WO2018099238A1 - 耐热性复合片及其制造方法 - Google Patents

耐热性复合片及其制造方法 Download PDF

Info

Publication number
WO2018099238A1
WO2018099238A1 PCT/CN2017/109233 CN2017109233W WO2018099238A1 WO 2018099238 A1 WO2018099238 A1 WO 2018099238A1 CN 2017109233 W CN2017109233 W CN 2017109233W WO 2018099238 A1 WO2018099238 A1 WO 2018099238A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite sheet
glass fiber
resistant composite
heat
fluorine
Prior art date
Application number
PCT/CN2017/109233
Other languages
English (en)
French (fr)
Inventor
李旭
渡边義宣
田松
Original Assignee
日东电工(上海松江)有限公司
日东电工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日东电工(上海松江)有限公司, 日东电工株式会社 filed Critical 日东电工(上海松江)有限公司
Priority to KR1020197017402A priority Critical patent/KR102353055B1/ko
Priority to EP17877254.7A priority patent/EP3549750B1/en
Priority to JP2019526587A priority patent/JP7117301B2/ja
Publication of WO2018099238A1 publication Critical patent/WO2018099238A1/zh
Priority to JP2022101511A priority patent/JP2022125105A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/18Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/205Adhesives in the form of films or foils characterised by their carriers characterised by the backing impregnating composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/14Glass
    • C09J2400/143Glass in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/26Presence of textile or fabric
    • C09J2400/263Presence of textile or fabric in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • C09J2427/006Presence of halogenated polymer in the substrate

