WO2018099403A1 - 一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品 - Google Patents

一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品 Download PDF

Info

Publication number
WO2018099403A1
WO2018099403A1 PCT/CN2017/113632 CN2017113632W WO2018099403A1 WO 2018099403 A1 WO2018099403 A1 WO 2018099403A1 CN 2017113632 W CN2017113632 W CN 2017113632W WO 2018099403 A1 WO2018099403 A1 WO 2018099403A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
wheel
metal blank
head
rolling wheel
Prior art date
Application number
PCT/CN2017/113632
Other languages
English (en)
French (fr)
Inventor
周俊
Original Assignee
上海泛华紧固系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海泛华紧固系统有限公司 filed Critical 上海泛华紧固系统有限公司
Publication of WO2018099403A1 publication Critical patent/WO2018099403A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K27/00Handling devices, e.g. for feeding, aligning, discharging, Cutting-off means; Arrangement thereof
    • B21K27/02Feeding devices for rods, wire, or strips
    • B21K27/04Feeding devices for rods, wire, or strips allowing successive working steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/30Finishing tubes, e.g. sizing, burnishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/14Recontouring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P9/00Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
    • B23P9/02Treating or finishing by applying pressure, e.g. knurling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/033Other grinding machines or devices for grinding a surface for cleaning purposes, e.g. for descaling or for grinding off flaws in the surface

