WO2018099428A1 - 一种制备放射性石墨中碳-14液体样品的方法 - Google Patents

一种制备放射性石墨中碳-14液体样品的方法 Download PDF

Info

Publication number
WO2018099428A1
WO2018099428A1 PCT/CN2017/113937 CN2017113937W WO2018099428A1 WO 2018099428 A1 WO2018099428 A1 WO 2018099428A1 CN 2017113937 W CN2017113937 W CN 2017113937W WO 2018099428 A1 WO2018099428 A1 WO 2018099428A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
space
sample
reaction vessel
preparing
Prior art date
Application number
PCT/CN2017/113937
Other languages
English (en)
French (fr)
Inventor
刘学刚
黄欣
谢锋
李红
冯孝贵
贾富明
王建晨
陈靖
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018099428A1 publication Critical patent/WO2018099428A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q

Definitions

  • the invention relates to the technical field of nuclear industry, and in particular to a method for preparing a carbon-14 liquid sample in radioactive graphite.
  • a large amount of graphite material is used in the nuclear industry, and graphite is radioactive after being irradiated by neutrons.
  • radioactive graphite it is necessary to establish an analytical method for the radioactivity contained in the graphite, in particular to accurately determine the content of carbon-14 therein.
  • the difficulty in carbon-14 analysis is to prepare carbon-14 in the solid graphite material into a liquid sample for subsequent analysis of carbon-14 using a sophisticated radioactive analytical instrument.
  • a liquid sample of carbon-14 is currently widely used in the "combustion-absorption method". That is, the graphite containing carbon-14 is ignited in a combustion gas such as air or oxygen to convert carbon into carbon dioxide, and the absorption liquid absorbs carbon dioxide. Because radioactive graphite also contains another radionuclide, helium. Water vapor containing hydrazine is formed during combustion and is also absorbed by the absorbing liquid, thus causing serious interference with the subsequent measurement of the radioactivity of carbon-14. Therefore, before absorbing liquid, there must be a process of removing water vapor containing hydrazine. For example, Qiu Yongmei et al.
  • the method for preparing the carbon-14 sample can be summarized as follows: the graphite is heated and burned under an oxygen atmosphere, the gas is passed through a condenser tube and a silica gel dryer to remove the hydrazine-containing water, and the carbon-14 liquid sample is prepared through the absorbing liquid in the collector.
  • the method and device have the following disadvantages: (1) complicated equipment, large components, large volume, poor integration; (2) difficult to achieve standardization, most of which are temporary experimental devices, which are not conducive to large-scale production and popularization; (3) Difficulty in control: too low gas flow rate is not conducive to complete combustion of graphite, when the gas flow rate is too large, it is not conducive to the carbon dioxide gas is completely absorbed by the absorption liquid; (4) more radioactive waste: the entire pipeline will be contaminated by carbon-14, strontium; 5) Equipment is dangerous: graphite powder has a large specific surface area and is prone to explosion when mixed with oxygen.
  • the method comprises: burning graphite and oxygen to generate carbon dioxide and hydrazine-containing water vapor in a sealed high-pressure sample burning device; and then opening a valve of the combustion device to guide combustion of carbon dioxide and hydrazine-containing water vapor to be similar to Qiu Yongmei et al. provide water vapor removal and carbon dioxide absorption.
  • the method and apparatus still have the following disadvantages: (1) In addition to the sample burning device, it is additionally required to be equipped with a device containing water vapor and carbon dioxide absorption: the equipment is complicated, the integration is poor, and most of them need to temporarily set up water removal and absorb carbon dioxide. The device is not conducive to the promotion of the device. If there is no supporting device, it is impossible to remove the interference of the helium, which is difficult to be used for accurate analysis of C-14; (2) The deflation operation of the sample burning device must be manually controlled and the working intensity is large: the operation of the sample burning device to deflate needs to be based on Internal residual pressure to mediate a bleed valve to keep the deflation rate slow and steady.
  • the present invention provides a simple and effective method for preparing a carbon-14 liquid sample in radioactive graphite.
  • a method for preparing a carbon-14 liquid sample in radioactive graphite comprising: providing a sealed reaction vessel having a helium-containing water vapor adsorption device, thereby dividing the internal space of the reaction vessel into a first a space and a second space; a first space is provided with a sample of radioactive graphite, a second space is provided with a carbon dioxide absorbing liquid; a sealed reaction vessel is filled with a combustion gas, so that the gas pressure in the reaction vessel reaches 1-4 MPa; The radioactive graphite sample is burned in the combustion gas to form the hydrazine-containing water vapor and the carbon dioxide gas in the first space; for a period of time, the hydrazine-containing water vapor and the carbon dioxide gas are diffused to the second space through the adsorption device, and the hydrazine-containing water vapor is The adsorption device absorbs, and the carbon dioxide gas is absorbed by the absorption liquid; and the sealed reaction vessel is vented.
  • the method of the invention spreads the carbon dioxide in the gas after the reaction to the surface of the absorption alkali liquid, avoids the difficulty of manually controlling the deflation process guided by the catheter, not only reduces the working intensity, but also greatly improves the sample preparation. Efficiency, and reduces artificial experimental errors and uncertainties, improving the reliability of the sample preparation process.
