制方法
WO2018099467A1 (zh) 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
CN108155806B (zh) 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
JP7320783B2 (ja) 電力変換装置
WO2017101834A1 (zh) 电动汽车及其车载充电器和车载充电器的控制方法
CN108155797B (zh) 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
JP2005304211A (ja) 電力変換装置
WO2017101845A1 (zh) 电动汽车及其车载充电器和车载充电器的控制方法
WO2017101844A1 (zh) 电动汽车及其车载充电器和车载充电器的控制方法
JP2012100529A (ja) 電力変換装置
WO2017101833A1 (zh) 电动汽车及其车载充电器和车载充电器的控制方法
CN215186500U (zh) 一种新型mos管散热电路
CN108155808B (zh) 电动汽车及其dc-dc变换器和dc-dc变换器的控制方法
JP2005006463A (ja) インバータ装置、誘導加熱装置及び床暖房システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875909

Country of ref document: EP

Effective date: 20190702

NENP Non-entry into the national phase

Ref country code: JP