WO2018218744A1 - 改善大视角色偏的方法及显示面板 - Google Patents

改善大视角色偏的方法及显示面板 Download PDF

Info

Publication number
WO2018218744A1
WO2018218744A1 PCT/CN2017/092689 CN2017092689W WO2018218744A1 WO 2018218744 A1 WO2018218744 A1 WO 2018218744A1 CN 2017092689 W CN2017092689 W CN 2017092689W WO 2018218744 A1 WO2018218744 A1 WO 2018218744A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
grating
display panel
viewing angle
Prior art date
Application number
PCT/CN2017/092689
Other languages
English (en)
French (fr)
Inventor
何健
许神贤
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/562,680 priority Critical patent/US10910452B2/en
Publication of WO2018218744A1 publication Critical patent/WO2018218744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for improving a large-view character bias of a display panel and a corresponding display panel.
  • FIG. 1 is a schematic diagram showing changes in intensity of light of respective wavelengths emitted by a display panel when a viewing angle changes.
  • Fig. 1 when the viewing angle is increased from 0° to 60°, the attenuation of the peak wavelength intensity is indicated by a dotted arrow.
  • the intensity of blue wavelength (450-470nm) is most obvious in terms of intensity variation, while the intensity attenuation of green wavelength (515-530nm) and red wavelength (620-625nm) is less obvious, resulting in white dot color.
  • the degree of offset affects the display of the panel.
  • Figure 2 is a white point color shift diagram (CIE 1931 xy). As shown in FIG. 2, when the viewing angle is increased, the white point coordinates are shifted from the E point to the direction indicated by the arrow.
  • CIE 1931 xy white point color shift diagram
  • the present invention provides a general inventive concept for improving the large-view character bias of a display panel to solve the above-mentioned technical problem of the large-view character bias.
  • the invention compensates for the difference in the attenuation of the light intensity transmitted by the sub-pixels with the viewing angle by adding occlusion to the sub-pixels, thereby improving the phenomenon of large-view character deviation of the display panel.
  • the present invention provides a method of improving a large-view character bias of a display panel, the panel comprising R, G, B sub-pixel arrays and a BM region between each sub-pixel, wherein the method comprises Arranging a grating parallel to the sub-pixel array in the sub-pixel array, the grating includes a light transmitting region and an opaque region, and the opaque region is disposed above the BM region, and the grating is disposed such that when the sub-pixel is viewed from a large viewing angle, Light transmitted by the sub-pixel is partially obscured by the opaque region of the grating.
  • the opaque regions of the grating are disposed only above the BM regions on either side of the G sub-pixels.
  • an opaque region of the grating is disposed over both sides of the G sub-pixel and above the BM regions on either side of the R sub-pixel.
  • the present invention provides a method of improving a large-view character bias of a top-emitting OLED panel, the panel comprising R, G, B sub-pixel arrays, each sub-pixel comprising a PDL layer, wherein the method Including: increasing the thickness of the PDL layer of the sub-pixel such that when the sub-pixel is viewed at a large viewing angle, light transmitted by the sub-pixel is partially blocked by the PDL layer.
  • only the thickness of the PDL layer of the G sub-pixel is increased.
  • the thickness of the PDL layer of the G sub-pixel and the R sub-pixel is increased.
