WO2018099072A1 - 有机电致发光显示基板及制作方法、显示面板、显示设备 - Google Patents

有机电致发光显示基板及制作方法、显示面板、显示设备 Download PDF

Info

Publication number
WO2018099072A1
WO2018099072A1 PCT/CN2017/091189 CN2017091189W WO2018099072A1 WO 2018099072 A1 WO2018099072 A1 WO 2018099072A1 CN 2017091189 W CN2017091189 W CN 2017091189W WO 2018099072 A1 WO2018099072 A1 WO 2018099072A1
Authority
WO
WIPO (PCT)
Prior art keywords
light extraction
extraction layer
sub
layer unit
light
Prior art date
Application number
PCT/CN2017/091189
Other languages
English (en)
French (fr)
Inventor
樊星
闫光
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2018504674A priority Critical patent/JP7050661B2/ja
Priority to KR1020187004407A priority patent/KR102196417B1/ko
Priority to EP17829908.7A priority patent/EP3550608B1/en
Priority to US15/747,838 priority patent/US10454073B2/en
Publication of WO2018099072A1 publication Critical patent/WO2018099072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • Embodiments of the present disclosure relate to an organic electroluminescence display substrate, a display panel, a display device, and a method of fabricating the organic electroluminescence display substrate.
  • Organic electroluminescent devices are favored by people because of their self-illumination, low power consumption, fast response, flexibility, high contrast, wide viewing angle, ultra-thin and low cost.
  • the organic electroluminescent device includes an anode, a cathode, and an organic light-emitting layer disposed therebetween, the anode may be disposed on a side close to the substrate, and the cathode is disposed on a side away from the substrate.
  • the organic electroluminescent element can be classified into a bottom emission type organic electroluminescence element, a top emission type organic electroluminescence element, and a side emission type electroluminescence element in accordance with the light outgoing direction.
  • the bottom emission type organic electroluminescence element refers to an organic electroluminescence element that emits light from one side of the substrate substrate (ie, the anode light emitting side)
  • the top emission type organic electroluminescence element refers to light from the top of the element (ie, the cathode light emitting side)
  • the organic electroluminescent element that is emitted, the two-side emission type organic electroluminescence element refers to an organic electroluminescence element that emits light from both the substrate substrate side and the element top (ie, the anode light emitting side and the cathode light emitting side).
  • the fluorescence spectrum of the organic light-emitting material is wide, it is necessary to introduce an optical microcavity into the organic electroluminescent element, and the half-width-wide (FWHM) narrowing of the emission spectrum is realized by the micro-co-cavity effect.
  • the optical microcavity on the wavelength due to the strong selection effect of the optical microcavity on the wavelength, the luminance and color coordinates of the microcavity organic electroluminescent element change with the viewing angle, thereby affecting the display effect. Therefore, improving the brightness viewing angle characteristics and/or the chromaticity viewing angle characteristics of the organic electroluminescent element is an urgent problem to be solved in the display field.
  • One embodiment of the present disclosure provides an organic electroluminescent display substrate including a pixel array and a light extraction layer.
  • the pixel array includes a plurality of pixels arranged in an array, each of the pixels including a first sub-pixel emitting light of a first color, each of the first sub-pixels including an organic electroluminescent element.
  • a light extraction layer covering the pixel array and including at least a plurality of first lights
  • the layer unit and the plurality of second light extraction layer units are taken out, and optical properties of the first light extraction layer unit and the second light extraction layer unit are different from each other.
  • the cathode light-emitting sides of the two adjacent first sub-pixels are covered by at least one of the first light extraction layer unit and at least one of the second light extraction layer units.
  • Another embodiment of the present disclosure provides a display panel including the above-described organic electroluminescence display substrate.
  • Another embodiment of the present disclosure provides a display device including the above display substrate or display panel.
  • Still another embodiment of the present disclosure provides a method of fabricating an organic electroluminescence display substrate, the method comprising: forming a pixel array and forming a light extraction layer.
  • the pixel array includes a plurality of pixels arranged in an array, each of the pixels including a first sub-pixel emitting light of a first color, each of the first sub-pixels including an organic electroluminescent element.
  • the light extraction layer covers the pixel array, and includes at least a plurality of first light extraction layer units and a plurality of second light extraction layer units, and optical of the first light extraction layer unit and the second light extraction layer unit Nature is different from each other.
  • the cathode light-emitting sides of the two adjacent first sub-pixels are covered by at least one of the first light extraction layer unit and at least one of the second light extraction layer units.
  • FIG. 1(a) is a schematic cross-sectional view showing a structure of an organic electroluminescence display substrate according to an embodiment of the present disclosure
  • 1(b) is a schematic cross-sectional view showing another structure of an organic electroluminescence display substrate according to an embodiment of the present disclosure
  • 1(c) is a cross-sectional view showing still another structure of an organic electroluminescence display substrate according to an embodiment of the present disclosure
  • 2(a) is a Lambertian diagram of the effect of different refractive indices of the light extraction layer unit on the brightness of the organic electroluminescent element as a function of viewing angle variation;
  • 2(b) is a Lambertian diagram of the effect of different thicknesses of the light extraction layer unit on the brightness of the organic electroluminescent element as a function of viewing angle variation characteristics;
  • FIG. 3 is a schematic cross-sectional view showing still another structure of an organic electroluminescence display substrate according to an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing still another structure of an organic electroluminescence display substrate according to an embodiment of the present disclosure
  • FIG. 5 is a schematic cross-sectional view showing still another structure of an organic electroluminescence display substrate according to an embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional view showing a structure of another organic electroluminescent display substrate according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram for calculating the minimum resolution distance of the human eye
  • FIG. 8 is a schematic cross-sectional view showing another structure of another organic electroluminescent display substrate according to an embodiment of the present disclosure
  • FIG. 9 is a schematic cross-sectional view showing still another structure of another organic electroluminescent display substrate according to an embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing still another structure of another organic electroluminescent display substrate according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a method for fabricating an organic electroluminescence display substrate according to still another embodiment of the present disclosure.
  • Embodiments of the present disclosure provide an organic electroluminescence display substrate, a display panel, a display device, and a method of fabricating an organic electroluminescence display substrate, wherein the organic electroluminescence display substrate is provided with light having at least two optical properties different from each other The unit is taken out to achieve an improvement in brightness viewing angle characteristics and/or chromatic viewing angle characteristics of the device.
  • At least one embodiment of the present disclosure provides an organic electroluminescent display substrate including a pixel array and a light extraction layer.
  • the pixel array includes a plurality of pixels arranged in an array, each pixel includes a first sub-pixel emitting light of a first color, each first sub-pixel includes an organic electroluminescent element; and the light extraction layer is overlaid on the pixel array, at least For example, a plurality of first light extraction layer units and a plurality of second light extraction layer units arranged side by side, the optical properties of the first light extraction layer unit and the second light extraction layer unit are different from each other; two adjacent first ones The cathode light emitting side of the sub-pixel is covered by at least one of the first light extraction layer unit and at least one of the second light extraction layer units.
  • the cathode light emitting side of each of the first sub-pixels is covered by the at least one first light extraction layer unit and the at least one second light extraction layer unit, or the cathode light-emitting sides of the adjacent two first sub-pixels are respectively at least one The first light extraction layer unit and the at least one second light extraction layer unit are covered.
  • two adjacent first sub-pixels indicate that the first two sub-pixels do not include other first sub-pixels, and the two adjacent ones are not limited.
  • a sub-pixel needs to be physically contacted, and does not limit other sub-pixels other than the first sub-pixel between the adjacent two first sub-pixels.
  • the adjacent two first sub-pixels may not have any sub-pixels including the first sub-pixel; for example, each pixel includes Under the premise of one sub-pixel, the second sub-pixel and the third sub-pixel, a second sub-pixel and/or a third sub-pixel may also be disposed between two adjacent first sub-pixels.
  • the number of surface plasma polarions in the vicinity of the cathode electrode is lowered, thereby reducing the energy consumption of the light in the vicinity of the cathode electrode. Disperse and increase the effective transmittance of the cathode electrode.
  • the light extraction layer unit having different thicknesses and/or refractive indexes causes the cathode electrode to have different effective transmittance and reflectance, whereby the change in brightness and color coordinates (chromaticity) of the organic electroluminescence element with respect to the viewing angle is also different.
  • the average effect of the layer unit on the light-emitting luminance and the color coordinates can improve the luminance viewing angle and/or the chromatic viewing angle characteristic of the organic electroluminescent element and the organic electroluminescent display substrate.
  • FIG. 1(a) is a schematic cross-sectional view showing a structure of an organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 includes a pixel array 100 and a light extraction layer 200.
  • the pixel array 100 includes a plurality of pixels 110 arranged in an array (one-dimensional or two-dimensional array), each of the pixels 110 including a first sub-pixel 120 that emits light of a first color, each of the first sub-pixels 120 including organic electroluminescence Element 150, the organic electroluminescent element 150 may be a top emission type organic electroluminescence element or a two-side emission type organic electroluminescence element.
  • the pixel 110 may include only the first sub-pixel 120 that emits light of the first color; and, for example, the pixel 110 may further include a second sub-pixel 130 that emits light of the second color and a third color that emits light according to actual application requirements.