Definitions

  • the invention relates to a metal blank rolling processing module and a rolling processing of the metal blank by rolling feeding, surface rolling, rolling finishing, rolling compression diameter, straightening and calibration, and surface rust removal.
  • the method belongs to the technical field of metal material surface treatment and upsetting, rolling and drawing machinery.
  • the conventional automatic forging machine metal blank (disc, bar or pipe) feeding device adopts a vertically symmetrical groove-shaped squeeze roller press or a robot grab feed.
  • This feeding method has the following problems: when there is an error in the diameter of the metal blank and the groove diameter of the feeding wheel or the groove size of the robot, the blank may be crushed and injured, the blank may be deformed or the feeding may be inaccurate, and even the blank may not be fed; In terms of the linear feeding mode of the robot, due to the difference in speed between the initial gripping moment of the robot and the static state of the blank, the contact between the robot and the metal blank may cause slippage, which may affect the feeding accuracy. In addition, in terms of blank straightening, as shown in Fig.
  • the prior art realizes the school by an additional one or more sets of mutually perpendicular straightening rolling heads composed of 3 to 5 grooved roller compactors.
  • Straight, different blank diameters require different alignment grooved rollers to match.
  • oxide layer, micro surface cracks or cracks often appear on the surface of the metal blank, which is a big technical problem for the subsequent upsetting deformation process.
  • the prior art control of the outer diameter of the blank is also handled by a drawing process.
  • burrs often occur when cutting metal blanks.
  • Metal blank feeding accuracy, surface roughness, outer diameter tolerance or / and straightness and roundness have a great influence on the shape, size and appearance of the forged product or other processed products.
  • precision feeding there is currently no such thing as precision feeding.
  • Surface size and roughness control, reduction of diameter, alignment and calibration, and descaling function Simple structure and reliable process and equipment to match the upsetting machine and pipe processing machine.
  • An object of the present invention is to provide a metal blank rolling processing module and a rolling processing method for feeding, reducing, straightening, and rounding or rusting a metal blank by the apparatus.
  • One aspect of the present invention provides a metal blank rolling processing module including at least one power unit and at least one rolling head matched to the power unit, the power unit providing a rotational driving force to the rolling head,
  • the rolling head comprises at least two circumferentially arranged rolling wheels, the rolling wheel axis having a deflection angle with respect to an axis of the machined metal blank, and the rolling wheel having a smooth outer surface
  • the cylindrical rolling wheel is a round table-shaped rolling wheel with a smooth outer surface.
  • the deflection angle is less than 9 degrees, and more preferably, the deflection angle is less than 3 degrees.
  • the rolling head may include a first rolling wheel, a second rolling wheel, a worm wheel or a gear, and a connecting pin
  • the power device drives the turbine or gear to rotate to drive the rolling head
  • the first rolling wheel, the second rolling wheel and the worm wheel or the gear are provided with corresponding radial grooves, a workpiece machining working hole and a pin hole through which the rolling wheel passes Cooperating with the radial grooves on the first rolling wheel and the second rolling wheel, the radial groove is matched with the mounting surface of the rolling wheel;
  • the disk and the second rolling wheel are fixedly connected to each other at the two ends of the worm wheel or the gear through a connecting pin matched with the pin hole, coaxially forming a rolling head, and the rolling wheel is rolled
  • the pressure roller shaft has inclined planes parallel to each other at both ends, and the rolling wheel shaft is mounted on the radial groove of the rolling wheel through the inclined plane, thereby forming the deflection angle.
  • the rolling head further includes a first adjusting disc, a second adjusting disc and an adjusting disc pin shaft, wherein the first adjusting disc and the second adjusting disc are provided with corresponding positioning blind holes and curved shapes a slot, a workpiece machining working hole and a pin shaft, wherein the first adjusting disc and the second adjusting disc are respectively mounted coaxially on the first rolling wheel and the second rolling wheel through the positioning mounting blind hole
  • the outer sides are connected to each other by an adjusting disc pin shaft, and both ends of the rolling wheel shaft of the rolling wheel further have an extension portion outside the inclined plane, and an extension portion of the rolling wheel shaft of the rolling wheel is mounted on the adjusting plate
  • the rotating adjusting plate can drive the rolling wheel shaft of the rolling wheel to slide in the arc groove, thereby driving the rolling wheel shaft of the rolling wheel to move radially in the radial groove of the rolling wheel, and further The radial position or the inscribed circle diameter of the rolling wheel is changed.
  • a relative rotational position angle detecting device between the rolling wheel and the adjusting plate to achieve precise control of rolling.
  • the number of the rolling heads is greater than two, and the respective rolling heads are disposed concentrically back and forth.
  • the rolling wheels of the two adjacent rolling heads have unequal deflection angles.
  • the present invention also provides a method for straightening a metal blank using the metal blank rolling processing module having at least two rolling heads, including rolling a metal blank into a rolling head at a front end of a processing step And clamping the metal blanks between the wheels, setting the diameters of the minimum inscribed circles of the rolling wheels in the respective rolling heads to be equal; starting the power device, the power device driving the rolling head to rotate; Controlling, by the power device, that the rotational speed of the rolling head first contacted by the metal blanks in the adjacent two rolling heads is smaller than the rotational speed of the rolling heads that the metal blanks are next contact with, thereby causing the metal blanks to be adjacent to each other Axial tension is applied between the rolling heads to achieve straightening.
  • a method for derusting a metal blank by using the metal blank rolling processing module having at least two rolling heads comprising placing a metal blank between rolling rollers of a rolling head at a front end of the processing step and sandwiching Tightening the metal blank, setting the diameters of the minimum inscribed circles of the rolling wheels in the respective rolling heads to be equal, and the deflection angles of the rolling wheels of the two adjacent rolling heads are opposite; a power device, the power device drives the rolling head to rotate; and the power device controls the rotation direction of the adjacent two rolling heads to achieve rust removal. More preferably, a metal brush is disposed between two adjacent rolling heads, and a metal brush is used to assist the rust removal.
  • the rolling wheels of the adjacent two rolling heads are odd-even in number.
  • the method for rounding a metal pipe by using the metal blank rolling processing module includes placing the metal pipe between rolling rollers of a rolling head at a front end of a processing step and clamping a metal pipe to start the power device.
  • the power device drives the rolling head to rotate; the diameters of the minimum inscribed circles of the rolling wheels in the respective rolling heads are set to be equal, because the number of rolling wheels of the adjacent two rolling heads is equal to Differently, the rolling spiral formed by the two adjacent rolling heads on the metal pipe during the rolling process is different, thereby achieving the calibration.
  • the rolling wheel in the rolling head is a truncated rolling wheel having a smooth outer surface, and the truncated cone of the truncated rolling wheel has a truncated cone of 1°- 3°.
  • the rolling wheel in the rolling head includes an introduction portion and a rolling portion, the introduction portion is located at the front end of the rolling portion, and the introduction portion is smooth for the outer surface.
  • the round mesa or the outer surface has a threaded round mesa, and the lead-in portion of the lead-in portion has a taper of 1°-29°; the rolled portion is a cylindrical surface with a smooth outer surface or a round countertop with a smooth outer surface.
  • a metal blank rolling processing line comprising any of the foregoing metal blank rolling processing modules.
  • a drawing die and/or a metal brush and/or a heating unit the drawing die and/or the metal brush and/or heating unit being disposed at the front end or upstream of the metal blank rolling process module .
  • a metal blank rolling processing module using any of the foregoing A method for rolling or rolling a blank, comprising placing a metal blank between the rolling wheels of the rolling head and clamping the metal blank to activate the power device, the power device driving the rolling The head rotates, which in turn drives the metal blank to move in the axial direction of the rolling head, thereby achieving feeding or rolling.
  • a method of reducing a diameter of a metal blank by using any of the foregoing metal blank rolling processing modules comprising at least one rolling head having a circular table type rolling wheel,
  • the difference between the upper bottom diameter and the lower bottom diameter of the circular table-shaped rolling wheel is an amount required to reduce the diameter
  • the metal blank is placed between the rolling wheels of the rolling head at the front end of the processing step and the metal blank is clamped.
  • the power device is activated, and the power device drives the rolling head to rotate; thereby driving the metal blank to move in the axial direction of the rolling head, thereby achieving the diameter reduction.
  • the existing CNC metal blank feeding device is limited by the structure of the feeding roller and the complicated movement mode of the roller.
  • the feeding accuracy is improved.
  • the forging machine automatically transfers the blank after cutting into the subsequent upsetting process, and the quality of the forged product will be unqualified.
  • the shape and length of the rolling wheel, the difference between the diameter of the upper bottom and the diameter of the lower bottom, and rolling are appropriately set.
  • the radial distance of the wheel and the number of rolling wheels can effectively correct the outer diameter of the blank and improve its surface finish, eliminate the surface cracks and cracks of the blank itself, and appropriately improve the surface hardness.
  • the invention further discloses that by adjusting the deflection angle of the rolling wheel and the axial rotation direction of the rolling wheel, combined with controlling the rotation speed and direction of the rolling head, the axial feeding speed, direction and direction of the numerical control metal blank are realized, and the feeding is achieved.
  • the radial rolling pressure is controlled to change the outer diameter size and roughness of the metal blank to eliminate surface defects of the blank.
  • the CNC is screwed, creatively realizes the precision feeding, rolling extrusion control of the blank outer diameter size and surface roughness, rolling compression diameter, blank straightening and calibration, and rust removal.
  • Metal blank rolling equipment and rolling processing method thereof Moreover, the structure is simple, the performance is reliable, and the cost is low.
  • the invention has the advantages that the simple and reliable metal blank feeding and unloading are realized, and the feeding rolling wheel does not need to be replaced within a relatively large blank size range; the rounding correction blank outer diameter is realized while the numerical control feeding is performed. Dimensions, overcome the surface defects of the blank (such as longitudinal cracks on the surface of the material), improve its roughness; at the same time as the metal blank feeding, rolling and rolling, the blank reduction process can be realized; in the metal blank delivery In the process of material, rolling and reducing diameter, the straightness and roundness of the blank can be improved; the rust removal process can be realized in the process of feeding, rolling, reducing, straightening and rounding of the metal blank.
  • the rolling rolling increases the surface hardness of the blank by 10 to 300%, and greatly reduces the occurrence of burrs in the subsequent cutting process.
  • the method, the rolling head, the processing module and the device of the invention have the characteristics of high integration, simple and reliable structure, low price, etc.
  • the processed metal blank has better quality and can match the existing one.
  • Various forging equipment and pipe processing equipment, and can replace the existing traditional feeder, drawing machine, reducer, straightening and calibration and / and descaling machine, the market is broad.
  • Figure 1 shows a prior art metal blank feeder.
  • Figure 1a is a schematic view of a conventional two-roller pressure roller feeding device.
  • Figure 1b shows a side view of Figure 1a.
  • Figure 1c is a schematic view of a conventional two-group two-roller pressure roller feeding device.
  • Figure 1d shows a prior art robotic picking device.
  • Figure 2 is a schematic view of a conventional metal blank straightening device.
  • Figure 2a is a schematic view of a conventional five-roller wheel horizontal straightening device.
  • Figure 2b shows a side view of Figure 2a.
  • FIG. 2c is a schematic view of a conventional disk drawing and reducing device.
  • Figure 2d shows a schematic view of a conventional steel pipe straightening device.
  • Figure 3 is a schematic illustration of an embodiment of a rolling head in accordance with the present invention wherein the number of rolling wheels is five.
  • Figure 4 is a schematic illustration of another embodiment of a rolling head in accordance with the present invention wherein the number of rolling wheels is four.
  • Figure 5 is a schematic view showing the structure of a rolling head by transmitting power through a worm wheel according to the present invention.
  • Figure 5a shows a schematic view of a structure with a worm wheel rolling head.
  • Figure 5b is a front elevational view of the rolling disk of Figure 5a.
  • Figure 5c is a side view of the structure of Figure 5b.
  • Figure 5d is a front elevational view of the worm gear of Figure 5a.
  • Figure 6 is a schematic view showing the structure of the rolling wheel shaft in the rolling head of Figure 5a.
  • Figure 6a shows a front view of the rolling axle structure.
  • Figure 6b shows a top view of Figure 6a.
  • Figure 6c is a side view of Figure 6a.
  • Figure 6d is a schematic view showing the deflection angle ⁇ of the rolling wheel shaft and the cylindrical rolling wheel in the vertical direction from the metal blank axis.
  • Figure 6e is a top view of Figure 6d.
  • Figure 6f is a side view of Figure 6d.
  • Fig. 7 is a schematic view showing the structure of a rolling head for transferring rotational power by a worm wheel worm according to the present invention.
  • Figure 8 is a block diagram showing an embodiment of a rolling head further including the axial rolling of the adjusting disk on the basis of Figure 7 in accordance with the present invention.
  • Figure 9 is a schematic view showing the structure of a rolling plate equipped with six rolling wheels in the rolling head of Figure 8.
  • Figure 9a shows a front view of the rolling plate.
  • Figure 9b shows a side view of Figure 9a.
  • Figure 10 is a schematic view showing the structure of the adjusting disc in the rolling head of Figure 8.
  • Figure 10a shows a front view of the adjustment disk.
  • Figure 10b is a side view of Figure 10a.
  • Figure 11 is a view showing the structure and installation of the rolling wheel shaft in the rolling head of Figure 8.
  • Figure 11a is a front elevational view of the rolling axle structure.
  • Figure 11b is a top view of Figure 11a.
  • Figure 11c is a side view of Figure 11b.
  • Fig. 11d is a schematic view showing the deflection angle ⁇ in the vertical direction between the rolling wheel shaft and the circular table rolling wheel and the metal blank axis.
  • Figure 11e is a top view of Figure 11d.
  • Figure 11f is a side view of Figure 11d.
  • Figure 12 is a schematic view showing the structure of the rolling wheel having the lead-in angle of the present invention, the rolling wheel shaft and the rolling wheel and the rolling wheel shaft seat (sliding block).
  • Figure 12a is a schematic view of the roller structure of the present invention and its engagement with a needle bearing.
  • Figure 12b is a schematic view showing the cooperation of the rolling wheel, the needle bearing and the rolling wheel shaft of the present invention.
  • Figure 12c is a cross-sectional view of the roller housing (sliding block) that mates with the rolling axle.
  • Figure 13 is a schematic illustration of an embodiment of a rolling apparatus having a numerically controlled rolling feed function in accordance with the present invention.
  • Figure 14 is a schematic view showing an embodiment of a rolling apparatus having a numerically controlled rolling feeding, reducing diameter, straightening, calibration, and rust removing functions according to the present invention.
  • Figure 15 is a schematic view showing an embodiment of a rolling apparatus equipped with a numerically controlled rolling feeding, reducing diameter, straightening and rounding function of a disk according to the present invention.
  • Figure 16 is a schematic view showing an embodiment of a rolling line having metal steel pipe alignment, reduction, straightening and calibration, and rust removal function according to the present invention.
  • Figure 17 is a schematic view showing another embodiment of a rolling line having metal pipe straightening, reduction, straightening and calibration, and rust removing function according to the present invention.
  • smooth outer surface means that the outer surface does not have a specific pattern, but in a particular embodiment the outer surface is smooth to provide a certain surface roughness.
  • front end or “upstream” refers to the portion of the metal blank that is first contacted during the processing or production process.
  • the term "parity and dissimilarity" is used in any of the two rolling heads that are joined in the processing order.
  • the number of rolling wheels contained in one of the rolling heads is an odd number
  • the rolling wheel included in the other rolling head The number is even.
  • round table rolling wheel refers to a rolling wheel having a rounded shape, and the diameter of the upper bottom circle (also referred to as “upper diameter”) is smaller than the diameter of the lower bottom circle (also referred to as “lower bottom diameter”).
  • the lower base circle and the upper bottom circle of the truncated-shaped rolling wheel are selected from well-known common terms.
  • the truncated-shaped rolling wheel includes an introduction portion and a rolling portion, and in this case, the lower bottom circle, the upper bottom circle, the upper bottom diameter, and the lower bottom diameter refer to the rolled portion. Parameters.
  • rolling wheel inscribed circle is understood to mean a circle having the smallest outer diameter tangent to each of the rolling wheels in the rolling head, or a circle formed by the contact of the rolling wheel with the outer circle of the blank.