  • the present invention provides a display panel including an R, G, B sub-pixel array and a BM area between each sub-pixel, wherein a sub-pixel array of the panel is provided with a sub-pixel a grating parallel to the pixel array, the grating comprising a light transmissive area and an opaque area, the opaque area being disposed above the BM area, the grating being arranged such that when the sub-pixel is viewed at a large viewing angle, the light transmitted by the sub-pixel is The opaque area of the grating is partially obscured.
  • only the opaque regions of the grating are disposed above the BM regions on either side of the G sub-pixels.
  • an opaque region of the grating is disposed on both sides of the G sub-pixel and above the BM region on both sides of the R sub-pixel.
  • the panel is a top emission type OLED panel, wherein a thickness of a PDL layer of a sub-pixel of the panel is increased, such that when the sub-pixel is viewed at a large viewing angle, light transmitted by the sub-pixel Partially obscured by the PDL layer.
  • only the thickness of the PDL layer of the G sub-pixel is increased.
  • the thicknesses of the PDL layers of the G sub-pixels and the R sub-pixels are both increased.
  • the effective effect achieved by the invention is that the light intensity transmitted by the sub-pixel is compensated for the difference in the attenuation of the viewing angle by adding occlusion to the sub-pixel, thereby improving the phenomenon of large-view character deviation of the display panel.
  • FIG. 1 is a schematic diagram showing changes in intensity of light of respective wavelengths emitted by a display panel when a viewing angle changes.
  • Figure 2 is a schematic diagram of white point color shift.
  • FIG 3 is a side view showing the structure of a grating provided in a display panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic front view of a grating disposed in a display panel in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing light intensity attenuation of a sub-pixel by a grating at different viewing angles.
  • Fig. 6 is a schematic view showing the effect of improving the color shift by the grating.
  • FIG. 7 is a schematic front structural view of a grating disposed in a display panel according to an embodiment of the invention.
  • FIG. 8 is a schematic structural view of a top emission type OLED.
  • FIG. 3 and FIG. 4 together illustrate a schematic diagram of a grating structure disposed in a display panel according to an embodiment of the present invention, wherein FIG. 3 is a side structural view, and FIG. 4 is a front structural view.
  • the display panel includes R, G, B sub-pixel arrays 301 and BM regions (ie, non-light-emitting regions) between the respective sub-pixels.
  • a grating 302 parallel to the sub-pixel array 301 is disposed above the sub-pixel array 301.
  • the grating 302 includes a light transmitting region 303 and an opaque region 304, and the opaque region 304 is disposed above the BM region.
  • the opaque region 304 of the grating 302 is disposed only over the BM regions on either side of the G sub-pixel. But this is merely exemplary and not limiting. In another embodiment, the opaque regions 304 of the gratings 302 may be disposed on both sides of the G sub-pixels and above the BM regions on either side of the R sub-pixels.
  • the grating 302 does not affect the display of the front viewing angle.
  • the light intensity of the sub-pixel G is affected by the occlusion of the opaque region 304 of the grating 302, so that the light intensity itself in the sub-pixel G follows.
  • the attenuation of the light intensity caused by the occlusion of the opaque region 304 of the grating 302 is increased on the basis of the attenuation of the viewing angle.