  • FIG. 1 is a schematic structural view of an experimental apparatus for preparing a liquid sample of carbon-14 in radioactive graphite according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a method for preparing a liquid sample of carbon-14 in radioactive graphite according to an embodiment of the present invention.
  • experimental device 10 Pressure cylinder 101 Top end cap 102 Sealing cap 103 electrode 104 Ignition wire 105 Sample 106 Charge and exhaust valve 107 Beaker 108 Absorption lye 109 Adsorption device 110 First air permeable partition 111 Water vapor absorbing material 112 Second air permeable partition 113 Rubber seal ring 114 First space 115 Second space 116 Magnetic rotor 117
  • an experimental apparatus 10 for preparing a liquid sample of carbon-14 in radioactive graphite includes: a pressurized steel cylinder 101 , a top end cover 102 , a sealing cover 103 , two electrodes 104 , an ignition wire 105 , The sample crucible 106, the charge and exhaust valve 107, the beaker 108, the carbon dioxide absorption alkali solution 109, and the helium-containing water vapor adsorption device 110.
  • the shape and size of the pressurized steel cylinder 101 are not limited and can be set as needed. Understandably
  • the cylinder 101 can also be a container that can be subjected to high pressure by using other metal materials.
  • the pressure-bearing cylinder 101 is cylindrical, and its side and bottom are sealed, and the top is open and has a thread that cooperates with the sealing cover 103.
  • the top end cap 102 is used to form a sealed reaction chamber with the pressurized cylinder 101 that can withstand high pressures. In use, the top end cap 102 is inserted into the top opening of the pressurized cylinder 101.
  • a sealing cover 103 is used to secure the top end cap 102 to the pressurized cylinder 101.
  • the structure of the sealing cover 103 can be set as needed.
  • the sealing cover 103 has a thread that cooperates with the top of the pressurized cylinder 101, and the sealing cover 103 and the top end cover 102 are integrally formed.
  • the sealing cap 103 is fixedly connected to the pressure-bearing cylinder 101 by a screw, thereby pressing the top end cap 102 to ensure that the seal is intact.
  • the two electrodes 104 are spaced apart from the top end cap 102 and extend from the outside to the inside of the pressurized cylinder 101.
  • the exposed end of the two electrodes 104 is for connection to an external power source, and one end extending to the inside of the pressurized cylinder 101 is used to apply a voltage to achieve ignition.
  • the method of ignition is not limited, and may be an arc discharge or the like. It can be understood that the arrangement positions of the two electrodes 104 are not limited to the top end cover 102, and may be disposed on the pressure-receiving cylinder 101 as long as it extends from the outside to the inside of the pressure-receiving cylinder 101.
  • one end of the two electrodes 104 extending to the inside of the pressure-receiving cylinder 101 is electrically connected through an ignition wire 105.
  • an ignition wire 105 In the case where the external power source is energized, a loop is formed by the two electrodes 104 and the ignition wire 105, and the ignition wire 105 is instantaneously ignited and blown by itself.
  • the ignition wire 105 ignites the graphite sample to be tested in the sample crucible 106 to vaporize the sample.
  • the electrode 104 and the ignition wire 105 are of an alternative construction and that the invention may also be ignited by other means of ignition or by means of ignition, such as heating the entire reaction vessel.
  • the sample crucible 106 is disposed in the pressurized cylinder 101 for carrying the graphite sample to be tested.
  • the sample cassette 106 can be disposed on a fixture within the pressurized cylinder 101.
  • the sample cassette 106 is fixed on an electrode 104, and the electrode 104 is disposed on the top end cover 102, so that the sample cassette 106 can be taken out from the pressure-bearing cylinder 101 while the top end cover 102 is opened for loading. sample.
  • the sample crucible 106 is not limited to helium, as long as it is a sample carrying device that can withstand high temperatures.
  • the charge and exhaust valve 107 is used for burning the forward pressure bearing cylinder 101 with oxygen gas and the like, and exhausting the exhaust gas in the pressurized cylinder 101 after the combustion and absorption are completed.
  • the charge and exhaust valve 107 can be placed under pressure On the cylinder 101 or on the top end cap 102.
  • the charge and exhaust valve 107 is disposed on the pressurized cylinder 101 and on the back side of the sample crucible 106 such that the gas flow will blow the sample inside the sample crucible 106 during the aeration process.
  • the charge and exhaust ports of existing devices are typically disposed on the top end cap 102 and facing the sample loaded with the sample. When the unit is filled with oxygen, the intake air stream may blow the sample away.
  • the charge and exhaust valve 107 is disposed on the side wall of the pressure-receiving cylinder 101 near the bottom.
  • the adsorption device 110 is disposed in the pressurized cylinder 101 to divide the internal space of the pressurized cylinder 101 into the first space 115 and the second space 116.
  • the sample cassette 106 is disposed within the first space 115.
  • the adsorption device 110 has a plurality of through holes, and the first space 115 and the second space 116 are communicated only by the adsorption device 110.
  • the hydrazine-containing water vapor and carbon dioxide gas produced by the reaction in the first space 115 may be diffused to the second space 116 by the adsorption device 110, and the hydrazine-containing water vapor may be absorbed by the water vapor absorbing material in the adsorption device 110.
  • the adsorption device 110 includes a first gas permeable partition 111, a second gas permeable partition 113 spaced apart from the first gas permeable partition 111, and water vapor adsorption disposed between the first gas permeable partition 111 and the second gas permeable partition 113.