  • the diameter of the inscribed circle of the rolling wheel can be adjusted to be less than or equal to the outer diameter of the metal blank and concentric with the metal blank.
  • inclined plane means a plane that takes a reference horizontal plane from the axis of the rolling wheel and has an axial feed angle with the horizontal plane.
  • the term "spinning direction" of the rolling wheel refers to the direction in which the rolling wheel is left-handed or right-handed.
  • the deflection angle- ⁇ angle is left-handed, and the left-right rotation angle may be different.
  • the two lines (assuming a line and b line) according to the present invention have a deflection angle in the "vertical direction", which can be understood by the fact that in the XYZ three-dimensional coordinate system, the vertical plane of the a line and the vertical plane of the b line are parallel.
  • the plane of the line is set to the XY plane, and the angle between the two lines (a' line and b' line) formed by the a line and the b line projected along the Z axis in the XY plane is the a line and the b line are "vertical".
  • the direction of deflection that exists in the direction For example, the axis of the rolling wheel and the axis of the processed blank have a deflection angle of not more than 9 degrees in the vertical direction.
  • the axis perpendicular to the axis of the rolling wheel and the processed blank Ax is vertical
  • the plane in which the faces are parallel is set to the XY plane, and the angle between the axis of the rolling wheel and the axis of the processed blank projected along the Z axis in the XY plane is not more than 9 degrees.
  • the metal according to the present invention refers to a metal which is industrially cold-formable, such as steel, copper or aluminum.
  • the blank according to the present invention refers to various metal bars, metal disks and metal pipes having a circular cross section.
  • the blanks may be solid or hollow, and the hollow metal blanks are also referred to as metal pipes in the present invention.
  • the rolling feed according to the present invention refers to a radial uniform and reasonable rolling process of the metal blank by using a rolling wheel, and the rolling process is included in the process, and therefore, the invention is described in the present invention.
  • the term “rolling feed” process can also be understood as the “rolling and rolling feed” process.
  • the rolling head according to the present invention refers to a device for performing rolling processing on a metal blank, and the main body member includes a plurality of rolling wheels for rolling or/and rolling for supporting or fixing the rolling wheel Wheel seat.
  • the rolling wheel is coupled to the rolling wheel base by a rolling wheel shaft and equally distributed around the blank machining axis direction.
  • the rolling head can also be equipped with other mechanical, hydraulic, pneumatic or electric means, as required, so that the rolling wheel seat and the rolling wheel can be moved in the radial direction of the blank to be processed with a reasonable rolling pressure. And rolling time to accommodate the rolling of blanks of different materials or properties. Other equipment can be equipped if necessary.
  • the rolling processing module of the present invention refers to a rolling head or a plurality of rolling heads or a combination of a rolling head and other processing devices (or molds), each of which can be completely independent or set.
  • Other processing devices within a monolithic structure include, but are not limited to, drawing dies, metal brushes or heating units, and the like.
  • a wire drawing die is disposed concentrically between the first rolling head and the second rolling head, under the axial feeding force of the first and second rolling heads, The blank is precisely drawn by a wire drawing die.
  • the axial feed rate of the blank in the other processing apparatus of the present invention is zero because there is no self-powering.
  • the first rolling head refers to a rolling head which first contacts the blank in all the rolling heads of the present invention, and the second and third rolling heads are similarly pushed.
  • the rolling process by the "first rolling head” is also referred to as the “preform rolling” process, or the “first rolling head” is referred to as “preforming rolling”.
  • “Head”, or “first rolling wheel” is referred to as “preformed rolling wheel”. Preforming can be understood as a part or all of rolling feed or rolling or reducing diameter.
  • the rolling process by the "second rolling head” is referred to as the "subsequent forming rolling” process, or the “second rolling head” is referred to as the “subsequent forming rolling head”, and the “second rolling wheel” is referred to. “called “subsequent forming rolling wheel”.
  • first rolling head described in the invention achieves only the function of feeding or rolling or reducing the diameter, even when adding the other processing means, to achieve straightening and rounding or/and rust removal, nor does it mean All of the technical effects described in the present invention can be achieved or achieved by relying only on the "second rolling head”.
  • the first or second or more rolling head structures of the present invention may be the same or similar.
  • the rolling head of the invention rotates and the hollow blank does not rotate or the rolling head of the invention does not rotate and the hollow blank rotates relative, is also convertible or both rotate.
  • FIG. 1 is a schematic view of a metal blank feeding device in a conventional cold heading machine or a warming machine or a hot heading machine.
  • FIG. 1a is a schematic view of a conventional upper and lower symmetrical grooved roller feeding device
  • FIG. 1b is a side view of FIG. 1a
  • FIG. 1c is a conventional two sets of vertically symmetrical grooves.
  • Schematic diagram of the roller wheel feeding device, and Figure 1d shows a conventional robot hand feeding device. The diameter and accuracy of the arc diameter in the roller or the groove of the manipulator have a great influence on the feeding quality.
  • the blank When there is an error in the diameter of the wire material and the diameter of the upper and lower feed wheel grooves or the inner diameter of the manipulator, the blank may be injured, the blank may be deformed or the feed may be inaccurate, and even the blank may not be fed.
  • the contact between the robot and the blank due to the difference in speed between the robot and the stationary blank at the beginning of the gripping, the contact between the robot and the blank instantaneously causes slippage, which in turn affects the feeding accuracy.
  • Figure 2 is a schematic view of a conventional metal blank straightening device.
  • Figure 2a shows a schematic diagram of a set of five roller compactor horizontal blanking devices in a conventional cold heading machine or warming machine or hot heading machine.
  • Figure 2b shows a side view of Figure 2a.
  • different blank diameters require matching grooved roller rolls of different sizes to match, and there are the same problems as the feed device.
  • the existing steel mills are oxidized and bumped during production and transportation, resulting in oxide layer, surface cracks or cracks on the surface of the metal blank.
  • the prior art uses the material drawing or shrinkage straightening or pickling shown in Figure 2c. And other methods to solve.
  • Figure 2d is a schematic view of a prior art device for straightening and rounding a steel pipe.
  • the manner and principle of drawing and reducing the diameter of the steel pipe are as described in Fig. 2c, and will not be described again.
  • problems due to the structure and working mode of the roller, there will be problems such as low alignment accuracy.
  • horizontal and vertical multi-group alignment methods are used to solve the problem, but the equipment is large and the process is complicated.
  • the main spirit of the metal blank rolling feeding, reducing diameter, straightening and rounding and rust removing process of the invention is that the matching of one or more rolling heads and the smoothing of the outer surface of the rolling head by the rolling roller axial feeding roller Pressure, by the shape of the rolling wheel in the rolling head (round table or cylindrical shape), the difference between the diameter of the bottom circle and the upper and lower bottom circles (or taper), the length of the rolling wheel, the deflection angle of the rolling wheel axle, The radial position of the rolling wheel, the rotational speed of the rolling head and the number of rolling rollers in different rolling heads are matched to achieve the rolling, rolling and reducing of the metal blank; and the axial feed speed of the adjacent rolling heads The difference is matched with the rolling wheel rotation or / and other machining equipment to achieve straightening, calibration or rust removal.
  • the blank is axially rolled by a rolling head formed by five rolling wheels provided with a deflection angle distributed in the circumferential direction.
  • the rolling wheel is a cylindrical rolling wheel
  • the rolling head only realizes rolling feeding.
  • the radial rolling pressure applied to the blank by the five rolling wheels is varied by adjustment of the radial position of the rolling wheel.
  • the value of the roll pressure is the process value. Specifically, depending on the material and feed rate, the minimum radial force feed is used to ensure that the outer surface of the blank is not crushed or injured or/and slipped.
  • the radial force is increased, and the size of the inscribed circle of the rolling wheel is smaller than the outer diameter of the blank, and the difference is the rolling process value, such as 0.01 mm or 0.1 mm or 1 mm.
  • the difference between the diameter of the upper bottom and the diameter of the lower bottom is the value of the reduction of the blank or the rolling extrusion.
  • the original diameter of the blank is 18 mm and the process requires drawing to 17.2 mm.
  • the diameter of the upper bottom of the truncated roller is 20 mm, the diameter of the lower bottom should be 19.2 mm.
  • the precise feeding and reducing diameter of the metal blank are realized, and the blank is rolled by the smooth round-shaped rolling wheel, thereby improving the outer diameter size and surface smoothness of the metal blank, eliminating surface cracks, and improving the blank.
  • Surface hardness which is of great benefit to subsequent cutting and upsetting processes.
  • the rolling feeding adopts the precise control of the servo motor, and the feeding precision and efficiency are superior to the prior art, and the structure is simple and reliable.
  • the rolling wheel has different degrees of size and smoothness correction or even reduced diameter for the blank, which is obviously superior to the prior art.
  • the rotational speed and the number of turns of the rolling head control the speed and length accuracy of the blank rolling feed.
  • the blanks are repeatedly or separately rolled, fed, rolled, and rolled to achieve the process requirements, and the principle is the same as the single rolling head working principle.
  • the axial traction force of the second rolling head or the adjacent front rolling head is applied, and the blank is stretched between the two rolling heads. Feeding.
  • the axial spacing between the two sets of rolling heads is the axial spacing between the tail of the first rolling wheel and the head of the second rolling wheel, and is also the length of the blank straightening.
  • a prior art drawing die is fitted between the first rolling head and the second rolling head so that the blank can be corrected or rolled or reduced in three times during the entire rolling feed processing. .
  • the interval between the three processing units and the distance are precisely set according to material and process requirements.
  • the prior art can be further matched between the first rolling head and the second rolling head, for example, an annular metal brush rust removing device is added, so that the blank can be effectively carried out during the rolling feeding of the blank.
  • Surface mechanical descaling treatment It is particularly pointed out that the rotation directions of the rolling wheels in the first and second rolling heads are preferably different from each other and the rotational speeds are different, and the different values of the rotational angle and the rotational speed are process values, depending on Blank material, diameter and oxide layer.
  • the blank is continuously numerically screwed, and the surface oxide layer is continuously peeled off by the action of the annular metal brush to achieve mechanical rust removal.
  • Increasing the third or / and fourth or even more rolling heads can effectively perform multi-stage CNC screwing to achieve the rust removal effect, and adding other mechanical or chemical means can increase the rust removal effect.
  • the rolling feed method of the present invention can achieve separate or combined precision feeding, rolling, reducing diameter, straightening and calibration, and rust removal.
  • the pre-rolling process in the rolling feeding process of the present invention can be realized by one pre-rolling or by multiple rolling, for example, performing the first, second, and secondary corrections of the pre-rolling. Subsequent feeding, rolling, reducing, straightening and calibration, and rust rolling.
  • the number of rolling wheels in the front and rear rolling heads is preferably odd-even, that is, with preformed rolling and subsequent forming
  • the number of pre-formed rolling rolls is different from the number of odd rolls of subsequent forming rolls.
  • the axial feed rate control and the rolling wheel length design can significantly improve the processing yield of the hollow product.
  • the number of first rolling wheels is three, and the number of second rolling wheels is four or six.
  • the number of the first rolling wheels is four, and the number of the second rolling wheels is three or five.
  • the number of the first rolling wheels is six, and the number of the second rolling wheels is five. It is three.
  • the number of the first rolling wheels is nine, and the number of the second rolling wheels is four, six or eight.
  • the spinning blanks in the multi-pass rolling of the hollow blank do not overlap each other, and a hollow blank with irregular polygons on the unit section is pre-rolled to become a controllable regular polygon, and a part of the hollow blank remains.
  • the stress and stress distribution are more uniform, correcting the out-of-roundness of the blank; then the regular polygon is matched with the number of subsequent forming rolling wheels, so that the original residual stress of the hollow blank is further released, thereby improving the out-of-roundness of the hollow blank and Straightness.
  • the relationship between the number of pre-formed rolling wheels, the taper and the length thereof and the number of subsequent forming rolling wheels and the length of the product can be based on the (hollow) blank outer diameter, wall thickness and material, and The roundness, the diameter of the rolling wheel, and the form of the rolling wheel are required to be increased or decreased or matched.
  • the rolling wheel form is preferably a structure in which the rolling wheel is integrated with the rolling wheel shaft. In this way, the number of rolling wheels can be effectively increased, which is advantageous for reducing the number of rolling times and extending the life of the rolling wheel.
  • Figure 5 shows a schematic view of a rolling head of the present invention, in which only the rolling wheel 70 is used.
  • the number of rolling wheels 81 is six, and the six rolling wheels are equally distributed in the hollow blank machining axis.
  • the power motor drives the rolling head to rotate by the worm wheel 636, so that the rolling wheel 81 rotates around the rolling wheel shaft 83.
  • Figure 8 shows a schematic view of a rolling head of the present invention comprising a radial adjustment disk 76 and a rolling wheel 70, comprising six rolling wheels 81 which are equally distributed over the hollow blank machining axis. All around.
  • the power motor is rotated by the rolling head driven by the worm gears 631 and 636, thereby rotating the rolling wheel 81 around the rolling wheel shaft 83.
  • the first or second rolling head of the present invention may take the same or similar structural design.
  • both the first rolling head and the second rolling head may be of a structural design with a rolling wheel and an adjustment disk or a structural design with only a rolling disk.
  • Figures 5-12 illustrate in further detail an embodiment of a general rolling head structure of the present invention.
  • Figure 5a is a schematic view of the construction of an embodiment of an axially rolled rolling head in accordance with the present invention.
  • Figure 5b is a front elevational view of the rolling wheel of the rolling head of Figure 5a with six rolling wheels
  • Figure 5c is a side view of the rolling wheel
  • Figure 5d is a front elevational view of the structure of the worm wheel of Figure 5a.
  • the rolling head includes front and rear rolling wheels 70 (70A, 70B), a worm wheel 636, a rolling wheel shaft 83 matched with the radial groove 71 on the rolling wheel and its rolling wheel 81 and a connecting pin shaft 702 matching the pin hole 701 of the rolling wheel;
  • the rolling wheel center has a a workpiece machining working hole 704, the rolling groove radial groove 71 and the mounting surface of the rolling wheel are an inclined plane 703;
  • the rolling wheel shaft 83 passes through the radial direction on the rolling wheel
  • the two end inclined planes 832a and 832b of the groove 71 are mounted on the rolling wheel radial groove 71, and the radial groove 71 is shaped and sized to axially mount the rolling wheel shaft 83.
  • the two rolling disks 70A and 70B are connected and fixed to each other on both sides of the worm wheel 636 by the rolling wheel connecting pin shaft 702, and form a rolling head coaxially.
  • a rolling time and length position controller (not shown) is provided at one end of the rolling head for controlling the forming rolling time and the rolling axial length.
  • Figure 6 is a three-dimensional view of the structure of the rolling wheel shaft of the rolling head of Figure 5 and a vertical deflection angle ⁇ of the rolling wheel shaft and the blank axis, the axial feed deflection angle being equal to the ⁇ angle.
  • 6a is a front view of the rolling wheel axle
  • FIG. 6b is a plan view of the rolling wheel axle
  • FIG. 6c is a side view of the rolling wheel axle.
  • the two ends of the rolling wheel shaft 83 have upper and lower inclined planes 832a and 832b, and the upper and lower inclined planes are parallel to each other, and the x' axis of the inclined plane forms a deflection angle ⁇ with the axis x of the rolling wheel shaft.
  • FIG. 6d is a schematic view showing the deflection angle ⁇ of the rolling wheel shaft and the cylindrical rolling wheel in the vertical direction with the metal blank axis.
  • Figure 6e is a plan view of Figure 6d and
  • Figure 6f is a side view of Figure 6d.
  • Figure 6d clearly shows that when the rolling wheel is mounted concentrically in the center of the rolling wheel axle, the rolling wheel axis and the inclined planes 832a, 832b form a deflection angle ⁇ .
  • the rolling wheel axle is perpendicular to the inclined plane 832a/832b, the axial direction of the rolling axle after the installation is axially formed with the axial direction of the blank.
  • the blank can be axially Moved.
  • the greater the deflection angle ⁇ the faster the axial movement of the blank, generally not exceeding 9 degrees, preferably less than 3 degrees. If the ⁇ angle is set to right-handed, the - ⁇ angle is left-handed, and the left-right direction of rotation can be different.