Definitions

  • the present invention relates to a heat resistant composite sheet, and more particularly to a heat resistant composite sheet which is a glass fiber fabric impregnated with a fluorine-containing resin.
  • the present invention also relates to a method of producing the above heat resistant composite sheet.
  • a composite sheet of glass fiber fabric impregnated with a fluorine-containing resin has excellent heat resistance, insulation, corrosion resistance, non-stick properties, and the like, and is used in many fields such as a conveyor belt, a heat-resistant sheet, an anti-corrosion non-stick sheet, and the like. Used in. However, no matter what kind of field is used, there will be cases where the composite sheet wears out as the use time increases. It can be seen that how to make the life of the composite sheet longer is a problem to be solved.
  • the base material fluororesin layer is thickened, and the processing cost is generally increased, and the effect is not the best.
  • the tape is formed by increasing the thickness in a large amount, when it is attached to the hot plate having an angle, the back force is large after the bending, so that it is not easy to stick and is easily detached from the adherend, resulting in a decrease in the service life of the tape.
  • the object of the present invention is to provide a heat-resistant composite sheet which has good flatness and strong abrasion resistance and can be widely applied to heat-resistant, insulating, anti-corrosive, non-sticking and the like, and has a long life, and the heat-resistant composite sheet is manufactured.
  • a method and an adhesive tape comprising the heat resistant composite sheet and a method of manufacturing the same.
  • the present application provides a heat resistant composite sheet which is a glass fiber impregnated with a fluorine resin.
  • a woven fabric characterized in that, in the glass fiber woven fabric, the composite sheet has opposite sides in the thickness direction, at least one of which has a surface roughness of Rz ⁇ 21 ⁇ m or Ra ⁇ 7.5 ⁇ m.
  • the heat resistant composite sheet according to the present application wherein the thinnest thickness between the face having the surface roughness and the glass fiber woven fabric is 3 to 30 ⁇ m.
  • the heat resistant composite sheet according to the present application wherein the glass fiber woven fabric has a thickness of 10 to 500 ⁇ m.
  • a heat resistant composite sheet according to the present application wherein the composite sheet has two opposite faces in a thickness direction centering on the glass fiber fabric, and the two faces are between the glass fiber fabric and the glass fiber fabric
  • the ratio between the thinnest thickness is 0.5 to 2.0.
  • the heat resistant composite sheet according to the present application wherein the fluorine-containing resin is polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), perfluoroethylene-propylene copolymer (FEP), ethylene One or more of tetrafluoroethylene copolymer (ETFE) and polyvinylidene fluoride (PVdF).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • FEP perfluoroethylene-propylene copolymer
  • ETFE tetrafluoroethylene copolymer
  • PVdF polyvinylidene fluoride
  • the present application also provides a heat resistant tape comprising the heat resistant composite sheet according to the present application, and an adhesive layer provided on at least one side of the heat resistant composite sheet.
  • the present application also provides a method of manufacturing a heat resistant composite sheet according to the present application, which comprises the following steps:
  • the glass fiber fabric is treated with a silicon-containing agent
  • the glass fiber fabric after the treatment is impregnated with the fluorine-containing resin
  • a glass fiber fabric impregnated with a fluorine resin is heated to form the composite sheet.
  • the glass fiber fabric impregnated with the fluorine-containing resin is treated with a doctor blade. To control the thickness of the fluorine resin on both sides of the glass fiber fabric.
  • the step of impregnating the glass fiber fabric with the fluorine-containing resin and the step of heating the composite sheet are repeated 2 to 8 times.
  • the amount of the silicon-containing agent is 0.05 to 0.2% by weight based on the total weight of the glass fiber fabric.
  • the present application also provides a method of manufacturing an adhesive tape according to the present application, which comprises the following steps:
  • a heat resistant composite sheet is produced according to the method for producing a heat resistant composite sheet according to the present application.
  • An adhesive layer is provided on at least one surface of the heat resistant composite sheet.
  • the abrasion resistance of the composite sheet can be improved, and the production efficiency can be improved and the cost can be reduced.
  • FIG. 1 is a schematic cross-sectional structural view showing an example of a heat resistant composite sheet of the present invention
  • FIG. 2 is a schematic cross-sectional structural view showing an example of a heat resistant tape using the heat resistant composite sheet of the present invention
  • Fig. 3 is an enlarged cross-sectional view showing an example of a heat-resistant adhesive tape using the heat-resistant composite sheet of the present invention.
  • the composite sheet 10 is a glass fiber fabric impregnated with a fluorine-containing resin, centering on the glass fiber fabric 13, the composite sheet having opposite sides 11 and 12 in the thickness direction, at least one of which The surface has a surface roughness of Rz ⁇ 21 ⁇ m or Ra ⁇ 7.5 ⁇ m.
  • Rz ⁇ 13 ⁇ m more preferably, Ra ⁇ 2.9 ⁇ m.
  • the at least one face simultaneously satisfies surface roughness Rz ⁇ 21 ⁇ m and Ra ⁇ 7.5 ⁇ m. More preferably, the at least one face simultaneously satisfies surface roughness Rz ⁇ 13 ⁇ m and Ra ⁇ 2.9 ⁇ m.
  • the opposite two faces 11 and 12 can be used as the opposite first face and second face. If one face is called the first face, the other face is called the second face. Face and vice versa, there are no special restrictions.
  • the heat resistant composite sheet is preferably a tape substrate, a tape release film, a food transfer belt, a corrosion resistant film, or a durable film for construction.
  • the glass fiber woven fabric 13 is treated with a silicon-containing chemical agent, and the treated glass fiber woven fabric is impregnated with a fluorine-containing resin, and the composite sheet 10 is formed by heating a glass fiber woven fabric impregnated with a fluorine-containing resin.
  • the thickness of the composite sheet 10 is, for example, 10 to 500 ⁇ m, preferably 40 to 300 ⁇ m.
  • the glass fiber woven fabric is a woven fabric obtained by weaving a glass fiber yarn.
  • the glass strand used as the glass fiber fabric is usually formed by laminating glass fibers having a diameter of about several ⁇ m in units of several hundred.
  • the properties of fiberglass fabrics are determined by fiber properties, warp and weft density, yarn structure and texture.
  • the warp and weft density is determined by the yarn structure and texture.
  • the warp and weft density plus the yarn structure determines the physical properties of the fabric, such as weight, thickness and breaking strength.
  • the basic texture is plain, twill, satin, rib and mat.
  • the type and configuration of the glass fiber woven fabric are not particularly limited.
  • a basis weight of 15 to 110 g/m 2 a yarn density of 10 to 100 / 25 mm in the warp direction and the weft direction, and a thickness of about 10 ⁇ m to about 500 ⁇ m, more preferably about 30 ⁇ m to about 250 ⁇ m.
  • Fiberglass plain weave The fiberglass fabric can be opened before use to improve the effect of the subsequent silicon-containing treatment process.
  • the fluorine-containing resin is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), perfluoroethylene-propylene copolymer (FEP), and ethylene-tetrafluoroethylene copolymer. (ETFE), one or more of polyvinylidene fluoride (PVdF).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • FEP perfluoroethylene-propylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVdF polyvinylidene fluoride
  • the measurement of the surface roughness Rz was carried out in accordance with the JIS-B0601-1994 test method.
  • the measurement of the surface roughness Ra was carried out in accordance with the JIS-B0601-1994 test method. At least one of the opposite faces 11 and 12 of the composite sheet 10 has a surface roughness Ra ⁇ 7.5 ⁇ m, preferably Ra ⁇ 2.9 ⁇ m.
  • the surface roughness of at least one of the opposite faces 11 and 12 of the composite sheet 10 is particularly important for the useful life of the composite sheet.
  • the surface roughness greatly affects the surface abrasion performance, for example, affecting the friction coefficient, affecting the surface stress when the composite sheet is subjected to friction, and thereby causing surface damage of the surface fluorine-containing resin layer. Therefore, when Rz>21 ⁇ m, the surface layer is more likely to form microcrystalline damage of the surface layer resin, further causing destruction of the entire surface layer resin, resulting in a low service life of the composite sheet.