  • Material 112 and rubber seal ring 114 Preferably, the edge of the second gas permeable partition 113 is fixed to the rubber seal ring 114 to form a container for placing the water vapor absorbing material 112.
  • the adsorption device 110 has a cylindrical or truncated cone shape, and its side surface is fitted to the inner wall of the pressure-bearing steel cylinder 101, and the side wall sealing is realized by the rubber sealing ring 114.
  • a step or a projection may be formed on the inner wall of the pressurized cylinder 101 so that the adsorption device 110 can be stuck at the step or the projection.
  • the water vapor absorbing material 112 may be a water absorbing silica gel or the like. When a material such as water-absorbent silica gel is deposited by itself, a large amount of voids exist, and together with the first gas permeable partition 111 and the second gas permeable partition 113, a passage through which the gas flows freely between the first space 115 and the second space 116 is formed.
  • the beaker 108 is disposed in the second space 116 inside the pressurized cylinder 101 for containing the absorbing alkali liquid 109.
  • the absorbing alkali 109 is used to absorb carbon dioxide. It will be appreciated that the beaker 108 may also be another container containing the lye 109. In this embodiment, the beaker 108 is disposed at the bottom of the pressure-bearing cylinder 101.
  • the absorbing alkali solution 109 is an aqueous sodium hydroxide solution.
  • a magnetic rotor 117 may be included in the beaker 108.
  • the magnetic rotor 117 is used to agitate and absorb the alkali liquid 109, thereby accelerating the absorption of carbon dioxide by the absorption alkali liquid 109. It will be appreciated that the magnetic rotor 117 is an optional structure.
  • the beaker 108, the sample crucible 106, and the carbon dioxide absorbing alkali solution 109 are generally not produced and sold together with other components, and only when the experimental apparatus 10 prepares a liquid sample of carbon-14 in the radioactive graphite, the beaker can be placed. 108. Sample enthalpy 106 and carbon dioxide absorbing lye 109 may not be understood as part of the experimental apparatus 10.
  • an embodiment of the present invention further provides a method for preparing a liquid sample of carbon-14 in radioactive graphite.
  • the method includes the following steps:
  • the sealed reaction vessel is filled with oxygen, such as oxygen, so that the pressure in the reaction vessel reaches 1MPa to 4MPa;
  • the radioactive graphite sample is burned in the combustion gas to form a water vapor containing helium and carbon dioxide gas in the first space 115;
  • step S14 as the absorption of carbon dioxide by the absorbing alkali 109, the carbon dioxide in the first space 115 and the second space 116 spontaneously diffuses, and after a certain time, the absorbing alkali 109 is applied to all the carbon dioxide in the pressurized cylinder 101. Completely absorbed.
  • the reacted gas is discharged from the pressure-receiving reaction vessel, and the helium-containing steam is adsorbed by the adsorption device and the carbon dioxide gas is absorbed into the alkali solution through the conduit.
  • the method needs to manually regulate the flow rate, keep the flow rate small enough, and avoid the influence on the adsorption and removal effect and the carbon dioxide absorption effect.
  • step S14 the absorption alkali liquid 109 may be further stirred to accelerate absorption of carbon dioxide by the absorption alkali liquid 109.
  • the experimental apparatus 10 and method of the present invention can not only prepare a liquid sample of carbon-14 in radioactive graphite, but can be used to generate two or more different gases after any reaction, and Some gases need to be removed, and some gases need to be collected for experiments.
  • a method for preparing a liquid sample of carbon-14 in radioactive graphite using the experimental apparatus 10 is as follows:
  • the sample ⁇ 106 is placed on the inner support below the top end cover 102, and the sample ⁇ 106 is filled with a mass of 0.05 g to 0.2 g of the radioactive graphite sample to be tested, and the ignition wire 105 is connected;
  • silica gel water vapor adsorbing material 112 is placed in the steam-containing steam adsorbing device 110 as needed, and then placed in the inside of the pressure-bearing steel cylinder 101 to ensure that the inner wall of the pressure-bearing steel cylinder 101 is sealed by the adsorption device 110. ;
  • the gas in the pressurized cylinder 101 is discharged through the charging and exhaust valve 107.
  • the exhausted gas is slowly introduced into the second sodium hydroxide absorbing alkali solution in the other beaker through the conduit, and the second sodium hydroxide absorbing alkali liquid further absorbs the residual carbon dioxide of the gas.
  • the carbon dioxide absorbed in the second sodium hydroxide absorption alkali liquid was almost zero.
  • the absorbing alkali 109 in the experimental apparatus 10 and the preparation method of the present invention can completely absorb the carbon dioxide in the pressurized cylinder 101.
  • the invention has the following advantages: the device of the invention integrates the functions of water vapor absorption, carbon dioxide absorption and sample combustion, etc., into the pressure-bearing cylinder, and the operation is simple; the method of the invention makes the carbon dioxide in the gas after the reaction diffuse to reach the absorption base
  • the liquid surface avoids the difficulty of manually controlling the deflation process guided by the catheter, which not only reduces the working intensity, greatly improves the efficiency of sample preparation, but also reduces the artificial experimental error and uncertainty, and improves the reliability of the sample preparation process. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种制备放射性石墨中碳-14液体样品的方法,其包括:提供一密封的反应容器,该反应容器内具有一含氚水蒸气吸附装置(110),从而将该反应容器的内部空间分割成第一空间(115)和第二空间(116);第一空间内设置有放射性石墨样品,第二空间内设置有二氧化碳吸收液(109);向密封的反应容器内充入助燃气,使反应容器内的气压强达到1MPa-4MPa;使放射性石墨样品在助燃气中进行燃烧,在第一空间(115)形成含氚水蒸气和二氧化碳气体;保持一段时间,使含氚水蒸气和二氧化碳气体通过吸附装置(110)向第二空间(116)扩散,含氚水蒸气被吸附装置(110)吸收,且二氧化碳气体被吸收液(109)吸收;对密封的反应容器进行排气。