  • Fig. 7 is a schematic view showing the structure of a rolling head for transferring rotational power by a worm wheel worm according to the present invention.
  • the rolling head further includes a worm or gear 636, a shifting device 21 and a power motor (not shown), and one end of the worm or gear 636 is mechanically coupled with the output shaft of the shifting device 21 The other end is mechanically coupled to the worm wheel or gear 636.
  • the power motor drives the worm or gear 636 to rotate by the shifting device 21, and the pulsator or gear 636 drives the rolling wheel 70 to rotate.
  • Figure 8 is a perspective view of a rolling head further including the axial rolling of the adjusting disk on the basis of Figure 7, and Figures 9 to 11 are the rolling plate and the adjusting plate and the rolling in the rolling head of Figure 8. Schematic diagram of the pressing shaft and the rolling wheel.
  • Figure 9 is a schematic view showing the structure of the rolling wheel of Figure 8.
  • Figure 9a is the front view of the rolling wheel
  • Figure 9b is a side view of the rolling wheel.
  • the rolling wheel of Figure 9 is substantially similar in construction to the rolling wheel of Figure 5, except for the shape of the radial groove 71.
  • Figure 9 is a combination of a cylindrical body and a rectangular parallelepiped. The cylindrical body is present for mounting a rolling wheel shaft having a cylindrical end, and the rolling groove radial groove 71 of Figure 5b is an approximately rectangular parallelepiped. Fit with a rolling axle with an approximately rectangular end. Other structures are the same and will not be described again.
  • FIG. 10 is a schematic view showing the structure of the adjustment disk of Figure 8.
  • 10a is a front view of the adjustment disc structure
  • FIG. 10b is a side view of the adjustment disc structure.
  • the radial adjustment device includes front and rear adjustment plates 76A and 76B, and a fixed connection pin 763 matching the pin hole 761 of the adjustment plate; the center of the adjustment plate is provided with a workpiece machining working hole 764 matching the rolling wheel and the same
  • the adjusting discs of the rolling discs are positioned to mount the blind holes 766; the adjusting discs 76 are respectively mounted on the outer side of the rolling discs and coaxially connected to each other by the adjusting disc pins 763 through the adjusting disc positioning blind holes 766 And forming a shaft hole fit with the mounting blind hole 766; rotating the adjusting plate 76, mounting a sliding block 836 (shown in FIG.
  • the pressure roller shaft 83 is radially moved in the radial groove 71 of the rolling wheel 70 to form a rolling head with an adjustable radial position of the rolling wheel; in addition, a roller is mounted on the side where the rolling head is subjected to the rolling process.
  • the pressure position photoelectric sensing controller (not shown) is used to control the rolling time and rolling length.
  • the power motor is rotated by the rolling head driven by the worm gears 631 and 636, thereby rotating the rolling wheel 81 around the rolling wheel shaft 83.
  • Figure 11 is a schematic view showing the configuration of the rolling wheel axle of the present invention and the deflection angle.
  • Figure 11a is a front view of the rolling wheel axle
  • Figure 11b is a plan view of the rolling wheel axle
  • Figure 11c is a side view of the rolling wheel axle
  • Figure 11d is a schematic view showing the angle ⁇ of the rolling wheel shaft and the blank axis in the vertical direction
  • Figure 11e is a plan view of Figure 11d
  • Figure 11f is a side view of Figure 11d.
  • the rolling axle in Figure 11 differs from the rolling axle in Figure 6 in the two ends of the shaft. In one embodiment, the two ends of the rolling axle in Figure 6 are rectangular, while in Figure 11, the two ends of the rolling axle are cylindrical.
  • the shape of the two ends of the rolling axle is not limited to rectangular or cylindrical, depending on its design and installation with the radial groove of the rolling plate and the adjusting plate.
  • the setting principle of the deflection angle of the rolling wheel is exactly the same as that of FIG. 6, and will not be described again.
  • FIG. 12 is a schematic illustration of the cooperation of a rolling wheel, a needle bearing and a rolling wheel shaft in accordance with the present invention.
  • 12a is a schematic view of a structure of a rolling wheel according to the present invention, the rolling wheel is divided into a lead-in portion and a rolling portion, and the lead-in portion is a round mesa, preferably a round table with a thread on the outer surface, and the truncated cone is 1 °-29°, generally 13°.
  • Rolling part round table taper or upper and lower bottom diameter, rolling wheel length, depending on the diameter reduction and rolling process value, generally 1 ° ⁇ 3 °.
  • Fig. 12b is a schematic view showing the structure of the rolling wheel 8 and the needle bearing 831.
  • the main purpose of the rolling wheel and the bearing is to reduce the rotational friction of the rolling wheel.
  • the rolling wheel 81 is freely mounted on the rolling wheel shaft 83 via a needle bearing 831, and the rolling wheel shaft 83 and the rolling wheel 81 can also be matched by balls, alignment or other bearings.
  • Figure 12c is a cross-sectional view of the slider associated with the rolling axle, as shown in Figure 12c, the cylindrical end 833 of the rolling axle 83 is mounted in the bore of the (position adjustment) slider 836 to form a shaft bore fit;
  • Block 836 is mounted in an arcuate slot 762 (shown in Figure 10a) of the dial that forms a cylinder that mates with the arc.
  • a rolling position controller (not shown) is provided at the end of the rolling head for controlling the rolling time and the rolling length.
  • the rolling wheel is floatingly attached to the equipment frame (not shown) by a rolling head frame 68 (shown in Figures 13 and 14).
  • the adjusting disc is rotationally adjusted with respect to the rolling wheel, and the adjusting disc has a cam device (not shown), and the adjustment of the radial distance of the rolling wheel and the radial opening of the rolling head are controlled by the cam curve.
  • a relative position detecting device (not shown) may be provided between the rolling wheel and the adjusting plate for numerical control purposes.
  • the rolling head of the present invention may be of a structural design with a rolling disc and an adjusting disc or a structural design with only a rolling disc.
  • the rolling head is driven by a power servo motor, and the rolling head is rotated by a mechanical transmission such as a reduction gear box or a worm gear.
  • the preformed rolling head and the subsequent forming rolling head of the present invention may be separate or separate, or may be combined into one. When the two are combined into one, the process can be effectively saved, and the products to be processed are formed by sequential rolling, and the overall design is more compact and convenient for transportation and installation.
  • FIG. 13 is a schematic block diagram of an embodiment of a separate rolling process module in accordance with the present invention.
  • a rolling head is mounted on the upper part of the rolling head by a (servo) power motor 22, and the rotating power is transferred to the rolling plate 7A/7B through the shifting device 21 and the worm 631 and the worm wheel 636, respectively, and is driven to be rolled.
  • the preformed rolling head on the headstock rotates to complete the rolling feed, outer diameter correction, diameter reduction and surface rolling.
  • a mechanical processing device such as a wire drawing die or a ring metal brush rust removing device, can be added to achieve the effects of blank straightening, reducing diameter and derusting process.
  • Figure 14 is a schematic view showing the structure of a rolling processing module in which a preformed rolling head 7A and a subsequent forming rolling head 7B are separated.
  • a preformed rolling head with 5 rolling wheels 81 7A On the right is a preformed rolling head with 5 rolling wheels 81 7A, on the left is a subsequent forming rolling head 7B having four rolling wheels 81, which adopt a rolling head structure similar to that of Fig. 8, specifically, a radial groove in each rolling head ( 71)
  • the mounting surface with the rolling wheel (81) may be an inclined plane (703) or a conventional plane, and the specific structural design is not limited to the rolling head structure directly disclosed in the present invention.
  • the rolling head 7A and the rolling head 7B are respectively controlled by respective servo motors.
  • the outer diameter of the blank 40 is finely rolled to the outer diameter tolerance required for the process.
  • the surface is squeezed and rolled to achieve the three objectives of feeding, outer diameter correction and rolling surface.
  • the motor speed of the rolling head 7B is increased, the axial speed of the blank 40 therein will be higher than the axial speed of the blank 40 in 7A, thus generating an axial pulling force between 7A and 7B, according to two points.
  • the principle of the first line the blank is naturally pulled and straightened.
  • a wire drawing die can be added between 7A and 7B to further improve process and precision when needed.
  • Additional mechanical processing devices such as metal brush rust removal devices, can be added between the two rolling heads to complete the processes of roll finishing, reduction, straightening and calibration, and rust removal.
  • Processing time and speed are controlled by the control system and the spirit of the invention. It should be pointed out that it is preferred to use a rolling head with adjustable radial position to adjust the radial direction of the rolling wheel according to the outer diameter of the steel tube blank, its out-of-roundness, wall thickness and material or/and subsequent rolling requirements. Position; of course, when processing hollow blanks, the number of rolling wheels in the front and rear processes must be matched evenly and the total number of rolling wheels.
  • Figure 15 is a schematic view showing an embodiment of a numerically controlled rolling feeding, reducing diameter, straightening and calibration, and rust removing function device for a disk according to the present invention.
  • the process of the feeding device on the existing cold pier machine will not be described here.
  • the disk material when the disk material is introduced into the rolling head 7A, it is gradually fed to the rolling head 7B under the control of the servo motor.
  • the outer diameter of the disk 40 Under the action of the truncated rolling wheel in the rolling head 7A, the outer diameter of the disk 40 is finely rolled to the outer diameter tolerance required for the process.
  • the surface is squeezed to achieve the three objectives of feeding, OD correction and rolling surface.
  • the rotational speed of the rolling head 7B is higher than the rotational speed of the rolling head 7A, and the axial speed of the blank 40 in 7B is higher than the axial speed of the blank 40 in 7A, so that the axial direction between 7A and 7B
  • the blank is naturally straightened and straightened.
  • a wire drawing die head or / and ring can be added between 7A and 7B when needed
  • the shaped metal steel brush further enhances the effect of reducing the diameter or straightening.
  • the numerical control screwing is realized, and the left and right rotation angles may be different or may be In the same way, the CNC screwing increases the rust removal effect of the blank.
  • Figure 16 is a schematic view showing an embodiment of a metal steel pipe reduction, straightening and calibration, and rust rolling production line according to the present invention.
  • the working principle of 16 is similar to that of FIG. 15 and will not be described again.
  • the blank is a hollow steel pipe, so the number of rolling wheels in 7A and 7B is odd and even, that is, when the number of rolling wheels in the preform rolling process is an odd number, in the rolling feeding process
  • the number of rolling wheels must be an even number; when the number of rolling wheels in the preforming rolling process is even, the number of rolling wheels in the adjacent rolling feeding process must be an odd number.
  • odd-even matching by effectively controlling the axial feed speed and the length of the rolling wheel, the yield of the hollow product can be significantly improved.
  • the steel pipe is straightened and rounded, and the rust is generally not required for the feeding accuracy. Therefore, the mutual rotation speed of the 7A and 7B or the difference between the deflection angle and the rotation angle of the rolling wheel in the rolling head is controlled.
  • the axial spacing between the rolling heads, the number of rolling wheels, the length and the outer diameter are important for the process.
  • Figure 17 is a schematic view showing another embodiment of a metal steel pipe reduction, alignment and calibration, and a rust-reducing rolling line according to the present invention. Different from the rolling head/group setting of Fig. 16, an additional two rolling heads are added to increase the process effect, and the principle is the same as that of Fig. 16, and will not be described again.
  • the 42CrMn low carbon alloy disk with a wire diameter of 16mm + 0.70/-0.10 is a commonly used material for automotive fasteners and is used for cold heading to produce M14 automotive engine fasteners.
  • the conventional prior art process uses a drawing machine (shown in Fig. 2c) to accurately pull the disk through the drawing die 80 to the required 16 mm + 0.10 / -0.10, and then enters the cold heading machine for cutting. Forging processing. Under the power traction of the cold head feeding mechanism (shown in Figure 1a), the process stock 40 is subjected to a 5-roller horizontal alignment group (shown in Figure 2a) and a 5-roller vertical alignment group (not shown). Straighten, then cut and upset.
  • one end of the metal blank 40 is introduced into the rolling head 7A of the present invention, and under the action of the power 22, the rolling head equipped with five rolling wheels rotates, and the blank 40 is axially advanced. It is fed to the cold head feeding mechanism 7B (a rolling head having six rolling wheels).
  • the disk 40 is precisely rolled from 16 mm + 0.70 / -0.10 to 16 mm + 0.10 / -0.10, and then enters the round table of the rolling head 7B.
  • the second precision rolling of the pressure roller causes the diameter of the metal blank 40 to be fined to 16 mm + 0.05 / -0.05.
  • the axial offset angles of the rolling wheels in the rolling heads 7A and 7B are set to be the same, and the servo motor speed on the respective rolling heads is controlled by the numerical control system, so that the 7A rotation speed is low.
  • about 10-15% due to the re-rolling, straightening and calibration of the disc before cutting, and the rust removal, the surface of the disc is slightly scratched, cracked and even the surface oxide layer is squeezed to overcome.
  • the cut surface is not only improved in flatness compared with the existing straightening process, but also has no burr phenomenon, and the molding precision and coldness of the cold rolled molded part are not only improved when the cold cut is cut.
  • the die life of the equipment is of great benefit.
  • the numerical control system precisely controls the rolling head 7B/7A by the servo motor under the action of the angular encoder (not shown). The rotational speed thus precisely controls the feed length of the disk 40.
  • the radial position of the rolling wheel or the size of the cutting circle in the rolling wheel can be adjusted by the radial adjusting device (shown in Fig. 8), and the diameter of the disk can be processed to a minimum of 5 mm and a maximum of 30 mm.
  • the radial adjusting device shown in Fig. 8
  • the numerical control system can realize the reverse rotation of the rolling head, so that the metal blank 40 can quickly exit the cutting device.
  • This function especially for the heated cutting device, effectively protects the disk heating unit from overheating of the disk or damage to the heating device due to residual heat in the heating device when the device is shut down.
  • the first rolling head 7A and the second rolling head 7B are respectively disposed on the same frame 1.
  • the structure of the rolling heads 7A and 7B is the same as that of the aforementioned rolling head module, and the number of rolling wheels in the rolling head 7A and the rolling head 7B is 5 and 6 or 8 or 10 respectively, and the rolling is performed.
  • the wheel is a smooth round table roll
  • the pressure roller has a deflection angle of 1° 10” with the rolling core axis of the rolling head 7A, and a deflection angle of the rolling wheel in the rolling head 7B is 1° 30′.
  • the metal blank 40 One end is placed on the clamping device 31, one end is introduced into the rotating rolling head 7A for the first rolling feeding reduction diameter finishing, and the rolling wheel in the rolling head 7A is rotated to make the steel tube blank rely on the clamping device
  • the carriage 10 is axially moved on the plane guide rail 11, and is gradually introduced into the rotating rolling head 7B for the second rounding rolling. Since the deflection angle of the rolling head 7A is smaller than the deflection angle 20' of the rolling head 7B, the blank 40 produces a forward tensile force between the tail of the 7A rolling wheel and the head of the 7B rolling wheel, the two points are in a line, the blank 40 is gradually straightened. When the second rolling is completed, the rolling is completed.
  • the steel tube is again clamped into the automatic clamping device 32 so that the axial movement of the slide on the guide rail 11 by the rolling axial force and the support of the clamping devices 31 and 32 is completed until the rolling of the entire steel tube blank is completed.
  • the axial offset angle of the rolling wheel in the head 7A and the rolling head 7B, the rotational speed, the number of rolling wheels, the length or/and the rolling head The axial spacing is different depending on the wall thickness of the steel pipe, the diameter, the straightness of the steel pipe, and other process parameters. If the rounding die 80 is added, the blank 40 can be recalibrated and calibrated again.
  • the number of rolling wheels in the rolling head described in this embodiment has the following characteristics: the number of rolling wheels included in any two rolling heads that are connected back and forth in the processing order is odd and odd.
  • the rolling hollow metal blank according to the present invention is suitable for the direct rolling of the external thread of the pipe, and the rolling used in the external thread forming rolling.
  • the number of wheels, which is used in the final step of the rolling process used in the present invention, must be odd and even.
  • the deflection angle of the rolling head 7A is 1°05' and right-handed
  • the deflection angle of 7B is 1°40' and left-handed
  • the deflection angle of 7C is 2°10' and right-handed
  • the deflection angle of 7D is 3. °10' and left-handed.
  • the number of rolling wheels may be the same or there is no parity matching requirement, but for a hollow blank, according to a part of the spirit of the present invention, the number of rolling wheels should be parity. Number matching.
  • the rolling heads of the rolling wheel may be arranged horizontally or vertically; for example, when the rolling wheel adopts a graphic drawing, the rolling feeding is aligned and rounded or/and rusted or/and After rust removal, patterned bars can be processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Forging (AREA)