  • the specific parameters of the grating 302 such as the size and height of the opaque region 304, the position of the opaque region 304 relative to the sub-pixel, etc., may be set according to the attenuation of the light intensity of the sub-pixel with the viewing angle.
  • the shape of the opaque region 304 of the grating 302 can also be based on a sub-pixel array The arrangement is adjusted.
  • FIG. 5 is a schematic diagram showing light intensity attenuation of a sub-pixel by a grating at different viewing angles. As shown in FIG. 5, as the viewing angle increases, the light intensity of the sub-pixel gradually decreases.
  • Fig. 6 is a schematic view showing the effect of improving the color shift by the grating.
  • R, G, and B sub-pixels themselves have a light intensity decay rate of f R ( ⁇ ), f G ( ⁇ ), and f B ( ⁇ ) when the viewing angle is ⁇ , and R, G, and B are transmitted when the viewing angle is 0.
  • the light intensities are Lv R , Lv G , and Lv B , respectively, and the R, G, and B light intensities Lv R ', Lv G ', and Lv B ' corresponding to the viewing angle ⁇ are:
  • the attenuation ratio of the grating 302 to the light intensity is f barrier ( ⁇ )
  • G ′′, Lv B ′′ are:
  • the chromatic aberration can be lowered, for example, the white point coordinate is shifted to the Ac point in FIG. 6 . It can be seen that the color shift is improved by providing the grating 302.
  • FIG. 7 is a schematic front structural view of a grating disposed in a display panel according to an embodiment of the invention.
  • the opaque regions 304 of the gratings 302 may be disposed on both sides of the G sub-pixels and above the BM regions on either side of the R sub-pixels. Similar to the principles of the embodiment described above in connection with Figures 3-6, the color shift can be improved by providing the grating 302.
  • the parameters of the opaque region 304 of the grating 302 can be set according to the attenuation of the light intensity of the R, G, B sub-pixels.
  • the specific shape of the grating 302 can also be adjusted according to the arrangement of the pixel array.
  • FIG. 8 is a schematic structural view of a top emission type OLED.
  • the top emission type OLED includes a base layer 801, a TFT (Thin Film Transistor), an anode 802, a PDL layer (ie, a pixel defining layer), a light emitting layer 803, a transparent cathode 804, a color filter 805, and a glass 806 from bottom to top.
  • the light intensity attenuation of the G sub-pixel with respect to the viewing angle can be adjusted by adjusting the thickness H of the corresponding PDL layer of the G sub-pixel.
  • the thickness adjustment parameter of the PDL layer can be set according to the light intensity attenuation of the R, G, and B sub-pixels.
  • the thickness H of the PDL layer is such that the light transmitted by the G sub-pixel is partially blocked by the PDL layer at a large viewing angle, and thus the light intensity of the G sub-pixel is attenuated, so that the light of the R, G, and B sub-pixels at a large viewing angle can be made.
  • the intensity attenuation is equivalent, thus improving the color shift phenomenon caused by the inconsistent light intensity attenuation of the R, G, and B sub-pixels themselves at a large viewing angle.
  • the thickness of the PDL layer of the G sub-pixel is adjusted.
  • the thicknesses of the PDL layers of the G sub-pixels and the R sub-pixels can be adjusted.
  • the thickness adjustment parameter of the PDL layer can be set according to the light intensity attenuation of the R, G, and B sub-pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种改善显示面板的大视角色偏的方法,面板包括R、G、B子像素阵列(301)以及各子像素之间的BM区,方法包括:在子像素阵列(301)上方设置与子像素阵列(301)平行的光栅(302),光栅(302)包括透光区(303)和不透光区(304),不透光区(304)设置于BM区上方,光栅(302)被设置为使得当以大视角观察子像素时,由子像素透射的光被光栅(302)的不透光区(304)部分遮挡。