  • Ra>7.5 ⁇ m as also the mechanism discovered by the inventors as described above, since the surface roughness greatly affects the surface abrasion performance, for example, affecting the friction coefficient, affecting the surface stress of the composite sheet when it is rubbed, and thereby A surface damage model that results in a surface fluororesin layer. Therefore, when Ra>7.5 ⁇ m, the surface layer is more likely to form microcrystalline damage of the surface layer resin, further causing destruction of the entire surface layer resin, resulting in a low service life of the composite sheet.
  • the thinnest thickness of the fluorine-containing resin layer on both sides of the glass fiber fabric is generally 3 to 30 ⁇ m, preferably 5 to 30 ⁇ m.
  • the thickness of the fluorine-containing resin layer is too thin, it is easy to expose the internal glass fibers after abrasion, resulting in irregular surface morphology of the composite sheet, which causes the composite sheet to lose the effects of release and chemical resistance.
  • the fluorine-containing resin layer The thickness is too thick, resulting in poor workability (mainly resistance to counter-force) of the composite sheet during use, and increased use cost.
  • the ratio between the thinnest thicknesses 14 and 15 (and vice versa) between the opposite faces 11 and 12 of the composite sheet 10 and the fiberglass fabric 13 is 0.5 to 2.0. It is preferably 0.8 to 1.3, more preferably 0.9 to 1.1.
  • the ratio is less than 0.5, the composite sheet is liable to curl in one direction during processing, resulting in a decrease in the practical use performance of the composite sheet.
  • the ratio is more than 2.0, based on the same principle, the composite sheet is liable to curl in one direction during processing, resulting in a decrease in the practical use performance of the composite sheet.
  • the method for producing a heat-resistant composite sheet of the present invention comprises: subjecting a glass fiber woven fabric to a silicon-containing chemical treatment (silicon-containing chemical treatment step); impregnating the treated glass fiber woven fabric with a fluorine-containing resin (impregnation step); heating A glass fiber fabric impregnated with a fluorine resin to form the composite sheet (heating step).
  • Silicon-containing agent treatment is the process of treating a fiberglass fabric with a silicon-containing agent.
  • the silicon-containing agent is a type of organosilicon compound containing two different chemical groups in the molecule, and its structural formula can be represented by the formula YSiX 3 .
  • Y is a non-hydrolyzable group, including an alkenyl group (mainly a vinyl group), and a terminal having Cl, NH 2 , -SH, an epoxy group, N 3 , a (meth)acryloyloxy group, an isocyanate a hydrocarbyl group of a functional group, i.e., a carbon functional group;
  • X is a hydrolyzable group, including Cl, OCH 3 , OCH 2 CH 3 , OC 2 H 4 OCH 3 , OSi(CH 3 ) 3 , and the like.
  • the glass fiber fabric Due to the presence of the silicon-containing agent, the glass fiber fabric has a great influence on the flattening property of the fluorine-containing resin material on the surface of the glass fiber fabric and the internal immersion property.
  • the amount of the silicon-containing agent is 0.05 to 0.2% by weight based on the total weight of the glass fiber fabric.
  • an emulsion impregnated with a fluororesin may be used to impregnate the glass fiber fabric.
  • the fluororesin emulsion is a polymer resin emulsion in which a polymer main chain is a carbon element and a carbon element is a fluorine element.
  • a polymer main chain is a carbon element
  • a carbon element is a fluorine element.
  • PTFE polytetrafluoroethylene
  • TFE tetrafluoroethylene
  • the content (solid content ratio) of the fluorine-containing resin in the fluorine-containing resin emulsion is preferably from about 40 to about 60% by weight.
  • the glass fiber fabric is impregnated into the fluororesin emulsion.
  • the impregnation can be carried out, for example, by a method of impregnating a glass fiber fabric in a fluorine-containing resin emulsion, a method of coating a fluorine-containing resin emulsion on a glass fiber fabric, or a method of spraying a fluorine-containing resin emulsion on a glass fiber fabric.
  • the glass fiber fabric impregnated with the fluorine resin may be treated with a doctor blade or a doctor blade to separately control the thickness of the fluorine resin on both sides of the glass fiber fabric.
  • the dispersion medium is lost from the fluorine-containing resin emulsion impregnated into the glass fiber fabric in the impregnation step, and the fluorine-containing resin is fused to each other (the emulsion is converted into a fusion body) to form a glass impregnated with the fluorine-containing resin. Fiber fabric.
  • the specific method of the heating step is not limited, and the glass fiber woven fabric impregnated with the fluororesin emulsion can be heated to a temperature equal to or higher than the melting point of the fluororesin, and is usually 15 ° C to 60 ° C above the melting point of the fluororesin.
  • the heating temperature is preferably 330 ° C to 400 ° C, and more preferably 340 ° C to 380 ° C.
  • the impregnation step and the heating step may be further repeated on the formed glass fiber fabric as needed.
  • the thickness of the glass fiber fabric impregnated with the fluorine-containing resin can be increased.
  • the total thickness of the composite sheet formed by the above steps is, for example, 10 to 500 ⁇ m, preferably 40 to 300 ⁇ m.
  • the impregnation process and the heating process step are repeated 2 to 8 times, and the number of repetitions may cause the composite sheet to be too thick, and when it is attached to an angled hot plate, the reverse force is large after bending, so It is easy to stick and easy to get rid of the adherend.
  • the method for producing a composite sheet of the present invention may include any step other than the impregnation step and the heating step as long as the effects of the present invention can be obtained.
  • the composite sheet of the present application has the characteristics of good flatness, strong abrasion resistance, easy adhesion, and easy separation from the adherend due to the adjustment of the surface roughness, and the production efficiency is high.
  • the composite sheet of the present application can It is used in a variety of applications where abrasion resistance, acid and alkali resistance, and heat resistance are required, such as tape substrates, tape release films, food conveyor belts, corrosion resistant films or architectural durability films, films, tapes, and the like.
  • the heat resistant tape of the present invention comprises an adhesive layer 20 provided on one face 11 of the aforementioned composite sheet.
  • the heat resistant tape may also include the adhesive layer 20 provided on the other face 12 of the aforementioned composite sheet.
  • the type of the adhesive used for the pressure-sensitive adhesive layer is not particularly limited, and a pressure-sensitive adhesive material conventionally used for an adhesive layer of an adhesive tape such as acrylic, rubber or silicone can be used. From the viewpoint of heat resistance of the tape, a silicone-based pressure-sensitive adhesive is preferable.
  • the thickness of the pressure-sensitive adhesive layer is usually 5 to 100 ⁇ m, preferably 10 to 60 ⁇ m. When the thickness is less than 5 ⁇ m, the adhesion is low, and peeling easily occurs during use. When the thickness is more than 100 ⁇ m, when used as a heat seal, the thermal conductivity of the tape in the thickness direction is rather lowered, which is not preferable.
  • the method for producing a heat-resistant adhesive tape of the present invention comprises: producing the composite sheet according to the aforementioned method for producing the composite sheet; and forming the adhesive layer on the one surface (11 or 12) of the composite sheet.
  • the surface treatment step is a treatment for improving the adhesion (anchoring force) between the surface (11 or 12 in the present invention) in which the pressure-sensitive adhesive layer is provided in the composite sheet and the pressure-sensitive adhesive layer provided on the surface.
  • This process can be carried out as needed.
  • the specific method of performing the surface treatment process is the same as the method carried out in the manufacture of a known tape.
  • the surface treatment step can be carried out, for example, by applying a surface treatment solution (adhesive treatment solution) containing a surface treatment agent (adhesive treatment agent) and a dispersant to the surface of the pressure-sensitive adhesive layer.
  • the surface treatment agent is, for example, a polyester resin, a melamine resin, an acrylic resin, a silicone resin, and a fluorine-containing resin such as PTFE, PFA or ETFE.