Abstract

一种金属毛坯滚压加工模块、设备及其生产线,以及运用所述金属毛坯滚压加工模块、设备及其生产线进行滚压送料、缩径、校直、校圆或除锈加工的方法。使用滚压加工模块对所述金属毛坯(40)进行轴向滚压可实现滚压送料、滚光或者缩径;进一步对滚压加工模块中的滚压轮(81)进行合理设置和旋转控制可以实现金属毛坯校直、校圆或者除锈加工。该设备及其方法具有集成度高、结构简单可靠、价格低廉等特点,可以匹配现有各种镦锻设备和管材加工设备,可望取代现有传统的送料机、拉拔机、缩径装置、校直与校圆或/和除锈机。

Description

一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品 技术领域
本发明涉及一种金属毛坯滚压加工模块以及用该设备对金属毛坯进行滚压送料、表面滚光、滚压精整、滚压缩径、校直与校圆以及表面除锈等的滚压加工方法,属于金属材料表面机械处理和镦锻、滚压与拉拔机械技术领域。
背景技术
如图1所示,现有自动镦锻机金属毛坯(盘料、棒料或者管材)送料装置,采用上下对称式沟槽形挤压式辊压轮送料或机械手抓取送料的方式。这种送料方式存在以下问题:当金属毛坯直径与送料轮沟槽直径或机械手的沟槽尺寸形状有误差时,会引起毛坯挤压受伤,毛坯变形或送料不准,甚至毛坯送不进去;对于机械手线性送料方式而言,由于机械手的起始抓取瞬间与毛坯静止状态存在速度差异,机械手与金属毛坯接触霎那间会产生打滑现象,进而影响送料精度。另外,在毛坯校直方面,如图2所示,现有技术是通过额外的一组或者多组相互垂直的由3~5个沟槽型辊压轮组成的校直滚压头来实现校直的,不同毛坯直径需要不同的校直沟槽型辊压轮与之匹配。此外,由于现有钢厂生产工艺以及运输过程中,金属毛坯表面经常会出现氧化层、微小表面裂缝或裂痕,对后续的镦锻变形工艺是个很大的技术问题,现有技术方案是靠额外的酸洗、拉拔工艺或者直接去除此段毛坯来解决。然后,现有技术对于毛坯的外径尺寸控制也是通过拉拔工艺进行处理的。最后,由于受限于现有材料处理和送料工艺,金属毛坯切料时常常会发生毛刺现象。
金属毛坯送料精度、表面粗糙度、外径公差或/和直线度与圆度对镦锻制品或者后续其它加工制品的形状、尺寸与外观影响很大,而目前尚没有一种能集精密送料、表面尺寸与粗糙度控制、缩径、校直与校圆以及除锈功能于一体的结构简单性能可靠的工艺与设备来配合镦锻成形机和管材加工机使用。
发明内容
本发明的目的在于提供一种金属毛坯滚压加工模块以及用该设备对金属毛坯进行送料、缩径、校直与校圆或除锈的滚压加工方法。
本发明一方面提供了一种金属毛坯滚压加工模块,包含至少一个动力装置以及与所述动力装置相匹配的至少一个滚压头,所述动力装置为所述滚压头提供旋转驱动力,所述滚压头包含至少2个沿圆周布置的滚压轮,所述滚压轮轴线与所述被加工的金属毛坯的轴线在垂直方向存在偏向角,并且所述滚压轮为外表面光滑的圆柱形滚压轮或者是外表面光滑的圆台形滚压轮。优选地,所述偏向角小于9度,更优选地,所述偏向角小于3度。
进一步地,所述滚压头可以包括第一滚压轮盘、第二滚压轮盘、蜗轮或者齿轮以及连接销轴,所述动力装置驱动所述涡轮或者齿轮旋转从而带动所述滚压头旋转,所述第一滚压轮盘、第二滚压轮盘和蜗轮或者齿轮上设有相互对应的径向槽、工件加工工作孔以及销轴孔,所述滚压轮通过其滚压轮轴与所述第一滚压轮盘和第二滚压轮盘上的径向槽配合,所述径向槽与所述滚压轮的安装面是一斜平面配合;所述第一滚压轮盘和所述第二滚压轮盘通过与所述销轴孔相配的连接销轴在所述蜗轮或者齿轮二端相互连接固定,同轴心地组成滚压头,并且所述滚压轮的滚压轮轴在两端分别均具有相互平行的斜平面,所述滚压轮轴通过所述斜平面安装在所述滚压轮盘的径向槽上,由此形成了所述偏向角。
更进一步地,所述滚压头还包括第一调节盘、第二调节盘以及调节盘销轴,所述第一调节盘和第二调节盘上设有相互对应的定位安装盲孔、弧形槽、工件加工工作孔以及销轴孔,所述第一调节盘和第二调节盘通过所述定位安装盲孔分别同轴心地安装在所述第一滚压轮盘和第二滚压轮盘的外侧并用调节盘销轴相互连接,所述滚压轮的滚压轮轴的两端在所述斜平面的外侧还具有延伸部,所述滚压轮的滚压轮轴的延伸部安装在调节盘的弧形槽中,转动调节盘可以带动滚压轮的滚压轮轴在弧形槽中滑动,进而带动滚压轮的滚压轮轴在滚压轮盘的径向槽中作径向移动,进而改变所述滚压轮的径向位置或者内切圆直径。
优选地,所述的滚压轮盘和调节盘之间都有一相对转动位置角度检测装置,以实现滚压的精确控制。
在一个优选的本发明的金属毛坯滚压加工模块中,所述滚压头的数量大于2个,各个滚压头同轴心地前后设置。优选地,为使得金属毛坯在两个金属毛坯滚压加工模块之间受到拉伸,相邻的两个所述滚压头中的滚压轮具有不相等的偏向角。
本发明还提供运用前述具备至少2个滚压头的金属毛坯滚压加工模块对金属毛坯进行校直的方法,包括将金属毛坯置于加工工序前端的滚压头的滚压 轮之间并夹紧金属毛坯,将各个滚压头中的所述滚压轮的最小内切圆的直径设置为相等;启动所述动力装置,所述动力装置带动所述滚压头旋转;通过所述动力装置控制使得相邻两个滚压头中金属毛坯首先接触到的滚压头的旋转速度小于金属毛坯其次接触到的滚压头的旋转速度,由此使得金属毛坯在相邻两个滚压头之间受到轴向拉力,从而实现校直。
又提供一种运用前述具备至少2个滚压头的金属毛坯滚压加工模块对金属毛坯进行除锈的方法,包括将金属毛坯置于加工工序前端的滚压头的滚压轮之间并夹紧金属毛坯,将各个滚压头中的所述滚压轮的最小内切圆的直径设置为相等,并且相邻两个滚压头中的所述滚压轮的偏向角相反;启动所述动力装置,所述动力装置带动所述滚压头旋转;通过所述动力装置控制使得相邻两个滚压头的旋向相反,从而实现除锈。更优选地,在相邻两个滚压头之间设置有金属毛刷,运用金属毛刷进行辅助除锈。
优选地,为适应金属管的滚压加工,相邻的两个滚压头中的滚压轮在数量上奇偶相异。运用该金属毛坯滚压加工模块对金属管进行校圆的方法包括,将所述金属管置于加工工序前端的滚压头的滚压轮之间并夹紧金属管,启动所述动力装置,所述动力装置带动所述滚压头旋转;将各个滚压头中的所述滚压轮的最小内切圆的直径设置为相等,由于相邻两个滚压头的滚压轮数量上奇偶相异,滚压过程中相邻两个滚压头在金属管上形成的滚压螺旋线不同,由此实现校圆。
在一个优选的本发明的金属毛坯滚压加工模块中,所述滚压头中的滚压轮为外表面光滑的圆台形滚压轮,所述圆台形滚压轮的圆台锥度为1°-3°。
在一个优选的本发明的金属毛坯滚压加工模块中,所述滚压头中的滚压轮包括导入部分和滚压部分,所述导入部分位于滚压部分前端,导入部分为外表面光滑的圆台面或者外表面带有螺纹的圆台面,并且所述导入部分的圆台锥度为1°-29°;所述滚压部分为外表面光滑的圆柱面或者外表面光滑的圆台面。当导入部分为外表面带有螺纹的圆台面时,可以更加准确地对金属毛坯的滚压进给速度进行控制,从而提高滚压产品的精度。
本发明另一方面提供一种金属毛坯滚压加工生产线,包括任一前述的金属毛坯滚压加工模块。优选地,还包括拉拔模具和/或金属毛刷和/或加热单元,所述拉拔模具和/或金属毛刷和/或加热单元设置于所述金属毛坯滚压加工模块的前端或者上游。
本发明再一方面提供一种运用任一前述的金属毛坯滚压加工模块对金 属毛坯进行滚压送料或者滚光的方法,包括将金属毛坯置于所述滚压头的滚压轮之间并夹紧金属毛坯,启动所述动力装置,所述动力装置带动所述滚压头旋转,进而带动金属毛坯沿滚压头轴向方向移动,从而实现送料或者滚光。
本发明再一方面提供一种运用任一前述的金属毛坯滚压加工模块对金属毛坯进行缩径的方法,所述金属毛坯滚压加工模块包含至少一个具有圆台型滚压轮的滚压头,所述圆台形滚压轮的上底直径和下底直径之间的差值为需要缩径的量,将金属毛坯置于加工工序前端的滚压头的滚压轮之间并夹紧金属毛坯;启动所述动力装置,所述动力装置带动所述滚压头旋转;由此带动金属毛坯沿滚压头轴向方向移动,从而实现缩径。
现有数控金属毛坯送料装置受其送料辊压轮结构和辊压轮复杂运动方式的限制,送料精度提高有其局限性,同时,没有滚光挤压进一步提高金属毛坯表面外径尺寸和改善其粗糙度等功能。一旦在送料切料前发现金属毛坯表面出现裂痕,无法即刻消除与改善,镦锻机自动将切料后的毛坯转入后续镦锻工艺,镦锻制品的质量就会不合格。
根据大量试验、分析与研究发现,应用本发明的金属毛坯滚压设备对金属毛坯进行滚压时,通过合理设置滚压轮形状与长短、其上底直径与下底直径之差值、滚压轮径向距离以及滚压轮数量,可有效地修正毛坯外径尺寸和改善其表面光洁度,消除毛坯本身的表面裂缝与裂痕,适当提高表面硬度。本发明进一步揭示了通过调整滚压轮偏向角和滚压轮轴向旋向,结合控制滚压头的旋转速度与方向,进而实现数控金属毛坯的轴向进给速度、方向与旋向,达到送料精度、方向与旋向的精密控制。通过控制沿圆周方向设置的滚压轮的径向位置,从而控制径向滚压力来改变金属毛坯的外径尺寸和粗糙度,消除毛坯表面缺陷。通过前后二组滚压轮的数量的合理匹配(相同、相异或者奇偶各异等方法)、利用相邻二组滚压头的轴向进给速度差异和二点成一线的基本原理以及毛坯在轴向进给过程中数控拧转,创造性地实现了可集精密送料、滚光挤压控制毛坯外径尺寸和表面粗糙度、滚压缩径、毛坯校直与校圆以及除锈于一体的金属毛坯滚压设备及其滚压加工方法。而且结构简单,性能可靠、成本低廉。
本发明的有益效果是:实现了简单可靠精密的金属毛坯进料与退料,在相当大的毛坯尺寸范围内不必更换送料滚压轮;实现了在数控送料的同时,滚光修正毛坯外径尺寸,克服毛坯表面缺陷(如材料表面纵向裂缝等),改善其粗糙度;在金属毛坯送料、滚压滚光的同时,可实现毛坯缩径工艺;在金属毛坯送 料、滚光、缩径的过程中可以提高毛坯直线度与圆度;在金属毛坯送料、滚光、缩径、校直与校圆过程中可以实现除锈工艺。
进一步地,滚压滚光使毛坯表面硬度提高10~300%,在后续切料工艺中大大减少毛刺的产生。
相比现有的技术和设备,本发明的方法、滚压头、加工模块和设备具有集成度高、结构简单可靠,价格低廉等特点;同时,加工的金属毛坯质量更佳,可以匹配现有各种镦锻设备和管材加工设备,并可望取代现有传统的送料机、拉拔机、缩径装置、校直与校圆或/和除锈机,市场广阔。
下面将结合附图说明和具体实施方式对本发明的前述目的、技术方案和有益效果进行详细的描述。
附图说明
图1所示是现有金属毛坯送料装置。
图1a所示是现有的一种双辊压轮送料装置示意图。
图1b所示是图1a的侧视图。
图1c所示是现有的一种二组双辊压轮送料装置示意图。
图1d所示是现有的一种机械手抓料送料装置。
图2所示是现有金属毛坯校直装置示意图。
图2a所示是现有的一种五辊压轮水平式校直装置示意图。
图2b所示是图2a的侧视图。
图2c所示是现有的一种盘料拉拔、缩径装置示意图。
图2d所示是现有钢管校直装置示意图。
图3所示是根据本发明的一种滚压头的实施例的示意图,其中滚压轮数量为5。
图4所示是根据本发明的另一种滚压头的实施例的示意图,其中滚压轮数量为4。
图5所示的是根据本发明的一种通过蜗轮传递动力给滚压头的结构示意图。
图5a所示是一种带蜗轮滚压头的结构示意图。
图5b所示是图5a中滚压盘的结构正视图。
图5c所示是图5b的结构侧视图。
图5d所示是图5a中蜗轮的结构正视图。
图6是图5a滚压头中的滚压轮轴的结构示意图。
图6a所示是滚压轮轴结构的正视图。
图6b所示是图6a的俯视图。
图6c所示是图6a的侧视图。
图6d所示滚压轮轴和圆柱形滚压轮与金属毛坯轴线在垂直方向设置偏向角δ示意图。
图6e是图6d的俯视图。
图6f是图6d的侧视图。
图7所示是本发明通过蜗轮蜗杠转递旋转动力的滚压头的结构示意图。
图8所示是根据本发明的一种在图7基础上进一步包含调节盘的轴向滚压的滚压头一实施例结构示意图。
图9所示是图8滚压头中的配有六个滚压轮的滚压盘结构示意图。
图9a所示是滚压盘的正视图。
图9b所示是图9a的侧视图。
图10所示是图8滚压头中的调节盘结构示意图。
图10a所示是调节盘的正视图。
图10b所示是图10a的侧视图。
图11所示是图8滚压头中的滚压轮轴的结构和安装示意图。
图11a所示是滚压轮轴结构的正视图。
图11b所示是图11a的俯视图。
图11c所示是图11b的侧视图。
图11d所示滚压轮轴和圆台形滚压轮与金属毛坯轴线在垂直方向设置偏向角δ的示意图。
图11e是图11d的俯视图。
图11f是图11d的侧视图。
图12所示是本发明具有导入角的滚压轮结构、滚压轮轴与滚压轮和滚压轮轴座(滑动块)配合的示意图。
图12a所示是本发明的滚压轮结构和其与滚针轴承配合的示意图。
图12b所示是本发明的滚压轮、滚针轴承与滚压轮轴配合的示意图。
图12c所示是与滚压轮轴匹配的滚压轮座(滑动块)的截面图。
图13所示是根据本发明的一种具备数控滚压送料功能的滚压设备的实施例的示意图。
图14所示是根据本发明的一种具备数控滚压送料、缩径、校直、校圆以及除锈功能的滚压设备的实施例示意图。
图15所示是根据本发明的一种具备盘料数控滚压送料、缩径、校直与校圆功能的滚压设备的实施例示意图。
图16所示是根据本发明的一种具备金属钢管校直、缩径、校直与校圆以及除锈功能的滚压生产线实施例示意图。
图17所示是根据本发明的又一种具备金属钢管校直、缩径、校直与校圆以及除锈功能的滚压生产线实施例示意图。
附图标记列表
1机座及机座架;
2动力装置、21变速装置、22动力电机、23其它机械传动机构、24机械手装置;
3工件夹紧装置、31工件夹紧装置1、32工件夹紧装置2;
40金属毛坯;
631蜗杆、636蜗轮、滚压头框架(座)68;
7滚压头、7A、7B、7C和7D第一、第二、第三和第四滚压头、70成型滚压轮盘、70A第一滚压轮盘、70B第二滚压轮盘、701销轴孔、702销轴、703斜平面、704工作孔、71滚压轮径向槽、76调节盘、76A第一调节盘、76B第二调节盘,761销轴孔、762弧形槽、763销轴、764工作孔、766安装盲孔;
80现有送料技术辊压轮或现有拉拔模具或者现有金属毛刷除锈装置、81本发明滚压头、83本发明滚压轮轴、831本发明与滚压轮匹配的滚针轴承、832a本发明滚压轮轴一端面、832b本发明滚压轮轴另一端面、833本发明滚压轮轴端面延伸部分、86本发明滚压轮座、891轴向间隙、892径向间隙;
δ本发明滚压轮轴轴向偏角、X本发明滚压轮轴心线、X’本发明滚压轮轴上斜平面中心线;
10滑座;
11机座上(二根)轴向导柱或者是平面导轨;
18滚压轮内切圆;19镦锻机。
具体实施方式
下面将结合较佳的实施例对本发明进行详细的描述,应当注意的是,在后述的描述中,尽管所使用的术语是从公知公用的术语中选择的,但是有些术语则是申请人按其判断来选择的,其详细含义应根据本发明欲揭示的精神来理解。本文中使用的“上”、“下”、“左”、“右”等关于方向的表述仅表示是说明性的,并不表示对各装置和部件在使用时的方向进行限制。