  • the third sub-pixels 140, each of the second sub-pixels 130 and each of the third sub-pixels 140 include an organic electroluminescent element 150, which is not specifically limited in the present disclosure.
  • the light extraction layer 200 may be overlaid on the pixel array 100, and may include a plurality of first light extraction layer units 211 and a plurality of second light extraction layer units 212 arranged side by side, for example, the first light extraction layer unit 211 and The second light extraction layer unit 212 may have the same thickness but have a different refractive index.
  • the cathode light emitting side of each of the first sub-pixels 120 is covered by a first light extraction layer unit 211 and a second light extraction layer unit 212.
  • FIG. 1(b) is a cross-sectional view showing another structure of an organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is distinguished from the organic electroluminescent display substrate 10 shown in FIG. 1(a) by a first light extraction layer unit 211 and a second light extraction layer unit. 212 has a different thickness. Since the first light extraction layer unit 211 and the second light extraction layer unit 212 can be made of the same material, the preparation process of the light extraction layer 200 shown in FIG. 1(b) is shown with respect to FIG. 1(a). The preparation process of the light extraction layer 200 is simple.
  • FIG. 1(c) is a cross-sectional view showing still another structure of an organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the first light extraction layer unit 211 and the second light extraction layer unit 212 of the organic electroluminescence display substrate 10 may have different thicknesses and coverage areas.
  • the difference between the organic electroluminescence display substrate 10 and the organic electroluminescence display substrate 10 shown in FIG. 1(b) is that the light extraction layer is formed in a different manner, and the first light extraction layer unit 211 shown in FIG. 1(c) is different.
  • the second light extraction layer unit 212 includes a first unit layer 241, and the second light extraction layer unit 212 further includes a second unit layer 242 overlying the first unit layer 241.
  • the first light extraction layer unit 211 and the second light extraction layer unit 212 shown in FIG. 1(c) may be formed by first forming a first unit layer 241 on the cathode light emitting side of the pixel array 100. Then, the second unit layer 242 is formed in a region corresponding to the second light extraction layer unit 212, thereby realizing the first light extraction layer unit 211 and the second light extraction layer unit 212 having different thicknesses for the same sub-pixel. Thereby, the thicknesses of the first light extraction layer unit 211 and the second light extraction layer unit 212 can be more finely controlled, and the manufacturing difficulty of the first light extraction layer unit 211 and the second light extraction layer unit 212 can be further reduced.
  • the first light extraction layer unit 211 and the second light extraction layer unit 212 shown in this embodiment may be formed by a high-precision metal mask.
  • the first light extraction layer unit 211 and the second light extraction layer unit 212 shown in the present embodiment may be made of an organic material such as 8-hydroxyquinoline aluminum (Alq 3 ), or may be made of, for example, titanium oxide (TiO 2 ). ), made of inorganic materials such as magnesium oxide (MgO), magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ), or other suitable materials, and the formed light extraction layer unit is capable of extracting light by This can improve the brightness viewing angle characteristics and/or chromatic viewing angle characteristics of the device.
  • the Lambert body diagram shown in Fig. 2(a) shows the influence of the refractive index of the light extraction layer unit (indicated by cpl in the figure) on the luminance of the red light emission of the organic electroluminescent element 150 as a function of viewing angle.
  • the thickness of the extraction layer was 55 nm (ie, 55 nm). As shown in FIG.
  • the effective luminance of the organic electroluminescent element 150 is obtained. (Light-emitting luminance when only the first unit layer is set ⁇ width of the first light extraction layer unit 211 + light-emitting luminance when only the second unit layer is set ⁇ second light extraction layer The width of the element 211) / (the width of the first light extraction layer unit 211 + the width of the second light extraction layer unit 212).
  • the effective light emission luminance of the organic electroluminescence element 150 is one-half of the sum of the above two light emission luminances. Therefore, in the case where a light extraction unit having a small viewing angle luminance, a low viewing angle luminance, and a light extraction unit having a small luminance of a small viewing angle and a high luminance of a large viewing angle are disposed on the same organic electroluminescent element 150, The brightness of the organic electroluminescent element 150 can be made to change slowly with the viewing angle, so that the brightness viewing angle characteristic of the organic electroluminescent element 150 can be improved, and the organic electroluminescent display substrate 10 shown in FIG. 1(a) can be improved. Brightness viewing angle characteristics.
  • Table 1 shows the influence of the light extraction layer unit having different refractive indices on the color coordinate of the organic electroluminescent element 150 as a function of viewing angle variation
  • CIEx and CIEy indicate the color coordinates of the light emitted by the organic electroluminescent element 150
  • ⁇ u' ⁇ v' indicates The color shift of the organic electroluminescent element 150 with respect to a zero degree viewing angle.
  • the color shift at a large viewing angle (for example, 60°) is relatively large, and when the refractive indices are respectively Two light extraction layer units of 1.4 and 2 are overlaid on the same organic electroluminescent element 150, with a large viewing angle The color shift under is relatively small. Therefore, by providing two light extraction layer units having different refractive indices on the same organic electroluminescent element 150, the chromaticity viewing angle characteristics of the organic electroluminescent element 150 can be improved, and the FIG. 1(a) can be improved.
  • the organic electroluminescence display shows the chromaticity viewing angle characteristics of the substrate 10.
  • the Lambert body diagram shown in Fig. 2(b) shows the effect of the thickness of the light extraction layer unit (indicated by cpl in the figure) on the luminance of the green light emission of the organic electroluminescent element 150 as a function of the viewing angle, and the light extraction is performed at this time.
  • the layer has a refractive index of 1.8.
  • the thickness of the light extraction layer unit is 45 nm, the luminance of the organic electroluminescent element 150 at a large viewing angle is relatively weak; when the thickness of the light extraction layer unit is 65 nm, The organic electroluminescent element 150 has a relatively high luminance at a large viewing angle.
  • the brightness viewing angle characteristic of the organic electroluminescent element 150 can be improved, and FIG. 1(b) and FIG. 1 can be improved. (c) The brightness viewing angle characteristic of the organic electroluminescence display substrate 10 shown.
  • Table 2 shows the influence of the light extraction layer unit having different thicknesses on the color coordinates of the organic electroluminescent element 150 as a function of viewing angle variation.
  • the color shift at a large viewing angle is relatively large, and when the thickness is respectively 45 and 60 nm, respectively.
  • the light extraction layer unit is overlaid on the same organic electroluminescent element 150, and the color shift at a large viewing angle is relatively small. Therefore, by providing two light extraction layer units having different thicknesses on the same organic electroluminescent element 150, the chromaticity viewing angle characteristics of the organic electroluminescent element 150 can be improved, and FIG. 1(b) and FIG. The chromaticity viewing angle characteristic of the organic electroluminescence display substrate 10 shown in 1 (c).
  • the organic electroluminescent display substrate 10 further includes a second sub-pixel 130 that emits light of a second color and a third sub-pixel 140 that emits light of a third color, each of the second sub-pixels 130 and each of the third sub-pixels 140 includes an organic electroluminescent element 150.
  • FIG. 3 is a schematic cross-sectional view showing still another structure of an organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is different from the organic electroluminescent display substrate 10 shown in FIG. 1 in that the first light extraction layer unit 211 and the second light extraction layer unit 212 are not only covered in the first
  • the cathode light-emitting side of the sub-pixel 120 is also at least partially covered on the cathode light-emitting side of the adjacent second sub-pixel 130 and the adjacent third sub-pixel 140, respectively.
  • the cathode light emitting side of the first sub-pixel 120 covers the first light extraction layer unit 211 and the second light extraction layer unit 212 having different refractive indices or thicknesses, the brightness of the first color light of the organic electroluminescence display substrate 10 can be improved. Viewing angle and/or chromaticity viewing angle characteristics. Since the widths of the first light extraction layer unit 211 and the second light extraction layer unit 212 increase, the manufacturing difficulty of the light extraction layer 200 is lowered.
  • FIG. 4 is a schematic cross-sectional view showing still another structure of an organic electroluminescence display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is different from the organic electroluminescent display substrate 10 shown in FIG. 1 in that the light extraction layer 200 further includes a plurality of third light extraction layer units 221 and a plurality of juxtaposed arrangement.
  • the fourth light extraction layer unit 222 The optical properties of the third light extraction layer unit 221 and the fourth light extraction layer unit 222 are different from each other, for example, the third light extraction layer unit 221 and the fourth light extraction layer unit 222 have different refractive indices or thicknesses.
  • each of the second sub-pixels 130 is covered by a third light extraction layer unit 221 and a fourth light extraction layer unit 222. Since the cathode light emitting side of the second sub-pixel 130 covers one third light extraction layer unit 221 and one fourth light extraction layer unit 222, the organic electroluminescent display substrate 10 has a brightness angle of view and/or a chromaticity angle of view of the second color light. Features have also been improved.
  • the organic electroluminescent display substrate 10 may further include side by side A plurality of fifth light extraction layer units 231 and a plurality of sixth light extraction layer units 232.
  • the optical properties of the fifth light extraction layer unit 231 and the sixth light extraction layer unit 232 are different from each other, for example, the fifth light extraction layer unit 231 and the sixth light extraction layer unit 232 have different refractive indices or thicknesses.
  • the cathode light emitting side of each of the third sub-pixels 140 is covered by a fifth light extraction layer unit 231 and a sixth light extraction layer unit 232.