  • the dispersing agent is, for example, toluene, xylene, ethyl acetate, butanol, water, and a mixture thereof.
  • the surface treatment solution may contain a surface treatment agent and a material other than the dispersant, such as a crosslinking agent, a curing agent, an organic filler, an inorganic filler, and a surfactant.
  • a surface treatment agent such as a crosslinking agent, a curing agent, an organic filler, an inorganic filler, and a surfactant.
  • the organic filler is, for example, a powder of a melamine resin, an epoxy resin, or an acrylic resin
  • the inorganic filler is, for example, a powder of iron oxide, aluminum oxide, or silica.
  • the surface treatment solution is preferably a solution containing a fluorine-containing resin PFA as a surface treatment agent, water as a dispersant, and silica particles as an inorganic filler.
  • an adhesive layer is provided on one surface 11 or 12 of the composite sheet.
  • the specific method of performing the adhesive layer forming step is the same as the method carried out in the production of a known tape.
  • the adhesive layer forming step can be carried out, for example, by applying an adhesive to one surface 11 or 12 of the composite sheet.
  • the abrasion resistance performance test was carried out by the following method: using a Taber abrasion machine, a wear wheel CS-17, a load of 500 g, and grinding the composite sheet for 1000 times, weighing the weight before and after the abrasion, and calculating the abrasion amount.
  • the thinnest thickness between the composite sheet surface and the glass fiber fabric is measured by the following method: the composite sheet is cut with a cutter, cut into a sample having a thinness of 20 ⁇ m, and magnified 100 times under an electron microscope. The cross section was observed to determine the thinnest thickness between the two faces of the composite sheet and the fiberglass fabric. Take 5 points for measurement and use the average value.
  • the evaluation of the crimpability of the composite sheet was carried out by taking a composite sheet of 1 m length x 15 mm width, grasping one end and allowing the other end to freely float, and observing the curl of the composite sheet.
  • the composite sheet is basically not curled, and substantially maintains a line shape as ⁇ ,
  • the composite sheet is only slightly curled and straightened and can be used as evaluation ⁇ .
  • the composite sheet was crimped into a plurality of circles and evaluated as ⁇ .
  • the silicon-containing agent treatment was carried out using a glass fiber plain woven fabric having a thickness of 450 ⁇ m, and the amount of the silicon-containing agent was 0.17% by weight based on the total weight of the glass fiber plain woven fabric.
  • the glass fiber plain woven fabric treated with the silicon-containing agent was impregnated with a PTFE emulsion having a fluorine-containing resin content (solid content ratio) of about 55% by weight. After the impregnation, the thickness of the PTFE on both sides of the glass fiber was controlled by a doctor blade. After dehydration, it was sintered at a high temperature of 350 ° C for 20 seconds.
  • the spacing between the glass fibers is adjusted by controlling the doctor blade so that the thinnest portion thickness and the adhesion surface between the non-adhesive surface (ie, the second surface 12) and the glass fiber plain weave fabric (ie, The ratio of the thickness of the thinnest portion between the first side 11) and the glass fiber plain weave is 1.2.
  • the non-adhesive surface i.e., the second surface 12
  • the non-adhesive surface had a roughness Ra of 6.2 ⁇ m and an Rz of 32 ⁇ m
  • the thickness of the thinnest portion between the non-adhesive surface and the glass fiber plain woven fabric was 3.5 ⁇ m.
  • the abrasion amount of the obtained composite sheet was measured, and the glass fiber exposed and curled in the obtained composite sheet were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. The difference is: use a 30 ⁇ m thick glass fiber plain weave fabric
  • the silicon-containing agent treatment is carried out, and the silicon-containing agent amount is 0.09 wt% of the total weight of the glass fiber plain weave fabric, and in the obtained composite sheet, the thinnest between the non-adhesive agent surface (ie, the second side 12) and the glass fiber plain weave fabric
  • the ratio of the thickness of the thickness and the adhesion surface (ie, the first side 11) to the thinnest portion between the glass fiber plain weave fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 2.5 ⁇ m, and the Rz is 6.3.
  • Mm and the thinnest portion between the non-adhesive side and the glass fiber plain weave has a thickness of 6 ⁇ m.
  • the abrasion amount of the obtained composite sheet was measured, and the glass fiber exposed and curled in the obtained composite sheet were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. The difference is that the silicon-containing agent is treated with a glass fiber plain fabric having a thickness of 80 ⁇ m, the silicon-containing amount is 0.09 wt% of the total weight of the glass fiber plain fabric, and in the obtained composite sheet, the non-adhesive surface (ie, the second side) 12)
  • the ratio between the thinnest part of the thickness and the adhesive surface (ie, the first side 11) and the thinnest layer between the glass fiber plain weave fabric is 1.0, and the non-adhesive surface (ie, the second side 12)
  • the roughness Ra was 2.2 ⁇ m
  • Rz was 2.4 ⁇ m
  • the thinnest portion between the non-adhesive surface and the glass fiber plain weave was 9 ⁇ m.
  • the abrasion amount of the obtained composite sheet was measured, and the glass fiber exposed and curled in the obtained composite sheet were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. The difference is that the silicon-containing chemical treatment is performed using a glass fiber plain woven fabric having a thickness of 80 ⁇ m, and in the obtained composite sheet, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second surface 12) and the glass fiber plain woven fabric are obtained.
  • the ratio of the thickness of the thinnest portion between the first surface 11 and the glass fiber plain weave fabric is 1.5
  • the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 1.6 ⁇ m
  • Rz is 2.1 ⁇ m
  • the thinnest part between the agent surface and the glass fiber plain weave has a thickness of 11 ⁇ m.
  • the abrasion amount of the obtained composite sheet was measured, and the glass fiber exposed and curled in the obtained composite sheet were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. The difference is that the silicon-containing chemical treatment is performed using a glass fiber plain weave having a thickness of 150 ⁇ m, and in the obtained composite sheet, the thinnest thickness and the adhesive surface between the non-adhesive surface (ie, the second surface 12) and the glass fiber plain fabric are obtained.
  • the ratio of the thickness of the thinnest portion between the first surface 11 and the glass fiber plain woven fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second surface 12) is 0.4 ⁇ m, Rz is 2.0 ⁇ m, and non-adhesive
  • the thinnest part between the agent surface and the glass fiber plain weave has a thickness of 20 ⁇ m.
  • the abrasion amount of the obtained composite sheet was measured, and the glass fiber exposed and curled in the obtained composite sheet were observed. The results are shown in Table 1.
  • Example 1 The procedure of Example 1 was repeated. The difference is that the silicon-containing dose is 0.02% by weight of the total weight of the glass fiber plain weave fabric, and in the obtained composite sheet, the thinnest portion between the non-adhesive surface (ie, the second side 12) and the glass fiber plain weave
  • the ratio of the thickness of the thinnest portion between the adhesive face (ie, the first face 11) and the glass fiber plain weave fabric is 1.0, and the roughness Ra of the non-adhesive surface (ie, the second face 12) is 9.8 ⁇ m, Rz is 32.8 ⁇ m, and
  • the thinnest portion between the non-adhesive surface and the glass fiber plain weave has a thickness of 2 ⁇ m.
  • the abrasion amount of the obtained composite sheet was measured, and the glass fiber exposed and curled in the obtained composite sheet were observed. The results are shown in Table 1.
  • the composite sheet by making the surface roughness Rz ⁇ 21 ⁇ m or Ra ⁇ 7.5 ⁇ m of at least one face of the composite sheet, the composite sheet can have excellent wear resistance and curling property. And no fiber is exposed. On the contrary, the composite sheet which does not satisfy the surface roughness condition of the present application has poor abrasion resistance, and the fiber portion in the composite sheet is exposed or worn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种耐热性复合片及其制造方法,复合片(10)为浸渗含氟树脂的玻璃纤维织物(13),以玻璃纤维织物(13)为中心,复合片(10)在厚度方向具有相对的两个面,其中至少一个面具有表面粗糙度为Rz≦21μm或Ra≦7.5μm。耐热性复合片(10)由于对表面粗糙度进行调整,具有平整度好,耐磨性强,加工成胶带后胶带容易粘贴并且不容易脱离被粘体,生产效率高的特点。