术语“外表面光滑”是指外表面不具备特定图案,但是在具体的实施例中外表面光滑可以具备一定的表面粗糙度。
术语“前端”或“上游”是指在加工工序或者生产工序中金属毛坯首先接触到的部分。
术语“奇偶相异”任意两个在加工次序上前后衔接的滚压头中,当其中一个滚压头中所包含的滚压轮数量为奇数时,另一个滚压头中包含的滚压轮数量为偶数。
术语“圆台形”滚压轮,是指外观呈圆台状的滚压轮,其上底圆直径(又称“上底直径”)小于下底圆直径(又称“下底直径”)。其中圆台形滚压轮的下底圆、上底圆是从公知公用的术语中选择的。优选的情况下,所述圆台形滚压轮包括导入部分和滚压部分,在这种情况下,上述的下底圆、上底圆、上底直径和下底直径是指所述滚压部分的参数。
术语“滚压轮内切圆”可以理解为与滚压头中的各个滚压轮都相切的外径最小的圆,或者理解为滚压轮与毛胚外圆接触所形成的圆。滚压过程中,滚压轮内切圆直径可以调节为小于或等于金属毛坯的外径并与金属毛坯同轴心。
术语“斜平面”是指以滚压轮轴心线取一基准水平面,与此水平面有一轴向进给夹角的平面。
术语滚压轮“旋向”指滚压轮螺旋线左旋或者右旋的方向。当设定偏向角δ为右旋时,偏向角-δ角即为左旋,左右旋向角度可以相异。
本发明所述的两条线(假设为a线和b线)在“垂直方向”存在偏向角,可以这样来理解,在XYZ三维坐标系中,与a线垂直面和b线垂直面均平行的平面设为XY平面,则a线和b线沿着Z轴投射在XY平面内所形成的两条线(a’线和b’线)的夹角即为a线和b线在“垂直方向”存在的偏向角。例如:滚压轮的轴线与所加工毛坯的轴线在垂直方向存在一个不大于9度的偏向角,可以这样来理解,在XYZ三维坐标系中,与滚压轮的轴线垂直面和所加工毛坯的轴线垂直 面均平行的平面设为XY平面,则滚压轮的轴线和所加工毛坯的轴线沿着Z轴投射在XY平面内所形成的两条线的夹角不大于9度。
本发明所述的金属,指材料为钢、铜或铝等各类在工业上可进行冷成型加工的金属。
本发明所述的毛坯,指截面为圆形的各类金属棒料、金属盘料和金属管材,毛坯可以是实心的,也可以是空心的,空心金属毛坯在本发明中又称金属管。
本发明所述的滚压送料,是指利用滚压轮对金属毛坯进行径向均匀合理的滚压过程,在此工艺过程中,包含了滚压滚光过程,因此,在本发明中所述的术语“滚压送料”过程也可以理解为“滚压滚光送料”过程。
本发明所述的滚压头是指用于在金属毛坯上进行滚压加工的装置,主体部件包括用于滚压的数个滚压轮或/和用于支撑或固定滚压轮的滚压轮座。所述滚压轮通过滚压轮轴与所述滚压轮座配合,并且围绕毛坯加工轴线方向等分分布。根据需要,所述滚压头还可以配备其它机械、液压、气动或电动装置,使得所述滚压轮座和所述滚压轮可以在欲加工毛坯的径向方向上活动以合理的滚压力和滚压时间以适应不同材料或性质的毛坯的滚压加工。必要情况下还可以配备其他设备。
本发明所述滚压加工模块是指一个滚压头或者是多个滚压头或者是滚压头和其他加工装置(或者模具)的组合,各个滚压头可以是完全独立的也可以是设置在一整体结构内的,其他加工装置包括,但不限于,拉拔模具、金属毛刷或加热单元等。例如:在本发明的一个实施例中,第一滚压头与第二滚压头之间同轴心的设置一拉丝模具,在第一和第二滚压头的轴向进给力作用下,毛坯通过拉丝模进行精密拉拔。由于没有自身动力带动,本发明所述其它加工装置中毛坯轴向进给速度是零。
本发明中,第一滚压头是指在本发明所有滚压头中首先接触到毛坯的滚压头,第二、第三滚压头依次类推。在某些场合下为叙述方便,也将通过“第一滚压头”进行的滚压工序称为“预成型滚压”工序,或将“第一滚压头”称为“预成型滚压头”,或将“第一滚压轮”称为“预成型滚压轮”,预成型可以理解为滚压送料或者滚光或者缩径的某一部分或者全部。将通过“第二滚压头”进行的滚压工序称为“后续成型滚压”工序,或将“第二滚压头”称为“后续成型滚压头”,将“第二滚压轮”称为“后续成型滚压轮”。但这种叙述并不限定本 发明中所述的“第一滚压头”实现的仅是送料或滚光或缩径甚至在增加所述其它加工装置时实现校直与校圆或/和除锈这种功能,也不表示只依靠“第二滚压头”就能达到或实现本发明中所述的全部技术效果。
本发明第一或者第二或者更多滚压头结构可以是一样的或相似的。
本发明滚压头转动而空心毛坯不转动或者本发明滚压头不转动而空心毛坯转动是相对的,也是可以转换的或者二者相互转动。
下面结合附图来详细说明:
1.现有技术
图1所示是现有冷镦机或温镦机或热镦机里金属毛坯送料装置示意图。图1a所示是现有的一种上下对称的沟槽辊压轮送料装置示意图,图1b所示是图1a的侧视图,图1c所示是现有的一种二组上下对称的沟槽辊压轮送料装置示意图,图1d所示是现有一种机械手抓料送料装置。辊压轮或者机械手沟槽内圆弧直径尺寸与精度对送料质量影响很大。当线料直径与上下送料轮沟槽直径或机械手的内径尺寸有误差时,会引起毛坯受伤,毛坯挤压变形或送料不准,甚至毛坯送不进去。另外,由于机械手起始抓取时与静止的毛坯存在速度差异,机械手与毛坯接触瞬间会产生打滑现象,进而影响送料精度。
图2所示是现有金属毛坯校直装置示意图。图2a所示是现有冷镦机或温镦机或热镦机里一组五个辊压轮水平式毛坯校直装置示意图。现有镦锻机里会有多组相互垂直的辊压轮校直组,以期提高校直精度。图2b所示是图2a的侧视图,如同所述的送料辊压轮结构,不同毛坯直径需要不同尺寸的校直沟槽型辊压轮与之匹配,并存在着与送料装置的相同问题。另外,现有钢厂生产与运输时氧化与磕碰,导致金属毛坯表面产生氧化层、表面微小裂痕或裂缝,现有技术是采用图2c所示的盘料拉拔或者缩径校直或者酸洗等方法解决。
图2d所示是一种现有技术对钢管进行校直与校圆的装置示意图,对钢管进行拉拔与缩径的方式与原理如同图2c所述,不再赘述。同样,由于辊压轮结构和工作方式,会出现校直精度不高等问题,一般采用水平与垂直多组校直方式来解决,但设备庞大、工艺复杂。
2.本发明的金属毛坯滚压加工模块及其滚压送料、缩径、校直与校圆和除锈工艺
本发明的金属毛坯滚压送料、缩径、校直与校圆以及除锈工艺其主要精神实质是通过一个或者多个滚压头的匹配与滚压头中外表面光滑滚压轮轴向进给滚压,借助滚压头中的滚压轮形状(圆台形或圆柱形)、底圆直径大小与上、下底圆的差值(或锥度)、滚压轮长度、滚压轮轴偏向角大小、滚压轮径向位置、滚压头转速以及不同滚压头中滚压轮数量匹配来实现金属毛坯滚压送料、滚光和缩径;再通过前后相邻滚压头的轴向进给速度差异与滚压轮旋向或/和其他机械加工装置配合来实现校直、校圆或除锈功能。
在一个实施中,用沿圆周方向分布的五个设置偏向角的滚压轮所构成的滚压头对毛坯进行轴向滚压。当所述滚压轮为圆柱形滚压轮时,所述的滚压头仅仅实现滚压送料。通过所述滚压轮径向位置的调节来改变五个滚压轮施加于毛坯的径向滚压力。滚压力大小的数值是工艺数值,具体来讲,根据不同材料与进料速度,在保证毛坯外表面没有挤压变形或受伤或/和打滑情况下,使用最小的径向力送料。当根据工艺要求进行表面滚光时,所述径向力增加,滚压轮内切圆的尺寸会小于毛坯外径尺寸,其差值为滚光工艺数值,如0.01mm或0.1mm或1mm。当所述滚压为圆台形滚压轮时,其上底直径与下底直径的差值是毛坯缩径或滚光挤压的数值。在一个实施例中,毛坯的原始直径为18毫米,工艺要求拉拔至17.2毫米。选用圆台形滚压轮的上底直径20毫米,那么下底直径应为19.2毫米。运用本发明的方法,在实现金属毛坯精密送料与缩径的同时,通过光滑圆台形滚压轮滚光挤压毛坯,提高了金属毛坯外径尺寸与表面光洁度,消除表面裂痕,并提高了毛坯表面硬度,这对后续的切料与镦锻等工艺大有益处。
所述的滚压送料采用伺服电机的精密控制,其送料精度与效率优于现有技术,且结构简单可靠性好。在滚压送料过程中滚压轮对毛坯具有不同程度的尺寸和光洁度修正甚至缩径,明显优于现有技术。
滚压轮轴向进给偏向角越大,毛坯轴向进给速度越高。在所述偏向角确定情况下,滚压头的旋转速度和圈数控制了毛坯滚压送料的速度与长度精度。
当采用二个或者以上所述滚压头(组)时,毛坯被分别或单独重复进行滚压送料、滚光、滚压缩径以达到工艺要求,其原理同所述的单个滚压头工作原理。配合第二个或更多滚压头的轴向进给速度差异,受到第二滚压头或相邻的前一个滚压头轴向牵引力作用,毛坯在二滚压头之间被拉伸轴向进给。其二组滚压头之间的轴向间距是第一滚压轮尾部与第二滚压轮头部之间的轴向间距,也是毛坯校直的长度。
在又一个实践中,第一滚压头与第二滚压头之间配合现有技术的一个拉丝模具,这样在整个毛坯滚压送料加工过程中,毛坯可以被三次修正或滚光或缩径。其三次加工装置之间的间隔时间与距离根据材料与工艺要求来精确设定。
在另一个实施中,第一滚压头与第二滚压头之间可以进一步配合现有技术,例如增加环形金属毛刷除锈装置,这样可以有效地在毛坯滚压送料过程中对毛坯进行表面机械除锈处理。特别要指出的是,所述的第一与第二滚压头中滚压轮的旋向优选地是左右相异而且转速相异,旋向角与转速的相异数值是工艺数值,取决于毛坯材料、直径和氧化层等。在所述滚压送料过程中,毛坯被不断地数控旋拧,表面氧化层在环形金属毛刷作用下被不断地剥落,达到机械除锈的作用。增加第三或/和第四甚至更多滚压头可以有效地进行多段数控旋拧达到除锈效果,增加其它机械或者化学装置可以增加除锈效果。
结合所述的不同方法,在本发明滚压送料方法可以实现单独的或者组合的精密送料、滚光、缩径,校直与校圆以及除锈等目的。
另外需要说明的是,本发明滚压送料工艺中的预滚压工艺,可以通过一次预滚压实现,也可以通过多次的滚压实现,例如:进行首次、再次、复次矫正预滚压后再进行后续送料、滚光、缩径、校直与校圆以及除锈滚压。
对于空心毛坯的滚压送料、滚光、缩径、校直与校圆以及除锈,前后滚压头中滚压轮数量优选地是奇偶相异,亦即在具有预成型滚压和后续成型滚压两个不同工艺步骤的实施例中,预成型滚压的滚压轮数量与后续成型滚压的滚压轮数量奇偶数相异。在奇偶数匹配的情况下,再通过轴向进给速度控制和滚压轮长度设计,可以显著提升空心产品的加工良品率。
3、本发明工艺中滚压轮的设置
图3和4中第一滚压头中的第一滚压轮和第二滚压头中的第二滚压轮在数量上奇偶数的匹配揭示了本发明的一部分精神本质,再一次说明,这对空心毛坯送料、滚光、缩径校直与校圆以及除锈加工至关重要。
一实施例中,第一滚压轮数量为3个,第二滚压轮数量为4个或者是6个。
另一实施例中,第一滚压轮数量为4个,第二滚压轮数量为3个或者是5个。
再一实施例中,第一滚压轮数量为6个,第二滚压轮数量为5个或者 是3个。
又一实施例中,第一滚压轮数量为9个,第二滚压轮数量为4个、6个或者是8个。
空心毛坯在前后多道滚压当中的旋压线互不重叠,单位截面上存在一个没规则多边形的空心毛坯经过预滚压后成为一个可控制的有规则的多边形,其间释放了部分空心毛坯残余应力,应力分布更为均匀,纠正了毛坯的不圆度;随后这个有规则的多边形与后续成型滚压轮数量匹配,使得空心毛坯的原始残余应力进一步释放,从而提高空心毛坯的不圆度和直线度。
需要说明的是本发明中的预成型滚压轮数量、锥度和其长度与后续成型滚压轮数量、产品长度精度这二者关系可以根据(空心)毛坯外径、壁厚与材料、其不圆度、滚压轮直径大小、滚压轮形式等要求进行增减或匹配。
滚压轮形式优选地是滚压轮与滚压轮轴为一体的结构。这样,可以有效地增加滚压轮数量,有利于减少分次滚压的次数和延长滚压轮寿命。
图5显示了本发明的一个仅有滚压轮盘70的滚压头示意图,该实施例中滚压轮81的数量为6个,所述6个滚压轮等分分布在空心毛坯加工轴线的四周。动力电机通过蜗轮636带动滚压头转动,从而使滚压轮81围绕滚压轮轴83转动。图8显示了本发明的一个包含径向调节盘76和滚压轮盘70的滚压头示意图,包含6个滚压轮81,所述6个滚压轮等分分布在空心毛坯加工轴线的四周。动力电机通过蜗轮蜗杆631和636带动的滚压头转动,从而使滚压轮81围绕滚压轮轴83旋转的结构示意图。
4、滚压头的结构
本发明第一或者第二滚压头可以采取相同或者是类似的结构设计。在一个具体的实施例中,第一滚压头和第二滚压头都可以采用带有滚压轮盘和调节盘的结构设计或者是仅仅有滚压轮盘的结构设计。
图5~12更详细进一步地描述了本发明一种通用的滚压头结构的实施例。
图5a是根据本发明的一种轴向滚压的滚压头实施例结构示意图。图5b是图5a滚压头中的配有六个滚压轮的滚压轮盘的正视图,图5c是滚压轮盘的侧视图,图5d是图5a中蜗轮的结构正视图。
如图5a~5d所示,滚压头包括前后滚压轮盘70(70A、70B)、蜗轮 636、与滚压轮盘上径向槽71相配的滚压轮轴83及其滚压轮81以及与滚压轮盘上销轴孔701相配的连接销轴702;所述滚压轮盘中心有一工件加工工作孔704,所述滚压轮盘径向槽71与所述滚压轮的安装面是一斜平面703;所述滚压轮轴83通过其与所述滚压轮盘上的径向槽71相匹配的二端斜平面832a和832b安装在所述滚压轮盘径向槽71上,所述径向槽71的形状与尺寸可使所述滚压轮轴83轴向安装。所述的两张滚压轮盘70A和70B通过所述的滚压轮盘连接销轴702在蜗轮636二侧相互连接固定,同轴心地组成滚压头。此外,在滚压头一端装有滚压时间和长度位置控制器(图中未显示),用于控制成型滚压时间和滚压轴向长度。
图6是图5滚压头中的滚压轮轴的结构三视图和滚压轮轴与毛坯轴线在垂直方向偏向角δ设置示意图,轴向进给偏向角等同于δ角。其中,图6a是滚压轮轴的正视图,图6b是滚压轮轴的俯视图,图6c是滚压轮轴的侧视图。滚压轮轴83二端各有一上下斜平面832a和832b,上下斜平面相互平行,其斜平面的x’轴与滚压轮轴的轴心线x构成一偏向角δ。所加工毛坯轴线与x’平行,x与所加工毛坯轴线和x’构成的平面呈夹角,该夹角角度等于偏向角δ。图6d是滚压轮轴和圆柱形滚压轮与金属毛坯轴线在垂直方向设置偏向角δ示意图。图6e是图6d的俯视图,图6f是图6d的侧视图。图6d清晰地显示了当滚压轮同轴心地安装在滚压轮轴中央时,滚压轮轴心线与斜平面832a、832b构成了一偏向角δ。由于滚压轮轴同斜平面832a/832b垂直,被安装后的滚压轮轴轴向与毛坯轴向成形一个轴向进给偏向角δ,当毛坯与滚压轮接触相互转动时,毛坯可以轴向被移动。偏向角δ越大,毛坯轴向移动的速度越快,一般不超过9度,优选地,为小于3度。如设置δ角为右旋时,-δ角即为左旋,左右旋向角度可以相异。
图7所示是本发明通过蜗轮蜗杠转递旋转动力的滚压头的结构示意图。更进一步优选地,所述滚压头中还包括蜗杆或者齿轮636、变速装置21和动力电机(图中未显示),所述蜗杆或者齿轮636一端与所述的变速装置21的输出轴机械配合,另一端与所述蜗轮或者齿轮636机械配合,所述的动力电机通过变速装置21带动所述的蜗杆或者齿轮636旋转,通过蜗轮或者齿轮636从而带动滚压轮盘70旋转。
图8是根据本发明的一种在图7基础上进一步包含调节盘的轴向滚压的滚压头实施例,图9~11是图8滚压头中的滚压盘与调节盘、滚压轴与滚压轮结构示意图。