Description

改善大视角色偏的方法及显示面板
本申请要求享有2017年6月1日提交的名称为“改善大视角色偏的方法及显示面板”的中国专利申请CN201710404552.2的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种改善显示面板的大视角色偏的方法以及对应的显示面板。
背景技术
近年来,大尺寸显示面板在一般终端市场中的占比份额逐渐提高。然而,当显示面板尺寸逐渐加大后,使用者的视角范围也相应增加,这导致显示面板因大视角所引起的色度偏差问题逐步显现。
图1为当视角变化时显示面板发出的各波长的光的强度变化示意图。如图1所示,当视角由0°增加至60°后,用虚线箭头指示出了波长强度峰值的衰减情况。其中,在强度变化方面,蓝色波长(450-470nm)的强度衰减最为明显,而绿色波长(515-530nm)和红色波长(620-625nm)的强度衰减较不明显,从而导致了白点色度的偏移,影响了面板的显示效果。图2为白点色偏示意图(CIE 1931 xy)。如图2所示,当视角加大后,白点坐标从E点向箭头所示方向偏移。
发明内容
本发明提供了一种改善显示面板的大视角色偏的总的发明构思,以解决上述大视角色偏的技术问题。本发明通过对子像素增加遮挡的方式对子像素透射的光强度随视角的衰减差异进行补偿,从而改善显示面板的大视角色偏现象。
在第一方面,本发明提供了一种改善显示面板的大视角色偏的方法,所述面板包括R、G、B子像素阵列以及各子像素之间的BM区,其中,所述方法包括:在子像素阵列设置与子像素阵列平行的光栅,该光栅包括透光区和不透光区,不透光区设置于BM区上方,光栅被设置为使得当以大视角观察子像素时,由该子像素透射的光被该光栅的不透光区部分遮挡。
在一实施例中,仅在G子像素两侧的BM区上方设置光栅的不透光区。
在另一实施例中,在G子像素两侧和R子像素两侧的BM区上方都设置光栅的不透光区。
在第二方面,本发明提供了一种改善顶部发光型OLED面板的大视角色偏的方法,所述面板包括R、G、B子像素阵列,每个子像素包括PDL层,其中,所述方法包括:增加子像素的PDL层的厚度,使得当以大视角观察该子像素时,由该子像素透射的光被该PDL层部分遮挡。
在一实施例中,仅增加G子像素的PDL层的厚度。
在另一实施例中,增加G子像素和R子像素的PDL层的厚度。
在第三方面,本发明提供了一种显示面板,所述面板包括R、G、B子像素阵列以及各子像素之间的BM区,其中,所述面板的子像素阵列上方设置有与子像素阵列平行的光栅,该光栅包括透光区和不透光区,不透光区设置于BM区上方,光栅被设置为使得当以大视角观察子像素时,由该子像素透射的光被该光栅的不透光区部分遮挡。
在一实施例中,仅G子像素两侧的BM区上方设置有光栅的不透光区。
在另一实施例中,G子像素两侧和R子像素两侧的BM区上方都设置有光栅的不透光区。
在一实施例中,所述面板为顶部发光型OLED面板,其中,所述面板的子像素的PDL层的厚度被增加,使得当以大视角观察该子像素时,由该子像素透射的光被该PDL层部分遮挡。
在一实施例中,仅G子像素的PDL层的厚度被增加。
在另一实施例中,G子像素和R子像素的PDL层的厚度都被增加。
本发明所实现的有效效果是:通过对子像素增加遮挡的方式对子像素透射的光强度随视角的衰减差异进行补偿,从而改善了显示面板的大视角色偏现象,。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及说明书附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。
图1为当视角变化时显示面板发出的各波长的光的强度变化示意图。
图2为白点色偏示意图。
图3为根据本发明的一实施例在显示面板中设置的光栅的侧面结构示意图。
图4为根据本发明的一实施例在显示面板中设置的光栅的正面结构示意图。