Description

耐热性复合片及其制造方法 技术领域
本发明涉及耐热性复合片,更具体而言涉及作为浸渗含氟树脂的玻璃纤维织物的耐热性复合片。本发明还涉及上述耐热性复合片的制造方法。
背景技术
浸渗有含氟树脂的玻璃纤维织物的复合片,具有优异的耐热性、绝缘性、耐腐蚀性、不粘性等性能,在很多领域,例如传送带、耐热片、防腐不粘片等等中使用。但是不论在何种领域使用,都会有复合片随着使用时间的增加,表面不断磨损的情况。可见,使复合片的寿命如何更长久是需要解决的课题。
胶带用在热封领域时,胶带张贴在热板上以后,由于胶带和被热封物接触,产生磨损。由于现有耐热性胶带的表面凹凸不平,导致使用时磨耗不平均,部分玻璃纤维容易裸露,使用寿命降低。
另外,现有产品为了增加寿命而将基材氟树脂层加厚,通常加工成本大大上升,并且效果也不是最好。例如大量增加厚度而制成的胶带,此时张贴在具有角度的热板上的时候,导致弯曲后反发力大,所以不容易粘贴,容易脱离被粘体,导致胶带的使用寿命的降低。
发明内容
发明要解决的问题
本发明的目的在于提供平整度好,耐磨性强,可以广阔应用于耐热、绝缘、防腐蚀、不粘等用途,长寿命的耐热性复合片,所述耐热性复合片的制造方法以及包括所述耐热性复合片的胶带及其制造方法。
用于解决问题的方案
本申请提供一种耐热性复合片,所述复合片为浸渗含氟树脂的玻璃纤维 织物,其特征在于,以所述玻璃纤维织物为中心,所述复合片在厚度方向具有相对的两个面,其中至少一个面具有表面粗糙度为Rz≦21μm或Ra≦7.5μm。
根据本申请所述的耐热性复合片,其中具有所述表面粗糙度的所述面与所述玻璃纤维织物之间的最薄厚度为3~30μm。
根据本申请所述的耐热性复合片,其中所述玻璃纤维织物的厚度为10~500μm。
根据本申请所述的耐热性复合片,其中以所述玻璃纤维织物为中心,所述复合片在厚度方向具有相对的两个面,所述两个面与所述玻璃纤维织物之间的最薄厚度之间的比例为0.5~2.0。
根据本申请所述的耐热性复合片,其中所述含氟树脂为聚四氟乙烯(PTFE)、全氟烷氧基链烷烃(PFA)、全氟乙烯-丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVdF)中的一种或多种。
本申请还提供一种耐热性胶带,其包括根据本申请所述的耐热性复合片,和在所述耐热性复合片的至少一面上设置的粘着剂层。
本申请还提供了根据本申请所述的耐热性复合片的制造方法,其特征在于包括以下工序:
使玻璃纤维织物进行含硅药剂处理;
使上述处理后的玻璃纤维织物浸渗含氟树脂;
加热浸渗过含氟树脂的玻璃纤维织物以形成所述复合片。
根据本申请所述的耐热性复合片的制造方法,其中在使所述玻璃纤维织物浸渗含氟树脂后、且在加热工序之前,使用刮刀处理浸渗过含氟树脂的玻璃纤维织物,以控制玻璃纤维织物两侧含氟树脂的厚度。
根据本申请所述的耐热性复合片的制造方法,其中使所述玻璃纤维织物浸渗含氟树脂的工序和加热形成所述复合片的工序重复进行2~8次。
根据本申请所述的耐热性复合片的制造方法,其中含硅药剂的量为玻璃纤维织物总重量的0.05~0.2wt%。
本申请还提供一种根据本申请所述的胶带的制造方法,其特征在于包括以下工序:
根据本申请所述的耐热性复合片的制造方法制造得到耐热性复合片;
在所述耐热性复合片的至少一面上设置粘着剂层。
发明的效果
通过对本发明的耐热性复合片的表面粗糙度进行调整,能够提高所述复合片的耐磨性,能够提高生产效率,降低了成本。
附图说明
图1为本发明的耐热性复合片的一个实例的截面结构示意图;
图2为使用本发明的耐热性复合片的耐热性胶带的一个实例的截面结构示意图;
图3为使用本发明的耐热性复合片的耐热性胶带的一个实例的截面结构放大图。
附图标记说明
10复合片
11复合片的第一面
12复合片的第二面
13玻璃纤维织物
14复合片的第一面与玻璃纤维织物之间的最薄厚度
15复合片的第二面与玻璃纤维织物之间的最薄厚度
20粘着剂层
具体实施方式
下面参考附图对本发明进行详细说明。
[耐热性复合片]
<复合片>
本发明中,所述复合片10为浸渗含氟树脂的玻璃纤维织物,以所述玻璃纤维织物13为中心,所述复合片在厚度方向具有相对的两个面11和12,其中至少一个面具有表面粗糙度为Rz≦21μm或Ra≦7.5μm。优选地,Rz≦13μm,更优选地,Ra≦2.9μm。优选地,所述至少一个面同时满足表面粗糙度Rz≦21μm和Ra≦7.5μm。更优选地,所述至少一个面同时满足表面粗糙度Rz≦13μm和Ra≦2.9μm。
需要说明的是,在本发明中所述相对的两个面11和12均可以作为相对的第一面和第二面,如果其中一个面称为第一面,则另一个面称为第二面,反之亦然,没有特别限制。
本发明中,所述耐热性复合片优选为胶带基材、胶带离型膜、食品传输带、耐腐蚀膜或建筑用耐久性膜。
本发明中,将玻璃纤维织物13进行含硅药剂处理,处理后的玻璃纤维织物浸渗含氟树脂,通过加热浸渗过含氟树脂的玻璃纤维织物形成复合片10。复合片10的厚度例如为10~500μm,优选40~300μm。
<玻璃纤维织物>
本发明中,玻璃纤维织物是将玻璃纤维纱线进行织造而得到的织物。作为玻璃纤维织物使用的玻璃丝通常通过将直径为约几μm的玻璃纤维以几百根为单位进行拉齐而形成。玻璃纤维织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,决定了织物的物理性质,如重量、厚度和断裂强度等。基本的织纹为平纹、斜纹、缎纹、罗纹和席纹。玻璃纤维织物的种类及构成没有特别限定。例如可以优选使用单位面积重量为15~110g/m2、纱密度在经向、纬向均为10~100根/25mm,且厚度为约10μm~约500μm,更优选为约30μm~约250μm的玻璃纤维平纹织物。在使用之前玻璃纤维织物可以进行开纤处理,以提高后续的含硅处理工序的效果。
<含氟树脂>
本发明中,含氟树脂没有特别限定,例如为聚四氟乙烯(PTFE)、全氟烷氧基链烷烃(PFA)、全氟乙烯-丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVdF)中的一种或多种。
<表面粗糙度Rz>
参照JIS-B0601-1994测试方法进行表面粗糙度Rz的测量。复合片10的相对两个面11和12中的至少一个的表面粗糙度Rz≦21μm,优选Rz≦13μm。
<表面粗糙度Ra>
参照JIS-B0601-1994测试方法进行表面粗糙度Ra的测量。复合片10的相对两个面11和12中的至少一个的表面粗糙度Ra≦7.5μm,优选Ra≦2.9μm。
复合片10的相对两个面11和12中的至少一个的表面粗糙度对于复合片的使用寿命尤为重要。当上述表面粗糙度Rz>21μm时,由于表面粗糙度大大影响表面磨耗性能,例如影响摩擦系数,影响复合片受摩擦时的表面受力情况,以及从而导致表面含氟树脂层的表面破坏现象。因此当Rz>21μm时,表面层更容易形成表层树脂的微晶破坏,进一步导致整个表层树脂破坏,导致复合片使用寿命偏低。
另一方面,当Ra>7.5μm时,同样如上述本发明人发现的机理,由于表面粗糙度大大影响表面磨耗性能,例如影响摩擦系数,影响复合片受摩擦时的表面受力情况,以及从而导致表面含氟树脂层的表面破坏模型。因此当Ra>7.5μm时,表面层更容易形成表层树脂的微晶破坏,进一步导致整个表层树脂破坏,导致复合片使用寿命偏低。
另外,出于制造性和使用寿命的考虑,作为玻璃纤维织物两侧的含氟树脂层的最薄厚度(复合片的外表面到最近的玻璃纤维的厚度),一般为3~30μm,优选为5~30μm。当小于3μm时,由于含氟树脂层的厚度过于薄,很容易经过磨损后露出内部的玻璃纤维,造成复合片表面形态不规则,使复合片失去离型、耐药品性等功效。另一方面,当大于30μm时,含氟树脂层 的厚度过于厚,导致复合片在使用过程中加工性(主要是耐反发力)变差,并且使用成本增加。
以所述玻璃纤维织物为中心,所述复合片10的相对两个面11和12与玻璃纤维织物13之间的最薄厚度14和15(反之亦然)之间的比例为0.5~2.0,优选0.8~1.3,更优选0.9~1.1。当该比例小于0.5时,该复合片在加工时容易出现朝一个方向的卷曲现象,导致复合片的实际使用性能降低。当该比例大于2.0时,基于同样的原理,所述复合片在加工时容易出现朝一个方向的卷曲现象,导致复合片的实际使用性能降低。
<复合片的制造方法>
本发明的耐热性复合片的制造方法包括:使玻璃纤维织物进行含硅药剂处理(含硅药剂处理工序);使上述处理后的玻璃纤维织物浸渗含氟树脂(浸渗工序);加热浸渗过含氟树脂的玻璃纤维织物以形成所述复合片(加热工序)。
<含硅药剂处理工序>
含硅药剂处理是使用含硅药剂对玻璃纤维织物进行处理的过程。含硅药剂是在分子中同时含有两种不同化学性质基团的一类有机硅化合物,其结构式可用通式YSiX3表示。式中,Y为非水解基团,包括链烯基(主要为乙烯基),以及末端带有Cl、NH2、-SH、环氧基、N3、(甲基)丙烯酰氧基、异氰酸酯基等官能团的烃基,即碳官能基团;X为可水解基团,包括Cl、OCH3、OCH2CH3、OC2H4OCH3、OSi(CH3)3等。由于含硅药剂的存在,使得玻璃纤维织物对含氟树脂材料在玻璃纤维织物表面的展平性能以及内部浸入性能有较大的影响。本申请中,含硅药剂量为玻璃纤维织物总重量的0.05~0.2wt%。
<浸渗工序>
在浸渗工序中,可使用含氟树脂的乳液浸渗玻璃纤维织物。
含氟树脂乳液是高分子主链为碳元素,与碳元素相结合的元素为氟元素的高分子树脂乳液。例如,聚四氟乙烯(PTFE)乳液通过四氟乙烯(TFE) 的乳液聚合形成。含氟树脂乳液中该含氟树脂的含量(固体成分比例)优选为约40~约60重量%。
浸渗工序中,玻璃纤维织物浸渗到含氟树脂乳液中。浸渗可以通过例如使玻璃纤维织物浸渍在含氟树脂乳液中的方法、或在玻璃纤维织物上涂布含氟树脂乳液的方法、或在玻璃纤维织物上喷涂含氟树脂乳液的方法来实施。