图9是图8中滚压轮盘的结构示意图。其中,图9a是滚压轮盘的正视 图,图9b是滚压轮盘的侧视图。图9滚压轮盘与图5滚压轮盘结构基本相似,所不同的是径向槽71的形状。图9滚压轮盘径向槽71是一圆柱体与长方体之组合,圆柱体的存在是为了安装带圆柱端的滚压轮轴之用,而图5b滚压轮盘径向槽71是近似长方体,配合带近似长方体端的滚压轮轴安装。其它结构相同,不再赘述。
图10是图8中调节盘的结构示意图。其中,图10a是调节盘结构的正视图,图10b是调节盘结构的侧视图。径向调节装置包括前后调节盘76A和76B,与调节盘上销轴孔761相配的固定连接销轴763;调节盘中心设有与所述滚压轮盘匹配的工件加工工作孔764以及与所述滚压轮盘匹配的调节盘定位安装盲孔766;调节盘76通过所述调节盘定位盲孔766分别前后同轴心地安装在所述滚压轮盘的外侧并用调节盘销轴763相互连接,并与安装盲孔766形成轴孔配合;转动调节盘76,安装滚压轮轴二端833的滑动块836(如图12c所示),在调节盘的弧形槽762中滑动,从而使滚压轮轴83在滚压轮盘70的径向槽71中作径向移动,组成滚压轮径向位置可调节的滚压头;此外,在滚压头完成滚压加工的一侧装有滚压位置光电感应控制器(图中未显示),用于控制滚压时间和滚压长度。动力电机通过蜗轮蜗杆631和636带动的滚压头转动,从而使滚压轮81围绕滚压轮轴83旋转的结构示意图。
图11是本发明滚压轮轴的结构三视图和偏向角的设置示意图,其中,图11a是滚压轮轴的正视图,图11b是滚压轮轴的俯视图,图11c是滚压轮轴的侧视图,图11d滚压轮轴和毛坯轴线在垂直方向设置夹角δ示意图,图11e是图11d的俯视图,图11f是图11d的侧视图。图11中滚压轮轴与图6中滚压轮轴不同之处在于轴的二端。在一个实施例中,图6中的滚压轮轴二端是矩形的,而在图11中滚压轮轴二端是圆柱形的。滚压轮轴二端形状不仅仅局限于矩形或者圆柱形,取决于其与滚压盘与调节盘径向槽的配合设计与安装方式。滚压轮偏向角的设置原理与图6完全一致,不再赘述。
图12是根据本发明的滚压轮、滚针轴承与滚压轮轴配合的示意图。其中,图12a是根据本发明的滚压轮结构的示意图,滚压轮分导入部分和滚压部分,导入部分为圆台面,优选地是外表面带有螺纹的圆台面,其圆台锥度为1°-29°,一般可以为13°。滚压部分圆台锥度或者上下底径大小、滚压轮长度、取决于缩径与滚光工艺数值,一般在1°~3°。图12b所示是滚压轮8与滚针轴承831配合的结构示意图,滚压轮与轴承配合的主要目的是为了减少滚压轮旋转摩擦力。滚压轮81通过滚针轴承831自由地安装在所述滚压轮轴83上,滚压轮轴83与滚压轮 81之间还可以通过滚珠、调心或者是其它轴承配合。图12c是与滚压轮轴匹配的滑动块的截面图,如图12c所示滚压轮轴83二圆柱端833安装在(位置调节)滑动块836的孔中,形成轴孔配合;所述的滑动块836安装在所述调节盘的弧形槽762(如图10a所示)中,形成圆柱与圆弧配合。此外,在滚压头末端装有滚压位置控制器(图中未显示),用于控制滚压时间和滚压长度。所述的滚压轮盘通过滚压头框架68(如图13和14所示)浮动固定在设备机架上(图中未显示)。
所述调节盘相对于所述滚压轮盘转动调整,调节盘上有一凸轮装置(图中未显示),通过凸轮曲线控制滚压轮径向距离的调整与滚压头径向打开。必要的时候,滚压轮盘和调节盘之间还可以设置一位置相对转动的检测装置(图中未显示),用于数控目的。
在一个具体的实施例中,本法发明的滚压头都可以采用带有滚压轮盘和调节盘的结构设计或者是仅仅有滚压轮盘的结构设计。
虽然本发明已以较佳实施例揭露如上,然而其并非用以限定本发明,任何熟悉本领域的一般技术人员,在不脱离本发明的精神和范围内,应当可以作出种种的等效的变化或替换。
5、送料、滚光、缩径、校直与校圆以及除锈滚压加工模块或/和相应滚压设备
图13~14是本发明滚压加工模块的二种实施例的结构分布图,滚压头由动力伺服电机,通过减速箱、蜗轮蜗杆等机械传动带动滚压头旋转。
本发明的预成型滚压头和后续成型滚压头可以是单独的或者分开的,也可以是组合成一体的。当两者组合成一体时可以有效节省工序,序贯性地滚压形成所欲加工的产品,整体设计显得更为小巧,便于运输和安装。
图13是根据本发明的一种单独的滚压加工模块的实施例的结构示意图。图中一个滚压头由一台(伺服)动力电机22安装在滚压头上方,通过变速装置21和蜗杆631和蜗轮636将旋转动力分别转递给滚压盘7A/7B带动安装在滚压头座上的预成型滚压头旋转,完成滚压送料、外径修正、缩径与表面滚光。根据工艺需要,可以增加一个机械加工装置,如拉丝模或者环形金属毛刷除锈装置来达到毛坯校直、缩径和除锈工艺效果。
图14显示的是本发明一种预成型滚压头7A和后续成型滚压头7B分体的滚压加工模块结构示意图。位于右边的是具有5个滚压轮81的预成型滚压头 7A,位于左边的是具有4个滚压轮81的后续成型滚压头7B,滚压头7A、7B采用与图8类似的滚压头结构,具体地,各滚压头中径向槽(71)与所述滚压轮(81)的安装面可以是斜平面(703)也可以是常规的平面,具体的结构设计并不局限于本发明所直接揭示的滚压头结构。滚压头7A与滚压头7B分别由各自的伺服电机控制。在滚压头7A中的圆台形滚压轮作用下,毛坯40的外径被精滚压至工艺所需的外径公差。表面被挤压滚光,达到送料、外径修正和滚光表面这三大目的。当调高滚压头7B的电机转速,毛坯40在其中的轴向速度会高于毛坯40在7A中的轴向速度,这样在7A和7B之间产生轴向拉拔力,根据二点成一线的原理,毛坯自然被拉拔与校直。需要时,可以在7A和7B之间增加一个拔丝模具头进一步提高工艺和精度。
此外,预成型滚压头7A和后续成型滚压头7B的滚压轮盘和调节盘之间都有一相对转动位置角度检测装置(图中未显示),根据毛坯直径变化、空心毛坯壁厚、缩径尺寸要求、直线度要求或/和材料和加工产品的其它实际要求来确定。工艺与前述相似,不再赘述。
根据需要可以在二个滚压头之间再增加其它机械加工装置,如金属毛刷除锈装置来完成滚压精整、缩径、校直与校圆以及除锈等工艺。
通过控制系统和本发明的精神实质来控制加工时间和速度。需要指出的是,优选地是采用径向位置可以调节的滚压头,根据钢管毛坯外径、其不圆度、壁厚和材料或/和后续滚压的要求来调整其滚压轮径向位置;当然在加工空心毛坯时,前后工序中的滚压轮数量必须奇偶匹配和滚压轮总数量。
6、数控送料、缩径、校直与校圆以及除锈滚压生产线
图15所示是根据本发明的一种盘料数控滚压送料、缩径、校直与校圆以及除锈功能装置实施例示意图。
现有冷墩机上送料装置工艺在此不再赘述。根据本发明的方法,当盘料被导入滚压头7A中,在伺服电机控制下逐步送料至滚压头7B。在滚压头7A中的圆台形滚压轮作用下,盘料40的外径被精滚压至工艺所需的外径公差。表面被挤压,达到送料、外径修正和滚光表面这三大目的。通过电机控制使滚压头7B的转速高于滚压头7A的转速,毛坯40在7B中的轴向速度会高于毛坯40在7A中的轴向速度,这样在7A和7B之间轴向存在拉拔力,根据二点成一线的原理,毛坯自然被拉直与校直。需要时,可以在7A和7B之间增加一个拔丝模具头或/和环 形金属钢刷进一步提高缩径或校直工艺效果。当设定第一滚压头中的滚压轮偏向角为右旋,设置第二滚压头中滚压轮偏向角为左旋时,实现数控旋拧,左右旋向角度可以相异也可以是相同的,数控旋拧增加了毛坯除锈效果。
图16所示是根据本发明的一种金属钢管缩径、校直与校圆以及除锈滚压生产线实施例示意图。
用16的工作原理与图15类似,不再赘述。所不同的是毛坯为空心钢管,因此7A与7B中滚压轮数量奇偶相异,也就是说当预成型滚压工艺中的滚压轮数量是奇数时,所述的滚压送料工艺中的滚压轮数量必须是偶数;所述的预成型滚压工艺中的滚压轮数量是偶数时,所述的相邻滚压送料工艺中的滚压轮数量必须是奇数。在奇偶数匹配的情况下,再通过有效控制轴向进给速度和滚压轮长度,可以显著提升空心产品的良品率。
另外,钢管缩径校直与校圆以及除锈,一般对送料精度没有要求,因此控制7A和7B的相互转速或者所述滚压头中滚压轮的偏向角、旋向角之差异、所述滚压头之间的轴向间距、滚压轮数量、长度及外径尺寸对工艺效果很重要。
同样的,可以增加额外的拔伸缩径模具80或者除锈装置或者其它加工装置来进一步提高所需工艺效果。
图17所示是根据本发明的又一种金属钢管缩径、校直与校圆以及除锈滚压生产线实施例示意图。所不同与图16的滚压头/组设置,增加额外的二个滚压头来增加工艺效果,其原理与图16相同,不再赘述。
7、本发明金属毛坯加工三个实施例
首先,结合图5、8、14和图15,对比现有技术(如图1和图2所示)对本发明进行进一步说明。
线径为16毫米+0.70/-0.10的42CrMn低碳合金盘料是汽车紧固件常用材料,用于冷镦生产M14的汽车发动机紧固件。传统现有工艺是用拉拔机(图2c所示)对盘料通过拉拔模具80进行精密拉拔至工艺所需的16毫米+0.10/-0.10,然后再进入冷镦机进行切料镦锻加工。在冷镦机送料机构(图1a所示)的动力牵引下,工艺盘料40经过5辊轮水平校直组(图2a所示)和5辊轮垂直校直组(图中未显示)进行校直,然后切料与镦锻。显然,这种加工存在着送料打滑,更主要的是无法处理在钢厂拉拔时盘料表面产生的纵向裂缝或者进入冷镦切料前出现的其它材料表面缺陷问题。另外,现有技术需要二个不同加工工艺与设备来完成, 送料工艺、校直工艺与材料拉拔工艺分开进行,各个工艺之间没有直接控制方法与相互协调。
如图15所示,根据本发明的方法将金属毛坯40的一端导入本发明滚压头7A,在动力22的作用下,装有5个滚压轮的滚压头旋转,毛坯40轴向进给至冷镦机送料机构7B(一个具有6个滚压轮的滚压头)。首先,在7A滚压头中圆台形光滑滚压轮作用下盘料40从16毫米+0.70/-0.10精密滚压至16毫米+0.10/-0.10,再进入滚压头7B的圆台形光滑滚压轮进行第二次精密滚压,使金属毛坯40的直径范围精整到16毫米+0.05/-0.05。其次,在进行上述精密滚压整形工艺中,设定滚压头7A与7B中的滚压轮轴向偏置角相同,通过数控系统控制各自滚压头上的伺服电机速度,使7A旋转速度低于滚压头7B的旋转速度,这样在所示滚压头之间盘料1米的直线度可以《=0.05mm;再次,由于冷滚压的冷作硬化作用,盘料40四周表面硬度提高约10-15%,由于盘料切料前被再次滚光、校直与校圆以及除锈,盘料表面微小划痕、裂痕甚至表面氧化层被挤压克服。由于表面硬度再次被滚压提高,这样不但在冷镦切料时切断面比现有校直工艺的平度有较大提高,而且完全无毛刺现象,对冷镦成型件的成型精度和冷镦设备的模具寿命大有益处。然后,由于滚压轮紧密挤压着毛坯40,滚压轮与毛坯之间无打滑现象,数控系统在角度偏码器(图中未显示)作用下通过伺服电机精密控制滚压头7B/7A的转速,从而精密控制盘料40的送料长度。最后,使用同一副滚压轮,通过径向调节装置(图8所示)来调整滚压轮径向位置或者滚压轮内切圆尺寸,可以加工盘料直径最小5毫米,最大30毫米,明显优于现有任何的送料、拉拔、校直与校圆或/和除锈设备。
另外要说明的是,当工艺需要时,数控系统可以实现滚压头反向旋转,使金属毛坯40快速退出切料装置。这个功能,特别是对于加热切料装置,可有效地保护了盘料加热单元不会因为设备停机时加热装置中的余热使盘料过热或者加热装置损坏。
其次,结合图3、4、8、14和图16,对比现有钢管拉拔缩径技术(图2d所示),对本发明的另一运用空心金属毛坯滚压送料缩径校直与校圆或/和除锈进行再一步说明。
图16中第一滚压头7A和第二滚压头7B分别设置在同一机架1上。滚压头7A和7B的结构与前述的滚压头模块相同,滚压头7A和滚压头7B中的滚压轮数量分别为5个和6个或者8个或者10个的匹配,滚压轮为光滑的圆台形滚 压轮,设置滚压头7A的滚压轮轴心线与钢管毛坯轴心线有一1°10”的偏向角,设置滚压头7B中的滚压轮偏向角是1°30’。金属毛坯40一端被安置在夹紧装置31上,一端被导入旋转的滚压头7A进行第一次滚压送料缩径精整,滚压头7A中的滚压轮旋转使钢管毛坯依托夹紧装置上的滑座10在平面导轨11上轴向移动,逐步导入旋转的滚压头7B,进行第二次校圆滚压。由于滚压头7A的偏向角小于滚压头7B的偏向角20’,毛坯40在7A滚压轮的尾部与7B滚压轮头部之间产生向前的拉伸力,两点成一线,毛坯40被逐步校直。当完成第二次滚压时,完成滚压的钢管又被导入自动夹紧装置32夹紧,这样,通过滚压轴向力和依托夹紧装置31和32的滑座在导轨11上的轴向移动,直至滚压整根钢管毛坯结束。滚压头7A和滚压头7B中滚压轮轴向偏置角、转速、滚压轮数量、长度或/和滚压头之间的轴向间距是根据钢管壁厚、直径、钢管直线度圆度及其它工艺参数的要求不同而不同。如果增加拉拔校圆模具80,毛坯40就可以被再次缩径校直与校圆加工。需要特别说明的是本实施例中所述的滚压头中的滚压轮数量具有以下特征:任意两个在加工次序上前后衔接的滚压头中所包含的滚压轮数量为奇偶各异。经本发明的滚压送料校直与校圆以及除锈方法滚压后的金属空心毛坯,非常适合用于管外螺纹的直接滚压,而在管外螺纹成型滚压中所用的滚压轮数量,与经本发明中所用的最后一步滚压工序中所用的滚压轮数量,必须要奇偶相异。
最后,结合图14、17和上述第二实施例,对本发明的另一运用金属毛坯滚压送料缩径校直与校圆以及除锈进行再进一步说明。通过数控装置可以实现数控旋拧机械除锈工艺。
1.增加滚压头7A的偏向角为1°05’且右旋,7B的偏向角为1°40’且左旋,7C的偏向角为2°10’且右旋,7D的偏向角为3°10’且左旋。
2.在滚压头7A和7B之间增设金属毛刷除锈装置或将图17中80设置为金属毛刷除锈装置,那么在滚压送料、缩径、校直和校圆过程中,空心毛坯表面的氧化层被不断地剥落除锈。
为了增加除锈效果,可以增加更多的滚压头和环形金属毛刷,其滚压轮的旋向与速度设置与上述方法相同,其它参数设计和设置可以参照本发明的精神,不再赘述。
虽然本发明已以较佳实施例揭露如上,然而其并非用以限定本发明,任何熟悉本领域的一般技术人员,在不脱离本发明的精神和范围内,应当可以作出种种的等效的变化或替换,并不受前述的滚压方法与方向、滚压轮长度、滚压轮 数量与安装形式、滚压头数量与安装形式、滚压轮旋转方向、速度与旋向、滚压头与滚压头之间间隔距离、滚压轮座径向与轴向运动形式等限制。例如:对于实心毛坯前后滚压头或者滚压模块中滚压轮数量可以是相同的或者没有奇偶数匹配要求,但对于空心毛坯,根据本发明的一部分精神,所述滚压轮数量应是奇偶数匹配。又例如:滚压轮各个滚压头可以是水平布置,也可以是垂直布置;再例如:当滚压轮采用图形画案时,滚压送料校直与校圆或/和除锈或/和除锈后,可以加工出带图案的棒料。
因此,本发明的保护范围当视后附的本申请权利要求所界定的范围为准。