图5为不同视角下光栅对子像素的光强度衰减的示意图。
图6为通过光栅对色偏进行改善的效果示意图。
图7为根据本发明的一实施例在显示面板中设置的光栅的正面结构示意图。
图8为顶部发光型OLED的结构示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
图3和图4共同示出了根据本发明的一实施例在显示面板中设置的光栅结构示意图,其中图3是侧面结构示意图,而图4是正面结构示意图。从图3和图4可以看出,在该实施例中,显示面板包括R、G、B子像素阵列301以及各子像素之间的BM区(即,不发光区域)。在子像素阵列301上方设置有与子像素阵列301平行的光栅302。该光栅302包括透光区303和不透光区304,不透光区304设置于BM区上方。
在图3和图4所示出的实施例中,仅在G子像素两侧的BM区上方设置光栅302的不透光区304。但这仅仅是示例性的而非限制性的。在另一实施例中,可以在G子像素两侧和R子像素两侧的BM区上方都设置有光栅302的不透光区304。
由于光栅302的不透光区304仅设置于BM区上方,因此光栅302不会对正面视角的显示造成影响。在图3和图4所示出的实施例中,随着视角增大,子像素G的光强度会受到光栅302的不透光区304的遮挡影响,从而在子像素G的光强度自身随视角衰减的基础上增加光栅302的不透光区304的遮挡造成的光强度衰减。光栅302的具体参数,例如不透光区304的大小和高低、不透光区304相对于子像素的位置等,可根据子像素随视角的光强度衰减情况进行设置。光栅302的不透光区304的形状也可以根据子像素阵列 的排列方式进行调整。
图5为不同视角下光栅对子像素的光强度衰减的示意图。如图5所示,随视角增大,子像素的光强度逐渐减小。图6为通过光栅对色偏进行改善的效果示意图。
设R、G、B子像素本身在视角为θ时的光强度衰减率分别为fR(θ)、fG(θ)、fB(θ),视角为0时R、G、B透射的光强度分别为LvR、LvG、LvB,则视角θ对应的R、G、B光强度LvR′、LvG′、LvB′分别为:
Figure PCTCN2017092689-appb-000001
由于fR(θ)、fG(θ)、fB(θ)各不相同,所以LvR′:LvG′:LvB′≠LvR:LvG:LvB,并且其中fB(θ)衰减更明显,所以白点色坐标会发生偏移,例如在图6中从E点偏移到A点,颜色偏黄。
根据图3和图4所示出的实施例设置光栅302后,假定光栅302对光强度的衰减率为fbarrier(θ),则视角θ对应的R、G、B光强度LvR″、LvG″、LvB″分别为:
Figure PCTCN2017092689-appb-000002
其中,使fG(θ)*fbarrier(θ)=fB(θ)则可以将色差降低,例如在图6中白点坐标偏移到Ac点。由此可见通过设置光栅302对色偏进行了改善。
图7为根据本发明的一实施例在显示面板中设置的光栅的正面结构示意图。在该实施例中,可以在G子像素两侧和R子像素两侧的BM区上方都设置有光栅302的不透光区304。与上述结合图3-6所描述的实施例原理类似,通过设置光栅302可以对色偏进行改善。光栅302的不透光区304的参数可以根据R、G、B子像素的光强度衰减情况进行设置。光栅302的具体形状也可以根据像素阵列的排列方式进行调整。
图8为顶部发光型OLED的结构示意图。顶部发光型OLED从下往上包括:基层801、TFT(薄膜晶体管)、阳极802、PDL层(即,像素界定层)、发光层803、透明阴极804、彩色滤光片805以及玻璃806。在图8所示的实施例中,可以通过调整G子像素的对应PDL层的厚度H来调整G子像素随视角的光强度衰减情况。PDL层的厚度调整参数可以根据R、G、B子像素的光强度衰减情况进行设置。如图所示,增加G子像素的 PDL层的厚度H,这样由G子像素透射的光在大视角时被PDL层部分遮挡,因而G子像素的光强度发生衰减,从而可以使得在大视角时R、G、B子像素的光强度衰减相当,因此改善了由R、G、B子像素本身在大视角时的光强度衰减不一致造成的色偏现象。