  • the organic electroluminescence display substrate 10 Since the cathode light emitting side of the third sub-pixel 140 covers a fifth light extraction layer unit 231 and a sixth light extraction layer unit 232, the organic electroluminescence display substrate 10 has a brightness angle of view and/or a chromaticity angle of view of the third color light. Features have also been improved.
  • the light extraction layer 200 shown in FIG. 4 can separately provide two light extraction units having different optical properties for the first sub-pixel 120, the second sub-pixel 130, and the third sub-pixel 140, thereby improving the number of the light extraction unit Luminous viewing angle and/or chromatic viewing angle characteristics of one color light, second color light, and third color light.
  • the thickness and refractive index of the first light extraction layer unit, the third light extraction layer unit, and the fifth light extraction layer unit may be set to be the same in FIG.
  • the thickness and refractive index of the second light extraction layer unit, the fourth light extraction layer unit, and the sixth light extraction layer unit shown in FIG. 4 may also be set to the same form.
  • the first light extraction layer unit and the third light extraction layer unit are illustrated in FIG.
  • the thickness or/and the refractive index of the fifth light extraction layer unit may be set to be different from each other, and the thickness or/and the refractive index of the second light extraction layer unit, the fourth light extraction layer unit, and the sixth light extraction layer unit are also Can be set to different forms from each other.
  • FIG. 5 is a schematic cross-sectional view showing still another structure of an organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is different from the organic electroluminescent display substrate 10 shown in FIG. 1 in that the organic electroluminescent display substrate 10 shown in FIG. 5 further includes a second color light.
  • the second sub-pixel 130 and the third sub-pixel 140 emitting the third color light, each of the second sub-pixels 130 and each of the third sub-pixels 140 includes an organic electroluminescent element 150.
  • Each of the second sub-pixels 130 is covered by a first light extraction layer unit 211 and a second light extraction layer unit 212, and each of the third sub-pixels 140 is separated by a first light extraction layer unit 211 and a second light extraction layer unit 212. Covering; at least part of the cathode light-emitting side of any two adjacent sub-pixels of the first sub-pixel 120, the second sub-pixel 130, and the third sub-pixel 140 is the same first light extraction layer unit 211 or the same
  • the two light extraction layer unit 212 covers, so that the first sub-pixel 120 and the second sub-pixel 130
  • Each of the third sub-pixels 140 is covered by a light extraction layer of at least two different optical properties.
  • two adjacent first sub-pixels 120 and second sub-pixels 130 on the left side of FIG. 5 are covered by the same first light extraction layer unit 211.
  • two adjacent first sub-pixels 120 and second sub-pixels 130 on the right side are covered by the same second light extraction layer unit 212;
  • two adjacent first sub-pixels 120 and third sub-pixels on the left side of FIG. 140 is covered by the same second light extraction layer unit 212, and
  • two adjacent first sub-pixels 120 and third sub-pixels 140 on the right side of FIG. 5 are covered by the same first light extraction layer unit 211.
  • the first sub-pixel 120, the second sub-pixel 130, and the third sub-pixel 140 are each provided with two optical extraction units having different optical properties, the first color light and the second of the organic electroluminescence display substrate 10 are Both the brightness angle of view and/or the chromaticity angle of view characteristics of the color light and the third color light can be improved. Since each of the two sub-pixels shares one light extraction unit, the width of the light extraction unit is increased, whereby the manufacturing difficulty of the light extraction layer 200 can be reduced.
  • the light extraction layer shown in FIG. 5 is not limited to providing only two light extraction layer units (first light extraction layer unit and second light extraction layer unit), and more light extractions having different optical properties from each other may be provided. unit.
  • three light extraction layer units (a first light extraction layer unit, a second light extraction layer unit, and a seventh light extraction layer unit) may be provided, in this case, two adjacent first and second sub-pixels Covered by the same first light extraction layer unit, two adjacent first and third sub-pixels are covered by the same second light extraction layer unit, and two adjacent third and second sub-pixels It is covered by the same seventh light extraction layer unit (not shown in Fig. 5). Therefore, the number of the light extraction layer units to be disposed in the present application is not limited.
  • FIG. 6 is a schematic cross-sectional view showing a structure of another organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 includes a pixel array 100 and a light extraction layer 200.
  • the pixel array 100 includes a plurality of pixels 110 arranged in an array, each of the pixels 110 including a first sub-pixel 120 that emits light of a first color, each of the first sub-pixels 120 including an organic electroluminescent element 150.
  • the element 150 may be a top emission type organic electroluminescence element or a two-side emission type organic electroluminescence element.
  • the light extraction layer 200 covers the pixel array 100, and includes a plurality of first light extraction layer units 211 and a plurality of second light extraction layer units 212 arranged in parallel, a first light extraction layer unit 211 and a second light extraction layer unit 212. Have different refractive indices or thicknesses.
  • the cathode light emitting sides of the adjacent two first sub-pixels 120 are respectively covered by at least one first light extraction layer unit 211 and at least one second light extraction layer unit 212.
  • Point O represents the pupil center of the eye
  • represents the minimum opening angle of the two points that the human eye can distinguish with respect to the pupil center (approximately 1')
  • D represents the distance of the human eye from the display screen (the working distance of the mobile phone is usually 25 cm)
  • L is the minimum distance (usually greater than 0.1 mm) that can be resolved by the human eye.
  • the distance between two adjacent, sub-pixels of the same color is less than 0.04 mm (green is about 0.02 mm).
  • the human eye cannot distinguish between two adjacent sub-pixels of the same color with a resolution of QHD (one-fourth of full HD 1920*1080 resolution), and this is considered to be the same light-emitting point.
  • QHD one-fourth of full HD 1920*1080 resolution
  • the organic electroluminescence display substrate 10 shown in FIG. 6 it is equivalent to providing two first light extraction layer units 211 and second light extraction layer units 212 having different optical properties at the same light-emitting point, thereby realizing Improvement in brightness viewing angle and/or chromatic viewing angle characteristics of the first color light.
  • the light extraction layer 200 may also be disposed in a form in which the cathode light emitting side of one of the two adjacent first sub-pixels 120 is replaced by a first light extraction layer unit 211.
  • the cathode light emitting side of the other first sub-pixel 120 is covered by a second light extraction layer unit 212.
  • it is also equivalent to providing two first light extraction layer units 211 and second light extraction layer units 212 having different optical properties at the same light-emitting point, whereby the brightness of the first color light can also be achieved to some extent. Improvement in viewing angle and/or chromatic viewing angle characteristics.
  • the organic electroluminescent display substrate 10 further includes a second sub-pixel 130 that emits light of a second color and a third sub-pixel 140 that emits light of a third color, each of the second sub-pixels 130 and each of the third sub-pixels 140 includes an organic electroluminescent element 150.
  • FIG. 8 is a schematic cross-sectional view showing another structure of another organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is different from the organic electroluminescent display substrate 10 shown in FIG. 6 in that the first light extraction layer unit 211 and the second light extraction layer unit 212 are not only covered in the first
  • the cathode light emitting side of the sub-pixel 120 is also at least partially covered on the cathode light emitting side of the second sub-pixel 130 and the third sub-pixel 140.
  • the organic electroluminescent display substrate 10 can be improved. Brightness viewing angle and/or chromatic viewing angle characteristics of the first color light. Since the widths of the first light extraction layer unit 211 and the second light extraction layer unit 212 increase, the manufacturing difficulty of the light extraction layer 200 is lowered.
  • FIG. 9 is another embodiment of the organic electroluminescent display substrate 10 of one embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is different from the organic electroluminescent display substrate 10 shown in FIG. 6 in that the light extraction layer 200 further includes a plurality of third light extraction layer units 221 and a plurality of juxtaposed arrangement.
  • the fourth light extraction layer unit 222 The optical properties of the third light extraction layer unit 221 and the fourth light extraction layer unit 222 are different from each other, for example, the third light extraction layer unit 221 and the fourth light extraction layer unit 222 have different refractive indices or thicknesses.
  • the cathode light-emitting sides of the adjacent two second sub-pixels 130 are respectively covered by a third light extraction layer unit 221 and a fourth light extraction layer unit 222. Thereby, the luminance viewing angle and/or the chromatic viewing angle characteristic of the second color light of the organic electroluminescent display substrate 10 can be improved.
  • the organic electroluminescence display substrate 10 may further include a plurality of fifth light extraction layer units 231 and a plurality of sixth light extraction layer units 232 arranged side by side.
  • the optical properties of the fifth light extraction layer unit 231 and the sixth light extraction layer unit 232 are different from each other, for example, the fifth light extraction layer unit 231 and the sixth light extraction layer unit 232 have different refractive indices or thicknesses.
  • the cathode light-emitting sides of the adjacent two third sub-pixels 140 are covered by a fifth light extraction layer unit 231 and a sixth light extraction layer unit 232, respectively. Thereby, the luminance viewing angle and/or the chromatic viewing angle characteristic of the third color light of the organic electroluminescent display substrate 10 can be improved.
  • the light extraction layer 200 shown in FIG. 9 can respectively provide two for the adjacent two first sub-pixels 120, two adjacent second sub-pixels 130, and two adjacent two third sub-pixels 140.