Description

一种制备放射性石墨中碳-14液体样品的方法
相关申请的交叉引用
本申请要求享有于2016年12月01日提交的名称为“一种制备放射性石墨中碳-14液体样品的方法”的中国专利申请201611090947.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及核工业技术领域,尤其涉及一种制备放射性石墨中碳-14液体样品的方法。
背景技术
核工业中会使用大量的石墨材料,石墨受到中子辐照后会带有放射性。为处理放射性石墨,必须建立石墨中所含放射性的分析方法,特别是要准确的测定其中碳-14的含量。碳-14分析的难点在于将固体石墨材料中的碳-14制备成液体样品,便于后续使用精密的放射性分析仪器对碳-14进行分析。
目前广泛采用的是“燃烧-吸收法”制备碳-14的液体样品。即,将含有碳-14的石墨在空气或氧气等助燃气中点燃,使碳转化为二氧化碳,再采用吸收液吸收二氧化碳。由于放射性石墨中还含有另一种放射性核素——氚。在燃烧过程中会形成含氚的水蒸气,也会被吸收液吸收,因此,对后续碳-14的放射性测量产生严重干扰。所以在吸收液之前,都要有一个去除水含氚的水蒸气的过程。例如,邱永梅等在反应堆退役石墨中14C分析制样实验系统研制(原子能科学技术,2010,Vol.44(suppl.):119-123)一文中报道了续碳-14的制备方法和实验装置。其制备碳-14样品方法可以概括为:将石墨在氧气气氛下加热燃烧,气体通过冷凝管和硅胶干燥器来除去含氚水,通过收集器中的吸收液制备碳-14液体样品。然而, 该方法和装置具有如下缺点:(1)设备复杂、部件多、体积大、集成度差;(2)难以实现标准化、多数是临时搭建的实验装置,不利于规模化生产和推广使用;(3)控制困难:气体流速太小时不利于石墨完全燃烧、气体流速太大时不利于二氧化碳气体完全被吸收液吸收;(4)放射性废物多:整个管路都会被碳-14、氚沾污;(5)设备存在危险性:石墨粉末比表面积大,与氧气混合易发生爆炸。
为了部分解决上述方法的缺点,特别是出于操作安全的考虑,目前也存在一种使用耐高压样品燃烧装置(氧弹)来制备碳-14样品的技术。这类技术与之前样品制备方法的显著区别在于:引入了一种特殊的样品燃烧装置(氧弹)。具体地,该方法为:在一个密闭耐高压样品燃烧装置中使石墨与氧气燃烧生成二氧化碳和含氚水蒸气;然后将燃烧装置的阀门打开,将燃烧生成二氧化碳和含氚水蒸气引导至类似于邱永梅等提供的除水蒸气和吸收二氧化碳的装置中。然而,该方法和装置仍然具有如下缺点:(1)除样品燃烧装置外,需要另外配备除含氚水蒸气和吸收二氧化碳的装置:设备复杂、集成度差、大多需要临时搭建除水和吸收二氧化碳的装置、不利于装置推广使用。如果没有配套装置,则无法去除氚的干扰,难以用于C-14的准确分析;(2)样品燃烧装置的放气操作必须手动控制、工作强度大:样品燃烧装置放气的操作,需要根据内部残留压力来调解一个放气阀,保持放气速度缓慢稳定。目前这个操作只能通过人工手动控制螺旋放气阀来完成,工作人员需要连续数小时持续调解,工作强度很大;(3)手动放气操作造成吸收不稳定,实验误差大:样品燃烧装置放出的气体也要求缓慢通入氚水吸附材料和氢氧化钠溶液,通过速度对氚水和二氧化碳的吸收效果有直接影响。特别是,当通过速度过快会造成吸收率下降,影响测定的碳-14含量。但通过人工控制螺旋放气阀的方式来调节放气速度,放气速度波动大、吸收不稳定、实验误差大、结果重复性差。
因此,提供一种简单有效的制备放射性石墨中碳-14的液体样品的方法成为目前需要解决的技术问题。
发明内容
本发明提供一种简单有效的制备放射性石墨中碳-14液体样品的方法。
一种制备放射性石墨中碳-14液体样品的方法,该方法包括:提供一密封的反应容器,该反应容器内具有一含氚水蒸气吸附装置,从而将该反应容器的内部空间分割成一第一空间和一第二空间;第一空间内设置有放射性石墨样品,第二空间内设置有二氧化碳吸收液;向密封的反应容器内充入助燃气,使反应容器内的气压强达到1-4MPa;使放射性石墨样品在助燃气中进行燃烧,在第一空间形成含氚水蒸气和二氧化碳气体;保持一段时间,使含氚水蒸气和二氧化碳气体通过吸附装置向第二空间扩散,含氚水蒸气被吸附装置吸收,且二氧化碳气体被吸收液吸收;以及对密封的反应容器进行排气。
相较于现有技术,本发明的方法使反应后气体中的二氧化碳扩散到达吸收碱液表面,避免了通过导管引导的手动控制放气过程的难度,不仅降低工作强度、大大提高了样品制备的效率,而且减少了人为的实验误差和不确定性,提高了样品制备过程的可靠性。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例提供的制备放射性石墨中碳-14的液体样品的实验装置的结构示意图;