在上述浸渗工序后,可以使用刮刀或刮板处理浸渗过含氟树脂的玻璃纤维织物,以分别控制玻璃纤维织物两侧含氟树脂的厚度。
<加热工序>
加热工序,从在浸渗工序中浸渗于玻璃纤维织物中的含氟树脂乳液中失去分散介质,并且含氟树脂相互熔合(乳液转变为熔合体),形成浸渗有该含氟树脂的玻璃纤维织物。
对于加热工序的具体方法没有限定,只要能够将浸渗有含氟树脂乳液的玻璃纤维织物加热至该含氟树脂的熔点以上,通常为含氟树脂的熔点以上15℃~60℃。例如,在使用PTFE乳液时,加热温度优选为330℃~400℃,进一步优选为340℃~380℃。
可以根据需要进一步对所形成的玻璃纤维织物重复进行浸渗工序及加热工序。通过该重复,例如可以增大浸渗有含氟树脂的玻璃纤维织物的厚度。通过上述步骤形成复合片的总厚度例如为10~500μm,优选40~300μm。一般而言,浸渗工序及加热工序步骤重复进行2~8次,重复次数过多可能导致复合片过厚,张贴在具有角度的热板上的时候,导致弯曲后反发力大,所以不容易粘贴,容易脱离被粘体。
只要可以得到本发明的效果,本发明的复合片的制造方法可以包括浸渗工序及加热工序以外的任意工序。
由此,得到在玻璃纤维织物中浸渗有含氟树脂的复合片。
本申请的复合片由于对表面粗糙度进行调整,具有平整度好,耐磨性强,容易粘贴并且不容易脱离被粘体,生产效率高的特点。本申请的复合片可以 用于在需要耐磨、耐酸碱、耐热性能的多种用途,例如胶带基材、胶带离型膜、食品传输带、耐腐蚀膜或建筑用耐久性膜、薄膜、胶带等。
下面仅就本申请的复合片应用在耐热性胶带中的例子进行说明,本领域技术人员能够理解,该例子仅是示例性的说明,并非穷尽性的说明。
[耐热性胶带]
参照图2,本发明的耐热性胶带包括在前述复合片的一个面11上设置的粘着剂层20。在本发明中,耐热性胶带也可以包括在前述复合片的另一个面12上设置的粘着剂层20。
<粘着剂层>
本发明中,用于粘着剂层的粘着剂类型没有特别限定,可以使用丙烯酸类、橡胶类、聚硅氧烷类等以往在胶带的粘着剂层中使用的压敏粘合材料。从胶带的耐热性的角度,优选为聚硅氧烷类粘合剂。
作为粘着剂层的厚度,一般为5~100μm,优选10~60μm。当厚度小于5μm时,粘着力低,使用中容易发生剥离。当厚度大于100μm时,在用作热封时,胶带的厚度方向热传导率反而下降所以是不理想的。
[耐热性胶带的制造方法]
本发明的耐热性胶带的制造方法包括:根据前述制造所述复合片的方法制造所述复合片;在所述复合片的所述一个面(11或12)上形成所述粘着剂层。
<表面处理工序>
表面处理工序是用于提高复合片中设置粘着剂层的面(在本发明中为11或12)与设置于该面上的粘合剂层之间的胶粘性(锚固力)的处理。可以根据需要进行该工序。实施表面处理工序的具体方法与在公知的胶带的制造中实施的方法相同。表面处理工序例如可以通过将含有表面处理剂(胶粘处理剂)和分散剂的表面处理溶液(胶粘处理溶液)涂布于复合片中将设置粘着剂层的面来实施。
表面处理剂例如为聚酯树脂、三聚氰胺树脂、丙烯酸类树脂及聚硅氧烷树脂、以及PTFE、PFA及ETFE等含氟树脂。分散剂例如为甲苯、二甲苯、乙酸乙酯、丁醇、水及它们的混合物。
表面处理溶液可以含有表面处理剂及分散剂以外的材料,例如交联剂、固化剂、有机填充剂、无机填充剂、表面活性剂。有机填充剂例如为三聚氰胺树脂、环氧树脂、丙烯酸类树脂等的粉末,无机填充剂例如为氧化铁、氧化铝、二氧化硅等的粉末。
在本发明中,表面处理溶液优选为含有作为表面处理剂的含氟树脂PFA、作为分散剂的水、作为无机填充剂的二氧化硅粒子的溶液。
<粘着剂层形成工序>
粘着剂层形成工序中,在复合片的一个面11或12上设置粘着剂层。实施粘着剂层形成工序的具体方法与在公知的胶带的制造中实施的方法相同。粘着剂层形成工序例如可以通过将粘着剂涂布于复合片的一个面11或12上来实施。
实施例
在实施例中,
(1)表面粗糙度Rz和Ra均参照JIS-B0601-1994测试方法进行测量。
(2)耐磨耗性能测试采用以下方法进行:使用泰伯磨耗机,磨耗轮CS-17,荷重500g,对复合片进行磨耗1000回,称量磨耗前后的重量,计算出磨耗量。
(3)复合片面与玻璃纤维织物之间的最薄厚度采用以下方法进行测量:取复合片使用切刀进行断面切割,将其切为薄度为20μm的样品,放在电子显微镜下放大100倍观察断面,确定复合片的两个面中与玻璃纤维织物之间的最薄厚度。取点5次进行测量,使用平均值。
(4)复合片中是否有玻璃纤维露出的判断采用以下方法进行:使用泰伯磨耗机,磨耗轮CS-17,荷重500g,对复合片进行磨耗500回,使用显微镜 观察复合片中1cm长x 1cm宽的区域在磨耗实验后的表面状态。
没有明显磨耗,没有玻璃纤维露出的评价为◎,
表面出现磨耗,但没有玻璃纤维露出的评价为○,
部分玻璃纤维露出的评价为×,
观察到玻璃纤维被磨损的评价为××。
(5)复合片卷曲性的评价采用以下方法进行:取1m长x 15mm宽的复合片,抓住一端并且使另一端自由悬空,观察复合片卷曲情况。
复合片基本上不卷曲、基本保持线条状评价为○,
复合片仅仅少许卷曲、拉直可以继续使用评价为△,
复合片卷曲成多个圈评价为×。
实施例1
使用450μm厚度的玻璃纤维平纹织物进行含硅药剂处理,含硅药剂量为玻璃纤维平纹织物总重量的0.17wt%。含硅药剂处理后的玻璃纤维平纹织物使用含氟树脂的含量(固体成分比例)为约55重量%的PTFE乳液进行浸渗。浸渗后利用刮刀控制玻璃纤维两边的PTFE厚度。经过脱出水,然后在350℃高温下烧结20秒。再重复进行上述浸渗和烧结一次,通过控制刮刀调整玻璃纤维之间的间距,从而使非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.2。得到的复合片中,非粘着剂面(即第二面12)的粗糙度Ra为6.2μm,Rz为32μm,非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为3.5μm。
测试所得复合片的磨耗量,观察所得复合片中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例2
重复实施例1的步骤。不同在于:使用30μm厚度的玻璃纤维平纹织物进 行含硅药剂处理,含硅药剂量为玻璃纤维平纹织物总重量的0.09wt%,并且在得到的复合片中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为2.5μm,Rz为6.3μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为6μm。
测试所得复合片的磨耗量,观察所得复合片中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例3
重复实施例1的步骤。不同在于:使用80μm厚度的玻璃纤维平纹织物进行含硅药剂处理,含硅药剂量为玻璃纤维平纹织物总重量的0.09wt%,并且在得到的复合片中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为2.2μm,Rz为2.4μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为9μm。
测试所得复合片的磨耗量,观察所得复合片中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例4
重复实施例1的步骤。不同在于:使用80μm厚度的玻璃纤维平纹织物进行含硅药剂处理,并且在得到的复合片中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.5,非粘着剂面(即第二面12)的粗糙度Ra为1.6μm,Rz为2.1μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为11μm。
测试所得复合片的磨耗量,观察所得复合片中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
实施例5
重复实施例1的步骤。不同在于:使用150μm厚度的玻璃纤维平纹织物进行含硅药剂处理,并且在得到的复合片中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为0.4μm,Rz为2.0μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为20μm。
测试所得复合片的磨耗量,观察所得复合片中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
比较例1
重复实施例1的步骤。不同在于:含硅药剂量为玻璃纤维平纹织物总重量的0.02wt%,并且在得到的复合片中,非粘着剂面(即第二面12)与玻璃纤维平纹织物之间最薄处厚度和粘着面(即第一面11)与玻璃纤维平纹织物之间最薄处厚度的比例为1.0,非粘着剂面(即第二面12)的粗糙度Ra为9.8μm,Rz为32.8μm,并且非粘着剂面与玻璃纤维平纹织物之间最薄处厚度为2μm。
测试所得复合片的磨耗量,观察所得复合片中的玻璃纤维露出情况和卷曲情况。结果示于表1中。
表1
Figure PCTCN2017109233-appb-000001
从以上实施例和比较例可以看出,在本申请中通过使复合片的至少一个面的表面粗糙度Rz≦21μm或Ra≦7.5μm,可以使得复合片具有优良的耐磨性和卷曲性,并且没有纤维露出。相反,不满足本申请的表面粗糙度条件的复合片具有较差的耐磨性,并且复合片中的纤维部分露出或者被磨损。