  • Light extraction units having different optical properties can thus maximize the brightness viewing angle and/or chromatic viewing angle characteristics of the first color light, the second color light, and the third color light.
  • FIG. 10 is a schematic cross-sectional view showing still another structure of another organic electroluminescent display substrate 10 according to an embodiment of the present disclosure.
  • the organic electroluminescent display substrate 10 is different from the organic electroluminescent display substrate 10 shown in FIG. 6 in that the first light extraction layer unit 211 and the second light extraction layer unit 212 are not only covered in the first
  • the cathode light emitting side of the sub-pixel 120 also covers the cathode light emitting side of the second sub-pixel 130 and the third sub-pixel 140, that is, the first light extraction layer unit 211 is overlaid on one pixel 110 (for example, the left side of FIG.
  • the second light extraction layer unit 212 is overlaid on one of the pixels 110 adjacent to the first light extraction unit (for example, the pixel on the right side of FIG. 10). Since the cathode light emitting sides of the adjacent two first sub-pixels 120, the adjacent two second sub-pixels 130, and the adjacent two third sub-pixels 140 cover the first light extraction with different refractive index or thickness The layer unit 211 and the second light extraction layer unit 212, therefore, the luminance viewing angle and/or the chromaticity viewing angle characteristic of the first color light, the second color light, and the third color light of the organic electroluminescence display substrate 10 are improved. By The widths of the first light extraction layer unit 211 and the second light extraction layer unit 212 are further increased, and the manufacturing difficulty of the light extraction layer 200 is further reduced.
  • FIG. 11 is a schematic diagram of a display device 20 according to another embodiment of the present disclosure, which includes the organic electroluminescence provided by any embodiment of the present disclosure.
  • the substrate 10 is displayed, or the display panel described above.
  • other components of the display panel such as a glass cover, etc., and other components of the display device 20 are understood by those of ordinary skill in the art, and are not described herein and should not be used as Limitations of the invention. Improvement of brightness viewing angle characteristics and/or chromaticity viewing angle characteristics of the organic electroluminescence display substrate and the display panel and the display device including the organic electroluminescence display substrate by providing at least two light extraction units having optical properties different from each other .
  • an embodiment of the present disclosure further provides a method of fabricating an organic electroluminescent display substrate.
  • the method of fabricating the organic electroluminescent display substrate comprises: forming a pixel array and forming a light extraction layer.
  • the pixel array includes a plurality of pixels arranged in an array, each pixel including a first sub-pixel that emits light of a first color, each of the first sub-pixels including an organic electroluminescent element.
  • the light extraction layer is overlaid on the pixel array, and includes at least a plurality of first light extraction layer units and a plurality of second light extraction layer units arranged side by side, the optical properties of the first light extraction layer unit and the second light extraction layer unit are mutually different.
  • the cathode light emitting sides of two adjacent first sub-pixels are covered by at least one of the first light extraction layer unit and at least one of the second light extraction layer units, for example, cathode light emission of each of the first sub-pixels
  • the side is covered by the at least one first light extraction layer unit and the at least one second light extraction layer unit, or the cathode light emitting sides of the adjacent two first sub-pixels are respectively at least one first light extraction layer unit and at least one second The light extraction layer unit is covered.
  • FIG. 12 is a flow chart of a method for fabricating an organic electroluminescent display substrate according to still another embodiment of the present disclosure. As shown in FIG. 12, the manufacturing method may include the following steps:
  • Step S10 forming a pixel array
  • Step S20 forming a light extraction layer.
  • Embodiments of the present disclosure provide an organic electroluminescence display substrate, a display device, and a method of fabricating an organic electroluminescence display substrate, wherein the organic electroluminescence display substrate is provided with at least two light extraction units different in optical properties from each other The improvement of the brightness viewing angle characteristics and/or the chromaticity viewing angle characteristics of the device is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种有机电致发光显示基板及其制作方法、显示面板及显示设备。该有机电致发光显示基板(10)包括像素阵列(100)和光取出层(200)。像素阵列(100)包括多个像素(110),每个像素(110)包括发第一颜色光的第一子像素(120),每个第一子像素(120)包括有机电致发光元件(150)。光取出层(200)覆盖在像素阵列(100)上,至少包括并列布置且光学性质彼此不同的多个第一光取出层单元(211)和多个第二光取出层单元(212)。每个第一子像素(120)的阴极发光侧被至少一个第一光取出层单元(211)和至少一个第二光取出层单元(212)覆盖,或者相邻的两个第一子像素(120)的阴极发光侧分别被至少一个第一光取出层单元(211)和至少一个第二光取出层单元(212)覆盖。通过设置至少两个光学性质彼此不同的光取出单元,实现了器件的亮度视角特性和/或色度视角特性的改善。