图2为本发明实施例提供的制备放射性石墨中碳-14的液体样品的方法流程图。
附图标号说明
实验装置 10
承压钢瓶 101
顶部端盖 102
密封盖 103
电极 104
点火丝 105
样品坩埚 106
充排气阀 107
烧杯 108
吸收碱液 109
吸附装置 110
第一透气隔板 111
水蒸气吸附材料 112
第二透气隔板 113
橡胶密封环 114
第一空间 115
第二空间 116
磁力转子 117
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
请参见图1,本发明实施例提供的制备放射性石墨中碳-14的液体样品的实验装置10包括:承压钢瓶101、顶部端盖102、密封盖103、两个电极104、点火丝105、样品坩埚106、充排气阀107、烧杯108、二氧化碳吸收碱液109以及含氚水蒸气吸附装置110。
承压钢瓶101的形状和尺寸不限,可以根据需要设置。可以理解,承 压钢瓶101也可以为采用其它金属材料制备的可以承受高压的容器。本实施例中,承压钢瓶101为圆柱形,其侧边和底部密封,顶部开口且的具有与密封盖103配合的螺纹。
顶部端盖102用于与承压钢瓶101构成一个密封的且可以承受高压的反应腔室。使用时,顶部端盖102插入承压钢瓶101的顶部开口之内。
密封盖103用于将顶部端盖102固定在承压钢瓶101上。密封盖103的结构可以根据需要设置。本实施例中,密封盖103具有与承压钢瓶101的顶部配合的螺纹、且密封盖103与顶部端盖102为一体结构。使用时,密封盖103通过螺旋与承压钢瓶101固定连接,从而压住顶部端盖102,确保密封完好。
两个电极104间隔设置于顶部端盖102上,且从外部延伸至承压钢瓶101内部。两个电极104露在外部的一端用于与外部电源连接,延伸至承压钢瓶101内部的一端用于施加电压,从而实现点火。点火的方式不限,可以为电弧放电等。可以理解,两个电极104的设置位置不限于顶部端盖102上,也可以设置于承压钢瓶101上,只要从外部延伸至承压钢瓶101内部即可。本实施例中,两个电极104延伸至承压钢瓶101内部的一端通过一点火丝105电连接。在外部电源通电情况下,通过两个电极104和点火丝105构成一个回路,点火丝105会瞬间点火并自身熔断。点火丝105会引燃样品坩埚106中的石墨待测样品,使样品燃烧气化。可以理解,电极104和点火丝105为可选结构,本发明也可以通过其它点燃装置或点燃方式实现引燃,例如将整个反应容器加热。
样品坩埚106设置于承压钢瓶101内,用于承载石墨待测样品。样品坩埚106可以设置于承压钢瓶101内的一固定装置上。本实施例中,样品坩埚106固定于一电极104上、且电极104设置于顶部端盖102上,从而可以在打开顶部端盖102的同时将样品坩埚106从承压钢瓶101内取出,以便装载样品。可以理解,样品坩埚106不限于坩埚,只要是可以耐高温的样品承载装置即可。
充排气阀107用于燃烧前向承压钢瓶101内充入氧气等助燃气,燃烧和吸收完成后排出承压钢瓶101内的废气。充排气阀107可以设置于承压 钢瓶101上或顶部端盖102上。优选地,充排气阀107设置于承压钢瓶101上且位于样品坩埚106的背面,这样可以避免在充气过程中,气流将样品坩埚106内部的样品吹散。现有装置的充排气口通常设置于在顶部端盖102上、且正对装载样品的样品坩埚。当装置充入氧气时,进气气流可能将样品吹走。本实施例中,充排气阀107设置于承压钢瓶101靠近底部的侧壁上。
吸附装置110设置于承压钢瓶101内,从而将承压钢瓶101的内部空间分割成第一空间115和第二空间116。样品坩埚106设置于第一空间115内。吸附装置110具有多个通孔,第一空间115和一第二空间116仅通过吸附装置110连通。第一空间115内反应生产的含氚水蒸气和二氧化碳气体可以通过吸附装置110向第二空间116扩散、且含氚水蒸气可以被吸附装置110中的水蒸气吸附材料吸收。吸附装置110包括第一透气隔板111、与该第一透气隔板111间隔设置的第二透气隔板113、设置于第一透气隔板111和第二透气隔板113之间的水蒸气吸附材料112以及橡胶密封环114。优选地,第二透气隔板113边缘固定于橡胶密封环114上,从而形成一容器,以便放置该水蒸气吸附材料112。本实施例中,吸附装置110为圆柱或圆台形,其侧面与承压钢瓶101的内壁贴合,并依靠橡胶密封环114实现侧壁密封。承压钢瓶101的内壁上可以形成台阶或设置凸起(图未示),从而使吸附装置110可以卡固在该台阶或凸起处。水蒸气吸附材料112可以为吸水硅胶等。吸水硅胶等材料自身堆积时存在大量空隙,与第一透气隔板111和第二透气隔板113共同构成了气体在第一空间115和第二空间116之间自由流通的通道。