在图8所示的实施例中,仅对G子像素的PDL层的厚度进行了调整。在不同的实施例中,可以对G子像素和R子像素的PDL层的厚度都进行调整。PDL层的厚度调整参数可以根据R、G、B子像素的光强度衰减情况进行设置。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种改善显示面板的大视角色偏的方法,所述面板包括R、G、B子像素阵列(301)以及各子像素之间的BM区,其中,所述方法包括:
    在子像素阵列(301)上方设置与子像素阵列(301)平行的光栅(302),该光栅(302)包括透光区(303)和不透光区(304),不透光区(304)设置于BM区上方,光栅(302)被设置为使得当以大视角观察子像素时,由该子像素透射的光被该光栅(302)的不透光区(304)部分遮挡。
  2. 根据权利要求1所述的方法,其中,仅在G子像素两侧的BM区上方设置光栅(302)的不透光区(304)。
  3. 根据权利要求1所述的方法,其中,在G子像素两侧和R子像素两侧的BM区上方都设置光栅(302)的不透光区(304)。
  4. 一种改善顶部发光型OLED面板的大视角色偏的方法,所述面板包括R、G、B子像素阵列,每个子像素包括PDL层,其中,所述方法包括:
    增加子像素的PDL层的厚度,使得当以大视角观察该子像素时,由该子像素透射的光被该PDL层部分遮挡。
  5. 根据权利要求4所述的方法,其中,仅增加G子像素的PDL层的厚度。
  6. 根据权利要求4所述的方法,其中,增加G子像素和R子像素的PDL层的厚度。
  7. 一种显示面板,所述面板包括R、G、B子像素阵列(301)以及各子像素之间的BM区,其中,
    所述面板的子像素阵列(301)上方设置有与子像素阵列(301)平行的光栅(302),该光栅(302)包括透光区(303)和不透光区(304),不透光区(304)设置于BM区上方,光栅(302)被设置为使得当以大视角观察子像素时,由该子像素透射的光被该光栅(302)的不透光区(304)部分遮挡。
  8. 根据权利要求7所述的显示面板,其中,仅G子像素两侧的BM区上方设置有光栅(302)的不透光区(304)。
  9. 根据权利要求7所述的显示面板,其中,G子像素两侧和R子像素两侧的BM区上方都设置有光栅(302)的不透光区(304)。
  10. 根据权利要求7所述的显示面板,其中,所述面板为顶部发光型OLED面板,并且其中,
    所述面板的子像素的PDL层的厚度被增加,使得当以大视角观察该子像素时,由该子像素透射的光被该PDL层部分遮挡。
  11. 根据权利要求10所述的显示面板,其中,仅G子像素的PDL层的厚度被增加。
  12. 根据权利要求10所述的显示面板,其中,G子像素和R子像素的PDL层的厚度都被增加。
PCT/CN2017/092689 2017-06-01 2017-07-13 改善大视角色偏的方法及显示面板 WO2018218744A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/562,680 US10910452B2 (en) 2017-06-01 2017-07-13 Method for alleviating color shift at large viewing angle, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710404552.2 2017-06-01
CN201710404552.2A CN107221553A (zh) 2017-06-01 2017-06-01 改善大视角色偏的方法及显示面板