Description

有机电致发光显示基板及制作方法、显示面板、显示设备 技术领域
本公开的实施例涉及一种有机电致发光显示基板、显示面板、显示设备和有机电致发光显示基板的制作方法。
背景技术
由于具备自发光、功耗小、响应快、可弯曲、对比度高、视角广、超轻薄和成本低等优点,有机电致发光器件倍受人们的青睐。有机电致发光器件包括阳极、阴极和设置在二者之间的有机发光层,阳极可以被设置在靠近衬底基板的一侧,阴极则被设置在远离衬底基板的一侧。
按照出光方向,有机电致发光元件可以划分为底发射型有机电致发光元件、顶发射型有机电致发光元件和两侧发射型电致发光元件。底发射型有机电致发光元件是指光线从衬底基板一侧(即阳极发光侧)射出的有机电致发光元件,顶发射型有机电致发光元件是指光线从元件顶部(即阴极发光侧)射出的有机电致发光元件,两侧发射型有机电致发光元件是指光线同时从衬底基板一侧和元件顶部(即阳极发光侧和阴极发光侧)射出的有机电致发光元件。
由于有机发光材料的荧光谱较宽,需要在有机电致发光元件中引入光学微腔,通过微共腔效应实现发光谱的半高宽的(FWHM)的窄化。然而由于光学微腔对波长的强选择作用,微腔型有机电致发光元件发光的亮度和色坐标会随视角而改变,进而影响显示效果。因此,提升有机电致发光元件的亮度视角特性和/或色度视角特性是显示领域亟需解决的一个问题。
发明内容
本公开的一个实施例提供了一种有机电致发光显示基板,该有机电致发光显示基板包括像素阵列和光取出层。像素阵列包括多个按阵列排列的像素,每个所述像素包括发第一颜色光的第一子像素,每个所述第一子像素包括有机电致发光元件。光取出层,覆盖在所述像素阵列上,至少包括多个第一光 取出层单元和多个第二光取出层单元,所述第一光取出层单元和所述第二光取出层单元的光学性质彼此不同。相邻的两个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
本公开的另一个实施例提供了一种显示面板,该显示面板包括上述的有机电致发光显示基板。
本公开的另一个实施例提供了一种显示设备,该显示设备包括上述的显示基板或者显示面板。
本公开的再一个实施例提供了一种有机电致发光显示基板的制作方法,该制作方法包括:形成像素阵列和形成光取出层。像素阵列包括多个按阵列排列的像素,每个所述像素包括发第一颜色光的第一子像素,每个所述第一子像素包括有机电致发光元件。光取出层覆盖在所述像素阵列上,至少包括多个第一光取出层单元和多个第二光取出层单元,所述第一光取出层单元和所述第二光取出层单元的光学性质彼此不同。相邻的两个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,并非对本公开的限制。
图1(a)是本公开一个实施例提供的一种有机电致发光显示基板的一种结构的剖面示意图;
图1(b)是本公开一个实施例提供的一种有机电致发光显示基板的另一种结构的剖面示意图;
图1(c)是本公开一个实施例提供的一种有机电致发光显示基板的再一种结构的剖面示意图;
图2(a)是光取出层单元的不同折射率对于有机电致发光元件的亮度随视角变化特性的影响的朗伯体图;
图2(b)是光取出层单元的不同厚度对于有机电致发光元件的亮度随视角变化特性的影响的朗伯体图;
图3是本公开一个实施例提供的一种有机电致发光显示基板的再一种结构的剖面示意图;
图4是本公开一个实施例提供的一种有机电致发光显示基板的再一种结构的剖面示意图;
图5是本公开一个实施例提供的一种有机电致发光显示基板的再一种结构的剖面示意图;
图6是本公开一个实施例的另一种有机电致发光显示基板的一种结构的剖面示意图;
图7是计算人眼最小分辨距离的原理图;
图8是本公开一个实施例的另一种有机电致发光显示基板的另一种结构的剖面示意图;
图9是本公开一个实施例的另一种有机电致发光显示基板的再一种结构的剖面示意图;
图10是本公开一个实施例的另一种有机电致发光显示基板的再一种结构的剖面示意图;
图11是本公开另一个实施例提供的一种显示设备的示意图;以及
图12是本公开再一个实施例提供的一种有机电致发光显示基板的制作方法的流程图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述参考在附图中示出并在以下描述中详述的非限制性示例实施例,更加全面地说明本公开的示例实施例和它们的多种特征及有利细节。应注意的是,图中示出的特征不是必须按照比例绘制。本公开省略了已知材料、组件和工艺技术的描述,从而不使本公开的示例实施例模糊。所给出的示例仅旨在有利于理解本公开示例实施例的实施,以及进一步使本领域技术人员能够实施示例实施例。因而,这些示例不应被理解为对本公开的实施例的范围的限制。
除非另外特别定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来 区分不同的组成部分。此外,在本公开各个实施例中,相同或类似的参考标号表示相同或类似的构件。
本公开的实施例提供了一种有机电致发光显示基板、显示面板、显示设备和有机电致发光显示基板的制作方法,该有机电致发光显示基板通过设置至少两种光学性质彼此不同的光取出单元,实现了器件的亮度视角特性和/或色度视角特性的改善。
本公开的至少一个实施例提供了一种有机电致发光显示基板,该有机电致发光显示基板包括像素阵列和光取出层。像素阵列包括多个按阵列排列的像素,每个像素包括发第一颜色光的第一子像素,每个第一子像素包括有机电致发光元件;光取出层覆盖在像素阵列上,至少包括例如并列布置的多个第一光取出层单元和多个第二光取出层单元,第一光取出层单元和第二光取出层单元的光学性质彼此不同;相邻的两个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。例如,每个第一子像素的阴极发光侧被至少一个第一光取出层单元和至少一个第二光取出层单元覆盖,或者相邻的两个第一子像素的阴极发光侧分别被至少一个第一光取出层单元和至少一个第二光取出层单元覆盖。
例如,在本公开的实施例中,相邻的两个第一子像素表示上述相邻的两个第一子像素之间不包含其它第一子像素,而并非限定上述相邻的两个第一子像素需要在物理上相接触,也并非限定上述相邻的两个第一子像素之间不能设置有第一子像素之外的其它子像素。例如,在每个像素仅包含第一子像素的前提下,相邻的两个第一子像素之间可以不具有包括第一子像素在内任何子像素;又例如,在每个像素包含第一子像素、第二子像素和第三子像素的前提下,相邻的两个第一子像素之间还可以设置有第二子像素和/或第三子像素。
在有机电致发光元件的阴极发光侧覆盖有光取出层单元的情况下,阴极电极附近的表面等离子体激元(surface plasma polariton)的数目会降低,因此会减少光在阴极电极附近的能量耗散并增加阴极电极的有效透射率。厚度和/或折射率不同的光取出层单元使得阴极电极具有不同的有效透射率和反射率,由此对有机电致发光元件的亮度和色坐标(色度)随视角的变化特性的改变也不同。通过引入至少两种光取出层单元,并利用该至少两种光取出 层单元对发光亮度和色坐标的平均效应,可以实现有机电致发光元件和有机电致发光显示基板的亮度视角和/或色度视角特性的改善。
例如,图1(a)是本公开一个实施例提供的一种有机电致发光显示基板10的一种结构的剖面示意图。如图1(a)所示,该有机电致发光显示基板10包括像素阵列100和光取出层200。像素阵列100包括多个按阵列(一维或二维阵列)排列的像素110,每个像素110包括发第一颜色光的第一子像素120,每个第一子像素120包括有机电致发光元件150,该有机电致发光元件150可以是顶发射型有机电致发光元件或者两侧发射型有机电致发光元件。例如,像素110可以仅包括发第一颜色光的第一子像素120;又例如,根据实际应用需求,像素110还可以包括发第二颜色光的第二子像素130和发第三颜色光的第三子像素140,每个第二子像素130和每个第三子像素140包括有机电致发光元件150,本公开对此不做具体限定。例如,光取出层200可以覆盖在像素阵列100上,且可以包括并列布置的多个第一光取出层单元211和多个第二光取出层单元212,例如,第一光取出层单元211和第二光取出层单元212可具有相同的厚度但却具有不同的折射率。每个第一子像素120的阴极发光侧被一个第一光取出层单元211和一个第二光取出层单元212覆盖。
图1(b)是本公开一个实施例提供的一种有机电致发光显示基板10的另一种结构的剖面示意图。如图1(b)所示,该有机电致发光显示基板10与图1(a)所示的有机电致发光显示基板10的区别为第一光取出层单元211和第二光取出层单元212具有不同的厚度。由于第一光取出层单元211和第二光取出层单元212可以采用同种材料制成,因此图1(b)示出的光取出层200的制备工艺相对于图1(a)示出的光取出层200的制备工艺简单。
图1(c)是本公开一个实施例提供的一种有机电致发光显示基板10的再一种结构的剖面示意图。如图1(c)所示,该有机电致发光显示基板10的第一光取出层单元211和第二光取出层单元212可以具有不同的厚度和覆盖面积。该有机电致发光显示基板10与图1(b)所示的有机电致发光显示基板10的区别为光取出层的形成方式不同,图1(c)所示的第一光取出层单元211和第二光取出层单元212包括第一单元层241,第二光取出层单元212还包括第二单元层242,第二单元层242覆盖在第一单元层241上。
例如,图1(c)示出的第一光取出层单元211和第二光取出层单元212的制备方法可以是,首先在像素阵列100的阴极发光侧上形成一层第一单元层241,然后在对应于第二光取出层单元212的区域形成第二单元层242,进而实现了对于同一个子像素覆盖厚度不同的第一光取出层单元211和第二光取出层单元212。由此可以更加精细的控制第一光取出层单元211和第二光取出层单元212的厚度,并且可以进一步降低第一光取出层单元211和第二光取出层单元212的制造难度。
例如,本实施例中示出的第一光取出层单元211和第二光取出层单元212可以通过高精度金属掩模板(Fine Metal Mask)形成。例如,本实施中示出的第一光取出层单元211和第二光取出层单元212可以由例如8-羟基喹啉铝(Alq3)等有机材料制成,还可以由例如二氧化钛(TiO2)、氧化镁(MgO)、氟化镁(MgF2)、二氧化硅(SiO2)等无机材料制成,或者由其它适合的材料制成,且形成的光取出层单元能够提取光,由此能够改善器件的亮度视角特性和/或色度视角特性。
下面结合图2(a)中的仿真结果说明折射率不同的光取出层单元对于有机电致发光元件150的亮度随视角变化特性的影响,以及设置至少两个折射率不同的光取出层单元对图1(a)示出的有机电致发光显示基板10的亮度视角特性的提升的原理。
图2(a)所示的朗伯体图示出了光取出层单元(图中由cpl表示)的折射率对于有机电致发光元件150的红光发光亮度随视角变化特性的影响,此时光取出层的厚度为55nm(即,55纳米)。如图2(a)所示,当光取出层单元的折射率较小时(例如,n=1.4),有机电致发光元件150的在视角为零(即正面)时的亮度相对较强,而当视角增加时,亮度迅速降低,并且大视角下的亮度相对较弱;当光取出层单元的折射率较大时(例如,n=2),有机电致发光元件150的在视角为零(即正面)时的亮度相对较弱,而当视角增加时,亮度缓慢降低,并且大视角下的亮度相对较强。