烧杯108设置于承压钢瓶101内部的第二空间116内,用于盛放吸收碱液109。吸收碱液109用于吸收二氧化碳。可以理解,烧杯108也可以为其它盛放吸收碱液109的容器。本实施例中,烧杯108设置于承压钢瓶101底部。吸收碱液109为氢氧化钠水溶液。
进一步,烧杯108内还可以包括一磁力转子117。磁力转子117用于搅拌吸收碱液109,从而加快吸收碱液109对二氧化碳的吸收。可以理解,磁力转子117为可选结构。
可以理解,烧杯108、样品坩埚106以及二氧化碳吸收碱液109通常并不与其它元件一起生产销售,仅在该实验装置10制备放射性石墨中碳-14的液体样品时放入即可,因此,烧杯108、样品坩埚106以及二氧化碳吸收碱液109可以不理解为该实验装置10的一部分。
请参见图2,本发明实施例进一步提供一种制备放射性石墨中碳-14的液体样品的方法。该方法包括以下步骤:
S11,提供一密封的反应容器,该反应容器内具有一含氚水蒸气吸附装置110,从而将该反应容器的内部空间分割成第一空间115和第二空间116;第一空间115内设置有放射性石墨样品,第二空间116内设置有二氧化碳吸收碱液109;
S12,向密封的反应容器内充入氧气等的助燃气,使反应容器内的气压强达到1MPa至4MPa;
S13,使放射性石墨样品在助燃气中进行燃烧,在第一空间115形成含氚水蒸气和二氧化碳气体;
S14,保持一段时间,使含氚水蒸气和二氧化碳气体通过吸附装置110向第二空间116扩散,含氚水蒸气被吸附装置110吸收,且二氧化碳气体被吸收碱液109吸收;以及
S15,对密封的反应容器进行排气。
可以理解,步骤S14中,随着吸收碱液109对二氧化碳的吸收,第一空间115和第二空间116中二氧化碳会自发扩散,一定时间后,使得吸收碱液109对承压钢瓶101中所有二氧化碳完全吸收。而现有技术中,将反应后气体从承压反应容器中排出,再通过导管引导含氚水蒸气被吸附装置和二氧化碳气体吸收碱液中。该方法需要手动调控流量,保持流量足够小,避免对吸附除氚效果、二氧化碳吸收效果产生影响。而且,随着反应容器内的气压逐渐下降,需要持续手动调节来保证流量稳定。步骤S14中,还可以进一步对吸收碱液109进行搅拌,从而加快吸收碱液109对二氧化碳的吸收。
可以理解,本发明的实验装置10和方法,不仅可以制备放射性石墨中碳-14的液体样品,其可以用于任何反应后生成两种以上不同气体,且 有的气体需要被除去,有的气体需要被收集的实验。
以下为本发明制备放射性石墨中碳-14的液体样品方法的具体实施例。
实施例1
本实施例中,采用实验装置10制备放射性石墨中碳-14的液体样品的方法如下:
(1)打开该实验装置10的密封盖103,取出顶部端盖102;
(2)在该顶部端盖102下方的内支架上放好样品坩埚106,样品坩埚106内装入质量0.05g至0.2g待测放射性石墨样品,并连接好点火丝105;
(3)将装有固定体积5.0ml至20.0ml氢氧化钠吸收碱液109的烧杯108放入该承压钢瓶101底部;
(4)根据需要在含氚水蒸汽吸附装置110中装入适量硅胶水蒸气吸附材料112,封闭后放入该承压钢瓶101内部,保证该承压钢瓶101的内壁四周被该吸附装置110密封;
(5)装回顶部端盖102,使电极104、点火丝105、样品坩埚106、和待燃烧样品装入该承压钢瓶101内;
(6)封好该密封盖103;
(7)从该充排气阀107充入适量的高压氧气,使该承压钢瓶101内部压强达到1MPa至4MPa;
(8)将整个实验装置10置于冷水水域中,检漏确保实验装置10密封;
(9)连接电极104到外部电源,通过外部电源点火引燃点火丝105和石墨待燃烧样品;
(10)待样品燃烧完成并降温后,将实验装置10放于一个磁力搅拌装置上,通过磁力带动烧杯108中磁力转子117对吸收碱液109搅拌5分钟至10分钟,促进该吸收碱液109对气体中二氧化碳的吸收;
(11)二氧化碳吸收完全后,通过该充排气阀107将该承压钢瓶101中的气体排出,不必考虑排出速度,可以快速完成放气过程;
(12)打开该密封盖103,取出烧杯108,烧杯108中的氢氧化钠吸收碱 液109作为后续分析样品。