Claims (11)

  1. 一种耐热性复合片,所述复合片为浸渗含氟树脂的玻璃纤维织物,其特征在于,以所述玻璃纤维织物为中心,所述复合片在厚度方向具有相对的两个面,其中至少一个面具有表面粗糙度为Rz≦21μm或Ra≦7.5μm。
  2. 根据权利要求1所述的耐热性复合片,其中具有所述表面粗糙度的所述面与所述玻璃纤维织物之间的最薄厚度为3~30μm。
  3. 根据权利要求1或2所述的耐热性复合片,其中所述玻璃纤维织物的厚度为10~500μm。
  4. 根据权利要求1或2所述的耐热性复合片,其中以所述玻璃纤维织物为中心,所述复合片在厚度方向具有相对的两个面,所述两个面与所述玻璃纤维织物之间的最薄厚度之间的比例为0.5~2.0。
  5. 根据权利要求1或2所述的耐热性复合片,其中所述含氟树脂为聚四氟乙烯(PTFE)、全氟烷氧基链烷烃(PFA)、全氟乙烯-丙烯共聚物(FEP)、乙烯-四氟乙烯共聚物(ETFE)、聚偏二氟乙烯(PVdF)中的一种或多种。
  6. 一种耐热性胶带,其包括根据权利要求1~5中任一项所述的耐热性复合片,和在所述耐热性复合片的至少一面上设置的粘着剂层。
  7. 根据权利要求1~5中任一项所述的耐热性复合片的制造方法,其特征在于包括以下工序:
    使玻璃纤维织物进行含硅药剂处理;
    使上述处理后的玻璃纤维织物浸渗含氟树脂;
    加热浸渗过含氟树脂的玻璃纤维织物以形成所述复合片。
  8. 根据权利要求7所述的耐热性复合片的制造方法,其中在使所述玻璃纤维织物浸渗含氟树脂后、且在加热工序之前,使用刮刀处理浸渗过含氟树脂的玻璃纤维织物,以控制玻璃纤维织物两侧含氟树脂的厚度。
  9. 根据权利要求7或8所述的耐热性复合片的制造方法,其中使所述玻璃纤维织物浸渗含氟树脂的工序和加热形成所述复合片的工序重复进行2~8次。
  10. 根据权利要求7或8所述的耐热性复合片的制造方法,其中含硅药剂的量为玻璃纤维织物总重量的0.05~0.2wt%。
  11. 根据权利要求6所述的胶带的制造方法,其特征在于包括以下工序:
    根据权利要求7~10中任一项所述的耐热性复合片的制造方法制造得到耐热性复合片;
    在所述耐热性复合片的至少一面上设置粘着剂层。
PCT/CN2017/109233 2016-11-30 2017-11-03 耐热性复合片及其制造方法 WO2018099238A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197017402A KR102353055B1 (ko) 2016-11-30 2017-11-03 내열성 복합 시트 및 그 제조 방법
EP17877254.7A EP3549750B1 (en) 2016-11-30 2017-11-03 Heat resistant composite sheet and manufacturing method therefor
JP2019526587A JP7117301B2 (ja) 2016-11-30 2017-11-03 耐熱性複合シート及びその製造方法
JP2022101511A JP2022125105A (ja) 2016-11-30 2022-06-24 耐熱性複合シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611081446.7 2016-11-30
CN201611081446.7A CN108127932A (zh) 2016-11-30 2016-11-30 耐热性复合片及其制造方法