在有机电致发光元件150上覆盖两个折射率不同的光取出单元的情况下,由于两个光取出单元设置在同一个有机电致发光元件150上,有机电致发光元件150的有效发光亮度为(仅设置第一单元层时的发光亮度×第一光取出层单元211的宽度+仅设置第二单元层时的发光亮度×第二光取出层单 元211的宽度)/(第一光取出层单元211的宽度+第二光取出层单元212的宽度)。例如,在第一光取出层单元211和第二光取出层单元212的宽度相同的情况下,有机电致发光元件150的有效发光亮度为上述两个发光亮度之和的二分之一。因此,在同一个有机电致发光元件150上设置一个小视角亮度较高、大视角亮度较低的光取出单元和一个小视角亮度较低、大视角亮度较高的光取出单元的情况下,可以使得有机电致发光元件150的亮度随视角的变化变得缓慢,从而可以改善有机电致发光元件150的亮度视角特性,进而能够改善图1(a)示出的有机电致发光显示基板10的亮度视角特性。
下面结合表1中的仿真结果说明折射率不同的光取出层单元对于有机电致发光元件150的红光发光色坐标随视角变化特性的影响,以及设置至少两个折射率不同的光取出层单元对图1(a)示出的有机电致发光显示基板10的色度视角特性的改善的原理。
表1示出了折射率不同的光取出层单元对于有机电致发光元件150的色坐标随视角变化特性的影响,CIEx和CIEy表示有机电致发光元件150发光的色坐标,Δu'Δv'表示有机电致发光元件150相对于零度视角下的色偏。
表1
折射率 角度 CIEx CIEy Δu'Δv'
1.4+2 0 0.6348 0.3562 0
  30 0.6231 0.3678 0.018953
  60 0.6248 0.3686 0.018374
1.4 0 0.629104 0.344556 0
  30 0.606199 0.36185 0.03284
  60 0.538779 0.411725 0.114858
1.7 0 0.631645 0.342832 0
  30 0.617112 0.356856 0.023984
  60 0.538779 0.411725 0.118496
2 0 0.627435 0.346448 0
  30 0.61708 0.358883 0.019072
  60 0.610311 0.370266 0.033674
如表1所示,在仅有一个光取出层单元覆盖在有机电致发光元件150上的情况下,大视角下(例如,60°)的色偏均相对较大,而当折射率分别为1.4和2的两个光取出层单元覆盖在同一个有机电致发光元件150上,大视角 下的色偏相对较小。因此,通过在同一个有机电致发光元件150上设置两个折射率不同的光取出层单元,可以实现有机电致发光元件150的色度视角特性的改善,进而能够改善图1(a)示出的有机电致发光显示基板10的色度视角特性。
下面结合图2(b)中的仿真结果说明厚度不同的光取出层单元对于有机电致发光元件150的亮度随视角变化特性的影响,以及设置至少两个厚度不同的光取出层单元对图1(b)和图1(c)示出的有机电致发光显示基板10的亮度视角特性的提升的原理。
图2(b)所示的朗伯体图示出了光取出层单元(图中由cpl表示)的厚度对于有机电致发光元件150的绿光发光亮度随视角变化特性的影响,此时光取出层的折射率为1.8。如图2(b)所示,当光取出层单元的厚度为45纳米时,有机电致发光元件150的在大视角下的亮度相对较弱;当光取出层单元的厚度为65纳米时,有机电致发光元件150在大视角下的亮度相对较强。因此,通过在同一个有机电致发光元件150上设置两个厚度不同的光取出层单元,可以实现有机电致发光元件150的亮度视角特性的提升,进而能够改善图1(b)和图1(c)示出的有机电致发光显示基板10的亮度视角特性。
下面结合表2中的仿真结果说明厚度不同的光取出层单元对于有机电致发光元件150的绿光发光色坐标随视角变化特性的影响,以及设置至少两个厚度不同的光取出层单元对图1(b)和图1(c)示出的有机电致发光显示基板10的色度视角特性的改善的原理。
表2示出了厚度不同的光取出层单元对于有机电致发光元件150的色坐标随视角变化特性的影响。
表2
Figure PCTCN2017091189-appb-000001
如表2所示,在仅有一个光取出层单元覆盖在有机电致发光元件150上的情况下,大视角下的色偏均相对较大,而当厚度分别为45和60纳米的两个光取出层单元覆盖在同一个有机电致发光元件150上,大视角下的色偏相对较小。因此,通过在同一个有机电致发光元件150上设置两个厚度不同的光取出层单元,可以实现有机电致发光元件150的色度视角特性的改善,进而能够改善图1(b)和图1(c)示出的有机电致发光显示基板10的色度视角特性。
例如,该有机电致发光显示基板10还包括发第二颜色光的第二子像素130和发第三颜色光的第三子像素140,每个第二子像素130和每个第三子像素140包括有机电致发光元件150。
例如,图3是本公开一个实施例提供的一种有机电致发光显示基板10的再一种结构的剖面示意图。如图3所示,该有机电致发光显示基板10与图1所示的有机电致发光显示基板10的区别为第一光取出层单元211和第二光取出层单元212不仅覆盖在第一子像素120的阴极发光侧,还分别至少部分覆盖在相邻的第二子像素130和相邻的第三子像素140的阴极发光侧。由于第一子像素120的阴极发光侧覆盖了折射率或厚度不同的第一光取出层单元211和第二光取出层单元212,因此可以提升有机电致发光显示基板10第一颜色光的亮度视角和/或色度视角特性。由于第一光取出层单元211和第二光取出层单元212宽度增加,光取出层200的制造难度得到了降低。
例如,图4是本公开一个实施例提供的一种有机电致发光显示基板10的再一种结构的剖面示意图。如图4所示,该有机电致发光显示基板10与图1所示的有机电致发光显示基板10的区别为光取出层200还包括并列布置的多个第三光取出层单元221和多个第四光取出层单元222。第三光取出层单元221和第四光取出层单元222的光学性质彼此不同,例如第三光取出层单元221和第四光取出层单元222具有不同的折射率或厚度。每个第二子像素130的阴极发光侧被一个第三光取出层单元221和一个第四光取出层单元222覆盖。由于第二子像素130的阴极发光侧覆盖了一个第三光取出层单元221和一个第四光取出层单元222,有机电致发光显示基板10第二颜色光的亮度视角和/或色度视角特性也得到了改善。
例如,如图4所示,该有机电致发光显示基板10还可以包括并列布置的 多个第五光取出层单元231和多个第六光取出层单元232。第五光取出层单元231和第六光取出层单元232的光学性质彼此不同,例如第五光取出层单元231和第六光取出层单元232具有不同的折射率或厚度。每个第三子像素140的阴极发光侧被一个第五光取出层单元231和一个第六光取出层单元232覆盖。由于第三子像素140的阴极发光侧覆盖了一个第五光取出层单元231和一个第六光取出层单元232,有机电致发光显示基板10第三颜色光的亮度视角和/或色度视角特性也得到了改善。
由于图4中示出的光取出层200可以针对第一子像素120、第二子像素130和第三子像素140分别设置两个光学性质不同的光取出单元,由此可以更好的提升第一颜色光、第二颜色光和第三颜色光的亮度视角和/或色度视角特性。
例如,为了降低该有机电致发光显示基板10工艺复杂度,图4中示出第一光取出层单元、第三光取出层单元和第五光取出层单元的厚度和折射率可以设置为相同的形式;又例如,图4中示出第二光取出层单元、第四光取出层单元和第六光取出层单元的厚度和折射率也可以设置为相同的形式。
例如,为了最大限度的提升第一颜色光、第二颜色光和第三颜色光的亮度视角和/或色度视角特性,图4中示出第一光取出层单元、第三光取出层单元和第五光取出层单元的厚度或/和折射率可以设置为彼此不同的形式,第二光取出层单元、第四光取出层单元和第六光取出层单元的厚度或/和折射率也可以设置为彼此不同的形式。
例如,图5是本公开一个实施例提供的一种有机电致发光显示基板10的再一种结构的剖面示意图。如图5所示,该有机电致发光显示基板10与图1所示的有机电致发光显示基板10的区别为:图5所示的有机电致发光显示基板10还包括发第二颜色光的第二子像素130和发第三颜色光的第三子像素140,每个第二子像素130和每个第三子像素140包括有机电致发光元件150。每个第二子像素130被一个第一光取出层单元211和第二光取出层单元212覆盖,每个第三子像素140被一个第一光取出层单元211和第二光取出层单元212覆盖;第一子像素120、第二子像素130和第三子像素140中的任意两个相邻的子像素的阴极发光侧的至少部分被同一个第一光取出层单元211或同一个第二光取出层单元212覆盖,从而第一子像素120、第二子像素130 和第三子像素140中每一个都被至少两个不同光学性质的光取出层覆盖。
例如,在图5所示的有机电致发光显示基板10中,图5左侧两个相邻的第一子像素120和第二子像素130被同一个第一光取出层单元211覆盖,图5右侧两个相邻的第一子像素120和第二子像素130被同一个第二光取出层单元212覆盖;图5左侧两个相邻的第一子像素120和第三子像素140被同一个第二光取出层单元212覆盖,图5右侧两个相邻的第一子像素120和第三子像素140被同一个第一光取出层单元211覆盖。由于第一子像素120、第二子像素130和第三子像素140每一个上均设置了两个光学性质不同的光取出单元,因此有机电致发光显示基板10的第一颜色光、第二颜色光和第三颜色光的亮度视角和/或色度视角特性均可以得到改善。由于每两个子像素共用一个光取出单元,因此光取出单元的宽度增加,由此可以降低光取出层200的制造难度。
例如,在图5所示的光取出层不限于仅设置两个光取出层单元(第一光取出层单元和第二光取出层单元),还可以设置更多个光学性质彼此不同的光取出单元。例如,可以设置三个光取出层单元(第一光取出层单元、第二光取出层单元和第七光取出层单元),此时,两个相邻的第一子像素和第二子像素被同一个第一光取出层单元覆盖,两个相邻的第一子像素和第三子像素被同一个第二光取出层单元覆盖,两个相邻的第三子像素和第二子像素被同一个第七光取出层单元覆盖(图5中未示出)。因此,本申请对光取出层单元的设置个数不做限定。
例如,图6是本公开一个实施例的另一种有机电致发光显示基板10的一种结构的剖面示意图。如图6所示,该有机电致发光显示基板10包括像素阵列100和光取出层200。像素阵列100包括多个按阵列排列的像素110,每个像素110包括发第一颜色光的第一子像素120,每个第一子像素120包括有机电致发光元件150,该有机电致发光元件150可以是顶发射型有机电致发光元件或者两侧发射型有机电致发光元件。光取出层200覆盖在像素阵列100上,包括并列布置的多个第一光取出层单元211和多个第二光取出层单元212,第一光取出层单元211和第二光取出层单元212具有不同的折射率或厚度。相邻的两个第一子像素120的阴极发光侧分别被至少一个第一光取出层单元211和至少一个第二光取出层单元212覆盖。
下面结合图7说明图6所示的有机电致发光显示基板10的亮度视角特性和/或色度视角特性得到改善的原理。点O代表眼睛的瞳孔中心,θ代表人眼能分辨出的两点相对于瞳孔中心的最小张角(大约是1′),D代表人眼距显示屏幕的距离(手机的工作距离通常为25cm),L是人眼可分辨的最小距离(通常大于0.1mm)。对于分辨率为QHD的手机,两个相邻的、相同颜色的子像素之间的距离小于0.04mm(绿色约为0.02mm)。因此人眼是不能够区分分辨率为QHD(全高清1920*1080分辨率的四分之一)的手机的、两个相邻的、相同颜色的子像素,而会认为这是同一个发光点发出的光。因此,对于图6所示的有机电致发光显示基板10,相当于在同一个发光点设置两个光学性质不同的第一光取出层单元211和第二光取出层单元212,由此可以实现第一颜色光的亮度视角和/或色度视角特性的改善。