Claims (17)

  1. 一种金属毛坯滚压加工模块,包含至少一个动力装置以及与所述动力装置相匹配的至少一个滚压头,所述动力装置为所述滚压头提供旋转驱动力,其特征在于,所述滚压头包含至少2个沿圆周布置的滚压轮,所述滚压轮轴线与所述被加工的金属毛坯的轴线在垂直方向存在偏向角,并且所述滚压轮为外表面光滑的圆柱形滚压轮或者是外表面光滑的圆台形滚压轮。
  2. 根据权利要求1所述的金属毛坯滚压加工模块,其特征在于,所述滚压头还包括第一滚压轮盘、第二滚压轮盘、蜗轮或者齿轮以及连接销轴,所述动力装置驱动所述涡轮或者齿轮旋转从而带动所述滚压头旋转,其特征在于,所述第一滚压轮盘、第二滚压轮盘和蜗轮或者齿轮上设有相互对应的径向槽、工件加工工作孔以及销轴孔,所述滚压轮通过其滚压轮轴与所述第一滚压轮盘和第二滚压轮盘上的径向槽配合,所述径向槽与所述滚压轮的安装面是一斜平面配合;所述第一滚压轮盘和所述第二滚压轮盘通过与所述销轴孔相配的连接销轴在所述蜗轮或者齿轮二端相互连接固定,同轴心地组成滚压头,并且所述滚压轮的滚压轮轴在两端分别均具有相互平行的斜平面,所述滚压轮轴通过所述斜平面安装在所述滚压轮盘的径向槽上,由此形成了所述偏向角。
  3. 根据权利要求2所述的金属毛坯滚压加工模块,其特征在于,所述滚压头还包括第一调节盘、第二调节盘以及调节盘销轴,所述第一调节盘和第二调节盘上设有相互对应的定位安装盲孔、弧形槽、工件加工工作孔以及销轴孔,所述第一调节盘和第二调节盘通过所述定位安装盲孔分别同轴心地安装在所述第一滚压轮盘和第二滚压轮盘的外侧并用调节盘销轴相互连接,所述滚压轮的滚压轮轴的两端在所述斜平面的外侧还具有延伸部,所述滚压轮的滚压轮轴的延伸部安装在调节盘的弧形槽中,转动调节盘可以带动滚压轮的滚压轮轴在弧形槽中滑动,进而带动滚压轮的滚压轮轴在滚压轮盘的径向槽中作径向移动,进而改变所述滚压轮的径向位置或者内切圆直径。
  4. 根据权利要求1所述的金属毛坯滚压加工模块,其特征在于,所述偏向角小于9度,优选地,所述偏向角小于3度。
  5. 根据权利要求1所述的金属毛坯滚压加工模块,其特征在于,所述滚压头的数量大于2个,各个滚压头同轴心地前后设置。
  6. 根据权利要求5所述的金属毛坯滚压加工模块,其特征在于,相邻的两个 所述滚压头中的滚压轮具有不相等的偏向角。
  7. 根据权利要求5所述的金属毛坯滚压加工模块,其特征在于,相邻的两个滚压头中的滚压轮在数量上奇偶相异。
  8. 根据权利要求1所述的金属毛坯滚压加工模块,其特征在于,所述滚压头中的滚压轮为外表面光滑的圆台形滚压轮,所述圆台形滚压轮的圆台锥度为1°-3°。
  9. 根据权利要求1所述的金属毛坯滚压加工模块,其特征在于,所述滚压头中的滚压轮包括导入部分和滚压部分,所述导入部分位于滚压部分前端,导入部分为外表面光滑的圆台面或者外表面带有螺纹的圆台面,并且所述导入部分的圆台面的锥度为1°-29°;所述滚压部分为外表面光滑的圆柱面或者外表面光滑的圆台面。
  10. 一种金属毛坯滚压加工生产线,其特征在于,包括如权利要求1-9任一所述的金属毛坯滚压加工模块。
  11. 根据权利要求10所述的金属毛坯滚压加工生产线,其特征在于,还包括拉拔模具和/或金属毛刷和/或加热单元,所述拉拔模具和/或金属毛刷和/或加热单元设置于所述金属毛坯滚压加工模块的前端或者上游。
  12. 一种运用如权利要求1-9任一所述的金属毛坯滚压加工模块对金属毛坯进行滚压送料或者滚光的方法,其特征在于,包括将金属毛坯置于所述滚压头的滚压轮之间并夹紧金属毛坯,启动所述动力装置,所述动力装置带动所述滚压头旋转,进而带动金属毛坯沿滚压头轴向方向移动,从而实现送料或者滚光。
  13. 一种运用如权利要求5-7任一所述的金属毛坯滚压加工模块对金属毛坯进行校直的方法,其特征在于,将金属毛坯置于加工工序前端的滚压头的滚压轮之间并夹紧金属毛坯,将各个滚压头中的所述滚压轮的最小内切圆的直径设置为相等;启动所述动力装置,所述动力装置带动所述滚压头旋转;通过所述动力装置控制使得相邻两个滚压头中金属毛坯首先接触到的滚压头的旋转速度小于金属毛坯其次接触到的滚压头的旋转速度,由此使得金属毛坯在相邻两个滚压头之间受到轴向拉力,从而实现校直。
  14. 一种运用如权利要求5-7任一所述的金属毛坯滚压加工模块对金属毛坯进行除锈的方法,其特征在于,将金属毛坯置于加工工序前端的滚压头的滚压轮之间并夹紧金属毛坯,将各个滚压头中的所述滚压轮的最小内切圆的直径设置为相等;并且相邻两个滚压头中的所述滚压轮的偏向角相反;启动所述动力装置,所 述动力装置带动所述滚压头旋转;通过所述动力装置控制使得相邻两个滚压头的旋向相反,从而实现除锈。
  15. 一种如权利要求14所述的对金属毛坯进行除锈的方法,其特征在于,在相邻两个滚压头之间设置有金属毛刷,运用金属毛刷进行辅助除锈。
  16. 一种运用如权利要求7所述的金属毛坯滚压加工模块对金属管进行校圆的方法,其特征在于,将所述金属管置于加工工序前端的滚压头的滚压轮之间并夹紧金属管,启动所述动力装置,所述动力装置带动所述滚压头旋转;将各个滚压头中的所述滚压轮的最小内切圆的直径设置为相等,由于相邻两个滚压头的滚压轮数量上奇偶相异,滚压过程中相邻两个滚压头在金属管上形成的滚压螺旋线不同,由此实现校圆。
  17. 一种运用如权利要求1-9任一所述的金属毛坯滚压加工模块对金属毛坯进行缩径的方法,其特征在于,所述金属毛坯滚压加工模块包含至少一个具有圆台型滚压轮的滚压头,所述圆台形滚压轮的上底直径和下底直径之间的差值为需要缩径的量,将金属毛坯置于加工工序前端的滚压头的滚压轮之间并夹紧金属毛坯;启动所述动力装置,所述动力装置带动所述滚压头旋转;由此带动金属毛坯沿滚压头轴向方向移动,从而实现缩径。
PCT/CN2017/113632 2016-11-29 2017-11-29 一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品 WO2018099403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611075051.6 2016-11-29
CN201611075051 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018099403A1 true WO2018099403A1 (zh) 2018-06-07

Family

ID=62227967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113632 WO2018099403A1 (zh) 2016-11-29 2017-11-29 一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品

Country Status (2)

Country Link
CN (1) CN108115087B (zh)
WO (1) WO2018099403A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994227A (zh) * 2018-09-11 2018-12-14 苏州迈道纳自动化科技有限公司 花纹花键滚压座
CN110614293A (zh) * 2019-10-23 2019-12-27 江苏亚太轻合金科技股份有限公司 一种圆管整形装置
CN113146143A (zh) * 2021-04-15 2021-07-23 山东理工大学 曲轴圆角滚压装置
CN113182983A (zh) * 2021-05-12 2021-07-30 安徽聚芯智造科技股份有限公司 一种拉丝模用线抛光机
US20210380459A1 (en) * 2020-06-04 2021-12-09 Gerresheimer Regensburg Gmbh Method and System for Producing Glassware
CN118372152A (zh) * 2024-06-21 2024-07-23 国网山东省电力公司高青县供电公司 一种电力设备钢结构除锈装置及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114248983B (zh) * 2020-09-21 2023-08-01 广东天机工业智能系统有限公司 自动加工生产线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2216438Y (zh) * 1994-12-23 1996-01-03 冶金工业部钢铁研究总院 锥辊芯棒复合延伸机
JPH10244340A (ja) * 1997-03-03 1998-09-14 Rex Ind Co Ltd 管用テーパーねじ転造用ヘッド
CN1481285A (zh) * 2000-12-20 2004-03-10 奥托库姆普联合股份公司 制管方法与制管设备
CN1584247A (zh) * 2004-06-10 2005-02-23 丁方儒 多头螺纹钢筋接头及其制造装置和制造方法
CN2690065Y (zh) * 2004-04-09 2005-04-06 王秀和 无缝钢管联合轧管机组
CN105598170A (zh) * 2015-12-30 2016-05-25 中国钢研科技集团有限公司 一种钢管定径工艺
CN106238635A (zh) * 2015-06-10 2016-12-21 上海泛华紧固系统有限公司 管外螺纹滚压加工方法、模块及设备和管外螺纹生产线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580578B2 (ja) * 1994-08-15 2004-10-27 レッキス工業株式会社 ねじ転造用ダイヘッドの微調整機構
CN1285248A (zh) * 2000-10-16 2001-02-28 中国建筑科学研究院建筑结构研究所 钢筋连接螺纹的滚轧加工方法及其滚轧加工装置
CN2483115Y (zh) * 2001-06-06 2002-03-27 东营柯林瑞尔科技有限责任公司 液马达驱动的多级串联式圆管缩径机
CN1251820C (zh) * 2003-12-31 2006-04-19 肖金安 管道连接外螺纹轴向滚丝机
CN200963783Y (zh) * 2006-09-30 2007-10-24 王一 棒料除锈机
CN103084536A (zh) * 2011-11-02 2013-05-08 黄石锻压华曜机械设备有限公司 冷镦机进料校直装置
CN102601572B (zh) * 2011-12-23 2014-04-30 伍建秀 压刻工件的压刻方法及运用该方法制造的多功能压刻机
CN103223453A (zh) * 2013-03-31 2013-07-31 上海泛华紧固系统有限公司 钢管标准外径上直接滚压锥管外螺纹方法、装置及其产品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2216438Y (zh) * 1994-12-23 1996-01-03 冶金工业部钢铁研究总院 锥辊芯棒复合延伸机
JPH10244340A (ja) * 1997-03-03 1998-09-14 Rex Ind Co Ltd 管用テーパーねじ転造用ヘッド
CN1481285A (zh) * 2000-12-20 2004-03-10 奥托库姆普联合股份公司 制管方法与制管设备
CN2690065Y (zh) * 2004-04-09 2005-04-06 王秀和 无缝钢管联合轧管机组
CN1584247A (zh) * 2004-06-10 2005-02-23 丁方儒 多头螺纹钢筋接头及其制造装置和制造方法
CN106238635A (zh) * 2015-06-10 2016-12-21 上海泛华紧固系统有限公司 管外螺纹滚压加工方法、模块及设备和管外螺纹生产线
CN105598170A (zh) * 2015-12-30 2016-05-25 中国钢研科技集团有限公司 一种钢管定径工艺

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108994227A (zh) * 2018-09-11 2018-12-14 苏州迈道纳自动化科技有限公司 花纹花键滚压座
CN108994227B (zh) * 2018-09-11 2024-05-17 苏州迈道纳自动化科技有限公司 花纹花键滚压座
CN110614293A (zh) * 2019-10-23 2019-12-27 江苏亚太轻合金科技股份有限公司 一种圆管整形装置
US20210380459A1 (en) * 2020-06-04 2021-12-09 Gerresheimer Regensburg Gmbh Method and System for Producing Glassware
US11827554B2 (en) * 2020-06-04 2023-11-28 Gerresheimer Regensburg Gmbh Method and system for producing glassware
CN113146143A (zh) * 2021-04-15 2021-07-23 山东理工大学 曲轴圆角滚压装置
CN113182983A (zh) * 2021-05-12 2021-07-30 安徽聚芯智造科技股份有限公司 一种拉丝模用线抛光机
CN118372152A (zh) * 2024-06-21 2024-07-23 国网山东省电力公司高青县供电公司 一种电力设备钢结构除锈装置及其方法

Also Published As

Publication number Publication date
CN108115087B (zh) 2021-04-09
CN108115087A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2018099403A1 (zh) 一种毛胚滚压送料、缩径、校直与除锈方法、设备及产品
JP7111903B2 (ja) 縮径率の大きい多可変中空軸のコアレススピニング加工方法
EP3308874B1 (en) Method, module and apparatus for roll-processing external pipe thread, and external pipe thread production line
US11273483B2 (en) Threading method, rolling head, apparatus, module and production line for pipe thread, and products thereof
KR100488249B1 (ko) 웜기어 전조가공방법과 그 웜기어
CN114131383A (zh) 一种加工轴件的双头数控机床
CN105328091A (zh) 一种大模数圆柱齿轮近净热轧成形装置
US3487675A (en) Tube forming
CN114178452B (zh) 一种无缝钢管径向锻造设备及其锻造方法
WO2018012569A1 (ja) フォージングロール装置
JP3746855B2 (ja) 転造平ダイスを有する転造盤及び転造加工方法
CN110076198B (zh) 一种圆棒材两辊斜轧成形装置及方法
CN109794534B (zh) 一种带内环加强筋筒体的多道次旋压成形方法
US3468146A (en) Bar screw straightener
JP3365651B2 (ja) 直線案内用のレール等の異形引抜き材を製造するための引抜き加工方法
CN110814239B (zh) 一种大直径内齿型件多模具同步滚轧成形方法
KR102315642B1 (ko) 필거 밀의 냉간 압연을 이용하여 다각 형상 튜브를 제조하는 방법
CN220739357U (zh) 一种冷镦钢丝移动装置
CN209953489U (zh) 一种圆棒材两辊斜轧成形装置
CN115055560A (zh) 一种螺旋管旋压装置及高精度螺旋管制造方法
CN114871811A (zh) 一种用于加工圆柱状工件的夹具
JPH05138209A (ja) 偏肉継目無鋼管の製造法
JPS63194817A (ja) ねじ付継目無管の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876317

Country of ref document: EP

Kind code of ref document: A1