Publications (1)

Publication Number Publication Date
WO2018099238A1 true WO2018099238A1 (zh) 2018-06-07

Family

ID=62241190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109233 WO2018099238A1 (zh) 2016-11-30 2017-11-03 耐热性复合片及其制造方法

Country Status (7)

Country Link
EP (1) EP3549750B1 (zh)
JP (2) JP7117301B2 (zh)
KR (1) KR102353055B1 (zh)
CN (2) CN108127932A (zh)
SG (1) SG10202102472VA (zh)
TW (1) TWI767941B (zh)
WO (1) WO2018099238A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611000B (zh) * 2016-11-30 2021-03-02 日东电工(上海松江)有限公司 耐热性胶带及其制造方法
WO2023188955A1 (ja) * 2022-03-30 2023-10-05 株式会社巴川製紙所 シート状ヒータ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187030A (zh) * 2008-08-22 2011-09-14 美国圣戈班性能塑料公司 氟聚合物涂覆的物品
CN105153961A (zh) * 2015-07-14 2015-12-16 江苏泰氟隆科技有限公司 一种聚四氟乙烯漆布微孔胶带生产工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698166A (en) * 1979-12-29 1981-08-07 Nitto Electric Ind Co Complex of polytetrafluoroethylene and glass
JPH11320780A (ja) * 1998-05-20 1999-11-24 Dainippon Ink & Chem Inc 多層フィルム及びそれを用いた粘着テープ
US6930063B2 (en) * 2000-01-19 2005-08-16 Saint-Gobain Performance Plastics Corporation Non-curling reinforced composite membranes with differing opposed faces, methods for producing and their use in varied applications
KR101025055B1 (ko) * 2005-12-01 2011-03-25 스미토모 베이클리트 컴퍼니 리미티드 프리프레그, 프리프레그의 제조 방법, 기판 및 반도체 장치
JP4903088B2 (ja) * 2007-06-01 2012-03-21 中興化成工業株式会社 フッ素樹脂被覆織布の製造装置、製造方法及びフッ素樹脂被覆織布
JP5087372B2 (ja) * 2007-11-19 2012-12-05 日東電工株式会社 樹脂積層体、粘着シート、該粘着シートを用いた被着体の加工方法、及びその剥離装置
TWI486372B (zh) * 2008-11-28 2015-06-01 Ajinomoto Kk Resin composition
JP5469930B2 (ja) * 2009-06-26 2014-04-16 中興化成工業株式会社 離型シート
CN103254819A (zh) * 2012-02-15 2013-08-21 日东电工株式会社 表面保护片
CN202467012U (zh) * 2012-03-13 2012-10-03 北京东方雨虹防水技术股份有限公司 一种用于机械固定系统的增强型tpo防水卷材
JP5932463B2 (ja) * 2012-04-26 2016-06-08 日東電工株式会社 粘着テープ
JP2013231110A (ja) * 2012-04-27 2013-11-14 Nitto Denko Corp 粘着テープ基材、粘着テープおよびこれらの製造方法
US10669197B2 (en) * 2014-01-14 2020-06-02 Shin-Etsu Chemical Co., Ltd. Surface-modified glass fiber film
JP6153977B2 (ja) * 2014-10-02 2017-06-28 リケンテクノス株式会社 粘着フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187030A (zh) * 2008-08-22 2011-09-14 美国圣戈班性能塑料公司 氟聚合物涂覆的物品
CN105153961A (zh) * 2015-07-14 2015-12-16 江苏泰氟隆科技有限公司 一种聚四氟乙烯漆布微孔胶带生产工艺

Also Published As

Publication number Publication date
JP2022125105A (ja) 2022-08-26
KR102353055B1 (ko) 2022-01-19
JP7117301B2 (ja) 2022-08-12
JP2020500741A (ja) 2020-01-16
EP3549750A4 (en) 2020-07-29
CN117754884A (zh) 2024-03-26
EP3549750A1 (en) 2019-10-09
CN108127932A (zh) 2018-06-08
SG10202102472VA (en) 2021-04-29
TWI767941B (zh) 2022-06-21
EP3549750B1 (en) 2022-09-21
TW201821266A (zh) 2018-06-16
KR20190087488A (ko) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2018099239A1 (zh) 耐热性胶带及其制造方法
TWI410550B (zh) 改性的全氟聚合物片材料以及製造它之方法
EP0159942A2 (en) Fluoropolymer composites and novel method for making them
JP2022125105A (ja) 耐熱性複合シート
CN107901539B (zh) 复合体
JP2013248874A (ja) 修飾されたパーフルオロポリマー材料
EP2613939A1 (en) Ptfe/fiberglass composite for use as a conveyor belt
US20200238653A1 (en) Multi-layered seamless belt and production method thereof
JP2019506315A (ja) 組成物及び作製方法
US7470453B1 (en) Method for forming flexible composites using polymer coating materials
WO2018174220A1 (ja) 難着雪・滑雪フィルム又はシート
EP1749062A1 (en) Abrasion resistant fluoropolymer compositions containing micropulp
CN109844044B (zh) 聚合物组合物、材料和制备方法
JP6277297B2 (ja) 膜構造物
CN211994518U (zh) 一种抗拉伸特氟龙高温布
JPS6231875A (ja) 弾性回転体及び定着装置
JP2020169709A (ja) 複層シームレスベルトおよびその製造方法
KR20070017387A (ko) 미세펄프를 함유하는 내마모성 플루오로중합체 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197017402

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017877254

Country of ref document: EP

Effective date: 20190701