例如,根据实际应用需求,光取出层200还可以设置成如下形式,相邻的两个第一子像素120中的其中一个第一子像素120的阴极发光侧被一个第一光取出层单元211覆盖,且另一个第一子像素120的阴极发光侧被一个第二光取出层单元212覆盖。此时,也相当于在同一个发光点设置两个光学性质不同的第一光取出层单元211和第二光取出层单元212,由此也可以在一定程度上实现对第一颜色光的亮度视角和/或色度视角特性的改善。
例如,该有机电致发光显示基板10还包括发第二颜色光的第二子像素130和发第三颜色光的第三子像素140,每个第二子像素130和每个第三子像素140包括有机电致发光元件150。
例如,图8是本公开一个实施例的另一种有机电致发光显示基板10的另一种结构的剖面示意图。如图8所示,该有机电致发光显示基板10与图6所示的有机电致发光显示基板10的区别为第一光取出层单元211和第二光取出层单元212不仅覆盖在第一子像素120的阴极发光侧,还至少部分覆盖在第二子像素130和第三子像素140的阴极发光侧。由于两个相邻的第一子像素120的阴极发光侧覆盖了折射率或厚度不同的第一光取出层单元211和第二光取出层单元212,由此可以改善有机电致发光显示基板10第一颜色光的亮度视角和/或色度视角特性。由于第一光取出层单元211和第二光取出层单元212的宽度增加,光取出层200的制造难度得到了降低。
例如,图9是本公开一个实施例的另一种有机电致发光显示基板10的再 一种结构的剖面示意图。如图9所示,该有机电致发光显示基板10与图6所示的有机电致发光显示基板10的区别为光取出层200还包括并列布置的多个第三光取出层单元221和多个第四光取出层单元222。第三光取出层单元221和第四光取出层单元222的光学性质彼此不同,例如第三光取出层单元221和第四光取出层单元222具有不同的折射率或厚度。相邻的两个第二子像素130的阴极发光侧分别被一个第三光取出层单元221和一个第四光取出层单元222覆盖。由此可以改善有机电致发光显示基板10第二颜色光的亮度视角和/或色度视角特性。
例如,如图9所示,该有机电致发光显示基板10还可以包括并列布置的多个第五光取出层单元231和多个第六光取出层单元232。第五光取出层单元231和第六光取出层单元232的光学性质彼此不同,例如第五光取出层单元231和第六光取出层单元232具有不同的折射率或厚度。相邻的两个第三子像素140的阴极发光侧分别被一个第五光取出层单元231和一个第六光取出层单元232覆盖。由此可以改善有机电致发光显示基板10第三颜色光的亮度视角和/或色度视角特性。
例如,由于图9所示的光取出层200可以针对相邻的两个第一子像素120、相邻的两个第二子像素130和相邻的两个第三子像素140分别设置两个光学性质不同的光取出单元,因此可以最大限度的提升第一颜色光、第二颜色光和第三颜色光的亮度视角和/或色度视角特性。
例如,图10是本公开一个实施例的另一种有机电致发光显示基板10的再一种结构的剖面示意图。如图10所示,该有机电致发光显示基板10与图6所示的有机电致发光显示基板10的区别为第一光取出层单元211和第二光取出层单元212不仅覆盖在第一子像素120的阴极发光侧,还覆盖在第二子像素130和第三子像素140的阴极发光侧,也就是说第一光取出层单元211覆盖在一个像素110上(例如,图10左侧的像素),第二光取出层单元212覆盖在与第一光取出单元相邻的一个像素110上(例如,图10右侧的像素)。由于相邻的两个第一子像素120、相邻的两个第二子像素130和相邻的两个第三子像素140的阴极发光侧均覆盖了折射率或厚度不同的第一光取出层单元211和第二光取出层单元212,因此有机电致发光显示基板10的第一颜色光、第二颜色光和第三颜色光的亮度视角和/或色度视角特性得到了改善。由 于第一光取出层单元211和第二光取出层单元212的宽度得到了进一步的增加,光取出层200的制造难度得到了进一步的降低。
例如,本公开另一个实施例提供了一种显示面板,该显示面板包括本公开任一实施例提供的有机电致发光显示基板10。例如,本公开另一个实施例还提供了一种显示设备,图11是本公开另一个实施例提供的显示设备20的示意图,该显示设备20包括本公开任一实施例提供的有机电致发光显示基板10,或者上述的显示面板。需要说明的是,对于显示面板的其它组成部分,如玻璃盖板等;以及显示设备20的其它组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。通过设置至少两个光学性质彼此不同的光取出单元,实现了有机电致发光显示基板以及包含该有机电致发光显示基板的显示面板和显示设备的亮度视角特性和/或色度视角特性的改善。
例如,基于同一发明构思,本公开实施例还提供了一种有机电致发光显示基板的制作方法。该有机电致发光显示基板的制作方法包括:形成像素阵列和形成光取出层。像素阵列包括多个按阵列排列的像素,每个像素包括发第一颜色光的第一子像素,每个第一子像素包括有机电致发光元件。光取出层覆盖在像素阵列上,至少包括例如并列布置的多个第一光取出层单元和多个第二光取出层单元,第一光取出层单元和第二光取出层单元的光学性质彼此不同。相邻的两个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,例如,每个第一子像素的阴极发光侧被至少一个第一光取出层单元和至少一个第二光取出层单元覆盖,或者相邻的两个第一子像素的阴极发光侧分别被至少一个第一光取出层单元和至少一个第二光取出层单元覆盖。
例如,图12是本公开再一个实施例提供的一种用于制造有机电致发光显示基板的制作方法的流程图。如图12所示,该制作方法可以包括以下步骤:
步骤S10:形成像素阵列;
步骤S20:形成光取出层。
像素阵列和光取出层的设置方式可以参见前述有机电致发光显示基板的实施例,在此不再赘述。通过在每个第一子像素的阴极发光侧或者相邻的两个第一子像素的阴极发光侧形成至少两个光学性质彼此不同的光取出单元, 实现了有机电致发光显示基板的亮度视角特性和/或色度视角特性的改善。
本公开的实施例提供了了一种有机电致发光显示基板、显示设备和有机电致发光显示基板的制作方法,该有机电致发光显示基板通过设置至少两个光学性质彼此不同的光取出单元,实现了器件的亮度视角特性和/或色度视角特性的改善。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。本申请要求于2016年12月01日递交的中国专利申请第201611091447.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (19)

  1. 一种有机电致发光显示基板,包括:
    像素阵列,其中,所述像素阵列包括多个按阵列排列的像素,每个所述像素包括发第一颜色光的第一子像素,每个所述第一子像素包括有机电致发光元件;
    光取出层,覆盖在所述像素阵列上,至少包括多个第一光取出层单元和多个第二光取出层单元,所述第一光取出层单元和所述第二光取出层单元的光学性质彼此不同;
    其中,相邻的两个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
  2. 根据权利要求1所述的有机电致发光显示基板,其中,每个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,或者相邻的两个所述第一子像素的阴极发光侧分别被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
  3. 根据权利要求1所述的有机电致发光显示基板,其中,所述第一光取出层单元和所述第二光取出层单元具有不同的厚度或不同的折射率。
  4. 根据权利要求3所述的有机电致发光显示基板,其中,所述第一光取出层单元和所述第二光取出层单元包括第一单元层,所述第二光取出层单元还包括第二单元层,所述第二单元层覆盖在所述第一单元层上。
  5. 根据权利要求1-4任一项所述的有机电致发光显示基板,其中,每个所述像素阵列还包括发第二颜色光的第二子像素和发第三颜色光的第三子像素,每个所述第二子像素和每个所述第三子像素包括有机电致发光元件。
  6. 根据权利要求5所述的有机电致发光显示基板,其中,每个所述第二子像素被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,每个所述第三子像素被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,所述第一子像素、所述第二子像素和所述第三子像素中的任意两个相邻的子像素的阴极发光侧的至少部分被同一个所述第一光取出层单元或同一个所述第二光取出层单元覆盖。
  7. 根据权利要求5所述的有机电致发光显示基板,还包括并列布置的多 个第三光取出层单元和多个第四光取出层单元,所述第三光取出层单元和所述第四光取出层单元的光学性质彼此不同,
    其中,每个所述第二子像素的阴极发光侧被至少一个所述第三光取出层单元和至少一个所述第四光取出层单元覆盖,或者相邻的两个所述第二子像素的阴极发光侧分别被至少一个所述第三光取出层单元和至少一个所述第四光取出层单元覆盖。
  8. 根据权利要求7所述的有机电致发光显示基板,还包括并列布置的多个第五光取出层单元和多个第六光取出层单元,其中,所述第五光取出层单元和所述第六光取出层单元的光学性质彼此不同,
    其中,每个所述第三子像素的阴极发光侧被至少一个所述第五光取出层单元和至少一个所述第六光取出层单元覆盖,或者相邻的两个所述第三子像素的阴极发光侧分别被至少一个所述第五光取出层单元和至少一个所述第六光取出层单元覆盖。
  9. 根据权利要求8所述的有机电致发光显示基板,其中,所述第一光取出层单元、所述第三光取出层单元和所述第五光取出层单元的光学性质相同,所述第二光取出层单元、所述第四光取出层单元和所述第六光取出层单元的光学性质相同。
  10. 根据权利要求1-4任一项所述的有机电致发光显示基板,其中,相邻的两个所述像素的阴极发光侧分别被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
  11. 根据权利要求1-10任一项所述的有机电致发光显示基板,其中,所述有机电致发光元件为顶发射型或两侧发射型。
  12. 一种显示面板,包括如权利要求1-11任一项所述的有机电致发光显示基板。
  13. 一种显示设备,包括如权利要求1-11任一项所述的有机电致发光显示基板或者如权利要求12所述的显示面板。
  14. 一种如权利要求1-11任一项所述的有机电致发光显示基板的制作方法,包括:
    形成像素阵列,其中,所述像素阵列包括多个按阵列排列的像素,每个所述像素包括发第一颜色光的第一子像素,每个所述第一子像素包括有机电 致发光元件;
    形成光取出层,覆盖在所述像素阵列上,至少包括多个第一光取出层单元和多个第二光取出层单元,所述第一光取出层单元和所述第二光取出层单元的光学性质彼此不同;
    其中,相邻的两个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
  15. 根据权利要求14所述的有机电致发光显示基板的制作方法,其中,每个所述第一子像素的阴极发光侧被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,或者相邻的两个所述第一子像素的阴极发光侧分别被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖。
  16. 根据权利要求14或15所述的有机电致发光显示基板的制作方法,其中,所述第一光取出层单元和所述第二光取出层单元具有不同的厚度或不同的折射率。
  17. 根据权利要求14或15所述的有机电致发光显示基板的制作方法,其中,所述第一光取出层单元和所述第二光取出层单元包括第一单元层,所述第二光取出层单元还包括第二单元层,所述第二单元层覆盖在所述第一单元层上。
  18. 根据权利要求14-17任一所述的有机电致发光显示基板的制作方法,其中,每个所述像素阵列还包括发第二颜色光的第二子像素和发第三颜色光的第三子像素,每个所述第二子像素和每个所述第三子像素包括有机电致发光元件。