为了检测本发明的实验装置10和制备方法中吸收碱液109对气体中二氧化碳的吸收情况,本实施例中,通过该充排气阀107将该承压钢瓶101中的气体排出的过程中,通过导管将排除的气体先缓慢通入另一烧杯内的第二氢氧化钠吸收碱液中,是该第二氢氧化钠吸收碱液进一步吸收气体残余的二氧化碳。结果发现,该第二氢氧化钠吸收碱液中吸收的二氧化碳几乎为零。由此可见,本发明的实验装置10和制备方法中吸收碱液109可以将该承压钢瓶101中的二氧化碳完全吸收。
本发明具有以下优点:本发明的装置将含氚水蒸气吸收、二氧化碳吸收以及样品燃烧等功能都集成在承压钢瓶内部,操作简单;本发明的方法使反应后气体中的二氧化碳扩散到达吸收碱液表面,避免了通过导管引导的手动控制放气过程的难度,不仅降低工作强度、大大提高了样品制备的效率,而且减少了人为的实验误差和不确定性,提高了样品制备过程的可靠性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种制备放射性石墨中碳-14液体样品的方法,该方法包括:
    提供密封的反应容器,所述反应容器内具有含氚水蒸气吸附装置,从而将所述反应容器的内部空间分割成第一空间和第二空间;所述第一空间内设置有放射性石墨样品,所述第二空间内设置有二氧化碳吸收液;
    向所述密封的反应容器内充入助燃气,使所述反应容器内的气压强达到1MPa-4MPa;
    使所述放射性石墨样品在所述助燃气中进行燃烧,在所述第一空间形成含氚水蒸气和二氧化碳气体;
    保持一段时间,使所述含氚水蒸气和二氧化碳气体通过所述吸附装置向所述第二空间扩散,所述含氚水蒸气被所述吸附装置吸收,且所述二氧化碳气体被所述吸收液吸收;
    对所述密封的反应容器进行排气。
  2. 如权利要求1所述的制备放射性石墨中碳-14液体样品的方法,其中,密封的所述反应容器包括:承压钢瓶、顶部端盖、密封盖、两个电极和点火丝;所述顶部端盖插入所述承压钢瓶的顶部开口之内,所述密封盖将所述顶部端盖固定在所述承压钢瓶上;所述两个电极间隔设置于所述顶部端盖上,且从外部延伸至所述承压钢瓶内部,所述两个电极延伸至所述承压钢瓶内部,通过所述点火丝电连接;使所述放射性石墨样品在所述助燃气中进行燃烧的方法为向所述点火丝通电。
  3. 如权利要求2所述的制备放射性石墨中碳-14液体样品的方法,其中,所述吸附装置包括第一透气隔板、与所述第一透气隔板间隔设置的第二透气隔板、设置于所述第一透气隔板和第二透气隔板之间的水蒸气吸附材料以及橡胶密封环。
  4. 如权利要求3所述的制备放射性石墨中碳-14液体样品的方法,其中,所述承压钢瓶的内壁为圆柱形,所述吸附装置为圆柱或圆台形,其侧面与所述承压钢瓶的内壁贴合,并依靠所述橡胶密封环实现侧壁密封。
  5. 如权利要求3所述的制备放射性石墨中碳-14液体样品的方法,其中,所述水蒸气吸附材料为吸水硅胶。
  6. 如权利要求2所述的制备放射性石墨中碳-14液体样品的方法,其中,所述承压钢瓶的内壁上形成台阶或设置凸起,从而使所述吸附装置卡固在所述台阶或凸起处。
  7. 如权利要求2所述的制备放射性石墨中碳-14液体样品的方法,其中,所述两个电极和点火丝设置于所述第一空间;所述充排气阀设置于所述承压钢瓶上且直接与所述第二空间连通;密封的所述反应容器内充入所述助燃气的方法为通过所述充排气阀充入纯氧气。
  8. 如权利要求1所述的制备放射性石墨中碳-14液体样品的方法,其中,所述吸收液为氢氧化钠溶液。
  9. 如权利要求1所述的制备放射性石墨中碳-14液体样品的方法,其中,所述吸收液中放置一磁力转子;所述使所述含氚水蒸气和二氧化碳气体通过所述吸附装置向所述第二空间扩散的步骤进一步包括:将反应容器放于一个磁力搅拌装置上,通过磁力带动所述磁力转子对所述吸收液进行搅拌。
  10. 如权利要求9所述的制备放射性石墨中碳-14液体样品的方法,其中,所述吸收液进行搅拌的时间为5分钟-10分钟。
PCT/CN2017/113937 2016-12-01 2017-11-30 一种制备放射性石墨中碳-14液体样品的方法 WO2018099428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611090947.1A CN106855473A (zh) 2016-12-01 2016-12-01 一种制备放射性石墨中碳‑14液体样品的方法
CN201611090947.1 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018099428A1 true WO2018099428A1 (zh) 2018-06-07

Family

ID=59126227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113937 WO2018099428A1 (zh) 2016-12-01 2017-11-30 一种制备放射性石墨中碳-14液体样品的方法

Country Status (2)

Country Link
CN (1) CN106855473A (zh)
WO (1) WO2018099428A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855473A (zh) * 2016-12-01 2017-06-16 清华大学 一种制备放射性石墨中碳‑14液体样品的方法
CN106706383A (zh) * 2016-12-01 2017-05-24 清华大学 一种制备放射性石墨中碳‑14液体样品的实验装置
CN110672778B (zh) * 2019-10-31 2022-03-01 上海屹尧仪器科技发展有限公司 可微波点火的氧燃烧反应釜
CN113295498B (zh) * 2021-06-09 2022-05-03 广州海洋地质调查局 一种干酪根中有机硫的提取装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283153A (ja) * 2004-03-26 2005-10-13 Mitsubishi Electric Corp トリチウムサンプラ
CN103728653A (zh) * 2013-07-02 2014-04-16 中国工程物理研究院核物理与化学研究所 固体样品中碳-14制样系统
CN205353376U (zh) * 2015-01-27 2016-06-29 上海怡星机电设备有限公司 一种有机氚碳收集系统
CN106706383A (zh) * 2016-12-01 2017-05-24 清华大学 一种制备放射性石墨中碳‑14液体样品的实验装置
CN106855473A (zh) * 2016-12-01 2017-06-16 清华大学 一种制备放射性石墨中碳‑14液体样品的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757427B1 (fr) * 1996-12-24 1999-02-05 Air Liquide Reacteur isole thermiquement
US6511640B1 (en) * 2000-06-29 2003-01-28 The Boc Group, Inc. Purification of gases
US20040178124A1 (en) * 2003-03-11 2004-09-16 Ke Liu Hydrogen desulfurizer for hydrocarbon feeds with separated adsorption and catalyst material
CN100518886C (zh) * 2005-05-20 2009-07-29 财团法人工业技术研究院 利用洗涤塔及膜离生物反应器的废气处理设备及方法
CN201454533U (zh) * 2009-06-11 2010-05-12 中国矿业大学 一种燃烧合成装置
FR2962663B1 (fr) * 2010-07-16 2012-08-31 Air Liquide Adsorbeur avec revetement interne
CN202204703U (zh) * 2011-08-31 2012-04-25 江苏省辐射环境监测管理站 一种氚和碳-14收集装置
CN103529162A (zh) * 2013-10-29 2014-01-22 四川农业大学 一种固体可燃物总有机碳(toc)的测定方法
CN104280354A (zh) * 2014-10-27 2015-01-14 合肥卓越分析仪器有限责任公司 一种煤炭试样硫含量检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283153A (ja) * 2004-03-26 2005-10-13 Mitsubishi Electric Corp トリチウムサンプラ
CN103728653A (zh) * 2013-07-02 2014-04-16 中国工程物理研究院核物理与化学研究所 固体样品中碳-14制样系统
CN205353376U (zh) * 2015-01-27 2016-06-29 上海怡星机电设备有限公司 一种有机氚碳收集系统
CN106706383A (zh) * 2016-12-01 2017-05-24 清华大学 一种制备放射性石墨中碳‑14液体样品的实验装置
CN106855473A (zh) * 2016-12-01 2017-06-16 清华大学 一种制备放射性石墨中碳‑14液体样品的方法

Also Published As

Publication number Publication date
CN106855473A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
WO2018099429A1 (zh) 一种制备放射性石墨中碳-14液体样品的实验装置
WO2018099428A1 (zh) 一种制备放射性石墨中碳-14液体样品的方法
BRPI0905197A2 (pt) método de introduzir um material reativo dentro de uma cámara de vácuo
CN109085271B (zh) 一种小药量热爆炸气体收集装置及气体分析方法
SE7606876L (sv) Sett och apparat for lokalisering av defekta kernbrensleelement i vattenmodererade reaktorer
US3993911A (en) Photochemical reactor
CN108956836A (zh) 包裹体中烃类气体的释放和提取装置及方法
CN107290363A (zh) 高压低温原位中子散射装置
CN105551544B (zh) 用于长期密封储存乏燃料棒及其样品的装置与方法
US3983637A (en) Process for drying encapsulated fissile and non-fissile bodies
CN114113483A (zh) 采集裂变产物通过铅铋合金释放的产物的方法和系统
US3728084A (en) Device for preparing combustible samples containing compounds labeled with 3h and 14c for measurement of their radioactivity
US3393552A (en) Method for leak testing a seal
CA1047175A (en) Storage and shipping container for gas filled pellets
CN107703166B (zh) 一种用于中子静高压实验的密封腔
Hamill A Manometer for Carbon and Hydrogen Pressure Regulation
US3858051A (en) Photo-chemical reaction apparatus
Dunbar A Macro-or Micro-Gooch Filter
CN220843880U (zh) 一种便于移动的六氟磷酸锂存储装置
CN114093746B (zh) 一种用于热表面电离质谱的灯丝碳化装置及方法
GB733348A (en) Method of and apparatus for testing containers for gas-tightness
CN104181012B (zh) 一种空气采样器
CN112180011B (zh) 一种复杂场景下物质辐射释气测试方法
CN113479844B (zh) 一种氚化水样品转化制备氢化钛的方法
RU2273070C2 (ru) Устройство для облучения водных растворов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876724

Country of ref document: EP

Kind code of ref document: A1