Publications (1)

Publication Number Publication Date
WO2018218744A1 true WO2018218744A1 (zh) 2018-12-06

Family

ID=59948585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092689 WO2018218744A1 (zh) 2017-06-01 2017-07-13 改善大视角色偏的方法及显示面板

Country Status (3)

Country Link
US (1) US10910452B2 (zh)
CN (1) CN107221553A (zh)
WO (1) WO2018218744A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200103914A (ko) * 2019-02-25 2020-09-03 삼성디스플레이 주식회사 유기 발광 표시 장치
US11387435B2 (en) * 2019-05-23 2022-07-12 Boe Technology Group Co., Ltd. Display panel, manufacturing method thereof, and display apparatus
CN110531550A (zh) * 2019-09-03 2019-12-03 武汉天马微电子有限公司 一种显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866170B2 (en) * 2010-12-30 2014-10-21 Samsung Display Co., Ltd. Light emitting diode display
CN104851903A (zh) * 2015-04-22 2015-08-19 京东方科技集团股份有限公司 一种柔性oled显示器及其制备方法
CN104880848A (zh) * 2015-05-06 2015-09-02 武汉华星光电技术有限公司 彩色滤光片及其制作方法、液晶显示面板
CN105204217A (zh) * 2015-10-13 2015-12-30 武汉华星光电技术有限公司 液晶显示面板
CN105470285A (zh) * 2016-01-05 2016-04-06 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置
CN106019694A (zh) * 2016-08-02 2016-10-12 武汉华星光电技术有限公司 一种彩色滤光片、液晶面板、液晶显示器及形成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4132528B2 (ja) * 2000-01-14 2008-08-13 シャープ株式会社 液晶表示装置の製造方法
US7541734B2 (en) * 2003-10-03 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having a layer with a metal oxide and a benzoxazole derivative
KR20070071293A (ko) * 2005-12-29 2007-07-04 엘지.필립스 엘시디 주식회사 액정표시소자 및 그 제조방법
CN102540306B (zh) * 2010-12-31 2015-03-25 北京京东方光电科技有限公司 光栅片、液晶显示装置及光栅片、液晶面板的制造方法
JP5779124B2 (ja) * 2012-03-13 2015-09-16 株式会社ジャパンディスプレイ 表示装置および電子機器
JP2014220121A (ja) * 2013-05-08 2014-11-20 株式会社ジャパンディスプレイ 表示装置
KR102255809B1 (ko) * 2013-12-02 2021-05-24 엘지디스플레이 주식회사 유기 발광 표시장치
CN104297832B (zh) * 2014-09-28 2017-02-15 合肥鑫晟光电科技有限公司 彩色滤光片及制作方法、显示面板、显示装置及驱动方法
CN105118928B (zh) * 2015-07-29 2018-02-09 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置
US10234677B1 (en) * 2016-03-30 2019-03-19 Amazon Technologies, Inc. Light steering structures for electrowetting displays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866170B2 (en) * 2010-12-30 2014-10-21 Samsung Display Co., Ltd. Light emitting diode display
CN104851903A (zh) * 2015-04-22 2015-08-19 京东方科技集团股份有限公司 一种柔性oled显示器及其制备方法
CN104880848A (zh) * 2015-05-06 2015-09-02 武汉华星光电技术有限公司 彩色滤光片及其制作方法、液晶显示面板
CN105204217A (zh) * 2015-10-13 2015-12-30 武汉华星光电技术有限公司 液晶显示面板
CN105470285A (zh) * 2016-01-05 2016-04-06 京东方科技集团股份有限公司 显示面板及其制作方法和显示装置
CN106019694A (zh) * 2016-08-02 2016-10-12 武汉华星光电技术有限公司 一种彩色滤光片、液晶面板、液晶显示器及形成方法

Also Published As

Publication number Publication date
US10910452B2 (en) 2021-02-02
US20190386077A1 (en) 2019-12-19
CN107221553A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
US11221509B2 (en) Liquid crystal display
WO2019214585A1 (zh) 显示装置及其制备方法
US11552275B2 (en) Organic light-emitting display device including microlenses and method of fabricating the same
US11107862B2 (en) Pixel unit, display panel and display device
WO2021258897A1 (zh) 一种显示面板及其制备方法、显示装置
KR102499852B1 (ko) 표시 장치
TWI693708B (zh) 透明顯示面板
KR20150057485A (ko) 유기발광 디스플레이 장치
US10249653B2 (en) Display panel and manufacturing method thereof
CN110265463B (zh) 一种显示面板和显示装置
US10651425B2 (en) Organic light-emitting diode and display device
WO2018218744A1 (zh) 改善大视角色偏的方法及显示面板
US10268084B2 (en) Display panel having height difference between photo spacers and manufacturing method thereof
US20200168821A1 (en) Oled display panel and oled display device
TW201413941A (zh) 電致發光顯示裝置
JP2013073800A (ja) 表示装置
WO2018099072A1 (zh) 有机电致发光显示基板及制作方法、显示面板、显示设备
TWI442136B (zh) 液晶顯示裝置
JP2015149231A (ja) 有機el表示装置
JP4626967B2 (ja) 面発光素子及びその製造方法
US9804434B2 (en) Liquid crystal display having shaped color filters
KR102283472B1 (ko) 디스플레이 패널 및 이의 제조 방법
TWI710826B (zh) 顯示面板
JP7317614B2 (ja) 表示装置
US20230056073A1 (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911487

Country of ref document: EP

Kind code of ref document: A1