  19. 根据权利要求18所述的有机电致发光显示基板的制作方法,其中,每个所述第二子像素被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,每个所述第三子像素被至少一个所述第一光取出层单元和至少一个所述第二光取出层单元覆盖,所述第一子像素、所述第二子像素和所述第三子像素中的任意两个相邻的子像素的阴极发光侧的至少部分被同一个所述第一光取出层单元或同一个所述第二光取出层单元覆盖。
PCT/CN2017/091189 2016-12-01 2017-06-30 有机电致发光显示基板及制作方法、显示面板、显示设备 WO2018099072A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018504674A JP7050661B2 (ja) 2016-12-01 2017-06-30 有機エレクトロルミネッセンス表示基板及び製造方法、表示パネル、表示装置
KR1020187004407A KR102196417B1 (ko) 2016-12-01 2017-06-30 유기 전계발광 디스플레이 기판 및 그 제조 방법, 디스플레이 패널 및 디스플레이 디바이스
EP17829908.7A EP3550608B1 (en) 2016-12-01 2017-06-30 Organic electroluminescent display substrate and manufacturing method therefor
US15/747,838 US10454073B2 (en) 2016-12-01 2017-06-30 Organic electroluminescence display substrate and fabrication method thereof, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611091447.XA CN108133948B (zh) 2016-12-01 2016-12-01 有机电致发光显示基板及制作方法、显示面板、显示设备
CN201611091447.X 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018099072A1 true WO2018099072A1 (zh) 2018-06-07

Family

ID=62241169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091189 WO2018099072A1 (zh) 2016-12-01 2017-06-30 有机电致发光显示基板及制作方法、显示面板、显示设备

Country Status (6)

Country Link
US (1) US10454073B2 (zh)
EP (1) EP3550608B1 (zh)
JP (1) JP7050661B2 (zh)
KR (1) KR102196417B1 (zh)
CN (1) CN108133948B (zh)
WO (1) WO2018099072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080299A (ja) * 2018-11-12 2020-05-28 Tianma Japan株式会社 表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11557747B2 (en) * 2018-11-12 2023-01-17 Wuhan Tianma Micro-Electronics Co., Ltd. Display device
CN109860416B (zh) * 2019-01-09 2022-03-25 昆山工研院新型平板显示技术中心有限公司 像素结构及具有该像素结构的oled显示面板
CN111668282A (zh) * 2020-07-03 2020-09-15 武汉华星光电半导体显示技术有限公司 Oled显示面板及显示装置
CN112531129B (zh) * 2020-11-30 2024-09-17 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287053A (ja) * 2003-03-20 2004-10-14 Fuji Photo Film Co Ltd 光取り出し率向上フィルム及びその製造方法
CN106158905A (zh) * 2015-04-21 2016-11-23 上海和辉光电有限公司 发光器件结构及有机发光面板
KR20160141060A (ko) * 2015-05-27 2016-12-08 한국전자통신연구원 광추출층의 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968191B1 (ko) * 2004-11-16 2010-07-06 인터내셔널 비지네스 머신즈 코포레이션 유전체 캐핑층들을 포함하는 유기 발광 소자들
JP2011060552A (ja) * 2009-09-09 2011-03-24 Fujifilm Corp 有機el素子
JP2011065773A (ja) * 2009-09-15 2011-03-31 Fujifilm Corp 有機電界発光装置
KR20150046116A (ko) 2012-08-22 2015-04-29 쓰리엠 이노베이티브 프로퍼티즈 컴파니 마이크로캐비티 oled 광 추출
KR102059940B1 (ko) 2012-11-29 2019-12-30 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20150019332A (ko) * 2013-08-13 2015-02-25 삼성디스플레이 주식회사 유기 발광 표시 장치의 화소, 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR102295610B1 (ko) 2013-12-27 2021-08-30 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
KR101620092B1 (ko) 2014-11-06 2016-05-13 삼성디스플레이 주식회사 유기 발광 소자 및 그 제조방법
CN104538430B (zh) * 2014-12-30 2017-10-13 北京维信诺科技有限公司 一种有机发光显示装置及其制备方法
CN104466027B (zh) * 2014-12-30 2017-03-08 昆山国显光电有限公司 有机发光显示器的微腔结构及有机发光显示器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287053A (ja) * 2003-03-20 2004-10-14 Fuji Photo Film Co Ltd 光取り出し率向上フィルム及びその製造方法
CN106158905A (zh) * 2015-04-21 2016-11-23 上海和辉光电有限公司 发光器件结构及有机发光面板
KR20160141060A (ko) * 2015-05-27 2016-12-08 한국전자통신연구원 광추출층의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550608A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080299A (ja) * 2018-11-12 2020-05-28 Tianma Japan株式会社 表示装置
JP7317614B2 (ja) 2018-11-12 2023-07-31 Tianma Japan株式会社 表示装置

Also Published As

Publication number Publication date
KR20180083844A (ko) 2018-07-23
EP3550608A1 (en) 2019-10-09
CN108133948A (zh) 2018-06-08
CN108133948B (zh) 2021-02-02
EP3550608A4 (en) 2020-10-14
US10454073B2 (en) 2019-10-22
KR102196417B1 (ko) 2020-12-29
JP2019537188A (ja) 2019-12-19
EP3550608B1 (en) 2024-05-01
JP7050661B2 (ja) 2022-04-08
US20190019991A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2018099072A1 (zh) 有机电致发光显示基板及制作方法、显示面板、显示设备
US11284483B2 (en) Display unit, method of manufacturing the same, and electronic apparatus
CN104900684B (zh) 显示基板及其制作方法、显示装置
TWI559525B (zh) 有機發光二極體顯示裝置及其製造方法
JP4507718B2 (ja) カラー有機elディスプレイ及びその製造方法
CN103840092B (zh) 有机发光装置及其制作方法
US20210225952A1 (en) Pixel unit, method for manufacturing the pixel unit, display panel and display device
WO2016149969A1 (zh) 一种oled显示用基板及显示装置
CN107170901B (zh) 一种子像素结构、像素结构、显示面板及显示装置
CN104637981B (zh) 有机电致发光显示面板
US10177203B2 (en) Pixel structure and manufacturing method for the same
CN107154415A (zh) 一种oled显示装置
TW201603261A (zh) 有機發光元件及像素陣列
CN108091677A (zh) 阵列基板、显示装置以及阵列基板的制造方法
CN105742521A (zh) 一种微腔oled器件
CN107634084A (zh) 顶发射白光oled显示装置
CN110867524A (zh) 显示面板及其制作方法、显示装置
TWI522713B (zh) 畫素結構與顯示面板
WO2018218744A1 (zh) 改善大视角色偏的方法及显示面板
US20170256731A1 (en) Display panel
TWM461104U (zh) 有機發光二極體顯示面板觸控結構
US11222925B2 (en) Array substrate, method for fabricating the same using filter and self-emission technologies, and display device
CN111223890B (zh) 显示面板及其制备方法与显示装置
TW201603248A (zh) 有機發光顯示面板
CN111524948A (zh) 彩色滤光结构、显示面板及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504674

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004407

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17829908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE