WO2018098420A1 - Induction of haploid plants using baby boom1 gene - Google Patents

Induction of haploid plants using baby boom1 gene Download PDF

Info

Publication number
WO2018098420A1
WO2018098420A1 PCT/US2017/063249 US2017063249W WO2018098420A1 WO 2018098420 A1 WO2018098420 A1 WO 2018098420A1 US 2017063249 W US2017063249 W US 2017063249W WO 2018098420 A1 WO2018098420 A1 WO 2018098420A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
progeny
promoter
haploid
ofclaim
Prior art date
Application number
PCT/US2017/063249
Other languages
French (fr)
Inventor
Imtiyaz KHANDAY
Venkatesan Sundaresan
Original Assignee
The Regents Of The University Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of California filed Critical The Regents Of The University Of California
Publication of WO2018098420A1 publication Critical patent/WO2018098420A1/en
Priority to PCT/US2018/062663 priority Critical patent/WO2019104346A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8233Female-specific, e.g. pistil, ovule

Definitions

  • Haploid plants contain only one set of chromosomes, either maternal or paternal depending on the gamete that gives rise to them or the technique used to produce them. Haploids can spontaneously originate in nature. The first such instance was reported in Datura
  • haploids in plant breeding was revolutionized by the haploid induction from anther cultures ofDatura (Guha, S. and Maheshwari, SC. (1964), Nature, 204, 497; Guha, S. and Maheshwari, S.C. (1966), Nature, 212, 97-98). Since then, many procedure have been developed for haploid induction in various crops like maize, wheat, rice etc. and in other plants
  • Doubled Haploid Production in Crop Plants A Manual, Maluszynski, M., Kasha, K.J., Forster, B.P. & Szarejko, I., 309-335; Maluszynski, M.; Kasha, K.J.; Forster, B.P. and Szarejko, I. (Eds.). (2003.) Doubled Haploid Production in Crop Plants: A Manual, Kluwer Academic Publishers, ISBN 1-4020-1544-5, Dordrecht; Wedzony, M. et al. (2009).
  • a plant comprising a promoter expressed in an egg cell ofthe plant, wherein the promoter is operably linked to a polynucleotide encoding a BABY BOOM polypeptide, wherein the BABY BOOM polypeptide: a. is from a sexually-reproducing plant, or b. comprises a first amino acid sequence that is at least 60% (e.g., at least 70%, 80%, 90%, 95%, or 98%) identical to SEQ ID NO:l, or c. comprises a second amino acid sequence that is at least 50% (e.g., at least 60%, 70%, 80%, 90%, 95%, or 98%) identical to SEQ ID NO:3, or d. a combination oftwo, or all three, of a, b, and c.
  • the BABY BOOM polypeptide is at least 70% identical to at least one of SEQ ID NO: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41.
  • the BABY BOOM polypeptide further comprises a third amino acid sequence at least 80% (e.g., at least 90%, 95%, or 98%) identical to SEQ ID NO:2
  • the plant is a rice plant or other species ofplant specifically described in this document (e.g. a grass or a cereal).
  • the promoter is heterologous to the plant. In some embodiments, the promoter is native to the plant.
  • the promoter is native to the plant except contains at least one non-naturally-occurring mutation resulting in expression in the egg cell. [0009] In some embodiments, the promoter is not expressed in the leaf ofthe plant.
  • the plant comprises a heterologous protein that binds to the promoter, wherein the heterologous protein comprises a transcriptional activation domain.
  • the plant comprises one or more guide RNA (sgRNA) that directs the heterologous protein (for example, dCas9) to the promoter.
  • the heterologous protein comprises a deactivated Cas9 (dCas9) protein and the plant.
  • the transcriptional activation domain comprises VP64.
  • the method comprises, providing the plant as described above or elsewhere herein, wherein the plants produce progeny; and selecting haploid progeny from the plant.
  • the progeny are seeds for haploid plants.
  • the selecting comprises separating haploid progeny from non-haploid progeny.
  • the method comprises introducing in a plant an expression cassette comprising the promoter operably linked to the polynucleotide.
  • the plant is diploid and the method further comprises exposing the plant to conditions such that the plant produces progeny; and selecting progeny from the plant for progeny that are haploid.
  • the method comprises inducing an in situ mutation in a native promoter ofthe plant to alter the native promoter into a promoter that is expressed in the egg cell.
  • the in situ mutation is introduced by a method comprising contacting the native promoter with a guide RNA and a CRISPR-associated endonuclease.
  • the CRISPR-associated endonuclease is Cas9.
  • the plant is diploid and the method further comprises exposing the plant to conditions such that the plant produces progeny; and selecting progeny from the plant for progeny that are haploid.
  • the method comprises introducing a heterologous protein that binds to the promoter into egg cells ofthe plant, wherein the heterologous protein comprises a transcriptional activation domain.
  • the heterologous protein comprises a deactivated Cas9 (dCas9) protein.
  • the transcriptional activation domain comprises VP64.
  • the introducing comprises introducing an expression cassette encoding the heterologous protein into the plant and inducing expression ofthe heterologous protein in the egg cell.
  • the plant is diploid and the method further comprises exposing the plant to conditions such that the plant produces progeny; and selecting progeny from the plant for progeny that are haploid.
  • methods of making clonal plants from a parent plant comprises, providing a plant expressing BABYBoom in an egg cell as described herein, wherein the plant is a parent plant that produces gametes (e.g., egg or sperm cells or both) having the same number of chromosomes as somatic cells in the plant, exposing the parent plant to conditions such that the parent plant produces progeny; and selecting progeny that are clones ofthe parent plant.
  • the somatic cells are diploid and the selected progeny are diploid.
  • the gametes are egg cells.
  • An "endogenous” or “native” gene or protein sequence refers to a gene or protein sequence that is naturally occurring in the genome ofthe organism.
  • a polynucleotide or polypeptide sequence is "heterologous" to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form.
  • a promoter when a promoter is said to be operably linked to a heterologous coding sequence, it means that the coding sequence is derived from one species whereas the promoter sequence is derived from another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).
  • promoter refers to a polynucleotide sequence capable of driving transcription of a coding sequence in a cell.
  • promoters can include cw-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate oftranscription of a gene.
  • a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5' and 3' untranslated regions, or an intronic sequence, which are involved in transcriptional regulation.
  • a "plant promoter” is a promoter capable of initiating transcription in plant cells.
  • a “constitutive promoter” is one that is capable of initiating transcription in nearly all tissue types, whereas a “tissue-specific promoter” initiates transcription only in one or a few particular tissue types.
  • operably linked refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array oftranscription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs
  • plant includes whole plants, shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, plant tissue (e.g., vascular tissue, ground tissue, and the like), cells (e.g., guard cells, egg cells, trichomes and the like), and progeny of same.
  • shoot vegetative organs and/or structures e.g., leaves, stems and tubers
  • roots e.g., bracts, sepals, petals, stamens, carpels, anthers
  • ovules including egg and central cells
  • seed including zygote, embryo, endosperm, and seed coat
  • fruit e.g., the mature
  • the class ofplants that can be used in the method ofthe invention is generally as broad as the class ofhigher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants ofa variety ofploidy levels, including aneuploid, polyploid, diploid, haploid, and hemizygous.
  • a "transgene” is used as the term is understood in the art and refers to a heterologous nucleic acid introduced into a cell by human molecular manipulation ofthe cell's genome (e.g., by molecular transformation).
  • a transgenic plant is a plant that carries a transgene, i.e., is a genetically-modified plant.
  • the transgenic plant can be the initial plant into which the transgene was introduced as well as progeny thereof whose genomes contain the transgene.
  • a transgenic plant is transgenic with respect to the BABYBOOM gene.
  • a transgenic plant is transgenic with respect to one or more genes other than the BABYBOOM gene.
  • nucleic acid or “polynucleotide sequence” refers to a single or double- stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Nucleic acids may also include modified nucleotides that permit correct read through by a polymerase, and/or formation of double-stranded duplexes, and do not significantly alter expression of a polypeptide encoded by that nucleic acid.
  • nucleic acid sequence encoding refers to a nucleic acid which directs the expression of a specific protein or peptide.
  • the nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein.
  • the nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length sequences. It should be further understood that the sequence includes the degenerate codons ofthe native sequence or sequences which may be introduced to provide codon preference in a specific host cell.
  • nucleic acid sequences or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage ofnucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one ofthe following sequence comparison algorithms or by manual alignment and visual inspection.
  • Two nucleic acid sequences or polypeptides are said to be “identical” ifthe sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below.
  • sequence identity When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties ofthe molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature ofthe substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity.
  • a conservative substitution is given a score between zero and 1.
  • the scoring ofconservative substitutions is calculated according to, e.g., the algorithm ofMeyers & Miller, ComputerApplic. Biol. Sci.4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California, USA).
  • substantially identical used in the context oftwo nucleic acids or polypeptides, refers to a sequence that has at least 50% sequence identity with a reference sequence (e.g., any of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41).
  • percent identity can be any integer from 50% to 100%.
  • Some embodiments include at least: 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below.
  • sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
  • test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
  • sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
  • a “comparison window”, as used herein, includes reference to a segment ofany one of the number ofcontiguous positions selected from the group consisting offrom 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence ofthe same number ofcontiguous positions after the two sequences are optimally aligned.
  • Methods ofalignment ofsequences for comparison are well- known in the art.
  • Optimal alignment ofsequences for comparison can be conducted, e.g., by the local homology algorithm ofSmith & Waterman,Adv. Appl. Math.2:482 (1981), by the homology alignment algorithm ofNeedleman & Wunsch, J. Mol.
  • HSPs high scoring sequence pairs
  • T is referred to as the neighborhood word score threshold (Altschul et al, supra).
  • These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them.
  • the word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased.
  • Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always ⁇ 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score.
  • Extension ofthe word hits in each direction is halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
  • the BLAST algorithm parameters W, T, and X determine the sensitivity and speed ofthe alignment.
  • the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix ⁇ see Henikoff& Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).
  • the BLAST algorithm also performs a statistical analysis ofthe similarity between two sequences ⁇ see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)).
  • One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication ofthe probability by which a match between two nucleotide or amino acid sequences would occur by chance.
  • P(N) the smallest sum probability
  • a nucleic acid is considered similar to a reference sequence ifthe smallest sum probability in a comparison ofthe test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10 "3 , and most preferably less than about 10 "20 .
  • An "expression cassette” refers to a nucleic acid construct that, when introduced into a host cell, results in transcription and/or translation ofan RNA or polypeptide, respectively.
  • host cell refers to a cell from any organism.
  • Exemplary host cells are derived from plants, bacteria, yeast, fungi, insects or other animals. Methods for introducing polynucleotide sequences into various types ofhost cells are known in the art.
  • An " non-naturally-occurring mutation" refers to replacing the naturally occurring amino acid or nucleotide in a given position (e.g., a nucleotide position in the naturally occurring BABYBOOM promoter) with an amino acid residue or nucleotide, respectively, other than the naturally-occurring residue or nucleotide.
  • a nucleotide position in the naturally occurring BABYBOOM promoter e.g., a nucleotide position in the naturally occurring BABYBOOM promoter
  • an amino acid residue or nucleotide respectively, other than the naturally-occurring residue or nucleotide.
  • an nucleotide substitution at that position refers to replacing the naturally occurring A with any nucleotide (e.g., C, T, G, U) other than A.
  • FIG.1A-C Plasmid construct, OsBBMl overexpression and OsBBMl SNP.
  • FIG.2 A longitudinal section of a DD45:BBM1, 9 DAE carpel. The 5 urnsections were stained with toluene blue dye. An embryo-like structure is seen developing in the ovules of these emasculated carpels (red arrow).
  • FIG.3A-F Phenotypes ofBBM1 induced haploid plants.
  • A Shows dwarfhaploid plant as compared to diploid wild-type sibling.
  • B A wild-type control panicle.
  • C A shorter haploid panicle with sterile flowers (unfilled seeds).
  • D Shows a smaller haploid floret in comparison to a wild-type floret.
  • E and F There is no change in floret organ number in haploids (E).
  • F An open control wild-type floret.
  • FIG.4A-D FACS analysis ofnuclei isolated from leaves ofhaploid and diploid plants. The isolated nuclei were propidium iodide (PI) stained.
  • A Shows a single In peak in haploid plants at around 236.
  • B Shows a single peak in diploid plants (2n) at 474 (red arrow).
  • C Two peaks in a mixed sample ofhaploid and diploid nuclei. The two peaks correspond to haploid (In) and diploid (2n) peaks in (A) and (B), respectively.
  • D DNA estimation ofhaploid and diploid nuclei in (C). The mean DNA content is halfin haploids as compared to diploids.
  • FIG 5A-F Haploid generation using CRISPRactivator (CRISPRa) system.
  • CRISPRa CRISPRactivator
  • 5A Schematic ofCRISPRa T-DNA construct for transcription activation ofendogenous OsBBMl egg cell allele.
  • 5B A graphic representation ofrecruitment and transcription activation from OsBBMl promoter by CRISPRa.
  • 5C to 5F FACS analyses ofpropidium iodide (PI) stained nuclei from (5C) OsBBMl CRISPRa haploid plant, (5D) DD45:BBM1 control haploid, (5E) A wild-type diploid control and (5F) A mixed sample ofCRISPRa haploid and wild-type diploid.
  • PI propidium iodide
  • the inventors have discovered that expression ofthe BABYBOOM protein in egg cells ofa sexually reproducing diploid plant will result in that plant producing a percentage of progeny that are haploid.
  • targeting expression ofBABYBOOMto egg cells ofa plant will result in production ofprogeny that have halfthe number ofchromosomes compared to the parent.
  • any naturally-or non-naturally-occurring active BABYBOOM polypeptide from a sexually reproducing plant can be expressed as described herein so long as the polypeptide (and/or RNA encoding the polypeptide) is expressed in egg cells in the plant.
  • the BABYBOOM polypeptide is from a species ofplant ofthe genus
  • Abelmoschus Allium,Apium,Amaranthus,Arachis,Arabidopsis, Asparagus,Atropa,Avena, Benincasa, Beta, Brassica, Cannabis, Capsella, Cica, Cichorium, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Cynasa, Daucus, Diplotaxis, Dioscorea, Elais, Eruca, Foeniculum, Fragatia, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum,
  • Hyoscyamus Ipomea, Lactuca, Lagenaria, Lepidium, Linum, Lolium, Luffa, Luzula, Lycopersicon, Malus, Manihot, Majorana, Medicago, Momodica, Musa, Nicotiana, Olea, Oryza, Panicum, Pastinaca, Pennisetum, Persea, Petroselinium, Phaseolus, Physalis, Pinus, Pisum, Populus, Pyrus, Prunus, Raphanus, Saccharum, Secale, Senecio, Sesamum, Sinapis, Solarium, Sorghum, Spinacia, Theobroma, Trichosantes, Trigonella, Triticum, Turritis, Valerianelle, Vitis, Vigna, or Zea.
  • the BABYBOOM polypeptide is identical or substantially identical to any of SEQIDNOs: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41.
  • the BABYBOOM polypeptide comprises an amino acid sequence that is substantially identical to all of SEQ ID NOl, substantially identical to all of SEQ ID NO:3, or a first amino acid sequence substantially identical to SEQ ID NO:l and a second amino acid sequence substantially identical to SEQ ID NO:3, wherein the two sequences are separated by an AP2 domain-containing portion (e.g., substantially identical to SEQ ID NO:2).
  • BABY BOOM polypeptides contain two conserved AP2 domains. They lack a miR172 binding site (thereby distinguishing BABY BOOM polypeptides from many other AP2 domain proteins that contain a miR172 binding site.
  • the plant comprises heterologous expression cassette comprising a promoter that at least directs expression to egg cells operably linked to a BABYBOOM polypeptide as described herein.
  • the promoter is egg cell-specific, meaning the promoter drives expression only or primarily in egg cells. "Primarily" means that if there is expression in other tissue the levels are no more than 1/10 ofthe expression levels in egg cells as measured by quantitative RT-PCR.
  • Exemplary promoters that drive expression in at least egg cells of a plant include, but are not limited to, the promoter ofthe egg-cell specific gene ECl .1, ECl .2, ECl .3, EC1.4, or ECl.5. See, e.g. Sprunck etal. Science, 338:1093-1097 (2012); AT2G21740; Steffen etal, PlantJournal 51: 281-292 (2007).
  • the Arabidopsis DD45 promoter is used to express in rice egg cell (Ohnishi et al. PlantPhysiology 165: 1533-1543 (2014).
  • An exemplary DD45 promoter sequence is as follows:
  • the expression cassette further comprises a transcriptional terminator.
  • exemplary terminators can include, but are not limited to, the rbcSE9 or nos terminators.
  • the expression cassette will include an egg cell enhancer.
  • Exemplary egg cell enhancers include, but are not limited to, the EC1.2 enhancer or EASE enhancer (Yang et al, PlantPhysiol.139:1421-32 (2005).
  • mutations can be introduced into the native BABYBOOM promoter such that BABYBOOM is expressed in egg cells based from the modified native promoter.
  • one or more nucleotide ofthe BABYBOOM promoter is modified by non-natural substitution, deletion or insertion.
  • Manipulation ofthe native promoter can be achieved via site-directed to random mutagenesis.
  • Methods for introducing genetic mutations into plant genes and selecting plants with desired traits are well known and can be used to introduce mutations into the BABYBOOM promoter.
  • seeds or other plant material can be treated with a mutagenic insertional polynucleotide (e.g., transposon, T-DNA, etc.) or chemical substance, according to standard techniques.
  • a mutagenic insertional polynucleotide e.g., transposon, T-DNA, etc.
  • chemical substance include, but are not limited to, the following: diethyl sulfate, ethylene imine, ethyl methanesulfonate and N-nitroso-N-ethylurea.
  • Mutated BABYBOOM promoters can also be constructed in vitro by mutating the BABYBOOM promoter DNA sequence, such as by using site-directed or random mutagenesis.
  • Nucleic acid molecules comprising the BABYBOOM promoter can be mutated in vitro by a variety ofpolymerase chain reaction (PCR) techniques well-known to one ofordinary skill in the art. See, e.g., PCR Strategies (M. A. Innis, D. H. Gelfand, and J. J. Sninsky eds., 1995,
  • mutagenesis may be accomplished using site-directed mutagenesis, in which point mutations, insertions, or deletions are made to a DNA template.
  • Kits for site-directed mutagenesis are commercially available, such as the QuikChange Site- Directed Mutagenesis Kit (Stratagene). Briefly, a DNA template to be mutagenized is amplified by PCR according to the manufacturer's instructions using a high-fidelity DNA polymerase ⁇ e.g., Pfu TurboTM) and oligonucleotide primers containing the desired mutation. Incorporation ofthe oligonucleotides generates a mutated plasmid, which can then be transformed into suitable cells (e.g., bacterial or yeast cells) for subsequent screening to confirm mutagenesis ofthe DNA.
  • suitable cells e.g., bacterial or yeast cells
  • mutagenesis may be accomplished by means of error-prone PCRamplification (ePCR), which modifies PCR reaction conditions ⁇ e.g., using error-prone polymerases, varying magnesium or manganese concentration, or providing unbalanced dNTP ratios) in order to promote increased rates oferror in DNA replication.
  • ePCR error-prone PCRamplification
  • Kits for ePCRmutagenesis are commercially available, such as the GeneMorph® PCRMutagenesis kit (Stratagene) and Diversify® PCRRandom Mutagenesis Kit (Clontech).
  • DNA polymerase e.g., Taq polymerase
  • salt e.g., MgC12, MgS04, or MnS04
  • dNTPs in unbalanced ratios
  • reaction buffer e.g., fetal calf serum
  • DNA template e.g., fetal calf serum
  • DNA template e.g., fetal calf serum
  • suitable cells e.g., yeast or plant cells
  • suitable cells e.g., yeast or plant cells
  • screening e.g., via a two-hybrid screen
  • mutagenesis can be accomplished by recombination ⁇ i.e. DNA shuffling).
  • DNA shuffling a shuffled mutant library is generated through DNA shuffling using in vitro homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations.
  • Methods ofperforming DNA shuffling are known in the art (see, e.g., Stebel, S.C. et al., MethodsMolBiol 352: 167-190 (2007)).
  • DSBs can therefore be leveraged by geneticists to increase the frequency of mutations at defined sites, however intrinsic differences between the relative roles ofHR and NHEJ can affect the mutation types at a targets locus.
  • ZFNs zinc finger nucleases
  • TALENs transcription activator-like endonucleases
  • CRISPR clustered regularly interspaced short palindromic repeats
  • Cas9 CRISPR-associated protein 9
  • This system is based on a bacterial immune system against invading bacteriophages in which a complex of2 small RNAs, the CRISPR-RNA (crRNA) and the trans-activating crRNA (tracrRNA) directs a nuclease (Cas9) to a specific DNA sequence complementary to the crRNA.
  • crRNA CRISPR-RNA
  • tracrRNA trans-activating crRNA
  • a DNA cassette homologous to the targeted site must be provided, preferably at a high concentration so that HR is favored or NHEJ.
  • RNAs the CRISPR-RNA (crRNA) and the trans-activating crRNA (tracrRNA) - directs the nuclease (Cas9) to a specific DNA sequence complementary to the crRNA (Jinek, M., etal. Science 337, 816-821 (2012)). Binding of these RNAs to Cas9 involves specific sequences and secondary structures in the RNA.
  • the two RNA components can be simplified into a single element, the single guide-RNA (sgRNA), which is transcribed from a cassette containing a target sequence defined by the user (Jinek, M., et al.
  • This system has been used for genome editing in humans, zebrafish, Drosophila, mice, nematodes, bacteria, yeast, and plants (Hsu, P.D., et al, Cell 157, 1262-1278 (2014)).
  • the nuclease creates double stranded breaks at the target region programmed by the sgRNA. These can be repaired by non-homologous recombination, which often yields inactivating mutations. The breaks can also be repaired by homologous recombination, which enables the system to be used for gene targeted gene replacement (Li, J.-F., et al. Nat.
  • RNA-guided CRISPR-Cas9 system can achieve the activation ofgenes without modifying the promoter sequence ofthe native gene.
  • Such a system utilizes a deactivated Cas9 protein (dCas9) fused to a transcriptional activation domain (Lowder, L.G. et al. (2015), Plantphysiology, 169, 971-985) and uses guide RNAs to activate a specific promoter in a genome.
  • An exemplary transcriptional activation domain is VP64.
  • An exemplary dCas9 coding sequence is:
  • An exemplary VP64 coding sequence is:
  • BABYBOOM promoter sequence in a plant or plant cell can be altered in situ to generate a plant or plant cell carrying a polynucleotide encoding a modified BABYBOOM promoter linked to the native BABYBOOM coding sequence.
  • CRISPR/Cas systems include type I, ⁇ , and ⁇ subtypes. Wild-type type ⁇ CRISPR/Cas systems utilize the RNA-mediated nuclease, Cas9 in complex with guide and activating RNA to recognize and cleave foreign nucleic acid.
  • Cas9 homologs are found in a wide variety ofeubacteria, including, but not limited to bacteria ofthe following taxonomic groups: Actinobacleria, Aquificae, Bacteroidetes-Chlorobi, Chlamydiae- Verrucomicrohia, Chlroflexi, Cyanobacteria, Firmicutes, Proteobacteria, Spirochaetes, and Thermotogae.
  • An exemplary Cas9 protein is the Streptococcuspyogenes Cas9 protein.
  • nucleic acids including isolated nucleic acids, nucleic acid expression cassettes, and expression vectors, that encode a heterologous egg cell- expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein. Also provided are host cells comprising the nucleic acids.
  • the vector comprising the sequences comprises a marker gene that confers a selectable phenotype on plant cells.
  • the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.
  • any of a variety ofdifferent expression constructs such as expression cassettes and vectors suitable for transformation ofplant cells, can be prepared.
  • a DNA sequence coding for a protein can be combined with cz ' s-acting (promoter) and tratts-acting (enhancer) transcriptional regulatory sequences to direct the timing, tissue type and levels oftranscription in the intended tissues ofthe transformed plant.
  • Translational control elements can also be used.
  • a terminator sequence is included in the expression construct.
  • An exemplary NOS terminator sequence is
  • host cell(s) comprising a heterologous egg cell-expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein.
  • Exemplary host cells include, for example, prokaryotic (e.g., including but not limited to E. coli) cells or eukaryotic cells, and can for example plant, fungal, yeast, mammalian, insect, or other cells. Also provided as discussed above are plants comprising a heterologous egg cell- expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein.
  • prokaryotic e.g., including but not limited to E. coli
  • eukaryotic cells eukaryotic cells
  • plant fungal, yeast, mammalian, insect, or other cells.
  • plants comprising a heterologous egg cell- expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein.
  • the plant comprising the egg cell-expression promote operably linked to the BABYBOOM coding sequence can be any plant species.
  • the plant is a dicot plant.
  • the plant is a monocot plant.
  • the plant is a grass.
  • the plant is a cereal (e.g., including but not limited to Poaceae, e.g., rice, wheat, maize).
  • the plant is a species ofplant ofthe genusAbelmoschus, Allium,Apium,Amaranthus,Arachis,Arabidopsis, Asparagus,Atropa, Avena, Benincasa, Beta, Brassica, Cannabis, Capsella, Cica, Cichorium, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Cynasa, Daucus, Diplotaxis, Dioscorea, Elais, Eruca, Foeniculum, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Ipomea, Lactuca, Lagenaria, Lepidium, Linum, Lolium, Luffa, Luzula, Lycopersicon,Malus,Manihot, Majorana,Medicago,Momodica,Miisa, Nicotiana, Ol
  • haploid progeny can be selected atthe seed stage. For example, in some embodiments, a portion ofthe seed or see d coat is removed and a genetic test is performed to determine whether the seed is haploid prior to germination.
  • the seeds are germinated and the resulting progeny plants are screened for those that are haploid, either by testing their genotype or by observation (haploid plants in many cases are smaller than diploid progeny).
  • haploid plants in many cases are smaller than diploid progeny.
  • haploid plants can be used for a variety ofuseful endeavors, including but not limited to the generation ofdoubled haploid plants, which comprise an exact duplicate copy ofchromosomes. Such doubled haploid plants are ofparticular use to speed plant breeding, for example.
  • Somatic haploid cells, haploid embryos, haploid seeds, or haploid plants produced from haploid seeds can be treated with a chromosome doubling agent.
  • Homozygous double haploid plants can be regenerated from haploid cells by contacting the haploid cells, including but not limited to haploid callus, with chromosome doubling agents, such as colchicine, anti-microtubule herbicides, or nitrous oxide to create homozygous doubled haploid cells.
  • Methods of chromosome doubling are disclosed in, for example, US Patent No.
  • Methods can involve, for example, contacting the haploid cell with nitrous oxide, anti- microtubule herbicides, or colchicine.
  • the haploids can be transformed with a heterologous gene of interest, if desired.
  • Double haploid plants can be further crossed to other plants to generate Fl, F2, or subsequent generations of plants with desired traits.
  • chromosomes as somatic cells in the plant.
  • the plant is diploid (the somatic tissue is diploid) then the gametes are also diploid.
  • This can be achieved in various ways, for example by inducing a "mitosis instead of meiosis” (MiME) phenotype in the parent plant (in addition to the expression ofBABYBOOM). See, e.g., US Patent Publication No.2012/0042408 and PCT Publication No. WO 2012/075195.
  • one generates mutations in in each of OSDl, ATREC8, and ATSPOll or orthologs thereofto create the MiME phonotype.
  • Rice BABY BOOMl is an AP2/ERF domain transcription factor. Ectopic expression of the homologous genes inArabidopsis and Brassica napus have been shown to induce somatic embryos on seedlings (Boutilier, K. et al. (2002), The Plant cell, 14, 1737-1749). Our
  • OsBBMl expression is induced in the single cell zygote soon after fertilization, indicating it has a potential role in normal rice embryogenesis.
  • OsBBMl was ectopically expressed in rice seedlings, and we observe it induces somatic embryos on rice leaves (FIG. IB, white arrows).
  • FIG. IB white arrows.
  • SNPs single-nucleotide polymorphisms
  • OsBBMl is not expressed in the sperm cells. Therefore, the paternal OsBBMl allele contributed by the sperm cell is expressed after fertilization, but the maternal OsBBMl allele is kept silent, likely by an epigenetic mechanism involving DNA methylation and chromatin modification. The silencing ofthe maternal OsBBMl allele is probably necessary to prevent the egg cell from forming an embryo by parthenogenesis. To test this hypothesis, we expressed OsBBMl in rice egg cells to ask whether they can develop into haploid embryos without fertilization. [0062] OsBBMl was expressed under an egg cell specific promoter (see Materials and Methods). Twelve transgenic lines were raised with this construct (FIG.1 A).
  • OsBBMl is able to induce embryos without fertilization that are presumptively haploid, in rice seeds.
  • Haploids were very short as compared to their wild-type diploid siblings (FIG.3A). The panicles are also shorter with completely sterile florets with no seed filling observed (FIG.3B and C). Haploid flowers and floral organs were also much smaller as compared to wild-type, though there was no change in the number offloral organs (FIG.3D to F).
  • Fluorescence-activated cell sorting (FACS) analysis was carried out to check the ploidy ofpotential haploid plants.
  • Propidium iodide stained nuclei from these haploid plants show they have halfthe DNA content as compared to their diploid wild-type siblings (FIG.4).
  • the flow peak in diploid wild-type plants is observed at around 470 (FIG.4B), the peak shifts to about 235 in haploid samples (FIG.4A); under same conditions.
  • the two peaks separate and run at their respective positions corresponding to the haploid and diploid peaks in a mixed sample (FIG.4C).
  • Haploids only have the single gametic set ofchromosomes. This makes them efficient tools to reduce the time for new cultivar release in crops. Homozygous isogenic lines can be produced in one generation after chromosome doubling, bypassing the several generations it takes by inbreeding procedures (Snape, J.W. (1989) Doubled haploid breeding: theoretical basis and practical applications. In: Second International Symposium on Genetic Manipulation in Crops (Mujeeb-Kazi, A. and Sitch, L.A., eds), 19-30). Haploids can be used to produce exclusive male or female plants.
  • Haploids express both recessive and dominant mutations while as in diploids most ofthe mutations are recessive and do not express.
  • useful or deleterious mutations are easily selectable in haploid plants.
  • useful mutations such as disease resistance, insect resistance, salt tolerance and drought resistance can be easily selected in haploids whereas deleterious mutations can be selected against (Snape, J.W. (1989) Doubled haploid breeding: theoretical basis and practical applications.
  • Haploids also possess great value in cytogenetic studies for deciphering basic chromosome number/ploidy in a species, chromosomal origins, producing polyploids etc. (Georgiev, S., (2008), In: Biotechnology and Biotechnological Equipment, 22.644- 651).
  • the two main procedures used to induce haploidy in plants is by i) cultivating the haploid gametes (Guha, S. and Maheshwari, S.C.
  • Androgenesis the production ofhaploids from male gamete cells remains the preferred method ofhaploid production in rice (Niizeki, H. and Oono, K. (1968), ProcJapAcad, 44, 554-557, Mishra, R, Jwala, G., and Rao, N. (2016), In-vitro Androgenesis in Rice: Advantages, Constraints and Future Prospects Rice Science, 23, 57-68).
  • the efficiency ofandrogenesis in rice is very low and in some varieties almost negligible (Raina 1997; Sripichitt, P. et al. (2000), Plant Production Science 3, 254-256; Kush, G. S. and Brar, D. S. (2002) Biotechnology for rice breeding: progress and potential impact.
  • OsBBMl An alternative approach to achieve haploid induction by OsBBMl is by fusing it to a hormone inducible rat glucocorticoid receptor system (Aoyama, T. and Chua, N.H. (1997), The Plantjournal, 11, 605-612).
  • the OsBBMl:GR protein can be mobilized to nucleus in the developing egg cells by Dexamethasone treatment. This system is expected to result in better frequency ofhaploid induction by OsBBMl.
  • This strategy for haploid induction is under progress in our laboratory and we will soon update the results.
  • RNA-guided CRISPR-Cas9 system can achieve the activation ofOsBBMl in egg cells for haploid induction without requiring such a promoter fusion.
  • This system will utilize a deactivated Cas9 protein (dCas9) fused to a VP64 transcriptional activation domain (Lowder, L.G. et al. (2015), Plantphysiology, 169, 971-985).
  • the modified Cas9 will recognize guide- RNAs (gRNAs) directed againstthe endogenous OsBBMl promoter to activate its expression in the egg cell.
  • gRNAs guide- RNAs
  • RNA sequences for targeting the OsBBMl promoter include but are not limited to the following:
  • OsBBMl is a PEG
  • the maternal allele ofwhich is silent and providing this signal in egg cell is enough to direct the egg cell towards embryo development program.
  • the silencing ofthe maternal allele could happen by epigenetic modifications most likely by repressing methylations.
  • engineering the maternal allele to express in the egg cells can be the most efficient way ofhaploid induction by this method which may even reach to the efficiency of 100 %.
  • due to limitations on the material collections manual dissection ofegg cells
  • determining these epigenetic modifications will take time.
  • orthologs ofthe OsBBMl gene can be found in all flowering plants, it is likely that the same technique can be applied to other plant species using either OsBBMl or the orthologous gene from that species. Thus, there is a huge potential for extension ofthis procedure for haploid induction to other crops.
  • CRISPR-Cas9 Using the CRISPR-Cas9 system illustrated in Figure 5A and 5B, a construct containing guide RNAs were designed to target the endogenous rice OsBBMl promoter was introduced into rice plants.
  • haploids were generated by activating expression ofthe endogenous OsBBMl egg cell allele using a CRISPR/Cas9 based gene activation (CRISPRa) system (Maeder, M.L., et al. (2013). Nature methods 10, 977-979; Lowder, et al., 2015;
  • VP64 protein domain (Beerli et al., 1998), for transcription activation which is guided to OsBBMl promoter by a gRNA bound, nuclease-deficient Cas9 (dCas9) protein ( Figure 5B; Qi, L.S.,etal. (2013) Cell 152, 1173-1183). Because the dCas9-VP64 is under the control ofan egg cell-specific promoter (pDD45), activation ofOsBBMl expression will occur in the egg cell, leading to parthenogenesis in the seed, and subsequently a haploid plant after germination.
  • pDD45 nuclease-deficient Cas9
  • Tissue Staining Stamens from some flowers ofTO transgenic rice lines were removed around the anthesis stage, bagged and let grow for another 9 days after emasculation (DAE). Carpels were dissected from these 9 DAE flowers and fixed in FAA [formaldehyde (10%) - acetic acid (5%) - ethanol (50%)]. Tissue embedding and sectioning was done as per Javelle, M., Marco, C.F. and Timmermans, M. (2011), Journal ofvisualizedexperiments : JoVE, e3328.5 ⁇ sections crosslinked to glass slides were stained with 0.01% toluidine blue for 30 seconds.
  • FACS analysis Nuclei for Fluorescence-Activated Cell Sorting (FACS) analysis were isolated by leafchopping method as described by Galbraith, D.W. et al. (1983), Science, 220, 1049-1051. The isolated nuclei were stained with propidium iodide at 40 ⁇ g/ml concentration in Galbraith's buffer. FACS analysis and DNA content estimation was done with Becton
  • Transgenic plants were generated with the construct shown in Figure 5A.
  • Three guide RNAs gRNAs with sequences 5'-GAGAAGCCCTGCATTTGTAT-3', 5'- GCTATTTGCTGAGACTAGAA-3' and 5'-GGTGGTTCTTGTCGTCTTTA-3' were designed targeting the immediate upstream (upstream of TSS) 150 bp sequences ofOsBBMl ( Figure 5A and B).
  • the three gRNAs were cloned in separate vectors and the final binary vector for plant transformation was assembled as per Lowder, et al., 2015.
  • Arabidopsis thaliana BABY BOOM Arabidopsis thaliana BABY BOOM
  • Brassica napus BABYBOOM2 (BnBBM2), AF317905
  • Glycine maxBABYBOOMl (GmBBMl); HM775856

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Methods and compositions for making haploid plants with BABY BOOM are described.

Description

INDUCTION OF HAPLOID PLANTS USING BABY BOOM1 GENE
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
[0001] The present patent application claims benefit ofpriority to US Provisional Patent Application No.62/427,043, filed November 28, 2016, which is incorporated by reference for all purposes. STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER
FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT
[0002] This invention was made with Government support under Grant No. IOS1128145 awarded by the National Science Foundation. The Government has certain rights in this invention. BACKGROUND OF THE INVENTION
[0003] Haploid plants contain only one set of chromosomes, either maternal or paternal depending on the gamete that gives rise to them or the technique used to produce them. Haploids can spontaneously originate in nature. The first such instance was reported in Datura
stramonium (Blakeslee, A.F. et al. (1922), Science, 55, 646-647). The spontaneous occurrence of haploids, however; is a very rare event and thus they are ofvery less practical value. The potential of haploids in plant breeding was revolutionized by the haploid induction from anther cultures ofDatura (Guha, S. and Maheshwari, SC. (1964), Nature, 204, 497; Guha, S. and Maheshwari, S.C. (1966), Nature, 212, 97-98). Since then, many procedure have been developed for haploid induction in various crops like maize, wheat, rice etc. and in other plants
(Maluszynski, M.; Kasha, K.J. and Szarejko, I. (2003). Published doubled haploid protocols in plant species. In: Doubled Haploid Production in Crop Plants: A Manual, Maluszynski, M., Kasha, K.J., Forster, B.P. & Szarejko, I., 309-335; Maluszynski, M.; Kasha, K.J.; Forster, B.P. and Szarejko, I. (Eds.). (2003.) Doubled Haploid Production in Crop Plants: A Manual, Kluwer Academic Publishers, ISBN 1-4020-1544-5, Dordrecht; Wedzony, M. et al. (2009). "Progress in haploid technology in higher plants," in Advances in Haploid Production in Higher Plants, eds A. Touraev, B. Forster, and S. M. Jain (Amsterdam: Springer), 1-33). However, the efficiencies of these procedures in haploid induction vary greatly and many plants are resistant to haploid induction (Raina 1997; Kush, G. S. and Brar, D. S. (2002) Biotechnology for rice breeding: progress and potential impact. The international rice commission—20th sessions, Bangkok, Thailand; (Maluszynski, M.; Kasha, KJ. and Szarejko, I. (2003). Published doubled haploid protocols in plant species. In: Doubled Haploid Production in Crop Plants: A Manual,
Maluszynski, M., Kasha, K.J., Forster, B.P. & Szarejko, I, 309-335; Maluszynski, M.; Kasha, K.J.; Forster, B.P. and Szarejko, I. (Eds.). (2003.) Doubled Haploid Production in Crop Plants: A Manual, Kluwer Academic Publishers, ISBN 1-4020-1544-5, Dordrecht). Here we demonstrate a novel and more efficient technique ofhaploid induction in rice by altered expression of a specific gene called rice BABYBOOM1 (OsBBMl).
BRIEF SUMMARY OF THE INVENTION
[0004] In some embodiments, a plant comprising a promoter expressed in an egg cell ofthe plant is provided, wherein the promoter is operably linked to a polynucleotide encoding a BABY BOOM polypeptide, wherein the BABY BOOM polypeptide: a. is from a sexually-reproducing plant, or b. comprises a first amino acid sequence that is at least 60% (e.g., at least 70%, 80%, 90%, 95%, or 98%) identical to SEQ ID NO:l, or c. comprises a second amino acid sequence that is at least 50% (e.g., at least 60%, 70%, 80%, 90%, 95%, or 98%) identical to SEQ ID NO:3, or d. a combination oftwo, or all three, of a, b, and c.
[0005] In some embodiments, the BABY BOOM polypeptide is at least 70% identical to at least one of SEQ ID NO: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41. In some embodiments, the BABY BOOM polypeptide further comprises a third amino acid sequence at least 80% (e.g., at least 90%, 95%, or 98%) identical to SEQ ID NO:2
[0006] In some embodiments, the plant is a rice plant or other species ofplant specifically described in this document (e.g. a grass or a cereal). [0007] In some embodiments, the promoter is heterologous to the plant. In some embodiments, the promoter is native to the plant.
[0008] In some embodiments, the promoter is native to the plant except contains at least one non-naturally-occurring mutation resulting in expression in the egg cell. [0009] In some embodiments, the promoter is not expressed in the leaf ofthe plant.
[0010] In some embodiments, the plant comprises a heterologous protein that binds to the promoter, wherein the heterologous protein comprises a transcriptional activation domain. In some embodiments, the plant comprises one or more guide RNA (sgRNA) that directs the heterologous protein (for example, dCas9) to the promoter. In some embodiments, the heterologous protein comprises a deactivated Cas9 (dCas9) protein and the plant. In some embodiments, the transcriptional activation domain comprises VP64.
[0011] Also provided is a method of making haploid plants. In some embodiments, the method comprises, providing the plant as described above or elsewhere herein, wherein the plants produce progeny; and selecting haploid progeny from the plant. In some embodiments, the progeny are seeds for haploid plants. In some embodiments, the selecting comprises separating haploid progeny from non-haploid progeny.
[0012] Also provided is a method ofmaking the plant as described above or elsewhere herein. In some embodiments, the method comprises introducing in a plant an expression cassette comprising the promoter operably linked to the polynucleotide. In some embodiments, the plant is diploid and the method further comprises exposing the plant to conditions such that the plant produces progeny; and selecting progeny from the plant for progeny that are haploid.
[0013] In some embodiments, the method comprises inducing an in situ mutation in a native promoter ofthe plant to alter the native promoter into a promoter that is expressed in the egg cell. In some embodiments, the in situ mutation is introduced by a method comprising contacting the native promoter with a guide RNA and a CRISPR-associated endonuclease. In some embodiments, the CRISPR-associated endonuclease is Cas9. In some embodiments, the plant is diploid and the method further comprises exposing the plant to conditions such that the plant produces progeny; and selecting progeny from the plant for progeny that are haploid. [0014] In some embodiments, the method comprises introducing a heterologous protein that binds to the promoter into egg cells ofthe plant, wherein the heterologous protein comprises a transcriptional activation domain. In some embodiments, the heterologous protein comprises a deactivated Cas9 (dCas9) protein. In some embodiments, the transcriptional activation domain comprises VP64. In some embodiments, the introducing comprises introducing an expression cassette encoding the heterologous protein into the plant and inducing expression ofthe heterologous protein in the egg cell. In some embodiments, the plant is diploid and the method further comprises exposing the plant to conditions such that the plant produces progeny; and selecting progeny from the plant for progeny that are haploid. [0015] In some embodiments, methods of making clonal plants from a parent plant. In some embodiments, the method comprises, providing a plant expressing BABYBoom in an egg cell as described herein, wherein the plant is a parent plant that produces gametes (e.g., egg or sperm cells or both) having the same number of chromosomes as somatic cells in the plant, exposing the parent plant to conditions such that the parent plant produces progeny; and selecting progeny that are clones ofthe parent plant. In some embodiments, the somatic cells are diploid and the selected progeny are diploid. In some embodiments, the gametes are egg cells.
DEFINITIONS
[0016] An "endogenous" or "native" gene or protein sequence, as used with reference to an organism, refers to a gene or protein sequence that is naturally occurring in the genome ofthe organism.
[0017] A polynucleotide or polypeptide sequence is "heterologous" to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, when a promoter is said to be operably linked to a heterologous coding sequence, it means that the coding sequence is derived from one species whereas the promoter sequence is derived from another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).
[0018] The term "promoter," as used herein, refers to a polynucleotide sequence capable of driving transcription ofa coding sequence in a cell. Thus, promoters can include cw-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate oftranscription of a gene. For example, a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5' and 3' untranslated regions, or an intronic sequence, which are involved in transcriptional regulation. These exacting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) gene transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is one that is capable of initiating transcription in nearly all tissue types, whereas a "tissue-specific promoter" initiates transcription only in one or a few particular tissue types.
[0019] The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array oftranscription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs
transcription ofthe nucleic acid corresponding to the second sequence. [0020] The term "plant" includes whole plants, shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, plant tissue (e.g., vascular tissue, ground tissue, and the like), cells (e.g., guard cells, egg cells, trichomes and the like), and progeny of same. The class ofplants that can be used in the method ofthe invention is generally as broad as the class ofhigher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants ofa variety ofploidy levels, including aneuploid, polyploid, diploid, haploid, and hemizygous. [0021] A "transgene" is used as the term is understood in the art and refers to a heterologous nucleic acid introduced into a cell by human molecular manipulation ofthe cell's genome (e.g., by molecular transformation). Thus, a "transgenic plant" is a plant that carries a transgene, i.e., is a genetically-modified plant. The transgenic plant can be the initial plant into which the transgene was introduced as well as progeny thereof whose genomes contain the transgene. In some embodiments, a transgenic plant is transgenic with respect to the BABYBOOM gene. In some embodiments, a transgenic plant is transgenic with respect to one or more genes other than the BABYBOOM gene.
[0022] The phrase "nucleic acid" or "polynucleotide sequence" refers to a single or double- stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Nucleic acids may also include modified nucleotides that permit correct read through by a polymerase, and/or formation of double-stranded duplexes, and do not significantly alter expression of a polypeptide encoded by that nucleic acid.
[0023] The phrase "nucleic acid sequence encoding" refers to a nucleic acid which directs the expression of a specific protein or peptide. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein. The nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length sequences. It should be further understood that the sequence includes the degenerate codons ofthe native sequence or sequences which may be introduced to provide codon preference in a specific host cell. [0024] The terms "identical" or percent "identity," in the context oftwo or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage ofnucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using one ofthe following sequence comparison algorithms or by manual alignment and visual inspection. Two nucleic acid sequences or polypeptides are said to be "identical" ifthe sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acids residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties ofthe molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature ofthe substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score ofzero, a conservative substitution is given a score between zero and 1. The scoring ofconservative substitutions is calculated according to, e.g., the algorithm ofMeyers & Miller, ComputerApplic. Biol. Sci.4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California, USA).
[0025] The phrase "substantially identical," used in the context oftwo nucleic acids or polypeptides, refers to a sequence that has at least 50% sequence identity with a reference sequence (e.g., any of SEQ ID NOs: 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41). Alternatively, percent identity can be any integer from 50% to 100%. Some embodiments include at least: 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below.
[0026] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
[0027] A "comparison window", as used herein, includes reference to a segment ofany one of the number ofcontiguous positions selected from the group consisting offrom 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence ofthe same number ofcontiguous positions after the two sequences are optimally aligned. Methods ofalignment ofsequences for comparison are well- known in the art. Optimal alignment ofsequences for comparison can be conducted, e.g., by the local homology algorithm ofSmith & Waterman,Adv. Appl. Math.2:482 (1981), by the homology alignment algorithm ofNeedleman & Wunsch, J. Mol. Biol.48:443 (1970), by the search for similarity method ofPearson & Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988), by computerized implementations ofthese algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection.
[0028] Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990)J. Mol. Biol.215: 403-410 and Altschul etal. (1977) NucleicAcids Res.25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word ofthe same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension ofthe word hits in each direction is halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed ofthe alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=l, N=-2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix {see Henikoff& Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).
[0029] The BLAST algorithm also performs a statistical analysis ofthe similarity between two sequences {see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication ofthe probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence ifthe smallest sum probability in a comparison ofthe test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10"3, and most preferably less than about 10"20.
[0030] An "expression cassette" refers to a nucleic acid construct that, when introduced into a host cell, results in transcription and/or translation ofan RNA or polypeptide, respectively.
[0031] The phrase "host cell" refers to a cell from any organism. Exemplary host cells are derived from plants, bacteria, yeast, fungi, insects or other animals. Methods for introducing polynucleotide sequences into various types ofhost cells are known in the art.
[0032] An " non-naturally-occurring mutation " refers to replacing the naturally occurring amino acid or nucleotide in a given position (e.g., a nucleotide position in the naturally occurring BABYBOOM promoter) with an amino acid residue or nucleotide, respectively, other than the naturally-occurring residue or nucleotide. For example, ifposition 1 ofthe BABYBOOM promoter is A, an nucleotide substitution at that position refers to replacing the naturally occurring A with any nucleotide (e.g., C, T, G, U) other than A. BRIEF DESCRIPTION OF THE DRAWINGS
[0033] FIG.1A-C: Plasmid construct, OsBBMl overexpression and OsBBMl SNP. (A)
DD45:OsBBMl plasmid construct for plant transformation. (B) OsBBMl ectopic overexpression induced somatic embryos on rice leaves. (C) A SNP ofOsBBMl showing its paternal expression in 2.5 h rice hybrid zygotes. Kit, Kitaake. [0034] FIG.2: A longitudinal section ofa DD45:BBM1, 9 DAE carpel. The 5 urnsections were stained with toluene blue dye. An embryo-like structure is seen developing in the ovules of these emasculated carpels (red arrow).
[0035] FIG.3A-F: Phenotypes ofBBM1 induced haploid plants. (A) Shows dwarfhaploid plant as compared to diploid wild-type sibling. (B) A wild-type control panicle. (C) A shorter haploid panicle with sterile flowers (unfilled seeds). (D) Shows a smaller haploid floret in comparison to a wild-type floret. (E and F) There is no change in floret organ number in haploids (E). (F) An open control wild-type floret. [0036] FIG.4A-D: FACS analysis ofnuclei isolated from leaves ofhaploid and diploid plants. The isolated nuclei were propidium iodide (PI) stained. (A) Shows a single In peak in haploid plants at around 236. (B) Shows a single peak in diploid plants (2n) at 474 (red arrow). (C) Two peaks in a mixed sample ofhaploid and diploid nuclei. The two peaks correspond to haploid (In) and diploid (2n) peaks in (A) and (B), respectively. (D) DNA estimation ofhaploid and diploid nuclei in (C). The mean DNA content is halfin haploids as compared to diploids.
[0037] FIG 5A-F: Haploid generation using CRISPRactivator (CRISPRa) system. (5A) Schematic ofCRISPRa T-DNA construct for transcription activation ofendogenous OsBBMl egg cell allele. (5B) A graphic representation ofrecruitment and transcription activation from OsBBMl promoter by CRISPRa. (5C to 5F) FACS analyses ofpropidium iodide (PI) stained nuclei from (5C) OsBBMl CRISPRa haploid plant, (5D) DD45:BBM1 control haploid, (5E) A wild-type diploid control and (5F) A mixed sample ofCRISPRa haploid and wild-type diploid.
DETAILED DESCRIPTION OF THE INVENTION
Introduction
[0038] The inventors have discovered that expression ofthe BABYBOOM protein in egg cells ofa sexually reproducing diploid plant will result in that plant producing a percentage of progeny that are haploid. Thus, targeting expression ofBABYBOOMto egg cells ofa plant will result in production ofprogeny that have halfthe number ofchromosomes compared to the parent.
BABYBOOM
[0039] Any naturally-or non-naturally-occurring active BABYBOOM polypeptide from a sexually reproducing plant can be expressed as described herein so long as the polypeptide (and/or RNA encoding the polypeptide) is expressed in egg cells in the plant. In some embodiments, the BABYBOOM polypeptide is from a species ofplant ofthe genus
Abelmoschus,Allium,Apium,Amaranthus,Arachis,Arabidopsis, Asparagus,Atropa,Avena, Benincasa, Beta, Brassica, Cannabis, Capsella, Cica, Cichorium, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Cynasa, Daucus, Diplotaxis, Dioscorea, Elais, Eruca, Foeniculum, Fragatia, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum,
Hyoscyamus, Ipomea, Lactuca, Lagenaria, Lepidium, Linum, Lolium, Luffa, Luzula, Lycopersicon, Malus, Manihot, Majorana, Medicago, Momodica, Musa, Nicotiana, Olea, Oryza, Panicum, Pastinaca, Pennisetum, Persea, Petroselinium, Phaseolus, Physalis, Pinus, Pisum, Populus, Pyrus, Prunus, Raphanus, Saccharum, Secale, Senecio, Sesamum, Sinapis, Solarium, Sorghum, Spinacia, Theobroma, Trichosantes, Trigonella, Triticum, Turritis, Valerianelle, Vitis, Vigna, or Zea. In some embodiments the BABYBOOM polypeptide is identical or substantially identical to any of SEQIDNOs: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41. In some embodiments, the BABYBOOM polypeptide comprises an amino acid sequence that is substantially identical to all of SEQ ID NOl, substantially identical to all of SEQ ID NO:3, or a first amino acid sequence substantially identical to SEQ ID NO:l and a second amino acid sequence substantially identical to SEQ ID NO:3, wherein the two sequences are separated by an AP2 domain-containing portion (e.g., substantially identical to SEQ ID NO:2).
[0040] BABY BOOM polypeptides contain two conserved AP2 domains. They lack a miR172 binding site (thereby distinguishing BABY BOOM polypeptides from many other AP2 domain proteins that contain a miR172 binding site. [0041] In some embodiments, the plant comprises heterologous expression cassette comprising a promoter that at least directs expression to egg cells operably linked to a BABYBOOM polypeptide as described herein. In some embodiments, the promoter is egg cell-specific, meaning the promoter drives expression only or primarily in egg cells. "Primarily" means that if there is expression in other tissue the levels are no more than 1/10 ofthe expression levels in egg cells as measured by quantitative RT-PCR.
[0042] Exemplary promoters that drive expression in at least egg cells of a plant include, but are not limited to, the promoter ofthe egg-cell specific gene ECl .1, ECl .2, ECl .3, EC1.4, or ECl.5. See, e.g. Sprunck etal. Science, 338:1093-1097 (2012); AT2G21740; Steffen etal, PlantJournal 51: 281-292 (2007). In some embodiments, the Arabidopsis DD45 promoter is used to express in rice egg cell (Ohnishi et al. PlantPhysiology 165: 1533-1543 (2014). An exemplary DD45 promoter sequence is as follows:
CCTCTTTGTCACCGTCACTCTTCTCCTCGTTCTCAACGTCTCCAGCAGAGCACTCCCGCCCGTGGCGGATTCCACCA ACATAGCGGCTAGACTAACCGGAGGAGGACTGATGCAGTGTTGGGATGCACTCTACGAGCTGAAGTCATGTACTAAT GAGATCGTTCTCTTCTTTCTCAACGGTGAGACCAAACTCGGCTACGGTTGCTGCAACGCCGTTGATGTCATTACCAC TGATTGTTGGCCGGCGATGCTTACTTCTCTTGGCTTTACACTGGAGGAAACCAATGTCCTCCGTGGTTTCTGTCAAT CTCCGAACTCCGGCGGTTCTTCTCCAGCTCTTTCCCCTGTCAAACTTTGATAAATGTTCCTCGCTGACGTAAGAAGA CATTAGTAATGGTTATAATATATAGCTTTCTATGAATGTATGGTGAGAAAATGTCTGTTCACTGATTTTGAGTTTG GAATAAAAGCATTTGCGTTTGGTTTATCATTGCGTTTATACAAGGACAGAGATCCACTGAGCTGGAATAGCTTAAAA CCATTATCAGAACAAAATAAACCATTTTTTGTTAAGAATCAGAGCATAGTAAACAACAGAAACAACCTAAGAGAGGT AACTTGTCCAAGAAGATAGCTAATTATATCTATTTTATAAAAGTTATCATAGTTTGTAAGTCACAAAAGATGCAAAT AACAGAGAAACTAGGAGACTTGAGAATATACATTCTTGTATATTTGTATTCGAGATTGTGAAAATTTGACCATAAGT TTAAATTCTTAAAAAGATATATCTGATCTAGATGATGGTTATAGACTGTAATTTTACCACATGTTTAATGATGGATA GTGACACACATGACACATCGACAACACTATAGCATCTTATTTAGATTACAACATGAAATTTTTCTGTAATACATGTC TTTGTACATAATTTAAAAGTAATTCCTAAGAAATATATTTATACAAGGAGTTTAAAGAAAACATAGCATAAAGTTCA ATGAGTAGTAAAAACCATATACAGTATATAGCATAAAGTTCAATGAGTTTATTACAAAAGCATTGGTTCACTTTCTG TAACACGACGTTAAACCTTCGTCTCCAATAGGAGCGCTACTGATTCAACATGCCAATATATACTAAATACGTTTCTA CAGTCAAATGCTTTAACGTTTCATGATTAAGTGACTATTTACCGTCAATCCTTTCCCATTCCTCCCACTAATCCAAC TTTTTAATTACTCTTAAATCACCACTAAGCTTCGAATCCATCCAAAACCACAATATAAAAACAGAACTCTCGTAACT CAATCATCGCAAAACAAAACAAAACAAAACAAAAACCCCAAAAAGAAAGAATA.
Other promoters that are expressed in egg cells, but are not necessarily egg-cell specific, are described in, e.g., Anderson et al., The PlantJournal 76: 729-741 (2013). In some embodiments, the expression cassette further comprises a transcriptional terminator. Exemplary terminators can include, but are not limited to, the rbcSE9 or nos terminators. In some embodiments, the expression cassette will include an egg cell enhancer. Exemplary egg cell enhancers include, but are not limited to, the EC1.2 enhancer or EASE enhancer (Yang et al, PlantPhysiol.139:1421-32 (2005). [0043] In other embodiments, mutations can be introduced into the native BABYBOOM promoter such that BABYBOOM is expressed in egg cells based from the modified native promoter. In such embodiments, one or more nucleotide ofthe BABYBOOM promoter is modified by non-natural substitution, deletion or insertion.
Manipulation ofthe native promoter can be achieved via site-directed to random mutagenesis. Methods for introducing genetic mutations into plant genes and selecting plants with desired traits are well known and can be used to introduce mutations into the BABYBOOM promoter. For instance, seeds or other plant material can be treated with a mutagenic insertional polynucleotide (e.g., transposon, T-DNA, etc.) or chemical substance, according to standard techniques. Such chemical substances include, but are not limited to, the following: diethyl sulfate, ethylene imine, ethyl methanesulfonate and N-nitroso-N-ethylurea. Alternatively, ionizing radiation from sources such as, X-rays or gamma rays can be used. Plants having a mutated BABYBOOM promoter can then be identified, for example, by phenotype or by molecular techniques, including but not limited to TILLING methods. See, e.g., Comai, L. & Henikoff, S. The PlantJournal 45, 684-694 (2006). [0044] Mutated BABYBOOM promoters can also be constructed in vitro by mutating the BABYBOOM promoter DNA sequence, such as by using site-directed or random mutagenesis. Nucleic acid molecules comprising the BABYBOOM promoter can be mutated in vitro by a variety ofpolymerase chain reaction (PCR) techniques well-known to one ofordinary skill in the art. See, e.g., PCR Strategies (M. A. Innis, D. H. Gelfand, and J. J. Sninsky eds., 1995,
Academic Press, San Diego, CA) at Chapter 14; PCRProtocols :A Guide toMethods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White eds., Academic Press, NY, 1990).
[0045] As a non-limiting example, mutagenesis may be accomplished using site-directed mutagenesis, in which point mutations, insertions, or deletions are made to a DNA template. Kits for site-directed mutagenesis are commercially available, such as the QuikChange Site- Directed Mutagenesis Kit (Stratagene). Briefly, a DNA template to be mutagenized is amplified by PCR according to the manufacturer's instructions using a high-fidelity DNA polymerase {e.g., Pfu Turbo™) and oligonucleotide primers containing the desired mutation. Incorporation ofthe oligonucleotides generates a mutated plasmid, which can then be transformed into suitable cells (e.g., bacterial or yeast cells) for subsequent screening to confirm mutagenesis ofthe DNA.
[0046] As another non-limiting example, mutagenesis may be accomplished by means of error-prone PCRamplification (ePCR), which modifies PCR reaction conditions {e.g., using error-prone polymerases, varying magnesium or manganese concentration, or providing unbalanced dNTP ratios) in order to promote increased rates oferror in DNA replication. Kits for ePCRmutagenesis are commercially available, such as the GeneMorph® PCRMutagenesis kit (Stratagene) and Diversify® PCRRandom Mutagenesis Kit (Clontech). Briefly, DNA polymerase {e.g., Taq polymerase), salt {e.g., MgC12, MgS04, or MnS04), dNTPs in unbalanced ratios, reaction buffer, and DNA template are combined and subjected to standard PCR amplification according to manufacturer's instructions. Following ePCR amplification, the reaction products are cloned into a suitable vector to construct a mutagenized library, which can then be transformed into suitable cells {e.g., yeast or plant cells) for subsequent screening {e.g., via a two-hybrid screen) as described below.
[0047] Alternatively, mutagenesis can be accomplished by recombination {i.e. DNA shuffling). Briefly, a shuffled mutant library is generated through DNA shuffling using in vitro homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations. Methods ofperforming DNA shuffling are known in the art (see, e.g., Stebel, S.C. et al., MethodsMolBiol 352: 167-190 (2007)). [0048] Other mutation induction systems, such as genome editing methods, can be used to target mutations in the BABYBOOM promoter, having the advantages of increasing the frequency of single and multiple mutations at a defined target site (Lozano-Juste, J., and Cutler, S.R (2014) Trends in Plant Science 19, 284-287). The sequence-specific introduction ofa double stranded DNA break (DSB) in a genome leads to the recruitment ofDNA repair factors at the breakage site, which then repair lesion by either the error-prone non-homologous endjoining (NHEJ) or homologous recombination (HR) pathways. NHEJ repairs the breaks, but is imprecise and often creates diverse mutations at and around the DSB. In cells in which the HR machinery repairs the DSB, sequences with homology flanking the DSB, including exogenously supplied sequences, can be incorporated at the region ofthe DSB. DSBs can therefore be leveraged by geneticists to increase the frequency of mutations at defined sites, however intrinsic differences between the relative roles ofHR and NHEJ can affect the mutation types at a targets locus. A number oftechnologies have been developed to create DSBs at specific sites including synthetic zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and most recently the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR- associated protein 9 (Cas9) system. This system is based on a bacterial immune system against invading bacteriophages in which a complex of2 small RNAs, the CRISPR-RNA (crRNA) and the trans-activating crRNA (tracrRNA) directs a nuclease (Cas9) to a specific DNA sequence complementary to the crRNA. Using any ofthese systems, one can create DSBs at predetermined sites in cells expressing the genome editing constructs. In order for homologous recombination to occur, a DNA cassette homologous to the targeted site must be provided, preferably at a high concentration so that HR is favored or NHEJ. Multiple strategies are conceivable for realizing this, including template delivery using agrobacterium mediated transformation or particle bombardment ofDNA templates, and one recently described method uses a modified viral genome to provide the double stranded DNA template. For example, Baltes et al.2014 (Baltes, N.J., et al. (2014) Plant Cell 26, 151-163) recently demonstrated that an engineered geminivirus that was introduced into plant cells using Agrobacterium mediated transformation could be engineered to produce DNA recombination templates in cells where a ZFN was co-expressed.
[0049] In the CRISPR/Cas9 bacterial antiviral and transcriptional regulatory system, a complex oftwo small RNAs - the CRISPR-RNA (crRNA) and the trans-activating crRNA (tracrRNA) - directs the nuclease (Cas9) to a specific DNA sequence complementary to the crRNA (Jinek, M., etal. Science 337, 816-821 (2012)). Binding of these RNAs to Cas9 involves specific sequences and secondary structures in the RNA. The two RNA components can be simplified into a single element, the single guide-RNA (sgRNA), which is transcribed from a cassette containing a target sequence defined by the user (Jinek, M., et al. Science 337, 816-821 (2012)). This system has been used for genome editing in humans, zebrafish, Drosophila, mice, nematodes, bacteria, yeast, and plants (Hsu, P.D., et al, Cell 157, 1262-1278 (2014)). In this system the nuclease creates double stranded breaks at the target region programmed by the sgRNA. These can be repaired by non-homologous recombination, which often yields inactivating mutations. The breaks can also be repaired by homologous recombination, which enables the system to be used for gene targeted gene replacement (Li, J.-F., et al. Nat.
Biotechnol.31, 688-691, 2013; Shan, Q., etal Nat. Biotechnol 31, 686-688, 2013). The BABYBOOM promoter mutations described in this application can be introduced into plants using the CAS9/CRISPR system. In addition, an RNA-guided CRISPR-Cas9 system can achieve the activation ofgenes without modifying the promoter sequence ofthe native gene. Such a system utilizes a deactivated Cas9 protein (dCas9) fused to a transcriptional activation domain (Lowder, L.G. et al. (2015), Plantphysiology, 169, 971-985) and uses guide RNAs to activate a specific promoter in a genome. An exemplary transcriptional activation domain is VP64.
An exemplary dCas9 coding sequence is:
ATGGATTACAAGGATGATGATGATAAGGATTACAAGGATGATGATGATAAGATGGCTCCAAAGAAGAA GAGAAAGGTTGGAATCCACGGAGTTCCAGCTGCTGATAAGAAGTACTCTATCGGACTTGCCATCGGAAC CAACTCTGTTGGATGGGCTGTTATCACCGATGAGTACAAGGTTCCATCTAAGAAGTTCAAGGTTCTTGGA AACACCGATAGACACTCTATCAAGAAGAACCTTATCGGTGCTCTTCTTTTCGATTCTGGAGAGACCGCTG AGGCTACCAGATTGAAGAGAACCGCTAGAAGAAGATACACCAGAAGAAAGAACAGAATCTGCTACCTT CAGGAAATCTTCTCTAACGAGATGGCTAAGGTTGATGATTU T TCT T CCACAGACTTGAGGAGTCTTTCCT
Figure imgf000018_0001
Figure imgf000019_0001
An exemplary VP64 coding sequence is:
Figure imgf000020_0001
[0050] Accordingly, in some embodiments, instead ofgenerating a transgenic plant, a
BABYBOOM promoter sequence in a plant or plant cell can be altered in situ to generate a plant or plant cell carrying a polynucleotide encoding a modified BABYBOOM promoter linked to the native BABYBOOM coding sequence. CRISPR/Cas systems include type I, Π, and ΙΠ subtypes. Wild-type type Π CRISPR/Cas systems utilize the RNA-mediated nuclease, Cas9 in complex with guide and activating RNA to recognize and cleave foreign nucleic acid. Cas9 homologs are found in a wide variety ofeubacteria, including, but not limited to bacteria ofthe following taxonomic groups: Actinobacleria, Aquificae, Bacteroidetes-Chlorobi, Chlamydiae- Verrucomicrohia, Chlroflexi, Cyanobacteria, Firmicutes, Proteobacteria, Spirochaetes, and Thermotogae. An exemplary Cas9 protein is the Streptococcuspyogenes Cas9 protein.
Additional Cas9 proteins and homologs thereofare described in, e.g., Chylinksi, etal, RNA Biol.2013 May 1; 10(5): 726-737 ; Nat. Rev. Microbiol.2011 June; 9(6): 467-477; Hou, et al, Proc Natl Acad Sci U S A.2013 Sep 24;110(39):15644-9; Sampson etal, Nature.2013 May 9;497(7448):254-7; and Jinek, etal, Science.2012 Aug 17;337(6096):816-21.
Nucleic acids and cells
[0051] The present disclosure also provides for nucleic acids, including isolated nucleic acids, nucleic acid expression cassettes, and expression vectors, that encode a heterologous egg cell- expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein. Also provided are host cells comprising the nucleic acids.
[0052] In some embodiments, recombinant DNA vectors suitable for transformation ofplant cells and comprising the expression cassette are prepared. Techniques for transforming a wide variety ofhigher plant species are well known and described in the technical and scientific literature. See, e.g., Weising etal. Ann. Rev. Genet.22:421-477 (1988). In some embodiments, the vector comprising the sequences (e.g., promoters or CENH3 coding regions) comprises a marker gene that confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosluforon or Basta.
[0053] In some embodiments, any ofa variety ofdifferent expression constructs, such as expression cassettes and vectors suitable for transformation ofplant cells, can be prepared.
Techniques for transforming a wide variety ofhigher plant species are well known and described in the technical and scientific literature. See, e.g., Weising etal. Ann. Rev. Genet.22:421-477 (1988). A DNA sequence coding for a protein can be combined with cz's-acting (promoter) and tratts-acting (enhancer) transcriptional regulatory sequences to direct the timing, tissue type and levels oftranscription in the intended tissues ofthe transformed plant. Translational control elements can also be used. In some embodiments, a terminator sequence is included in the expression construct. An exemplary NOS terminator sequence is
Figure imgf000021_0001
[0054] Also provided are host cell(s) comprising a heterologous egg cell-expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein.
Exemplary host cells include, for example, prokaryotic (e.g., including but not limited to E. coli) cells or eukaryotic cells, and can for example plant, fungal, yeast, mammalian, insect, or other cells. Also provided as discussed above are plants comprising a heterologous egg cell- expressing promoter operably linked to a BABYBOOM polypeptide coding sequence as described herein.
The plant comprising the egg cell-expression promote operably linked to the BABYBOOM coding sequence can be any plant species. In some embodiments, the plant is a dicot plant. In some embodiments the plant is a monocot plant. In some embodiments, the plant is a grass. In some embodiments, the plant is a cereal (e.g., including but not limited to Poaceae, e.g., rice, wheat, maize). In some embodiments, the plant is a species ofplant ofthe genusAbelmoschus, Allium,Apium,Amaranthus,Arachis,Arabidopsis, Asparagus,Atropa, Avena, Benincasa, Beta, Brassica, Cannabis, Capsella, Cica, Cichorium, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Cynasa, Daucus, Diplotaxis, Dioscorea, Elais, Eruca, Foeniculum, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Ipomea, Lactuca, Lagenaria, Lepidium, Linum, Lolium, Luffa, Luzula, Lycopersicon,Malus,Manihot, Majorana,Medicago,Momodica,Miisa, Nicotiana, Olea, Oryza, Panicum, Pastinaca,
Pennisetum, Persea, Petroselinium, Phaseolus, Physalis, Pinus, Pisum, Populus, Pyrus, Primus, Raphanus, Saccharum, Secale, Senecio, Sesamum, Sinapis, Solarium, Sorghum, Spinacia, Theobroma, Trichosantes, Trigonella, Triticum, Turritis, Valerianelle, Vitts, Vigna, or Zea.
Making haploidplants orplants with reduced chromosome number
[0055] Expression ofBABYBOOM in egg cells ofa plant will result in the generation of viable seed having an increased proportion ofhaploid progeny (or ifthe plant has a higher number ofchromosome copies than diploid (e.g. tetraploid), halfthe number ofchromosomes of the plant) compared to those few ifany progeny that are naturally produced. Thus, in some embodiments, at least 1%, 5%, 10% or more ofthe progeny are haploid. In some embodiments, haploid progeny can be selected atthe seed stage. For example, in some embodiments, a portion ofthe seed or see d coat is removed and a genetic test is performed to determine whether the seed is haploid prior to germination. In other embodiments, the seeds are germinated and the resulting progeny plants are screened for those that are haploid, either by testing their genotype or by observation (haploid plants in many cases are smaller than diploid progeny). Optionally, one can physically separate progeny into groups ofonly haploid plants, optionally discarding diploid progeny or otherwise physically separating diploid progeny from haploid progeny. [0056] Once generated, haploid plants can be used for a variety ofuseful endeavors, including but not limited to the generation ofdoubled haploid plants, which comprise an exact duplicate copy ofchromosomes. Such doubled haploid plants are ofparticular use to speed plant breeding, for example. A wide variety ofmethods are known for generating doubled haploid organisms from haploid organisms. [0057] Somatic haploid cells, haploid embryos, haploid seeds, or haploid plants produced from haploid seeds can be treated with a chromosome doubling agent. Homozygous double haploid plants can be regenerated from haploid cells by contacting the haploid cells, including but not limited to haploid callus, with chromosome doubling agents, such as colchicine, anti-microtubule herbicides, or nitrous oxide to create homozygous doubled haploid cells. [0058] Methods of chromosome doubling are disclosed in, for example, US Patent No.
5,770,788; 7,135,615, and US Patent Publication No.2004/0210959 and 2005/0289673;
Antoine-Michard, S. et al., Plant Cell, Tissue Organ Cult, Dordrecht, the Netherlands, Kluwer Academic Publishers 48(3):203-207 (1997); Kato, A., Maize Genetics Cooperation Newsletter 1997, 36-37; and Wan, Y. et al., Trends Genetics 77: 889-892 (1989). Wan, Y. et al., Trends Genetics 81: 205-211 (1991), the disclosures of which are incorporated herein by reference. Methods can involve, for example, contacting the haploid cell with nitrous oxide, anti- microtubule herbicides, or colchicine. Optionally, the haploids can be transformed with a heterologous gene of interest, if desired. [0059] Double haploid plants can be further crossed to other plants to generate Fl, F2, or subsequent generations of plants with desired traits.
Making clonalplants
[0060] In some embodiments, one can make clonal plants from a parent plant expressing BABYBOOM in egg cells as described herein. This can be achieved, for example, when the parent plant produces gametes (e.g., egg or pollen cells) having the same number of
chromosomes as somatic cells in the plant. Thus for example, ifthe plant is diploid (the somatic tissue is diploid) then the gametes are also diploid. This can be achieved in various ways, for example by inducing a "mitosis instead of meiosis" (MiME) phenotype in the parent plant (in addition to the expression ofBABYBOOM). See, e.g., US Patent Publication No.2012/0042408 and PCT Publication No. WO 2012/075195. In some embodiments, one generates mutations in in each of OSDl, ATREC8, and ATSPOll or orthologs thereofto create the MiME phonotype. See., e.g., D'Erfurth et al, One PLOS 7(6):el000124 (June 2009) and Brownfield and Kohler, J. Exp. Botany 62(5): 1659-1668 (2011). Some ofthe resulting progeny ofthe plants will have the same number of chromosomes as the parent and in some embodiments will be clonal. EXAMPLES
[0061] Rice BABY BOOMl is an AP2/ERF domain transcription factor. Ectopic expression of the homologous genes inArabidopsis and Brassica napus have been shown to induce somatic embryos on seedlings (Boutilier, K. et al. (2002), The Plant cell, 14, 1737-1749). Our
unpublished results show in wild-type rice plants, OsBBMl expression is induced in the single cell zygote soon after fertilization, indicating it has a potential role in normal rice embryogenesis. To test whether it can promote embryogenesis, OsBBMl was ectopically expressed in rice seedlings, and we observe it induces somatic embryos on rice leaves (FIG. IB, white arrows). To further characterize the role of OsBBMl in rice embryo development, we investigated whether the OsBBMl gene is expressed equally from both parental genomes, using hybrid zygotes where transcripts from the two parents could be distinguished using single-nucleotide polymorphisms (SNPs). Rice cultivars Indica (TR50) and Japonica (Kitaake) were crossed with each other, and SNP analysis was carried out with RNA isolated from these hybrid zygotes at 2.5 hours after pollination (2.5 HAP). These analysis show OsBBMl is expressed only from the male genome (paternally expressed gene) regardless ofwhich cultivar was used as the pollen donor (FIG.1C). The ability of OsBBMl to induce embryogenesis in heterologous tissues and its expression during zygote development suggest that after fertilization, expression ofthe OsBBMl from the paternal genome directs the egg cell into the embryogenesis pathway. Interestingly, our previous published data (Anderson, S.N. et al. (2013) The Plantjournal, 76, 729-741) showed that
OsBBMl is not expressed in the sperm cells. Therefore, the paternal OsBBMl allele contributed by the sperm cell is expressed after fertilization, but the maternal OsBBMl allele is kept silent, likely by an epigenetic mechanism involving DNA methylation and chromatin modification. The silencing ofthe maternal OsBBMl allele is probably necessary to prevent the egg cell from forming an embryo by parthenogenesis. To test this hypothesis, we expressed OsBBMl in rice egg cells to ask whether they can develop into haploid embryos without fertilization. [0062] OsBBMl was expressed under an egg cell specific promoter (see Materials and Methods). Twelve transgenic lines were raised with this construct (FIG.1 A). Some ofthe flowers from the TO hemizygous plants were emasculated around the antheisis stage and grown for 9 more days. From the sectioned and stained carpels, we observe the development of embryo-like structures (red arrow, FIG.2). This indicates OsBBMl is able to induce embryos without fertilization that are presumptively haploid, in rice seeds.
[0063] To extend these findings we let the rest ofthe flowers from these TO hemizygous transgenic plants set seeds. This was done to check whether the fertilization ofthe homo-diploid central cell can occur without fertilization ofthe haploid egg cell. If so, the resulting seeds should have a triploid endosperm and a haploid embryo. As detailed below, ofthe plants grown from these segregating Tl seeds, about 10% are haploids, roughly 30% were wild-type, i.e., not carrying the transgene and the rest (~ 60 %) ofthe plants were hemi/homozygous for the transgene. The haploid nature ofthese plants was confirmed by phenotypic analysis and also by DNA content estimation. Haploids were very short as compared to their wild-type diploid siblings (FIG.3A). The panicles are also shorter with completely sterile florets with no seed filling observed (FIG.3B and C). Haploid flowers and floral organs were also much smaller as compared to wild-type, though there was no change in the number offloral organs (FIG.3D to F).
[0064] In a further experiment, seeds from a homozygous plant from egg promoter fused to OsBBMl (pDD45::OsBBMl) Line#8 (#8C) were grown to calculate the haploid induction frequency. All the seeds from plant #8C grew on MS plates containing 50 mg/L hygromycin, thus confirming the homozygous genotype. The seeds have been passed through 4 generations and the total number ofplants and haploids produced were recorded. From a total of282 plants, 83 were found to be haploids thus resulting in an overall -30 % ofhaploids (83/282 haploid/ diploid). [0065] Fluorescence-activated cell sorting (FACS) analysis was carried out to check the ploidy ofpotential haploid plants. Propidium iodide stained nuclei from these haploid plants show they have halfthe DNA content as compared to their diploid wild-type siblings (FIG.4). The flow peak in diploid wild-type plants is observed at around 470 (FIG.4B), the peak shifts to about 235 in haploid samples (FIG.4A); under same conditions. The two peaks separate and run at their respective positions corresponding to the haploid and diploid peaks in a mixed sample (FIG.4C). Thus these analyses clearly show that the plants are true haploids, and that OsBBMl is able to induce haploids in rice by directly converting egg cell into an embryo without fertilization.
[0066] Haploids only have the single gametic set ofchromosomes. This makes them efficient tools to reduce the time for new cultivar release in crops. Homozygous isogenic lines can be produced in one generation after chromosome doubling, bypassing the several generations it takes by inbreeding procedures (Snape, J.W. (1989) Doubled haploid breeding: theoretical basis and practical applications. In: Second International Symposium on Genetic Manipulation in Crops (Mujeeb-Kazi, A. and Sitch, L.A., eds), 19-30). Haploids can be used to produce exclusive male or female plants. Haploids express both recessive and dominant mutations while as in diploids most ofthe mutations are recessive and do not express. Thus useful or deleterious mutations are easily selectable in haploid plants. For example useful mutations such as disease resistance, insect resistance, salt tolerance and drought resistance can be easily selected in haploids whereas deleterious mutations can be selected against (Snape, J.W. (1989) Doubled haploid breeding: theoretical basis and practical applications. In: Second International
Symposium on Genetic Manipulation in Crops (Mujeeb-Kazi, A. and Sitch, L.A., eds), 19-30; Datta, S. K., (2005), CurrSci, 89,1870-1878). Haploids also possess great value in cytogenetic studies for deciphering basic chromosome number/ploidy in a species, chromosomal origins, producing polyploids etc. (Georgiev, S., (2008), In: Biotechnology and Biotechnological Equipment, 22.644- 651). [0067] The two main procedures used to induce haploidy in plants is by i) cultivating the haploid gametes (Guha, S. and Maheshwari, S.C. (1964), Nature, 204, 497; 1966), ii) by selective removal of one genome after hybridization with pollen from a different variety (Coe, E. H., (1959), American Naturalist, 93,381-382), interspecific pollen (Clausen, RE. and Mann, M.C. (1924), Proceedings ofthe NationalAcademy ofSciences ofthe United States ofAmerica, 10, 121-124; Bains, G.S. and Howard, HW. (1950), Nature, 166, 795 Kasha, KJ. and Kao, K.N. (1970), Nature, 225, 874-876; Barclay, I.R., (1975), Nature 256, 410-411; Burk, L.G., Gerstel, D.U. and Wernsman, E.A. (1979), Science, 206, 585) or CENH3 mediated chromosomal removal (Ravi, M. and Chan, S.W. (2010), Nature, 464, 615-618). Many plant and crop species are recalcitrant to these techniques and besides some ofthe wide crossing techniques involve the laborious dissection and culturing of haploid embryos (Devaux. P., (1988), PlantBreed,
100,181-187; (Maluszynski, M.; Kasha, KJ. and Szarejko, I. (2003). Published doubled haploid protocols in plant species. In: Doubled Haploid Production in Crop Plants: A Manual,
Maluszynski, M., Kasha, KJ., Forster, B.P. & Szarejko, I., 309-335; Maluszynski, M.; Kasha, KJ.; Forster, B.P. and Szarejko, I. (Eds.). (2003.) Doubled Haploid Production in Crop Plants: A Manual, Kluwer Academic Publishers, ISBN 1-4020-1544-5, Dordrecht; Wedzony, M. et al.
(2009). "Progress in haploid technology in higher plants," in Advances in Haploid Production in Higher Plants, eds A. Touraev, B. Forster, and S. M. Jain (Amsterdam: Springer), 1-33). The CenH3 haploid induction technique has been demonstrated in Arabidopsis and maize only (Britt, A.B. and Kuppu, S. (2016), Frontiers inplant science, 1, 357) [0068] None ofthe techniques ofhaploid induction by chromosomal removal method, to our knowledge, have yet been demonstrated in rice. Haploid induction protocols vary not only between the species but also among the genotypes ofthe same species. Androgenesis, the production ofhaploids from male gamete cells remains the preferred method ofhaploid production in rice (Niizeki, H. and Oono, K. (1968), ProcJapAcad, 44, 554-557, Mishra, R, Jwala, G., and Rao, N. (2016), In-vitro Androgenesis in Rice: Advantages, Constraints and Future Prospects Rice Science, 23, 57-68). However, the efficiency ofandrogenesis in rice is very low and in some varieties almost negligible (Raina 1997; Sripichitt, P. et al. (2000), Plant Production Science 3, 254-256; Kush, G. S. and Brar, D. S. (2002) Biotechnology for rice breeding: progress and potential impact. The international rice commission—20th sessions, Bangkok, Thailand). In this study we report a novel technique ofhaploid induction in rice by altered expression ofan endogenous gene, OsBBMl. Since the haploids in this report were screened from segregating hemizygous plants, only 50% ofthe segregents are expected to inherit the transgene from mother. Thus the actual frequency ofhaploid production by our method as of now is 20% which is at least two fold more compared to the (10 %) by existing methods of haploid production in rice (Sripichitt, P. et al. (2000), PlantProduction Science 3, 254-256). The frequency ofhaploid production by our method is expected to go up by at least two fold more in future from homozygous transgenes obtained after segregation. Also our method can greatly enhance the breeding programs in rice Indica varieties which are more resistant to haploid induction than Japonica varieties by any method (Raina 1997; Sripichitt, P. et al. (2000), Plant Production Science 3, 254-256; Khush, G. S. and Brar, D. S. (2002) Biotechnology for rice breeding: progress and potential impact. The international rice commission—20th sessions, Bangkok, Thailand). We can speculate this based on the fact that OsBBMl is a PEG (Paternally Expressed Gene) in zygotes which involved Indica variety as pollen donor, pointing to the fact that its mechanism ofaction is identical in different cultivars ofrice.
[0069] An alternative approach to achieve haploid induction by OsBBMl is by fusing it to a hormone inducible rat glucocorticoid receptor system (Aoyama, T. and Chua, N.H. (1997), The Plantjournal, 11, 605-612). The OsBBMl:GR protein can be mobilized to nucleus in the developing egg cells by Dexamethasone treatment. This system is expected to result in better frequency ofhaploid induction by OsBBMl. The development ofthis strategy for haploid induction is under progress in our laboratory and we will soon update the results. [0070] Although the above approaches utilize promoter fusions to a OsBBMl transgene, we propose that an RNA-guided CRISPR-Cas9 system can achieve the activation ofOsBBMl in egg cells for haploid induction without requiring such a promoter fusion. This system will utilize a deactivated Cas9 protein (dCas9) fused to a VP64 transcriptional activation domain (Lowder, L.G. et al. (2015), Plantphysiology, 169, 971-985). The modified Cas9 will recognize guide- RNAs (gRNAs) directed againstthe endogenous OsBBMl promoter to activate its expression in the egg cell. This system has been shown to activate target gene expression, even ifthe target gene has undergone epigenetic silencing by promoter DNA methylation (Lowder, L.G. et al. (2015), Plantphysiology, 169, 971-985). Exemplary guide RNA sequences for targeting the OsBBMl promoter include but are not limited to the following:
Sequence: regular text, OsU6 promoter; bold, gRNA coding sequences; underlined, gRNA scaffold; and italics, OsU6 terminator.
OsBBMl-gRNAl
GGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTGCCCTTGGA TCATGAACCAACGGCCTGGCTGTATTTGGTGGTTGTGTAGGGAGATGGGGAGAAGA AAAGCCCGATTCTCTTCGCTGTGATGGGCTGGATGCATGCGGGGGAGCGGGAGGCC CAAGTACGTGCACGGTGAGCGGCCCACAGGGCGAGTGTGAGCGCGAGAGGCGGGA GGAACAGTTTAGTACCACATTGCCCAGCTAACTCGAACGCGACCAACTTATAAACCC GCGCGCTGTCGCTTGTGTGAGAAGCCCTGCATTTGTATGTTTTAGAGCTAGAAATA GCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGT
GGTCGAgGGTATCGATAAGCTT OsBBMl-gRNA2
GGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTGCCCTTGGA TCATGAACCAACGGCCTGGCTGTATTTGGTGGTTGTGTAGGGAGATGGGGAGAAGA AAAGCCCGATTCTCTTCGCTGTGATGGGCTGGATGCATGCGGGGGAGCGGGAGGCC CAAGTACGTGCACGGTGAGCGGCCCACAGGGCGAGTGTGAGCGCGAGAGGCGGGA GGAACAGTTTAGTACCACATTGCCCAGCTAACTCGAACGCGACCAACTTATAAACCC GCGCGCTGTCGCTTGTGTGCTATTTGCTGAGACTAGAAGTTTTAGAGCTAGAAATA GCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGT QCTTTTTTTGTCCCTTCGAAGGGCAATTCTGCAGATATCCA GGTCGAgGGTATCGATAAGCTT
OsBBMl-gRNA3
GGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTGCCCTTGGA TCATGAACCAACGGCCTGGCTGTATTTGGTGGTTGTGTAGGGAGATGGGGAGAAGA AAAGCCCGATTCTCTTCGCTGTGATGGGCTGGATGCATGCGGGGGAGCGGGAGGCC CAAGTACGTGCACGGTGAGCGGCCCACAGGGCGAGTGTGAGCGCGAGAGGCGGGA GGAACAGTTTAGTACCACATTGCCCAGCTAACTCGAACGCGACCAACTTATAAACCC
Figure imgf000029_0001
[0071] Since the mechanistic basis ofthis procedure ofhaploid induction is that under wild- type conditions, OsBBMl is a PEG, the maternal allele ofwhich is silent and providing this signal in egg cell is enough to direct the egg cell towards embryo development program. The silencing ofthe maternal allele could happen by epigenetic modifications most likely by repressing methylations. Thus engineering the maternal allele to express in the egg cells (by the removal ofrepressive epigenetic modifications) can be the most efficient way ofhaploid induction by this method which may even reach to the efficiency of 100 %. However, due to limitations on the material collections (manual dissection ofegg cells), determining these epigenetic modifications will take time. Because orthologs ofthe OsBBMl gene can be found in all flowering plants, it is likely that the same technique can be applied to other plant species using either OsBBMl or the orthologous gene from that species. Thus, there is a huge potential for extension ofthis procedure for haploid induction to other crops.
[0072] Using the CRISPR-Cas9 system illustrated in Figure 5A and 5B, a construct containing guide RNAs were designed to target the endogenous rice OsBBMl promoter was introduced into rice plants. In this alternative approach, haploids were generated by activating expression ofthe endogenous OsBBMl egg cell allele using a CRISPR/Cas9 based gene activation (CRISPRa) system (Maeder, M.L., et al. (2013). Nature methods 10, 977-979; Lowder, et al., 2015;
Dominguez, A.A., eta]. (2016) Nature reviews. Molecular cell biology 17, 5-15). This system utilizes VP64 protein domain (Beerli et al., 1998), for transcription activation which is guided to OsBBMl promoter by a gRNA bound, nuclease-deficient Cas9 (dCas9) protein (Figure 5B; Qi, L.S.,etal. (2013) Cell 152, 1173-1183). Because the dCas9-VP64 is under the control ofan egg cell-specific promoter (pDD45), activation ofOsBBMl expression will occur in the egg cell, leading to parthenogenesis in the seed, and subsequently a haploid plant after germination. Thirteen transgenic plants were raised with the construct shown in Figure 5A. Seeds from five of these primary transgenic plants have been germinated so far and the progeny were screened for haploid plant production. Haploid plants were recovered from two ofthe transgenic lines. [0073] The haploids generated with this method were phenotypically similar to the previously described haploids obtained from the DD45::BBM1 plants (Figure 3A to F). The haploid genotype ofthese plants was confirmed by flowcytometry (Figure 5C to E). The relative fluorescence intensity histograms show the In flow peak for the haploids obtained with
CRISPRa coincides with a control haploid (Figure 5C and D). The haploids have halfthe DNA content compared to a control wild-type 2n plant (Figure 5E). The In and 2n peaks distinctively separate in a mixed sample ofhaploid (Figure 5C) and wild-type diploid (Figure 5F). Thus, the results clearly show activation ofOsBBMl in egg cells by this method leads to embryo formation without fertilization, resulting in haploid plants. [0074] In summary we have developed a novel way ofmaking haploids in a recalcitrant crop by the altered expression ofan endogenous gene. Our technique is more efficient than any ofthe procedures currently employed for haploid induction in rice. It is a very simple and easy to implement. It does not involve the tedious and laborious tissue culture techniques used either in microspore cultures or rescuing and culturing haploid embryos in subsequent generations in wide crossing, merely a cross with a DD45:OsBBMl plant should be enough to induce haploidy in a new variety.
Materials and Methods
[0075] Constructs and Plant Materials: The full length open reading frame (ORF) ofBBM1 was amplified from cDNAs made from rice zygotes and calli using two sets ofprimers
(BBM1GRF 5'-CGGATCCATGGCCTCCATCACC-3', kitBBMlRPl 5'-
CCTTCGACCCCATCCCAT-3' and kitBBMlFP25'-GGATGGGATGGGGTCGAAG-3', BBM1RP33'-GGTACCAGACTGAGAACAGAGGC-3'). The two fragments were fused together by an overlap PCR. The full length ORF ofBBM1 (see sequence at the end) was then cloned under an Arabidopsis egg cell specific promoter, DD45 (Steffen, J.G et al. (2007), The Plantjournal, 51, 281-292) in a pCAMBIAl300 (CAMBIA, Canberra, Australia) based plasmid (FIG.1A).12 transgenic rice lines were raised atUC Davis plant transformation facility as per Hiei, Y. and Komari, T. (2008), Natureprotocols, 3, 824-834. A segregating population ofthe hemizygous seeds from these lines were screened for haploid plant induction.
[0076] Tissue Staining: Stamens from some flowers ofTO transgenic rice lines were removed around the anthesis stage, bagged and let grow for another 9 days after emasculation (DAE). Carpels were dissected from these 9 DAE flowers and fixed in FAA [formaldehyde (10%) - acetic acid (5%) - ethanol (50%)]. Tissue embedding and sectioning was done as per Javelle, M., Marco, C.F. and Timmermans, M. (2011), Journal ofvisualizedexperiments : JoVE, e3328.5 μιη sections crosslinked to glass slides were stained with 0.01% toluidine blue for 30 seconds. [0077] FACS analysis: Nuclei for Fluorescence-Activated Cell Sorting (FACS) analysis were isolated by leafchopping method as described by Galbraith, D.W. et al. (1983), Science, 220, 1049-1051. The isolated nuclei were stained with propidium iodide at 40 μg/ml concentration in Galbraith's buffer. FACS analysis and DNA content estimation was done with Becton
Dickinson FACScan system as per Dolezel, J., Greilhuber, J. and Suda, J. (2007), Nature protocols, 2, 2233-2244 and Cousin, A. et al. (2009), Cytometry. PartA : thejournalofthe InternationalSocietyforAnalytical Cytology, 75, 1015-1019.
OsBBMl, Locus id: LOC_Osllgl9060, DNA Sequence
GGATCCATGGCCTCCATCACCAACTGGCTCGGCTTCTCCTCCTCCTCCTTCTCCGGCGCCGGC GCCGACCCCGTCCTGCCCCACCCGCCGCTGCAAGAGTGGGGGAGCGCTTATGAGGGCGGC GGCACGGTGGCGGCCGCCGGCGGGGAGGAGACGGCGGCGCCGAAGCTGGAGGACTTCCTC GGCATGCAGGTGCAGCAGGAGACGGCCGCCGCGGCGGCGGGGCACGGCCGTGGAGGCAGC TCGTCGGTCGTTGGGCTGTCCATGATCAAGAACTGGCTACGCAGCCAGCCGCCGCCCGCG GTGGTTGGGGGAGAAGACGCTATGATGGCGCTCGCGGTGTCGACGTCGGCGTCGCCGCCG GTGGACGCGACGGTGCCGGCCTGCATTTCGCCGGATGGGATGGGGTCGAAGGCGGCCGAC GGCGGCGGCGCGGCCGAGGCGGCGGCGGCGGCGGCGGCGCAGAGGATGAAGGCGGCCATG GACACGTTCGGGCAGCGGACGTCCATCTACCGGGGTGTCACCAAGCACAGGTGGACAGGA AGGTATGAAGCCCATCTTTGGGATAACAGCTGCAGAAGAGAAGGTCAGACTCGCAAAGGC AGACAAGTATATCTTGGAGGATATGATAAGGAAGAAAAAGCTGCTAGGGCTTATGATTTG GCTGCCCTTAAATACTGGGGCACTACAACGACGACGAATTTTCCGGTAAGCAACTACGAA AAAGAGTTGGATGAAATGAAGCACATGAATAGGCAGGAATTTGTTGCATCCCTTAGAAGA AAAAGCAGTGGATTTTCACGTGGTGCTTCCATATATCGTGGTGTTACAAGACACCATCAG CATGGAAGGTGGCAAGCAAGGATAGGACGGGTGGCAGGAAACAAGGATCTGTATTTGGGC ACATTTGGCACCCAAGAGGAAGCTGCAGAGGCATATGATATCGCTGCAATCAAATTCCGT GGTCTCAATGCTGTGACAAACTTTGACATGAGCCGGTACGATGTCAAGAGCATCATTGAA AGCAGCAATCTCCCAATTGGTACTGGAACCACCCGGCGATTGAAGGACTCCTCTGATCAC ACTGATAATGTCATGGACATCAATGTCAATACCGAACCCAATAATGTGGTATCATCCCAC TTCACCAATGGGGTTGGCAACTATGGTTCGCAGCATTATGGTTACAATGGATGGTCGCCA ATTAGCATGCAGCCGATCCCCTCGCAGTACGCCAACGGCCAGCCCAGGGCATGGTTGAAA CAAGAGCAGGACAGCTCTGTGGTTACAGCGGCGCAGAACCTGCACAATCTACATCATTTT AGTTCCTTGGGCTACACCCACAACTTCTTCCAGCAATCTGATGTTCCAGACGTCACAGGT
TTCGTTGATGCGCCTTCGAGGTCCAGTGACTCATACTCCTTCAGGTACAATGGAACAAAT GGCTTTCATGGTCTCCCGGGTGGAATCAGCTATGCTATGCCGGTTGCGACAGCGGTGGAC CAAGGTCAGGGCATCCATGGCTATGGAGAAGATGGTGTGGCAGGCATTGACACCACACAT GACCTGTATGGCAGCCGTAATGTGTACTACCTTTCCGAGGGTTCGCTTCTTGCCGATGTC GAAAAAGAAGGCGACTATGGCCAATCTGTGGGGGGCAACAGCTGGGTTTTGCCGACACCG TAGTCAGAGATGGTGGAGAAGGCTGACAATGTGACGGTTTGCCATGGGATGCCTCTGTTC TCAGTCTGGTACC
OsBBMl GenBank accession number: AAX95437.1, Protein Sequence
Figure imgf000032_0001
[ΘΘ78] Transgenic plants were generated with the construct shown in Figure 5A. Three guide RNAs (gRNAs) with sequences 5'-GAGAAGCCCTGCATTTGTAT-3', 5'- GCTATTTGCTGAGACTAGAA-3' and 5'-GGTGGTTCTTGTCGTCTTTA-3' were designed targeting the immediate upstream (upstream of TSS) 150 bp sequences ofOsBBMl (Figure 5A and B). The three gRNAs were cloned in separate vectors and the final binary vector for plant transformation was assembled as per Lowder, et al., 2015.
[0079] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereofwill be suggested to persons skilled in the art and are to be included within the spirit and purview ofthis application and scope ofthe appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
S£QIDNO:l
N-terminus ofRice BBM
N-terminal sequence amino acid 1 to 168
1 masitnwlgf ssssfsgaga dpvlphpplq ewgsayeggg tvaaaggeet aapkleclflg 61 mqvqqetaaa aaghgrggss svvglsmikn wlrsqpppav vggedammal avstsasppv 121 datvpacisp dgmgskaadg ggaaeaaaaa aaqrrnkaamd tfgqrtsi
SEQ ID NO:2
Middle portion ofRice BBM
Middle region amino acid 169 to 334
yr gvtkhrwtgr
181 yeahlwdnsc rregqtrkgr qvylggydke ekaaraydla alkywgtttt tnfpvsnyek 241 eldemkhmnr qefvaslrrk ssgfsrgasi yrgvtrhhqh grwqarigrv agrikdlylgt 301 fgtqeeaaea ydiaaikfrg lnavtnfdms rydv
SEQ ID NO:3
C-terminus ofRice BBM
C-terminal sequence amino acid 335 to 559
siies snlpigtgtt rrlkdssdht
361 dnvmdinvnt epnnvvsshf tngvgnygsq hygyngwspi smqpipsqya ngqprawlkq 421 eqdssvvtaa qnlhnlhhfs slgythnffq qsdvpdvtgf vdapsrssds ysfryngtng 481 fhglpggisy ampvatavdq gqgihgyged gvagidtthd lygsrnvyyl segslladve 541 kegdygqsvg gnswvlptp
SEQ ID NO:4
Arabidopsis thaliana BABYBOOM(AtBBM), AT5G17430
NCBI Accession # NC_003076; NM_121749
1 taatatgtcg cctcggaaga aatgaacatt atatttttga cttttcttct tcttcttcct 61 cttctctctt catttaacac caaaaccttt ttctttctcc tcttcatgca tgaaccctaa 121 ctaagttctt tttcctattc ttcttctctc atctatcaca aggagtagtt agaatattat 181 atgaactcga tgaataactg gttaggcttc tctctctctc ctcatgatca aaatcatcac 241 cgtacggatg ttgactcctc caccaccaga accgccgtag atgttgccgg agggtactgt 301 tttgatctgg ccgctccctc cgatgaatct tctgccgttc aaacatcttt tctttctcct 361 ttcggtgtca ccctcgaagc tttcaccaga gacaataata gtcactcccg aggtttgtgt 421 tttaaaaata tttattttat ctttgttttt gttatttttt ccccttcttc caatgcatag 481 aacaaagacc aagactcacg cacgtagccc tatttttgtt tttcattgtt tatcgatttc 541 atctcttttg agaatttcca tgagtggggt ttagtgtttg ttcacatgat cacatctcat 601 gaatttaaac ttagtaaaac atgaaactag acatttattt tgtacccttt tatccttata 661 aaatgaaaat tccatttcgt atattataga tcggtgatga atcaaaccca acgttgggga 721 tcgctttgtt ttttgtctat agattgggac atcaatggtg gtgcatgcaa taacattaac 781 aataacgaac aaaatggacc aaagcttgag aatttcctcg gccgcaccac cacgatttac 841 aataccaacg agaccgttgt agatggaaat ggcgattgtg gaggaggaga cggtggtggt 901 ggcggctcac taggcctttc gatgataaaa acatggctga gtaatcattc ggttgctaat 961 gctaatcatc aagacaatgg taacggtgca cgaggcttgt ccctctctat gaattcatct 1021 actagtgata gcaacaacta caacaacaat gatgatgtcg tccaagagaa gactattgtt 1081 gatgtcgtag aaactacacc gaagaaaact attgagagtt ttggacaaag gacgtctata 1141 taccgcggtg ttacaaggtt aatttcattc atctatgtat atttttattg tgcttaaatt 1201 gtgattttct tggtattgtt tgggacattc taatggttcg gttgagagag agtgcaacgg 1261 aatgtctctc aatgtatatt aaagagaaac attaattagt gtacatgggt ttatatatac 1321 aataatacgt catatatatg gtatgctctt gatcatagta tataatgttt gaatttaatg 1381 tcaggcatcg gtggacaggt agatacgagg cacatttatg ggacaatagt tgcaaaagag 1441 aaggccagac tcgcaaagga agacaaggta ctatatatat aaagctaatt ttttaatttt 1501 catttaccat ttattttcaa actaatttag gttttctttt catgtgtttc atcaaaattt 1561 gcacctgatg gctctctttt cagtttatct gggtaagttc ttgattttaa gctataaatt 1621 aataatagat gactattaaa tctattctaa gcaaaatata attgttgtgt tatctgatcc 1681 tacaggaggt tatgacaaag aagaaaaagc agctagggct tacgatttag ccgcactaaa 1741 gtattgggga accaccacta ctactaactt ccccgtatgt taattaatca ataatatata 1801 cataaattcc taacttctaa ccaattttag tctgaataat gccaatctct taaactagta 1861 ttatcttact attaactgtc atgtttatat tgttacattt gttacaataa aaattagtaa 1921 tgttggttgg atataatatt cagttgagtg aatatgagaa agaggtagaa gagatgaagc 1981 acatgacgag gcaagagtat gttgcctctc tgcgcaggta cagaatgaaa ctcttgaatt 2041 tattgcattt tagaaaccca tcacgtatat atttattaaa atatatcgta acattgaata
2101 aatcattatt tggaaagata taagaaacat gtaaatatgc aggaaaagta gtggtttctc
2161 tcgtggtgca tcgatttatc gaggagtaac aaggtacgta taatccatct agatatggaa
2221 cgaatacagt gtttcattat tttttttgat gtatacataa taattgtcat acaatactat
2281 taatctaatc taattaatat ttcctttaaa atggttccaa aaggcatcac caacatggaa
2341 ggtggcaagc taggatcgga agagtcgccg gtaacaaaga cctctacttg ggaactttcg
2401 gtacattttc caataaaatc tatatactat aagatattaa atatacacaa atatatctaa
2461 gtgaatcata caaattatgt aggcacacag gaagaggctg ctgaggctta tgacattgca
2521 gccattaaat tcagaggatt aagcgcagtg actaacttcg acatgaacag atacaatgtt
2581 aaagcaatcc tcgagagccc gagtctacct attggtagtt ctgcgaaacg tctcaaggac
2641 gttaataatc cggttccagc tatgatgatt agtaataacg tttcagagag tgcaaataat
2701 gttagcggtt ggcaaaacac tgcgtttcag catcatcagg gaatggattt gagcttattg
2761 cagcaacagc aggagaggta cgttggttat tacaatggag gaaacttgtc taccgagagt
2821 actagggttt gtttcaaaca agaggaggaa caacaacact tcttgagaaa ctcgccgagt
2881 cacatgacta atgttgatca tcatagctcg acctctgatg attctgttac cgtttgtgga
2941 aatgttgtta gttatggtgg ttatcaagga ttcgcaatcc ctgttggaac atcggttaat
3001 tacgatccct ttactgctgc tgagattgct tacaacgcaa gaaatcatta ttactatgct
3061 cagcatcagc aacaacagca gattcagcag tcgccgggag gagattttcc ggtggcgatt
3121 tcgaataacc atagctctaa catgtacttt cacggggaag gtggtggaga aggggctcca
3181 acgttttcag tttggaacga cacttagaaa aataagtaaa agatctttta gttgtttgct
3241 ttgtatgttg cgaacagttt gattctgttt ttctttttcc tttttttggg taattttctt
3301 ataacttttt tcatagtttc gattatttgg ataaaatttt cagattgagg atcatt
SEQ ID NO:5
Arabidopsis thaliana BABY BOOM (AtBBM),
NCBI Protein Accession # NP_001332647.1; NP_197245
1 MNSMNNWLGF SLSPHDQNHE RTDVDSSTTR TAVDVAGGYC FDLAAPSDES
51 SAVQTSFLSP FGVTLEAFTR DNNSHSRDWD INGGACNNIN NNEQNGPKLE
101 NFLGRTTTIY NTNETWDGN GDCGGGDGGG GGSLGLSMIK TWLSNHSVAN
151 ANHQDKGNGA RGLSLSMNSS TSDSNNYNNK DDWQEKTIV DWETTPKKT
201 IESFGQRTSI YRGVTRHRWT GRYEAHLWDN SCKREGQTRK GRQVYLGGYD
251 KEEKAARAYD LAALKYWGTT TTTNFPLSEY EKEVEEMKHM TRQEYVASLR
301 RKSSGFSRGA SIYRGVTRHH QHGRWQARIG RVAGKKDLYL GTFGTQEEAA
351 EAYDIAAIKF RGLSAVTNFD MNRYNVKAIL ESPSLPIGSS AKRLKDVNNP
401 VPAMMISNNV 3ESANKVSGW QNTAFQHHQG MDLSLLQQQQ ERYVGYYNGG
451 NLSTESTRVC FKQEEEQQHF LRNSPSHMTK VDEHSSTSDD SVTVCGKWS
501 YGGYQGFAIP VGTSWYDPF TAAEIAYNAR NHYYYAQHQQ QQQIQQSPGG
551 DFPVAISNNH SSNMYFHGEG GGEGAPTFSV WNDT
SEQ ID NO:6
(a) Brassica napus BABYBOOM1 (BnBBMl), AF317904
NCBI Accession # NM_001315820
1 gttcatctct cttctttaag accaaaacct ttttctcctc ctcttcatgc atgaacccta
61 actaagttct tcttctttta ccttttacca agaactcgtt agatcactct ctgaactcaa
121 tgaataataa ctggttaggc ttttctctct ctccttatga acaaaatcac catcgtaagg
181 acgtctactc ttccaccacc acaaccgtcg tagatgtcgc cggagagtac tgttacgatc
241 cgaccgctgc ctccgatgag tcttcagcca tccaaacatc gtttccttct ccctttggtg
301 tcgtcgtcga tgctttcacc agagacaaca atagtcactc ccgagattgg gacatcaatg
361 gttgtgcatg caataacatc cacaacgatg agcaagatgg accaaagctt gagaatttcc
421 ttggccgcac caccacgatt tacaacacca acgaaaacgt tggagatgga agtggaagtg
481 gctgttatgg aggaggagac ggtggtggtg gctcactagg actttcgatg ataaagacat
541 ggctgagaaa tcaacccgtg gataatgttg ataatcaaga aaatggcaat gctgcaaaag
601 gcctgtccct ctcaatgaac tcatctactt cttgtgataa caacaacgac agcaataaca
661 acgttgttgc ccaagggaag actattgatg atagcgttga agctacaccg aagaaaacta
721 ttgagagttt tggacagagg acgtctatat accgcggtgt tacaaggcat cggtggacag
781 gaagatatga ggcacattta tgggataata gttgtaaaag agaaggccaa acgcgcaaag 841 gaagacaagt ttatttggga ggttatgaca aagaagaaaa agcagctagg gcttatgatt 901 tagccgcact caagtattgg ggaaccacca ctactactaa cttccccatg agcgaatatg 961 aaaaagaggt agaagagatg aagcacatga caaggcaaga gtatgttgcc tcactgcgca 1021 ggaaaagtag tggtttctct cgtggtgcat cgatttatcg tggagtaaca agacatcacc 1081 aacatggaag atggcaagct aggataggaa gagtcgccgg taacaaagac ctctacttgg 1141 gaacttttgg cacacaagaa gaagctgcag aggcatacga cattgcggcc atcaaattca 1201 gaggattaac cgcagtgact aacttcgaca tgaacagata caacgttaaa gcaatcctcg 1261 aaagccctag tcttcctatt ggtagcgccg caaaacgtct caaggaggct aaccgtccgg 1321 ttccaagtat gatgatgatc agtaataacg tttcagagag tgagaatagt gctagcggtt 1381 ggcaaaacgc tgcggttcag catcatcagg gagtagattt gagcttattg caccaacatc 1441 aagagaggta caatggttat tattacaatg gaggaaactt gtcttcggag agtgctaggg 1501 cttgtttcaa acaagaggat gatcaacacc atttcttgag caacacgcag agcctcatga 1561 ctaatatcga tcatcaaagt tctgtttcgg atgattcggt tactgtttgt ggaaatgttg 1621 ttggttatgg tggttatcaa ggatttgcag ccccggttaa ctgcgatgcc tacgctgcta 1681 gtgagtttga ttataacgca agaaaccatt attactttgc tcagcagcag cagacccagc 1741 agtcgccagg tggagatttt cccgcggcaa tgacgaataa tgttggctct aatatgtatt 1801 accatgggga aggtggtgga gaagttgctc caacatttac agtttggaac gacaattaga 1861 aaaaatagtt aaagatcttt agttatatgc gttgttgtgt gctggtgaac agtgtgatac 1921 tttgattatg tttttttctt tctctttttc tttttcttgg ttaatttctt aagacttatt 1981 tttagtttcc attagttgga taaattttca gact
SEQ ID NO:7
Brassica napus BABY BOOM1 (BnBBMl)
NCBI Protein Accession # NP 001302749; AAM33802
1 nmnnwlgfsl spyeqnhhrk dvyssttttv vdvageycyd ptaasdessa iqtsfpspfg 61 vvvdaftrdn nshsrdwdin gcacnnihnd eqdgpklenf lgrtttiynt nenvgdgsgs 121 gcygggdggg gslglsmikt wlrnqpvdnv dnqengnaak glslsmnsst scdnnndsnn 181 nvvaqgktid dsveatpkkt iesfgqrtsi yrgvtrhrwt gryeahlwdn sckregqtrk 241 grqvylggyd keekaarayd laalkywgtt tttnfpmsey ekeveemkhm trqeyvaslr 301 rkssgfsrga siyrgvtrhh qhgrwqarlg rvagnkdlyl gtfgtqeeaa eaydlaaikf 361 rgltavtnfd mnrynvkail espslpigsa akrlkeanrp vpsmmmisnn vsesensasg 421 wqnaavqhhq gvdlsllhqh qeryngyyyn ggnlssesar acfkqeddqh hflsntqslm 481 tnidhqssvs ddsvtvcgnv vgyggyqgfa apvncdayaa sefdynarnh yyfaqqqqtq 541 qspggdfpaa mtnnvgsnniy yhgegggeva ptftvwndn
SEQ ID NO:8
Brassica napus BABYBOOM2 (BnBBM2), AF317905
NCBI Accession # NM 001316209
1 ttcttctttt accttttacc aagaactcgt tagatcattt tctgaactcg atgaataata 61 actggttagg cttttctctc tctccttatg aacaaaatca ccatcgtaag gacgtctgct 121 cttccaccac cacaaccgcc gtagatgtcg ccggagagta ctgttacgat ccgaccgctg 181 cctccgatga gtcttcagcc atccaaacat cgtttccttc tccctttggt gtcgtcctcg 241 atgctttcac cagagacaac aatagtcact cccgagattg ggacatcaat ggtagtgcat 301 gtaataacat ccacaatgat gagcaagatg gaccaaaact tgagaatttc cttggccgca 361 ccaccacgat ttacaacacc aacgaaaacg ttggagatat cgatggaagt gggtgttatg 421 gaggaggaga cggtggtggt ggctcactag gactttcgat gataaagaca tggctgagaa 481 atcaacccgt ggataatgtt gataatcaag aaaatggcaa tggtgcaaaa ggcctgtccc 541 tctcaatgaa ctcatctact tcttgtgata acaacaacta cagcagtaac aaccttgttg 601 cccaagggaa gactattgat gatagcgttg aagctacacc gaagaaaact attgagagtt 661 ttggacagag gacgtctata taccgcggtg ttacaaggca tcggtggaca ggaagatatg 721 aggcacattt atgggataat agttgtaaac gagaaggcca aacgcgcaaa ggaagacaag 781 tttatttggg aggttatgac aaagaagaaa aagcagctag ggcttatgat ttagccgcac 841 tcaagtattg gggaaccacc actactacta acttccccat gagcgaatat gagaaagaga 901 tagaagagat gaagcacatg acaaggcaag agtatgttgc ctcacttcgc aggaaaagta 961 gtggtttctc tcgtggtgca tcgatttatc gtggagtaac aagacatcac caacatggaa 1021 gatggcaagc taggatagga agagtcgccg gtaacaaaga cctctacttg ggaacttttg 1081 gcacacaaga agaagctgca gaggcatacg acattgcggc catcaaattc agaggattaa 1141 ccgcagtgac taacttcgac atgaacagat acaacgttaa agcaatcctc gaaagcccta 1201 gtcttcctat tggtagcgcc gcaaaacgtc tcaaggaggc taaccgtccg gttccaagta 1261 tgatgatgat cagtaataac gtttcagaga gtgagaataa tgctagcggt tggcaaaacg 1321 ctgcggttca gcatcatcag ggagtagatt tgagcttatt gcagcaacat caagagaggt 1381 acaatggtta ttattacaa t ggaggaaact tgtcttcgga gagtgctagg gcttgtttca 1441 aacaagagga tgatcaacac catttcttga gcaacacgca gagcctcatg actaatatcg 1501 atcatcaaag ttctgtttca gatgattcgg ttactgtttg tggaaatgtt gttggttatg 1561 gtggttatca aggatttgca gccccggtta actgcgatgc ctacgctgct agtgagtttg 1621 actataacgc aagaaacca t tattactttg ctcagcagca gcagacccag cattcgccag 1681 gaggagattt tcccgcggca atgacgaata atgttggctc taatatgtat taccatgggg 1741 aaggtggtgg agaagttgct ccaacattta cagtttggaa cgacaattag aaataatagt 1801 taaagatctt tagttatatg cgttgttgtg tggtgttgaa cagtttgata ctttgattat 1861 gttttttttt ctctttttca ttttgttggt tagtttctta agacttattt tttgtttcca 1921 ttagttggat aaattttcgg acttaagggt cacttctgtt ctgacttctg tctaatacag 1981 aaaagttttc at
SEQ ID NO:9
Brassica napus BABY BOOM2 (BnBBM2)
NCBI Protein Accession # AAM33801; NP_001303138
1 mnnnwlgfsi spyeqrihhrk dvcsstttta vdvageycyd ptaasdessa iqtsfpspfg 61 vvldaftrdn nshsrdwdin gsacnnihnd eqdgpklenf lgrtttiynt nenvgdidgs 121 gcygggdggg gslglsmlkt wlrnqpvdriv dnqengngak glslsmnsst scdnrmyssn 181 nlvaqgktid dsveatpkkt iesfgqrtsi yrgvtrhrwt gryeahlwdn sckregqtrk 241 grqvylggyd keekaarayd laalkywgtt tttnfpmsey ekeieemkhm trqeyvaslr 301 rkssgfsrga siyrgvtrhh qhgrwqarig rvagnkdlyl gtfgtqeeaa eaydiaaikf 361 rgltavtnfd mnrynvkall espslpigsa akrlkeanrp vpsmmmisnn vsesennasg 421 wqnaavqhhq gvdlsllqqh qeryngyyyn ggnlssesar acfkqeddqh hflsntqslm 481 tnidhqssvs ddsvtvcgriv vgyggyqgfa apvncdayaa sefdynarnh yyfaqqqqtq 541 hspggdfpaa mtnnvgsnmy yhgegggeva ptftvwndn
SEQ ID NO:10
Rice Oryza sativa BABYBOOM1 (OsBBMl); LOC_Osllgl9060
NCBI Accession # AK287621; XM 015760728
1 gagatggcct ccatcaccaa ctggctcggc ttctcctcct cctccttctc cggcgccggc 61 gccgaccccg tcctgcccca cccgccgctg caagagtggg ggagcgctta tgagggcggc 121 ggcacggtgg cggccgccgg cggggaggag acggcggcgc cgaagctgga ggacttcctc 181 ggcatgcagg tgcagcagga gacggccgcc gcggcggcgg ggcacggccg tggaggcagc 241 tcgtcggtcg ttgggctgtc catgatcaag aactggctac gcagccagcc gccgcccgcg 301 gtggttgggg gagaagacgc tatgatggcg ctcgcggtgt cgacgtcggc gtcgccgccg 361 gtggacgcga cggtgccggc ctgcatttcg ccggatggga tggggtcgaa ggcggccgac 421 ggcggcggcg cggccgaggc ggcggcggcg gcggcggcgc agaggatgaa ggcggccatg 481 gacacgttcg ggcagcggac gtccatctac cggggtgtca ccaagcacag gtggacagga 541 aggtatgaag cccatctttg ggataacagc tgcagaagag aaggtcagac tcgcaaaggc 601 agacaagtat atcttggagg atatgataag gaagaaaaag ctgctagggc ttatgatttg 661 gctgccctta aatactgggg cactacaacg acgacgaatt ttccggtaag caactacgaa 721 aaagagttgg atgaaatgaa gcacatgaat aggcaggaat ttgttgcatc ccttagaaga 781 aaaagcagtg ga111tcacg tggtgcttcc atatatcgtg gtgttacaag acaccatcag 841 catggaaggt ggcaagcaag gataggacgg gtggcaggaa acaaggatct gtatttgggc 901 acatttggca cccaagagga agctgcagag gcatatgata tcgctgcaat caaattccgt 961 ggtctcaatg ctgtgacaaa ctttgacatg agccggtacg atgtcaagag catcattgaa 1021 agcagcaatc tcccaattgg tactggaacc acccggcgat tgaaggactc ctctgatcac 1081 actgataatg tcatggacat caatgtcaat accgaaccca ataatgtggt atcatcccac 1141 ttcaccaatg gggttggcaa ctatggttcg cagcattatg gttacaatgg atggtcgcca 1201 attagcatgc agccgatccc ctcgcagtac gccaacggcc agcccagggc atggttgaaa 1261 caagagcagg acagctctgt ggttacagcg gcgcagaacc tgcacaatct acatcatttt 1321 agttccttgg gctacaccca caacttcttc cagcaatctg atgttccaga cgtcacaggt 1381 ttcgttgatg cgccttcgag gtccagtgac tcatactcct tcaggtacaa tggaacaaat 1441 ggctttcatg gtctcccggg tggaatcagc tatgctatgc cggttgcgac agcggtggac 1501 caaggtcagg gcatccatgg ctatggagaa gatggtgtgg caggcattga caccacacat 1561 gacctgtatg gcagccgtaa tgtgtactac ctttccgagg gttcgcttct tgccgatgtc 1621 gaaaaagaag gcgactatgg ccaatctgtg gggggcaaca gctgggtttt gccgacaccg 1681 tagtcagaga tggtggagaa ggctgacaat gtgacggttt gccatgggat gcctctgttc 1741 tcagtctgga atgatgctta gctgggtgga gaattagcta tagtagttac tgaaaaggtg 1801 atattaacag ttgttgggca gattgattaa ctgggggata tatagtagtc atacaaagtc 1861 ttgcatgctt gctgattttg tattgctttc ttatcaccac catgcatgca atctatagtt 1921 ttgcctttag ctagaaatat tagctctaaa tatctcatgg agatatgaat tttatgctga 1981 tgttacttag ggctcttgat tatatatatg agctgataat tcagccatta tc
SEQIDNO:12
Rice Oryza sativa BABYBOOM(OsBBM); LOC_Os01g67410
NCBI Accession # AK240892; XM_015778958
1 gatatctatc ttatataaat atctaccagt gatactgttg cttagtgctc caaacctctc
61 ttgacctctt cttcttcttc tcagttagct tagcttaagc ttcccctaac cttgagctca 121 ccacaacaat ggcgacttga tctaacagag cttaaccaag tagcaaatca tacatataac 181 catagcttaa ttcgcattga atcttgtctt gttcagtgtg aatcatcaac catggccacc 241 atgaacaact ggctggcctt ctccctctcc ccgcaggatc agctcccgcc gtctcagacc 301 aactccactc tcatctccgc cgccgccacc accaccaccg ccggcgactc ctccaccggc 361 gacgtctgct tcaacatccc ccaagattgg agcatgaggg gatcggagct ctcggcgctc 421 gtcgccgagc cgaagctgga ggacttcctc ggcggcatct ccttctcgga gcagcagcat 481 catcacggcg gcaagggcgg cgtgatcccg agcagcgccg ccgcttgcta cgcgagctcc 541 ggcagcagcg tcggctacct gtaccctcct ccaagctcat cctcgctcca gttcgccgac 601 tccgtcatgg tggccacctc ctcgcccgtc gtcgcccacg acggcgtcag cggcggcggc 661 atggtgagcg ccgccgccgc cgcggcggcc agtggcaacg gcggcattgg cctgtccatg 721 atcaagaact ggctccggag ccagccggcg ccgcagccgg cgcaggcgct gtctctgtcc 781 atgaacatgg cggggacgac gacggcgcag ggcggcggcg ccatggcgct cctcgccggc 841 gcaggggagc gaggccggac gacgcccgcg tcagagagcc tgtccacgtc ggcgcacgga 901 gcgacgacgg cgacgatggc tggtggtcgc aaggagatta acgaggaagg cagcggcagc 961 gccggcgccg tggttgccgt cggctcggag tcaggcggca gcggcgccgt ggtggaggcc 1021 ggcgcggcgg cggcggcggc gaggaagtcc gtcgacacgt tcggccagag aacatcgatc 1081 taccgcggcg tgacaaggca tagatggaca gggaggtatg aggctcatct ttgggacaac 1141 agctgcagaa gagagggcca aactcgcaag ggtcgtcaag tctatctagg tggttatgac 1201 aaagaggaaa aagctgctag agcttatgat ttggctgctc tcaaatactg gggcccgacg 1261 acgacgacaa attttccggt aaataactat gaaaaggagc tggaggagat gaagcacatg 1321 acaaggcagg agttcgtagc ctctttgaga aggaagagca gtggtttctc cagaggtgea 1381 tccatttacc gtggagtaac taggcatcac cagcatggga gatggcaagc aaggatagga 1441 agagttgcag ggaacaagga cctctacttg ggcaccttea geaegcagga ggaggcggcg 1501 gaggcgtacg acatcgcggc gatcaagttc egggggctea acgccgtcac caacttcgac 1561 atgagccgct acgacgtcaa gagcatcctc gaeagegctg ccctccccgt cggcaccgcc 1621 gccaagcgcc tcaaggacgc cgaggccgcc gccgcctacg acgtcggccg catcgcctcg 1681 cacctcggcg gcgacggcgc ctacgccgcg cattacggcc accaccacca ctcggccgcc 1741 gccgcctggc cgaccatcgc gttccaggcg gcggcggcgc cgccgccgca cgccgccggg 1801 ctttaccacc cgtacgcgca gccgctgcgt gggtggtgca agcaggagca ggaccacgcc 1861 gtgatcgcgg cggcgcacag ectgeaggat ctccaccacc tcaacctcgg cgccgccgcc 1921 gccgcgcatg acttcttctc geaggegatg cagcagcagc acggcctcgg cagcatcgac 1981 aacgcgtcgc tcgagcacag caccggctcc aactccgtcg tetacaaegg cgacaatggc 2041 ggcggaggcg gcggctacat catggcgccg atgagcgccg tgtcggccac ggccaccgcg 2101 gtggcgagca gccacgatca cggcggcgac ggegggaage aggtgeagat ggggtacgac 2161 agctacctcg tcggcgcaga cgcctacggc ggcggcggcg cegggaggat gccatcctgg 2221 gcgatgacgc cggcgtcggc gccggccgcc acgagcagca gegacatgae eggagtctge 2281 catggcgcac agctcttcag cgtctggaac gacacataaa aaaaaaacta ggttagccag 2341 cttaattagc agggtaaacc actgacacaa ttaagecata cttaaattag ggttcatgag 2401 atgaccatta agcaggttat tatcattaat gatgtttaat ttctcaatta gtacttagct 2461 caaaaggagg ggatttcttc tgaaggatgg tgatggcttg tgaaattgaa cctggtgttc 2521 ttgccatgat ttttttttca caagctgcca ttttggggtt caggttcaga aggatcctga 2581 ttattattaa ccagccatat atatatagaa gggtagaaat ggaggtatcc tgcttgtaaa 2641 ttggggcaat ggtagctaga gttgatgcaa tgaccatget tcatgtgatg agaactaatt 2701 gtcttcctct gatcaaatta agcaggaaga ttaagcaaag ctcaatattg tttcag
SEQIDNO:13
Oryza sativa BABY BOOM (OsBBM)
NCBI Protein Accession # XP_015634444
1 matmnnwlaf slspqdqlpp sqtnstlisa aattttagds stgdvefnip qdwsmrgsel 61 salvaepkle dflggisfse qqhhhggkgg vipssaaacy assgssvgyl ypppsssslq 121 fadsvmvats spvvahdgvs gggmvsaaaa aaasgnggig lsmiknwlrs qpapqpaqal 181 slsmnmagtt taqgggamal lagagergrt tpaseslsts ahgattatma ggrkeineeg 241 sgsagavvav gsesggsgav veagaaaaaa rksvdtfgqr tsiyrgvtrh rwtgryeahl 301 wdnscrregq trkgrqvylg gydkeekaar aydlaalkyw gpttttnfpv nnyekeleem 361 khmtrqefva slrrkssgfs rgaslyrgvt rhhqhgrwqa rlgrvagnkd lylgtfstqe 421 eaaeaydiaa ikfrglnavt nfdmsrydvk sildsaalpv gtaakrlkda eaaaaydvgr 481 iashlggdga yaahyghhhh saaaawptia fqaaaappph aaglyhpyaq plrgwckqeq 541 dhaviaaahs lqdlhhlnlg aaaaahdffs qamqqqhglg sidnaslehs tgsnsvvyng 601 dnggggggyi mapmsavsat atavasshdh ggdggkqvqm gydsylvgad ayggggagrm 661 pswamtpasa paatsssdmt gvchgaqlfs vwndt
SEQIDNO:14
Zea mays BABYBOOM1 (ZmBBMl), GRMZM2G366434
NCBI Accession # NMOOl 154063; NC_024463
1 tctcaggtgg ccaggatatt ttttctggcc ccttcctgcc ctcttcacac tgacccatgt 61 gttgttctct atccctggaa agctatacct ccttacccct atcagcttct cctcacatct 121 cctctcgtcg ccacccatgc tatcaccgct ctgatcacaa gcaaggcaaa ccctcactgt 181 tctatcaacg cccctccctt agctagatgg ettcagegaa caactggctg ggcttctcgc 241 tctcgggcca ggataacccg cagcctaacc aggatagctc gcctgccgcc ggtatcgaca 301 tctccggcgc cagcgacttc tatggcctgc ccacgcagca gggctccgac gggcatctcg 361 gcgtgccggg cctgcgggac gatcacgett cttatggtat catggaggee tacaacaggg 421 ttcctcaaga aacccaagat tggaacatga ggggcttgga ctacaacggc ggtggctcgg 481 agctctcgat gcttgtgggg tccagcggcg gcggcggggg caaeggcaag agggccgtgg 541 aagacagega gcccaagctc gaagatttcc teggeggcaa ctcgttcgtc tccgatcaag 601 atcagtccgg cggttacctg ttctctggag tcccgatagc cagcagcgcc aatagcaaca 661 gcgggagcaa caccatggag ctctccatga tcaagacctg getaeggaac aaccaggtgg 721 cccagcccca gccgccagct ccacatcagc cgcagcctga ggaaatgagc accgacgcca 781 gcggcagcag ctttggatgc teggattega tgggaaggaa cagcatggtg gcggctggtg 841 ggagctcgca gagcctggcg ctctcgatga gcacgggctc gcacctgccc atggttgtgc 901 ccagcggcgc cgccagcgga gcggcctcgg agagcacatc gteggagaac aagegagega 961 gcggtgccat ggattcgccc ggcagegegg tagaagcegt accgaggaag tccatcgaca 1021 cgttcgggca aaggacctct atatatcgag gtgtaacaag gcatagatgg acagggeggt 1081 atgaggctca tctatgggat aatagttgta gaagggaagg geagagtege aagggtaggc 1141 aagtttacct tggtggctat gacaaggagg acaaggcagc aagggcttat gatttggcag 1201 ctctcaagta ttggggcact acgacaacaa caaatttccc tataagcaac tacgaaaagg 1261 agctagaaga aatgaaacat atgactagac aggagtacat tgcataccta agaagaaata 1321 gcagtggatt ttctcgtggg gcgtcaaagt atcgtggagt aactagacat catcagcatg 1381 ggagatggca agcaaggata gggagagttg caggaaacaa ggatctctac ttgggcacat 1441 tcagcaccga ggaggaggcg geggaggect acgacatcgc cgcgatcaag ttccgcggtc 1501 tcaacgccgt caccaacttc gaeatgagee getacgaegt gaagagcatc ctcgagagca 1561 gcacactgcc tgtcggcggt gcggccaggc gectcaagga cgccgtggac cacgtggagg 1621 ccggcgccac catctggcgc gecgacatgg acggcgccgt gatctcccag ctggccgaag 1681 ccgggatggg cggctacgcc tcgtacggcc accacggctg gccgaccatc gcgttccagc 1741 agccgtcgcc gctctccgtc cactacccgt acggccagcc gtcccgcggg tggtgcaaac 1801 ccgagcagga cgcggccgcc gccgcggcgc acagcctgca ggacctccag cagctgcacc 1861 tcggcagcgc ggcccacaac ttcttccagg egtegtcgag ctccacagtc tacaaeggeg 1921 gcgccggcgc cagtggtggg taccagggcc tcggtggtgg cagctctttc ctcatgccgt 1981 cgagcactgt cgtggcggcg gccgaccagg ggcacagcag cacggccaac caggggagca 2041 cgtgcagcta cggggacgac caccaggagg ggaagctcat eggttacgae gccgccatgg 2101 tggcgaccgc agctggtgga gacccgtacg ctgeggegag gaaegggtae cagttctcgc 2161 agggctcggg atccacggtg ageatcgega gggegaaegg gtaegctaac aactggagct 2221 ctcctttcaa caacggcatg gggtgacgac gaeggtaegg tccaacgaac ggagagggca 2281 gaagctagtg gctagtgata gggggttagc tagctagaag atcccaagtc taggttagag 2341 ttatttggtc atcgttgtcg tgtttcgacg tgctcaggtt ctggttcgat tetgeacaat 2401 taacccgtgc atgcacgcgt gtgectttet ggaagctggt aatggcaggt cagggtaagt 2461 aaagttagcg ttgtaagtta tcctgatgtg ctgttaattt tgggtagttt cagaaggtct 2521 agccaatctc gtcggaaaaa aaaaaaaaaa aa
SEQIDNO:15
Zea mays BABY BOOMl (ZinBBMl) GRMZM2G366434
NCBI Protein Accession # NP_001147535
1 masannwlgf slsgqdnpqp nqdsspaagi disgasdfyg lptqqgsdgh lgvpglrddh
61 asygimeayn rvpqetqdwn mrgldynggg selsmlvgss gggggngkra vedsepkled
121 flggnsfvsd qdqsggylfs gvpiassans nsgsntmels miktwlrnnq vaqpqppaph
181 qpqpeemstd asgssfgcsd smgrnsmvaa ggssqslals mstgshlpmv vpsgaasgaa
241 sestssenkr asgamdspgs aveavprksi dtfgqrtsiy rgvtrhrwtg ryeahlwdns
301 crregqsrkg rqvylggydk edkaaraydl aalkywgttt ttnfpisnye keleemkhmt
361 rqeyiaylrr nssgfsrgas kyrgvtrhhq hgrwqarigr vagnkdlylg tfsteeeaae
421 aydlaaikfr glnavtrifdm srydvksile sstlpvggaa rrlkdavdhv eagatiwrad
481 mdgavisqla eagmggyasy ghhgwptiaf qqpsplsvhy pygqpsrgwc kpeqdaaaaa
541 ahslqdlqql hlgsaahnff qasssstvyri ggagasggyq glgggssflm psstvvaaad
601 qghsstanqg stcsygddhq egkligydaa mvataaggdp yaaarngyqf sqgsgstvsi 661 arangyannw sspfnngmg
SEQroNO:16
Glycine maxBABYBOOMl (GmBBMl); HM775856
NCBI Accession # XM 006586582
1 aaactagtac tatatgette ttcttcttct tctccttcat gcacaaactg ctattttcac 61 cctttatata tctatctact cctgaagatt agattacctt gagggctttg tgctctctgt 121 gtaatattct tcaatatcat ggggtctatg aatttgttag gtttttctct ctctcctcac 181 gaagaacacc cttctagtca agatcactct caaacgacac cttctcgttt tagcttcaac 241 cctgatggat caatctcaag cactgatgta gcaggaggct gctttgatct cacttctgac 301 tcaactcctc atttacttaa ccttccttct tatggcatat acgaagcatt tcacagaaac 361 aatagtatta acaccactca agattggaag gagaactaca acagccaaaa tttgctattg 421 ggaacttcgt gcaataaaca aaacatgaac caaaaccaac agcaacagcc aaagcttgaa 481 aacttcctcg gtggacactc atttggcgaa catgagcaaa cctacggtgg taactcagcc 541 tctacagatt acatgtttcc tgctcagcca gtatcggctg gtggtggtgg tagtggtggt 601 ggcagtaaca ataacaacaa cagtaactcc atagggttat ccatgataaa gacatggttg 661 aggaaccaac caccgaactc agaaaacatc aacaacaaca atgaaagtgg tggcaatatt 721 agaagcagtg tgcagcaaac tctatcactt tccatgagta ctggttcaca atcaagcaca 781 tcactgcccc ttctcactgc tagtgtggat aatggagaga gtccttctga taacaaacaa 841 ccaaacacct cggctgcact tgattccacc caaaccggag ccattgaaac tgcacccaga 901 aagtccattg acacttttgg acagagaact tctatctacc gtggtgtaac aaggcatagg 961 tggacgggga ggtacgaggc tcacctgtgg gataatagtt gtagaagaga gggacagact 1021 cgcaaaggaa ggcaagttta cttgggtggt tatgataaag aagaaaaggc agcaagagcc 1081 tacgatttgg cagcactaaa atactgggga acaaccacaa caacaaattt tccaattagc 1141 cactatgaga aagagttgga agaaatgaag cacatgacta ggcaagagta cgttgcgtca 1201 ttgagaagga agagtagtgg gttttctcgc ggtgcatcca tttatcgagg agtgacgaga 1261 caccaccaac atggaaggtg gcaagcgagg attggaagag ttgctggcaa caaggatctt 1321 tacttgggaa cttttagcac ccaagaagag gcagcggaag catatgatgt agcagcaatc 1381 aaattccgag gactaagtgc tgttacaaac tttgacatga gcagatatga cgtgaaaagc 1441 atacttgaga gcaccacttt gccaataggt ggtgctgcaa agcgtttgaa ggatatggag 1501 caggttgaac tgagtgtgga taatggtcat agagcagatc aagtagatca tagtatcatc 1561 atgagttctc acctaactca aggaatcaat aacaactatg caggaggggg aacagcaact 1621 catcataact ggcacaatgc tcatgcattc caccaacctc aaccttgcac caccatgcac 1681 tacccttatg gacaaagaat taattggtgc aagcaagaac aacaagacaa ctctgatgcc 1741 cctcactctt tgtcttattc agatattcat caacttcagc tagggaacaa tggaacacat 1801 aacttctttc acacaaattc agggttgcac cctatgttga gcatggattc tgcttccatt 1861 gacaatagct cttcttctaa ctcggttgtt tatgatggtt atggaggtgg tgggggctac 1921 aatgtgatgc ctatgggaac tactactgct gttgttgcaa gtgatggtga tcaaaatcca 1981 agaagcaatc atggttttgg tgataatgag ataaaagcac ttggttatga aagtgtgtat 2041 ggctctgcaa ctgattctta tcatgcacat gcaaggaact tgtattatct tactcaacag 2101 caatcatctt ctgttgatac agtgaaggct agtgcatatg atcaagggtc tgcatgcaat 2161 acttgggttc caactgctat tccaactcat gcacccagat caactactag tatggctctc 2221 tgccatgggg ctactacacc cttctcttta ttgcatgaat aggtggaaaa ctagggagag 2281 aaggaagagt caaaaaggtg atgaagaaga tgcatatatt gctgacttgt ttcttcctct 2341 tgtgaagttg ctaatttgat agtgtgcact tttgaagatg aggatatata ggatttcttt 2401 cactatctct aacttgcagg atccttattt cactagggtc taagtaatct agcctcaagt 2461 ttagtcatgg cagaagcatt tgctgtgaat tttgggaata aactttggag aatgtgtgga 2521 cagatcattg ggatgttttt attatcagcg gacttttaat tctggaataa aacgatcata 2581 ccaaaaaaaa aaaaaaa
SEQIDNO:17
Glycine maxBABY BOOM1 (GmBBMl)
NCBI Protein Accession # XP_006586645.1; ADP37371
1 mgsmiillgfs lspheehpss qdhsqttpsr fsfnpdgsis stdvaggcfd ltsdstphll 61 nlpsygiyea fhrnnsintt qdwkenynsq nlllgtscnk qnmnqnqqqq pklenflggh 121 sfgeheqtyg gnsastdymf paqpvsaggg gsgggsnnnn risrisiglsmi ktwlrnqppn 181 seninnnnes ggnirssvqq tlslsmstgs qsstslpllt asvdngesps dnkqpntsaa 241 ldstqtgaie taprksidtf gqrtsiyrgv trhrwtgrye ahlwdnscrr egqtrkgrqv 301 ylggydkeek aaraydlaal kywgtttttn fpishyekel eemkhmtrqe yvaslrrkss 361 gfsrgasiyr gvtrhhqhgr wqarigrvag nkdlylgtfs tqeeaaeayd vaaikfrgls 421 avtnfdmsry dvksilestt lpiggaakrl kdmeqvelsv dnghradqvd hsiimsshlt 481 qginnnyagg gtathhnwhn ahafhqpqpc ttmhypygqr inwckqeqqd nsdaphslsy 541 sdihqlqlgn ngthnffhtn sglhpmlsmd sasidnssss nsvvydgygg gggynvmpmg 601 tttavvasdg dqnprsnhgf gdneikalgy esvygsatds yhaharnlyy ltqqqsssvd 661 tvkasaydqg sacntwvpta ipthaprstt smalchgatt pfsllhe
SEQIDNO:18
Capsicum annuum BABYBOOM{CaBBM); HM345995
NCBI Accession # XM 016713429
1 ctttgttcat gtttattttc tctcatttat ggtttaaata aatacttggt gtttccatta 61 agttgagaaa aaacataaca acaacttagg cagttgggca ttttcttcct gaatctttgg 121 tatctcttaa gtttttgaga ttttttaaaa ttttatttta ttataaaaaa agcatatagt 181 atatgtgtag taagatagaa tatctatttt acacagatcc ctatggctat atggaatgca 241 gtggtgctat ccaacattgc ttgetgaaac tcattctctt tgtttagttt aaagggtcca 301 gtttttgttc tctttttata agtgtgtgac aaagcaaaag aaaaagaatg agaaactaca 361 aagagagttt tggtcttttt tcttcacttg gattgtagtg aagtgaaaga tagcagatat 421 ttttctttgg gttcataagc tcttgctacc ttgtgaatct tgaaaatttt taaggtaaga 481 aaaggaatct caacaagtga atgaagatga agtctatgaa tgatgatagc agcagcagca 541 ataatagtaa tagtaataac aataatcaca gtagtgcagc aactaatagt aacaactggt 601 tgggtttttc tctctcaccc cacatgaaaa tggaggttac taatgettet gaaacccaac 661 aacaacaaca tccacatcaa cagcaatttg ctcaaagttt ctacctttca tcttctccta 721 ctactatgaa tgtgtcaaca gcttctgctc tttgttatga aaataacccc tttcattctt 781 ccttgtctgt tatgectcta aaatctgatg gctcactttg tataatggaa gctctttcaa 841 gatctcatgc agatgetatg gtgcaaagtt cttcacctaa gcttgaagac tttttaggtg 901 gtgcaagtca atatggaagt catgaaaggg aagctatggc tttaagctta gatagtttgt 961 attatcacca aaatgatgaa gacattcaag ttcatagtca tcatccttac tattctccca 1021 tgcattgtca tgggatgtac caagaatcac tattagaaga aacaaaacca actcaaattt 1081 caaactgtga tgctcaaatg actggaaatg agatgaaaag ttggggccac tatgetattg 1141 accaacacat aaatgacaca tgtagcatgg ttgctgctgc tgctgctgtt gcagctggtg 1201 gtggtggtgg tacggttggt tgtaatgatt tgcagtcttt aagtttgtct atgaatcctg 1261 gtactcagtc cagctgtgtc actccaagac aaatttctcc tacgggactg gaatgtgtag 1321 ctattgaatc taagaagagg gettctgeta aagtggctca aaaacaacct gtccacagga 1381 aatctattga cacatttggt cagagaactt ctcagtatag aggtgtcact agacataggt 1441 ggacaggtag gtatgaggca catttgtggg ataatagttg caagaaggaa gggcagacta 1501 ggaaagggag acaagtttat cttgggggct atgatatgga agataaagct gcaagagcat 1561 atgatcaagc tgcattaaag tactggggtc cttcaactca cattaatttt ccattggaaa 1621 attatcagaa agagcttgaa gaaatgaaga atatgaccag acaagaatat gttgeacact 1681 tgagaaggaa aagtagtgga ttttcaagag gtgcttcaat ttacagagga gtaacaaggc 1741 accatcaaca tggaagatgg caggctagaa ttggaagagt tgcagggaac aaagatcttt 1801 atcttggcac atttagcaca caagaagaag ctgeagagge ttatgatgtt getgeaatea 1861 aattcagggg tgttaatgct gtcacaaact tcgatatatc gegatacgae gttgaaaaaa 1921 tcatggctag taataatcta cctgctggtg aattagctag aagaaccaaa gaaagagagc 1981 caagagagtc aattgaatac aacaacataa gtgttcacaa gaatgaggaa tgtgttcaaa 2041 acaacaacaa caatgggaac atcacagatt ggaaaatggt gttgtatcaa gcatctaatc 2101 catctatagg atcgaataac tatcgaaacc cctcattctc cgtggcatta caagatctga 2161 taggcatcga ttcgatcaac aattcaacca gccatgccac aattcttgat catgagcaga 2221 acaagattgg tgctaaccac ttttcaaatg cctcgtcatt ggtgacaagt ctaggtagtt 2281 caagagaggc aagtcctgat aaaactgctg cctcattagt etttgeaaag ccaacaaaat 2341 tcgtcgtccc aacgactaat gtcaatgett gtattccctc agctcaacta aggecaatte 2401 cagtctccat ggctcaccta ccagtctttg cagctctaaa tgatgcatga gaaaaaaatg 2461 caaactattg cttttttttg gttacatgtt gcaacttgta taacatgttt tttttgcatg 2521 aacaagaa
SEQIDNO:19
Capsicum annuum BABY BOOM (CaBBM)
NCBI Protein Accession # XP 016568915 1 mkitiksmndds sssnnsnsnn nnhssaatns nnwlgfslsp hmkmevtnas etqqqqhphq 61 qqfaqs fyls sspttmnvst asalcyennp fhsslsvmpl ksdgslcime alsrshadam 121 vqssspkled flggasqygs hereamalsl dslyyhqnde diqvhshhpy yspmhchgmy 181 qeslleetkp tqisncdaqni tgnemkswgh yaidqhindt csmvaaaaav aagggggtvg 241 cndlqslsls mnpgtqsscv tprqlsptgl ecvaieskkr asakvaqkqp vhrksidtfg 301 qrtsqyrgvt rhrwtgryea hlwdnsckke gqtrkgrqvy lggydmedka araydqaalk 361 ywgpsthinf plenyqkele emknmtrqey vahlrrkssg fsrgasiyrg vtrhhqhgrw 421 qarigrvagn kdlylgtfst qeeaaeaydv aaikfrgvna vtnfdisryd vekimasnnl 481 pagelarrtk erepresley nnisvhknee cvqnnnnngn ltdwkmvlyq asripsigsnn 541 yrnpsfsval qdligidsin nstshatild heqnkiganh fsnasslvts lgssreaspd 601 ktaaslvfak ptkfvvpttn vnacipsaql rpipvsmahl pvfaalnda
SEQ ID NO:20
Medicago truncatula BABYBOOM(MtBBM); AY899909
NCBI Accession # XM 003624164; AAW82334
i atcagatgat atgtacatgt actatatatg tatatgtgtt aagtatacta taaatgtttc
61 ctcattttta ctataaatgt ttttcaattt ttgagttttt caagaatttg acctttctcc 121 ttcttccttg gtctttcttt cattctcatt ttcacataac ttgtgctacc tcctccactt 181 catgcatatc acaaaccact tctattttaa cctctagtct acactttagt tttctttctc 241 accgatctct ctttgtcttt ttttttcttt cacaaaaatc atatggcctc tatgaacttg 301 ttaggtttct ctctatctcc acaagaacaa catccatcaa cacaagatca aacggtggct 361 tcccgttttg ggttcaaccc taatgaaatc tcaggctctg atgttcaagg agatcactgc 421 tatgatctct cttctcacac aactcctcat cattcactca acctttctca tcctttttcc 481 atttatgaag ctttccacac aaataacaac attcacacca ctcaagattg gaaggagaac 541 tacaacaacc aaaacctact attgggaaca tcatgcatga accaaaatgt gaacaacaac 601 aaccaacaag cacaaccaaa gctagaaaac ttcctcggtg gacactcttt caccgaccat 661 caagaatacg gtggtagcaa ctcatactct tcattacacc tcccacctca tcagccggaa 721 gcatcctgtg gcggtggtga tggtagtaca agtaacaata actcaatagg tttatctatg 781 ataaaaacat ggctcagaaa ccaaccacca ccaccagaaa acaacaacaa taacaacaat 841 gaaagtggtg cacgtgtgca gacactatca ctttctatga gtactggctc acagtcaagt 901 tcatctgtgc ctcttctcaa tgcaaatgtg atgagtggtg agatttcctc atcggaaaac 961 aaacaaccac ccacaactgc agttgtactt gatagcaacc aaacaagtgt cgttgaaagt 1021 gctgtgccta gaaaatccgt tgatacattt ggacaaagaa cttccattta ccgtggtgta 1081 acaaggcata gatggacagg gagatatgaa gctcaccttt gggataatag ttgtagaaga 1141 gaggggcaga ctcgcaaagg aaggcaagtt tacttgggag gttatgacaa agaagaaaaa 1201 gcagctagag cctatgattt ggcagcacta aaatattggg gaacaactac tacaacaaat 1261 tttccaatta gccattatga aaaagaagtg gaagaaatga agcatatgac aaggcaagag 1321 tacgttgcgt cattgagaag gaaaagtagt ggtttttcac gaggtgcatc catttaccga 1381 ggagtaacaa gacatcatca acatggtaga tggcaagcta ggattggaag agttgcaggc 1441 aacaaagatc tctacctagg aactttcagc actcaagaag aggcagcaga ggcatatgat 1501 gtggcagcaa taaaattcag aggactgagt gcagttacaa actttgacat gagcagatat 1561 gatgtcaaaa ccatacttga gagcagcaca ttaccaattg gtggtgctgc aaagcgttta 1621 aaagacatgg agcaagttga attgaatcat gtgaatgttg atattagcca tagaactgaa 1681 caagatcata gcatcatcaa caacacttcc catttaacag aacaagccat etatgcagca 1741 acaaatgcat ctaattggca tgcactttca ttccaacatc aacaaccaca tcatcattac 1801 aatgccaaca acatgcagtt acagaattat ccttatggaa ctcaaactca aaagctttgg 1861 tgcaaacaag aacaagattc tgatgatcat agtacttata ctactgctac tgatattcat 1921 caactacagt tagggaataa taataacaat actcacaatt tctttggttt acaaaatatc 1981 atgagtatgg attctgcttc catggataat agttctggat ctaattctgt tgtttatggt 2041 ggtggagatc atggtggtta tggaggaaat ggtggatata tgattccaat ggctattgea 2101 aatgatggta accaaaatcc aagaagcaac aacaattttg gtgagagtga gattaaagga 2161 tttggttatg aaaatgtttt tgggactact actgatcctt atcatgcaca ggcagcaagg 2221 aacttgtact atcagccaca acaattatct gttgatcaag gatcaaattg ggttccaact 2281 gctattccaa cacttgctcc aaggactacc aatgtctctc tatgtcctcc tttcactttg 2341 ttgcatgaat agatgatttg agaatgaaga aagtgtcatc atcaaggtgc aaaatgatgc 2401 attggcatgt atcttgaaga aggaagatag tttataggtt ttatttcatt ttaatttgga
2461 agggttatta gggggggcta attctaactt gcaggataat ttatttgttg tagccttaat
2521 taagtttagt catggtagaa tatcttactg tgaattttgg ggattaactg atctagagaa
2581 tgtaggcttt tagttcattg gcaagtttta tttattatca gtactagact ctgtaatttt
2641 tggaataatt acaggatcat ataaaggatg aagtttttgt ccatgtgtat attctctagt
2701 attgtagtaa ttttttctac tgtcaaactt gtaatg
SEQ ID NO:21
Medicago tnmcatnla BABY BOOM (MtBBM),
NCBI Protein Accession # XP 003624212
1 masmnllgfs lspqeqhpst qdqtvasrfg fnpneisgsd vqgdhcydls shttphhsln 61 lshpfsiyea fhtnnnihtt qdwkenynnq nlllgtscmn qnvnnnnqqa qpklenflgg 121 hsftdhqeyg gsnsysslhl pphqpeascg ggdgstsnnn siglsmiktw lrnqppppen 181 nnnnnnesga rvqtlslsms tgsqssssvp llnanvmsge isssenkqpp ttavvldsnq 241 tsvvesavpr ksvdtfgqrt siyrgvtrhr wtgryeahlw dnscrregqt rkgrqvylgg 301 ydkeekaara ydlaalkywg tttttnfpis hyekeveemk hmtrqeyvas lrrkssgfsr 361 gasiyrgvtr hhqhgrwqar igrvagnkdl ylgtfstqee aaeaydvaai kfrglsavtn 421 fdmsrydvkt ilesstlpig gaakrlkdme qvelnhvnvd ishrteqdhs iinntshlte 481 qaiyaatnas nwhalsfqhq qphhhynann mqlqnypygt qtqklwckqe qdsddhstyt 541 tatdlhqlql gnnnnrithrif fglqnimsmd sasmdnssgs risvvygggdh ggyggnggym 601 ipmaiandgn qnprsnnnfg eseikgfgye nvfgtttdpy haqaarnlyy qpqqlsvdqg 661 snwvptaipt laprttnvsl cppftllhe
SEQ ID NO:22
Cenchrus ciliaris CcASGR-BBM-likel; EU559278
NCBI Accession # EU559278
1 cacacgcccg ctcctatacg tgtgccccgt tcatacgcat gctcacctcg cgcgttccca
61 tgaggtttca caccccttgt gggaatccaa ggcgtcagag atttattgat cccatttccc
121 tagcctgcct cgcctctcta tctacttgtg tggagattag agcacagcag cgagaaaggg
181 cttgcagtct ataaaggcga caagagccca caccctcctc tctctctctc tctctctctt
241 ctctctctcc atttctcttc cctaggatca gtgctagtgc ttgcagcggc cgcgttccga
301 gatgggttcc accaacaact ggctgcgctt cgtctcgttc tccggcggcg gcggcgccaa
361 ggatgccgcg gccctgctcc cgctgccgcc ctcgccccgt ggcgatgtcg acgaggccgg
421 cgcagagccg aagctcgagg acttcctcgg cctgcaggag ccgagcgccg ccgcggtggg
481 ggctgggcgg ccattcgcgg tgggtggcgg tgcgagctcc atcgggctgt ccatgatcaa
541 gaactggctg cgcagccagc cggcgccggc cgggcctgct gcgggggtcg attcgatggt
601 gctggcggcc gcggcggcgt cgacggaggt ggccggcgat ggcgcggagg gcggcggcgc
661 cgtggctgac gcggtgcagc agaggaaggc ggcggcggtg gacactttcg ggcagcggac
721 ctccatatac cgcggcgtca caaagtaggt tcttgatttt attttggttt tggaaaaatt
781 cttctttgtt ttttctgttt tcttccgact ggtatatctt gtgttaagaa ctttttcatt
841 agatgcatgt catactgttg ctttttcttg ttgctttgaa ccttttggcg tttgcagctt
901 cgtttggata tacagaacct atattatccc ctttagtaac cagtagattc ttttttttct
961 tttttttttt ttgctttcga tgttgttagt gttcttgcat cacgcatgtt tttcctctga
1021 tattttaatg gacgatatca tctctagttc aagtttttgc tcttgctctt gttgtagtgg
1081 tgctaagatt ttttttaaaa aaaattatga gcagttcttg tgctgtttga aaatgtaagc
1141 atctcacagt tcttttatat atatatatat atatatatat ataagtctct catgttcatt
1201 tgtggatgta ctgaagcccc gcgcgcacac atgcacacac cgcacgctca cacgccctaa
1261 atccccggtg caacaccagg gttgtccccg atggggatcg aaccctggcg ggtggcctaa
1321 ccaccgtcag ctcccaccac cgagctatca gctcgtttgc ccatatttcg tgtggtacct
1381 agatattttt atatttctag attgctgtat ctatcttcta gacttatata agtgttgcgc
1441 cactcatact ttttaccgcc tgtaatcgag tagaactgct tcctcttttg attatattgt
1501 atcagttaaa tgatcttgtt gttgatgtgt ttaccacttt accatcacca ttgcatgaaa
1561 tcacttcaag acatgtattc atgatttggc tggctaaatt tgctagtggc acatacatgt
1621 ggtaaaaaaa tatttttagt ttgtgcttgc tattcttttc ggtcatccct tcgtgcttgt 1681 ttatccagaa cacccaatct gcttcacata gtttttgaat gctatcatca tatttctttt 1741 ttggagatat tgttactaaa agtttggctt tgtcctcaat aggcatagat ggacaggaag 1801 gtatgaagcc catctttggg acaatagctg cagaagagaa ggtcaaactc ggaaaggtag 1861 acaaggtaat gattataata tagatattta aatttgtaat tataagctgc atcatattat 1921 tatttattag atcggcttta aaatttcact agctaattta gtgtttttct tttcttcatc 1981 gatacctgca atcgcttcat tccattgatt cagtgtatct tggtaagtaa tacttgttta 2041 caattgcaaa atggtatatc tcttgttgtt tctcatgtca agtatattaa atatgtggtt 2101 gatgcattga aggtggatat gataaagaag aaaaagcagc tagagcttat gatttagctg 2161 ctctcaagta ccggggcacc acaactacta caaattttcc ggtattactt attgttaata 2221 tgttggttct ccagaattaa tattttactt ctaatatata actgcgtata tgaatgaatg 2281 ttgtaagatt ttgcatttta tgttcagatg agcaactatg aaaaggagtt agaagagatg 2341 aagcatatgt cacgacaaga atatgttgca tcccttagaa ggtacatgtg ttgtcaaaac 2401 tttgtacctt catggaaact gaacttatat atttcacaaa tggattgaca tagaacatat 2461 atttgtgata caggaaaagc agtggttttt ctcgtggtgc atcaatttac cgaggggtta 2521 ccaggtacaa aatattcctt ttccttatta tctctggttt tagttagcaa gtgcattgtt 2581 tctatgggaa tttgtgttgc atgtagatgg gaatttgtgt tgcatgtaga tcataaatag 2641 ttgcaactat taatctcatc gttctattgc tgaatagttg tggtactcct ttaccacagt 2701 tgactatgat attctattat attatttttc ttgcaaagtt gatatttaat tgcttgtcta 2761 gctaactttc aagcaaccat gtaaaacagg caccatcagc atggaaggtg gcaagcaaga 2821 ataggaagtg tggcaggaaa caaggatctt tatttgggca cattcagtaa gtcacatttt 2881 aatattttta atgaagcact gatttttttt ttgtcaagca aaatggaagc aagacagaaa 2941 aacataaacc tactgctgga gcaccttttt cattattttg tctcttgaat ataatagtat 3001 gtggctgacc tctccctgtg taggtaccca ggaggaagct gcagaggctt acgacattgc 3061 tgccatcaaa ttccgaggcc tcaatgctgt cacgaacttt gacatgagcc ggtatgacgt 3121 caagagcatc attgagagca gctccctgcc tgttggcggc gctccaaagc gtctcaagga 3181 agtgcctgat caatcagata tgggcatcaa cataaacggt gactctgctg gtcatatgac 3241 tgctatcaac cttcttactg atggcaatga cagctatgga gctgagagtt atggttacag 3301 tggttggtgt cccacagcca tgacgccaat cccctttcaa ttcagcattg gccatgacca 3361 ttccaggctg tggtgcaagc cagagcagga caatgcggtt gttgcagcac tgcataacct 3421 gcatcacctc cagcacttgc cagccccagt tggcacccat aattttttcc agccatcgcc 3481 tgttcaggac atgacaggtg ttgccgatgc ttcatcgcca ccagtagaat ctaattcatt 3541 cctgtacaat ggggacgttg gttaccatgg tgccatgggt ggcagctatg ccatgccggt 3601 tgccacacta gttgagggca actctgcggg cagtggctat ggagttgagg aaggcacagg 3661 gtctgaaatc tttggtggac ggaacttgta ttctctctcc caaggttcct caggcgccaa 3721 tactggaaag gcagatgctt atgaaagctg ggatccatct atgctggtga tatcacagaa 3781 gtctgccaat gtgactgtct gccatggcgc acctgtattt tcagtttgga aatga
SEQ ID NO:23
Cenchrus ciliaris CcASGR-BBM-likel
NCBI Protein Accession # ACD80125
1 mgstnnwlrf vsfsggggak daaallplpp sprgdvdeag aepkledflg lqepsaaavg
61 agrpfavggg assiglsmik nwlrsqpapa gpaagvdsmv laaaaastev agdgaeggga 121 vadavqqrka aavdtfgqrt siyrgvtkhr wtgryeahlw dnscrregqt rkgrqvylgg 181 ydkeekaara ydlaalkyrg tttttnfpms nyekeleemk hmsrqeyvas lrrkssgfsr 241 gaslyrgvtr hhqhgrwqar igsvagnkdl ylgtfstqee aaeaydiaai kfrglnavtn 301 fdmsrydvks iiessslpvg gapkrlkevp dqsdmginin gdsaghmtai nlltdgndsy 361 gaesygysgw cptamtplpf qfsighdhsr lwckpeqdna vvaalhnlhh lqhlpapvgt 421 hnffqpspvq dmtgvadass ppvesnsfly ngdvgyhgam ggsyampvat lvegnsagsg 481 ygveegtgse ifggrrilysl sqgssgantg kadayeswdp smlvisqksa nvtvchgapv 541 fsvwk
SEQ ID NO:24
Pennisetum squamulatum PsASGR-BBM-likel, EU559280 NCBI Accession #EU559280
1 cacacgcccg ctcctatacg tgtgccccgt tcatacgcat gctcacctcg cgcgttccca
61 tgaggtttca caccccttgt gggaatccaa ggcgtcagag atttattgat cccatttccc
121 tagcctgcct cgcctctcta tctacttgtg tggagattag agcacagcag cgagaaaggg
181 cttgcagtct ataaaggcga caagagccca caccctcctc tctctctctc ttctctctct
241 ccatttctct tccctaggat cagtgctagt gcttgcagcg gccgcgttcc gagatgggtt
301 ccaccaacaa ctggctgcgc ttcgcctcgt tctccggcgg cggcggcgcc aaggatgccg
361 cggccctgct cccgctgccg ccctcgcccc gtggcgatgt cgacgaggcc ggcgcagagc
421 cgaagctcga ggacttcctc ggcctgcagg agccgagcgc cgccgcggtg ggggctgggc
481 ggccattcgc ggtgggtggc ggtgcgagct ccatcgggct gtccatgatc aggaactggc
541 tgcgcagcca gccggcgccg gccgggcctg ctgcgggggt cgattcgatg gtgctggcgg
601 ctgcggcggc gtcgacggag gtggccggcg atggcgcgga gggcggcggc gccgtggctg
661 acgcggtgca gcagaggaag gcggcggcgg tggacacttt cgggcagcgg acctccatat
721 accgcggcgt cacaaagtag gttcttgatt ttattttggt tttggaaaaa ttcttctttg
781 ttttttctgt tttcttccga ctggtatatc ttgtgttaag aactttttca ttagatgcat
841 gtcatactgt tgctttttct tgttgctttg aaccttttgg cgtttgcagc ttcgtttgga
901 tatacagaac ctatattatc ccctttagta accagtagat tctttttttt tctttttttt
961 tttttgcttt cgatgttgtt agtgttcttg catcacgcat gtttttcctc tgatatttta
1021 atggacgata tcatctctag ttcaagtttt tgctcttgct cttgttgtag tggtgctaag
1081 attttaaaaa aaaaaaatta tgagcagttc ttgtgctgtt tgaaaatgta agcatctcac
1141 agttctaaaa tatatatata tatatatata tatatataag tctctcatgt tgatttgtgg
1201 atgtactgaa gccccgcgcg cacacatgca cacaccgcac gctcacacgc cctaaatccc
1261 cggtgcaaca ccagggttgt ccccgatggg gatcgaaccc tggcgggtgg cctaaccacc
1321 gtcagctccc accaccgagc tatcagctcg tttgcccata tttcgtgtgg tacctcgata
1381 tttttatatt tctagattgc tgtatctatc ttctagactt atataagtgt tgcgccactc
1441 atacttttta ccgcctgtaa tcgagtagaa ctgcttcctc ttttgattat attgtatcag
1501 ttaaatgatc ttgttgttga tgtgtttacc actttaccat caccattgca tgaaatcact
1561 tcaagacatg tattcatgat ttggctggct aaatttgcta gtggcacata catgtggtaa
1621 aaaaatattt ttagtttgtg cttgctattc ttttcggtca tcccttcgtg cctgtttatc
1681 cagaacaccc aatctgcttc acatagtttt tgaatgctat catcatattt cttttttgga
1741 gatattgtta ctaaaagttt ggctttgtcc tcaataggca tagatggaca ggaaggtatg
1801 aagcccatct ttgggacaat agctgcagaa gagaaggtca aactcggaaa ggtagacaag
1861 gtaatgatta taatatagat atttaaattt gtaattataa gctgcatcat attattattt
1921 attagatcgg ctttaaaatt tcactagcta atttagtgtt tttcttttct tcatcgatac
1981 ctgcaatcgc ttcattccat tgattcagtg tatcttggta agtaatactt gtttacaatt
2041 gcaaaatggt atatctcttg ttgtttctca tgtcaagtat attaaatatg tggttgatgc
2101 attgaaggtg gatatgataa agaagaaaaa gcagctagag cttatgattt agctgctctc
2161 aagtaccggg gcaccacaac tactacaaat tttccggtat tacttattgt taatatgttg
2221 gttctccaga attgatattt tacttctaat atataactgc gtatatgaat gaatgttgta
2281 agattttgca ttttatgttc agatgagcaa ctatgaaaag gagttagaag agatgaagca
2341 tatgtcacga caagaatatg ttgcatccct tagaaggtac atgtgttgtc aaaactttgt
2401 accttcatgg aaactgaact tatatatttc acaaatggat tgacatagaa catatatttg
2461 tgatacagga aaagcagtgg tttttctcgt ggtgcatcaa tttaccgagg ggttaccagg
2521 tacaaaatat tccttttcct tattatctct ggttttagtt agcaagtgca ttgtttctat
2581 gggaatttgt gttgcatgta gatgggaatt tgtgttgcat gtagatcata aatagttgca
2641 actattaatc tcatcgttct attgctgaat agttgtggta ctcctttacc acagttgact
2701 atgatattct attatattat ttttcttgca aagttgatat ttaattgctt gtctagctaa
2761 ctttcaagca atcatgtaaa acaggcacca tcagcatgga aggtggcaag caagaa tagg
2821 aagtgtggca ggaaacaagg atctttattt gggcacattc agtaagtcac attttaatat
2881 ttttaatgaa gcactgattt ttttttgtca agcaaaatgg aagcaagaca gaaaaacata
2941 aacctactgg agcacctttt tcattatttt gtctcttgaa tataatagta tgtggctgac
3001 ctctccctgt gtaggtaccc aggaggaagc tgcagaggct tacgacattg ctgccatcaa
3061 attccgaggc ctcaatgctg tcacgaactt tgacatgagc cggtatgacg tcaagagcat
3121 cattgagagc agctccctgc ctgttggcgg cactccaaag cgtctcaagg aagtgcctga
3181 tcaatcagat atgggcatca acataaacgg tgactctgct ggtcatatga ctgctatcaa
3241 ccttcttact gatggcaatg acagctatgg agctgagagt tatggttaca gtggttggtg 3301 tcccacagcc atgacgccaa tcccctttca attcagcaat ggccatgacc attccaggct 3361 gtggtgcaag ccagagcagg acaatgcggt tgttgcagca ctgcataacc tgcatcacct 3421 ccagcacttg ccagccccag ttggcaccca taattttttc cagccatcgc ctgttcagga 3481 catgacaggt gttgccgatg cttcatcgcc accagtagaa tctaattcat tcctgtacaa 3541 tggggacgtt ggttaccatg gtgccatggg tggcagctat gccatgccgg ttgccacact 3601 agttgagggc aactctgcgg gcagtggcta tggagttgag gaaggcacag ggtctgaaat 3661 ctttggtgga cggaacttgt attctctctc ccaaggttec tcaggcgcca atactggaaa 3721 ggcagatgct tatgaaagct gggatccatc tatgctggtg atatcacaga agtctgccaa 3781 tgtgactgtc tgccatggcg cacctgta11 ttcagtttgg aaatga
SEQ ID NO:25
Pennisetum squamulatum PsASGR-BBM-likel
NCBI Protein Accession # ACD80127
1 mgstnnwlrf asfsggggak daaallplpp sprgdvdeag aepkledflg lqepsaaavg
61 agrpfavggg assiglsmir nwlrsqpapa gpaagvdsmv laaaaastev agdgaeggga 121 vadavqqrka aavdtfgqrt siyrgvtkhr wtgryeahlw dnscrregqt rkgrqggydk 181 eekaaraydl aalkyrgttt ttnfpmsnye keleernkhms rqeyvaslrr kssgfsrgas 241 iyrgvtrhhq hgrwqarigs vagnkdlylg tfstqeeaae aydiaaikfr glnavtnfdm 301 srydvksiie ssslpvggtp krlkevpdqs dmginingds aghmtainll tdgndsygae 361 sygysgwept amtpipfqfs nghdhsrlwc kpeqdnavva alhnlhhlqh lpapvgthnf 421 fqpspvqdmt gvadassppv esns flyngd vgyhgamggs yampvatlve gnsagsgygv 481 eegtgseifg grnlyslsqg ssgantgkad ayeswdpsml visqksanvt vchgapvfsv 541 wk
SEQ ID NO:26
Pennisetum squamulatumPsASGR-BBM-like2; EU559277
NCBI Accession # EU559277
i cacacgcccg ctcctatacg tgtgccccgt teataegcat gctcacctcg cgcgttccca
61 tgaggtttca caccccttgt gggaatccaa ggegtcagag atttattgat cccatttccc 121 tagcctgcct cgcctctcta tctacttgtg tggagattag agcacagcag cgagaaaggg 181 ettgeagtet ataaaggega caagagccca caccctcctc tctctctctc ttctctctct 241 ccatttctct tccctaggat cagtgctagt gettgeageg gccgcgttcc gagatgggtt 301 ccaccaacaa ctggctgcgc ttcgcctcgt tctccggcgg cggcggcgcc aaggatgccg 361 cggccctgct cccgctgccg ccctcgcccc gtggcgatgt cgacgaggcc ggegcagage 421 cgaagctcga ggacttcctc ggectgeagg agccgagcgc cgccgcggtg ggggctgggc 481 ggccattcgc ggtgggtggc ggtgcgagct ccatcgggct gtccatgatc aggaactggc 541 tgcgcagcca gccggcgccg gccgggcctg ctgcgggggt cgattcgatg gtgctggcgg 601 ctgcggcggc gtcgaeggag gtggccggcg atggcgcgga gggeggegge gccgtggctg 661 aegeggtgea gcagaggaag geggeggegg tggacacttt egggcagegg acctccatat 721 accgcggcgt cacaaagtag gttcttgatt ttattttggt tttggaaaaa ttcttctttg 781 ttttttctgt tttcttccga ctggtatatc ttgtgttaag aactttttca ttagatgeat 841 gtcatactgt tgetttttet tgttgctttg aaccttttgg cgtttgcagc ttcgtttgga 901 tatacagaac ctatattatc ccctttagta accagtagat tctttttttt tctttttttt 961 tttttgcttt cgatgttgtt agtgttcttg catcacgcat gtttttcctc tgatatttta 1021 atggacgata tcatctctag ttcaagtttt tgetcttget cttgttgtag tggtgctaag 1081 atttttaaaa aaaaaaatta tgagcagttc ttgtgctgtt tgaaaatgta agcatctcac 1141 agttctaaaa tatatatata tatatatata tatatatata tataagtctc tcatgttgat 1201 ttgtggatgt actgaagccc cgcgcgcaca catgcacaca ccgcacgctc acacgcccta 1261 aatccccggt gcaacaccag ggttgtcccc gatggggatc gaaccctggc gggtggccta 1321 accaccgtca gctcccacca ccgagctatc agctcgtttg cccatatttc gtgtggtacc 1381 tcgatatttt tatatttcta gattgctgta tctatcttct agacttatat aagtgttgcg 1441 ccactcatac tttttacege ctgtaatcga gtagaactgc ttcctctttt gattatattg 1501 tatcagttaa atgatcttgt tgttgatgtg tttaccactt taccatcacc attgeatgaa 1561 atcacttcaa gacatgtatt catgatttgg ctggctaaat ttgctagtgg cacatacatg 1621 tggtaaaaaa atatttttag tttgtgcttg ctattctttt cggtcatccc ttcgtgcctg 1681 tttatccaga acacccaatc tgcttcacat agtttttgaa tgetatcate atatttcttt 1741 tttggagata ttgttactaa aagtttggct ttgtcctcaa taggcataga tggacaggaa 1801 ggtatgaagc ccatctttgg gacaatagct gcagaagaga aggtcaaact eggaaaggta 1861 gacaaggtaa tgattataat atagatat11 aaatttgtaa ttataagctg catcatatta 1921 ttatttatta gatcggcttt aaaatttcac tagctaattt agtgtttttc ttttcttcat 1981 cgatacctgc aatcgcttea ttccattgat tcagtgtatc ttggtaagta atacttgttt 2041 acaattgcaa aatggtatat ctcttgttgt ttctcatgtc aagtatatta aatatgtggt 2101 tgatgcattg aaggtggata tgataaagaa gaaaaagcag ctagagctta tgatttagct 2161 gctctcaagt accggggcac cacaactact acaaattttc eggtattact tattgttaat 2221 atgttggttc tccagaattg atattttact tctaatatat aactgegtat atgaatgaat 2281 gttgtaagat tttgcatttt atgttcagat gagcaactat gaaaaggagt tagaagagat 2341 gaagcatatg tcacgacaag aatatgttgc atcccttaga aggtacatgt gttgtcaaaa 2401 ctttgtacct tcatggaaac tgaacttata tatttcacaa atggattgac atagaacata 2461 tatttgtgat acaggaaaag cagtggtttt tctcgtggtg catcaattta ccgaggggtt 2521 accaggtaca aaatattcct tttccttatt atctctggtt ttagttagca agtgcattgt 2581 ttctatggga atttgtgttg catgtagatg ggaatttgtg ttgcatgtag atcataaata 2641 gttgcaacta ttaatctcat cgttctattg ctgaatagtt gtggtactcc tttaccacag 2701 ttgactatga tattctatta tattattttt ettgeaaagt tgatatttaa ttgcttgtct 2761 agctaacttt caagcaatca tgtaaaacag gcaccatcag catggaaggt ggcaagcaag 2821 aataggaagt gtggcaggaa acaaggatct ttatttgggc acattcagta agtcacattt 2881 taatattttt aatgaagcac tgattttttt ttgtcaagca aaatggaagc aagacagaaa 2941 aacataaacc tactggagca cctttttcat tattttgtct cttgaatata atagtatgtg 3001 gctgacctct ccctgtgtag gtacccagga ggaagctgea gaggcttacg acattgctgc 3061 catcaaattc cgaggcctca atgctgtcac gaactttgac atgagccggt atgacgtcaa 3121 gagcatcatt gagagcagct ccctgcctgt tggeggcact ccaaagcgtc tcaaggaagt 3181 gcctgatcaa tcagatatgg gcatcaacat aaacggtgac tctgctggtc atatgactgc 3241 tatcaacctt cttactgatg gcaatgacag ctatggagct gagagttatg gttacagtgg 3301 ttggtgtccc acagecatga cgccaatccc ctttcaattc ageaatggee atgaccattc 3361 caggctgtgg tgcaagccag agcaggacaa tgcggttgtt gcagcactgc ataacctgea 3421 tcacctccag cacttgccag ccccagttgg cacccataat tttttccagc catcgcctgt 3481 tcaggacatg acaggtgttg ccgatgcttc atcgccacca gtagaatcta attcattcct 3541 gtacaatggg gacgttggtt accatggtgc catgggtggc agetatgeca tgccggttgc 3601 cacactagtt gagggcaact ctgcgggcag tggctatgga gttgaggaag gcacagggtc 3661 tgaaatcttt ggtggacgga acttgtattc tctctcccaa ggttcctcag gcgccaatac 3721 tggaaaggca gatgettatg aaagctggga tccatctatg ctggtgatat cacagaagtc 3781 tgccaatgtg actgtctgcc atggcgcacc tgtattttca gtttggaaat gatggttaga 3841 tgaaaatata gtagtgatat taactagttc ttggagggga agattaaatt ctaggtatac 3901 aaaagtttaa tttattagtg cttcaagatc tegtatgaaa aaaagttttg ctgettaate 3961 agctccagtg ggagtctagg agecatgaga aatgtcgttt tattattgac taatgetaca 4021 atgctaacat gctgactctt ttgaatggca caagagctct ggtgtttcaa tacatcagcc 4081 agtttcatta ttgtccattt gctgtgcaca ttttctgege tggcacctat a
SEQ ID NO:27
Pennisetum squamulatiim PsASGR-BBM-like2
NCBI Protein Accession # ACD80124.2
1 mgstrinwlrf asfsggggak daaallplpp sprgdvdeag aepkledflg lqepsaaavg
61 agrpfavggg assiglsmir nwlrsqpapa gpaagvdsmv laaaaastev agdgaeggga 121 vadavqqrka aavdtfgqrt siyrgvtkhr wtgryeahlw driscrregqt rkgrqvylgg 181 ydkeekaara ydlaalkyrg tttttnfpms nyekeleemk hmsrqeyvas lrrkssgfsr 241 gasiyrgvtr hhqhgrwqar igsvagnkdl ylgtfstqee aaeaydiaai kfrglnavtn 301 fdmsrydvks iiessslpvg gtpkrlkevp dqsdmginin gdsaghmtai nlltdgndsy 361 gaesygysgw cptamtpipf qfsnghdhsr lwckpeqdna vvaalhnlhh lqhlpapvgt 421 hnffqpspvq dmtgvadass ppvesnsfly ngdvgyhgam ggsyampvat lvegnsagsg 481 ygveegtgse ifggrnlysl sqgssgantg kadayeswdp smlvisqksa nvtvchgapv 541 fsvwk SEQ ID NO:28
Rosa canina BABYBOOM1 (RcBBMl); KC429673
NCBI Accession # KC429673
1 tctcgcattg tcaagatttc tctttttctc tctctgcaag ttttgacctt tcttcttcct
61 tcactttcat tccctggaaa tacatggatc ctctccactg atctttcagt ttttcaactc 121 cacatatcaa tcttcaagca tggaccaaac ttattattac tctttttgat ctctccgttt 181 gtgttagctt agttagagac attcattcga tcagtctggt caacaaaata aacccacact 241 gacaccgcca ccgcccaata ggtcttgaaa ttaagaataa agtgggttgg atcgatgaac 301 atgaactggt tgggtttctc tctttcccct caagaagatg atcatgctcc aatatcacac 361 cagctggctg accaagagac cttagcctct cgccttggct ttaactccaa tgaaatccaa 421 ggtgccggtg gtggcactga tgtctccggt ggcggaagca gtgagtgctt tgatgttact 481 aattctgact ccactgcttc tgtcaatcac cacctcactc catctatttt tggcatacat 541 gaagctgcag ctttcaacag gaacaatgat catatccatt cccaagattg gaatatgaag 601 ggtgctggta tgaactcatc agatagcaat aactacaaaa ggacctcatc ttcagacctg 661 tcgactatgc taatgggaag caataccagt actactagta cttcatacag cattatcagc 721 cagcaggcga accttgaaaa ccatcatcaa caactaccaa agcttgaaaa cttccttggc 781 cggcattctt ttgcggatca tgacagcagc agtgctggcc atgattacat gtttgatatg 841 aataatggac ccggtccagt tagcagtaat gttatgaata ctaaaactaa tagtaacaat 901 attgggttgt ccatgatcaa gacgtggctg agaaatcaac cttctcagcc gegegataac 961 caccatcagc tggagcagga gagcaagaat agtaaggaga gcagaaatca accacagagt 1021 agtctatcgc tctcaatggg tactggatcg cttcaaacag ttactactgc aactgeaggt 1081 ggtgctgcta ctggagaaac tactagttca tcagataaaa atactaaaca gtcaccagtg 1141 gtgacagcca caacaacaac ggggactgat gcccaaactc agagtactgg tggtgctatt 1201 gaggccgtgc ccagaaaggc cattgataca tttggccaaa ggacatctat ataccgtggt 1261 gtaaccaggc acagatggac aggtagatat gaagccca tc tatgggataa tagttgeega 1321 agagaaggac aaactcgcaa gggaaggcaa gtttatttgg gtggttatga caaagaagac 1381 aaagcggcta gagcttatga cttagcagca ttgaaatatt ggggcaccac aaccactacc 1441 aacttcccga tcagtagcta tgagaaagag attgatgaaa tgaageccat gacaagacag 1501 gagtatgttg catctttgag gagaaagagt agcggat111 ctcggggtgc atccatttat 1561 cgtggggtga caaggcacca ccagcatggg agatggcaag caaggattgg gagagtcgea 1621 gggaacaaag atttgtacct cggaactttc agcacccaag aggaagcagc cgaggcatat 1681 gacattgctg ccataaagtt ccgaggactt aatgcagtaa ccaactttga catgagcaga 1741 tatgatgtca agtccattct ggagagcagc gcattgccca tcactactgg tgccactgca 1801 aagcgattga aagacgttca gcagcagcag ccgcctcctc ctgeagatea tcatcatcag 1861 atcatgttgt cgtctgtgct ggatcatcac ggacaggtta tcagatcctc atcatcaaca 1921 gaacatgaca tcatgagcaa tgtgtactca gcatatggat cttatggagc ccagcagggg 1981 tgcagttggc caactcttgc attcaaccaa gcccaagctc aagcagctgc tgctcctcat 2041 caagcgcctt ttgccgctgg catcaatggc atgcagttgc actactcgcc gtatggatat 2101 ggatatggta atgcacatgc acagagggtt tggtgcaagc aagagcaaga tactaattca 2161 aatcaggaaa ggagctttea tcatcaggat gatgatcatc ttegtcaaca actccagttg 2221 ggaggtaccc acaatttctt tcatgaccat gatcagcagc agcagcagca gcagcagcag 2281 actagtggcc ttatgggact aatggattct tcagcagcat ctatggaaca cagctcaggt 2341 tcaaattctg tcatatatag tggtggagat caccatggta ataataatgg gtatggaagc 2401 agtactacag ggactggtgg tggctatata atgeccatgg ttatgagtac agttgtagcc 2461 aatgatgacc aaaatcaagc tgatggaaat aataacaata tcaatggttt tggagatggt 2521 gatgatcagg aggecaatat taaggcgcag cagcttggtt atgatcatca tcctcaaaat 2581 atgtttcttg gttcaagtag tactatagat cccgcttatc agcatcacgc aagcaacagg 2641 aacttgtatt atcatcttcc agtacaggat gatcagcatg aatcgtcgtc agtggcagtt 2701 gctactagta gtactacatg taacatgaat tgggtaccaa cagctgttcc aactcttget 2761 catcctactt ttacagtctg gaacgacaca tagctagact atatatgttc catgtaggga 2821 gtagctatta gtgatccagt agctagctag ctagggaaac aagatttata cactgaaatt 2881 tctaattcga tctgattgtt gattegttet tcttattaaa aaaaaaaaaa aaaaaa SEQ ID NO:29
Rosa canina BABY BOOM1 (RcBBMl)
NCBI Protein Accession # AGZ02154.1
1 mnmriwlgfsi spqeddhapi shqladqetl asrlgfnsne iqgagggtdv sgggssecfd 61 vtnsdstasv nhhltpsifg iheaaafnrn ndhihsqdwn mkgagmnssd snnykrtsss 121 dlstmlmgsn tsttstsysi isqqanlenh hqqlpklenf lgrhsfadhd sssaghdymf 181 dmnngpgpvs snvnmtktns nniglsmikt wlrnqpsqpr dnhhqleqes knskesrnqp 241 qsslslsmgt gslqtvttat aggaatgett sssdkntkqs pvvtattttg tdaqtqstgg 301 aieavprkai dtfgqrtsiy rgvtrhrwtg ryeahlwdns crregqtrkg rqvylggydk 361 edkaaraydl aalkywgttt ttnfpissye keidemkpmt rqeyvaslrr kssgfsrgas 421 iyrgvtrhhq hgrwqarigr vagnkdlylg tfstqeeaae aydiaaikfr glnavtnfdm 481 srydvksile ssalpittga takrlkdvqq qqppppadhh hqimlssvld hhgqvirsss 541 stehdimsnv ysaygsygaq qgcswptlaf nqaqaqaaaa phqapfaagi ngmqlhyspy 601 gygygnahaq rvwckqeqdt nsnqersfhh qdddhlrqql qlggthnffh dhdqqqqqqq 661 qqtsglmglm dssaasmehs sgsnsviysg gdhhgnnngy gssttgtggg yimpmvms tv 721 vanddqnqad gnnnningfg dgddqeanik aqqlgydhhp qnmflgssst idpayqhhas 781 nrnlyyhlpv qddqhesssv avatssttcn mnwvptavpt lahptftvwn dt
SEQ ID NO:30
Rosa canina BABYBOOM2 (RcBBM2); KC429674
NCBI Accession # KC429674
1 tctcgcattg tcaagatttc tctttttctc tctctgcaag ttttgacctt tcttcttcct 61 tcactttcat tcccctggaa atacatggat cctctccact gatctttcag tt11tcaact 121 ccacatatca atcttcaagc atggaccaaa cttattatta ctctttttga tctctccgtt 181 tgtgttagct tagttagaga cattcattcg accagtctgg tcaacaaaat aaacccacac 241 tgacaccgcc accgcccaat aggtcttgaa agaataaagt gggttggatc gatgaacatg 301 aactggttgg gtttctctct ttcccctcaa gaagatgatc atgctccaat atcacaccag 361 ctggctgacc aagagacctt agcttctcgc cttggcttca actccaatga aatccacggt 421 gccggtggtg gcactgatgt ctccggtggc ggaagcagtg agtgctttga tcttactaat 481 tctgactcca ctgcttctgt caatcaccac ctcactccat ctatttttgg catacatgaa 541 gctgcagctt tcaacaggaa caatgatcat atccactccc aagattggaa tatgaagggt 601 gctggtatga actcatcaga tagcaataac tacaaaagga cctcatcttc agacctgtcg 661 actatgctaa tgggaagcaa taccactact agtacttcat gcagcattat cagccagcag 721 gcgaaccttg aaaaccatca tcaacaacta ccaaagcttg aaaacttcct tggccggcat 781 tcttttgcgg atcatgaccg cagcagtgct ggtcatgatt acatgtttga tatgaataat 841 ggaccgggtc cagttagcag taatgttatg aatactaaaa ctaatagtaa caatattggg 901 ttgtccatga tcaagacgtg gctgagaaat caaccttctc agccgcgcga taaccaccat 961 cagctggagc aggagagcaa gaatagtaag gagagcagaa atcaaccaca gagtagtcta 1021 tcgctctcaa tgggtactgg atcgcttcaa acagttacta ctgcaactgc aggtggtgct 1081 gctactgccg ctactggaga aactacttgt tcatcagata agaa tactaa gcagtcaeca
1141 gtggtgacag ccacaacaac aacggggact gatgcccaaa ctcaaagtac tggtggtgct 1201 attgaggccg tgcccagaaa ggccattgat acatttggcc aaaggacatc tatataccgt
1261 ggtgtaacca ggcacagatg gacaggtaga tatgaagccc atctatggga taatagttgc 1321 cgaagagaag gacaaactcg caagggaagg caagtttatt tgggtggtta tgacaaagaa
1381 gacaaagcgg ctagagctta tgacttagca gcattgaaat attggggcac cacaaccact 1441 accaacttcc cgatcagtag ctatgagaaa gagattgatg aaatgaagcc catgacaaga 1501 caggagtatg ttgcatcttt gaggagaaag agtagcggat tttctcgggg tgcatccatt 1561 tatcgtgggg tgacaaggca ccaccagcat gggagatggc aagcaaggat tgggagagtc 1621 gcagggaaca aagatttgta cctaggaact ttcagcaccc aagaggaagc agecgaggea 1681 tatgacattg ctgccataaa gttccgagga cttaatgctg taaccaactt tgacatgagc 1741 agatatgatg tcaagtccat tctggagagc agcgcattgc ccatcactac tggtgccact 1801 gcaaagcgat tgaaagaagt tcagcagcag cagccgcctc ctcctgcaga tcatcatcat 1861 cagatcatgt tgtcgtctgt gctggatcat cacggacaga ttatcagatc atcatcatca 1921 acagaacatg acatcatgag caatgtgtac tcagcatatg gatcttatgg agcccagcag 1981 gggtgcagtt ggccaactct tgcattcaac caagcccaag ctcaagcagc tgctgctcct 2041 catcaagcgc cttttgccgc tggcatcaat ggcatgcagt tgcactactc gccgtatgga 2101 tatggatatg gtaatgcaca tgcacagagg gtttggtgca agcaagagca agatactaat 2161 tcaaatcagg aaagcagctt tcatcatcag gatgatgatc atettegtea acaactccag 2221 ttgggaggta cccacaattt ctttcatgac catgatcagc agcagactag tggccttatg 2281 ggactaatgg attcttcagc agcatctatg gaacacagct caggttcaaa ttctgtcata 2341 tatagtggtg gagatcacca tggtaataat aatgggtatg gaagcagtac tacagggact 2401 ggtggtggct atataatgcc catggttatg agtacagttg tagecaatga tgaccaaaat 2461 caagctgatg gaaataataa caatatcaat ggttttgaag atggtgatga teaggaggee 2521 aatattaagg cgcagcagct tggttacgat catcatcatc aaaatatgtt tcttggttca 2581 agtagtacta tagatcccgc ttatcagcat cacgcaagca acaggaactt gtattatcat 2641 cttccagtac aggatgatea gcatgaatcg tegtcagtgg cagtagctac tagtagtact 2701 acatgtaaca tgaattgggt accaacagct gttccaactc ttgctcatcc tacttttaca 2761 gtctggaacg acacatagct agactatata tgttccatgt agggagtagc tattagtgat 2821 ccagtagcta gctagctagg gaaacaagat gtatacactg aaatttctaa ttcgatctga 2881 ttgttgattc gttcttctta ttaaaaaaaa aaaaaaaaaa
SEQ ID NO:31
Rosa canina BABY BOOM2 (RcBBM2)
NCBI Protein Accession # AGZ02155.1
1 mnmnwlgfsi spqeddhapi shqladqetl asrlgfnsne ihgagggtdv sgggssecfd
61 ltnsdstasv nhhltpsifg iheaaafnrn ndhihsqdwn mkgagmnssd snnykrtsss 121 dlstmlmgsn tttstscsii sqqanlenhh qqlpklenf1 grhsfadhdr ssaghdymfd 181 mnngpgpvss nvmntktnsn niglsmiktw lrnqpsqprd nhhqleqesk nskesrnqpq 241 sslslsmgtg slqtvttata ggaataatge ttcssdkntk qspvvtattt tgtdaqtqst 301 ggaieavprk aidtfgqrts iyrgvtrhrw tgryeahlwd nscrregqtr kgrqvylggy 361 dkedkaaray dlaalkywgt ttttnfpiss yekeidemkp mtrqeyvasl rrkssgfsrg 421 asiyrgvtrh hqhgrwqari grvagnkdly lgtfstqeea aeaydiaaik frglnavtnf 481 dmsrydvksi lessalpltt gatakrlkev qqqqppppad hhhqimlssv ldhhgqiirs 541 ssstehdinis nvysaygsyg aqqgcswptl afnqaqaqaa aaphqapfaa gingmqlhys 601 pygygygnah aqrvwckqeq dtnsnqessf hhqdddhlrq qlqlggthnf fhdhdqqqts 661 glmglmdssa asmehssgsn sviysggdhh gnnngygsst tgtgggyimp mvmstvvand 721 dqnqadgnnn ningfedgdd qeanikaqql gydhhhqnmf lgssstidpa yqhhasnrnl 781 yyhlpvqddq hesssvavat ssttcnmnwv ptavptlahp tftvwndt
SEQ ID NO:32
Castor bean Ricinus communisAIL6; XP 015583464
NCBI Accession # XM 015727978
1 tattttattt attattccat aatttacccc attaaaataa tattcatatt tgtacaagaa 6 1 ataacttcat ttaaactatt tttcttttcc tctaaaaccc ctctggtttt acgccggttg 12 1 gcagcagcaa ccgcccagct tatatagect gccacctgct gtttctttct ttctttctcc 18 1 ttcttcttct tcttcttctt ctctatcttt ttctgtctaa agactcagag ttactctcta 24 1 tatcttttta tcctcttata taatcagctt tcaagtatca aatggggtat tttaagtgaa 30 1 aataagggta ttgcaaggga aaaagaaaaa aaaaaaggaa ttataatggc accagcgact 36 1 actaactggc tttctttttc actatctcca atggaaatgt tgaggtcatc tactgaatct 42 1 cagttcatat cttatgaggg ttcttctact gctactccct ctcctcacta tttcatcgat 48 1 aacttctatg etaaegggtg gggaaaccca aaggaagctc aaggagcaac aacaatggca 54 1 geggagacat ctattctcac aagttttata gacccagaaa ctcatcatca acaagtacca 60 1 aaactcgaag actttctegg tgattcatcg tegategtte gatactegga taatagccag 66 1 acagatacac aggactcatc tctaactcac atctatgacc aaggttctgc tgettactte 72 1 agegagcaac aagatctcaa ggcaatagct gggtttcaag ctttttcgac gaattcgggt 78 1 tctgaagttg atgactctgc ctcaatagca agaactcacc ttggcggtga gtttatgggt 84 1 cattcgatcg actccagtgg aaatgatcag ttgggcggtt tctctaattg cactgctgca 90 1 aataatgett tgtctcttgc ggttaataat aataataata ataatggtaa teagagegea 96 1 acaaatagta agactattgc tcctgttatt gaatctgact gecctaaaaa gattgetgat 1021 acttttggcc agagaacttc aatttacaga ggagttacta gacacagatg gacaggtaga 1081 tatgaagcgc atctatggga taacagctgt agaagagagg gtcaggccag aaaagggcgt 1141 caaggtgctc tcttttttct tttttccccc tcttcttcct atcatctctc tctatttgtt 1201 gcatgttttt tcaattattc aagtgtaaaa atactaggaa tatatgcata atctgcaata 1261 cctcatgggc atgtattata ttttttccag gttaccaatt ataccaaaga attggatgag 1321 atgaaatatg tgtccaagca ggaatttatt gcctctctga ggaggaaaag tagtgggttt 1381 tcaaggggag cctccatcta caggggtgtc acaaggcatc atcaacaggg tcgttggcaa 1441 gcaagaatag gtcgtgttgc tggaaacaaa gacctgtacc tcggcacttt tgccactgaa 1501 gaggaagcag ctgaggcata tgacatagca gcaataaagt ttaggggtat gaatgcagtg 1561 accaatttcg aaatgagccg atatgatgtg gaagctataa tgaagagtgc tcttccgatt 1621 ggtggagcag caaagcgact taagctctcg ctagaatccg agcagaaacc aaatctgaac 1681 catgaacagc aacctcaagg aagcagcagc aatagcagca gcaacaacat cagttttgca 1741 tctatgccgc cagttacagc tatcccatgt ggtattcctt ttgaaaatac aacagcacag 1801 ctctatcacc accaccacca ccaccaccat catcagcatc acaatctctt ccaccacctt 1861 caaaccacta acaacaactt gggtggaact accgatattt cttctggctc caccacttca 1921 tcaatggcaa ctacaatgtc gatgttgccc caaacagctg agttcttttt atggcctcac 1981 caccaatcat attgactaca aaatgcaagc agttttgact ttccagaaat tcggctaacc 2041 atgaagcaac agggcccctg ttgatggctg acaaaaactc tatttgctga cccgtattac 2101 cccttttaat gtacctccta ttaaccatgg caggattagg gaagacagga agttaccttt 2161 ttttttttgt cttgtttttc tttttgaatg gccaaacttc tggttttagt tagtctatta 2221 ggatgctgga ttttgtaagt aacttgtctc aacatgagga attagagatg attatgagac 2281 aaatgtttga atgatataag gagcatctat tcgtcagcgc gaaaagcttt agattgttcc 2341 tccattatac ca
SEQ ID NO:33
Ricinus communis AIL6
NCBI Protein Accession # XP 015583464
1 mapattnwls fslspmemlr sstesqfisy egsstatpsp hyfidnfyan gwgnpkeaqg
61 attmaaetsi ltsfidpeth hqqvpkledf lgdsssivry sdnsqtdtqd sslthiydqg
121 saayfseqqd lkaiagfqaf stnsgsevdd sasiarthlg gefmghsids sgndqlggfs
181 nctaannals lavnnnnnnn gnqsatnskt iapviesdcp kkiadtfgqr tsiyrgvtrh
241 rwtgryeahl wdnscrregq arkgrqgalf flfspsssyh lslfvacffn yssvkilgiy
301 axsaiphghv lyffqvtnyt keldemkyvs kqefiaslrr kssgfsrgas iyrgvtrhhq
361 qgrwqarigr vagnkdlylg tfateeeaae aydiaaikfr gmnavtnfem srydveaimk
421 salpiggaak rlklsleseq kpnlnheqqp qgsssnsssn nis fasmppv taipcgipfe
481 nttaqlyhhh hhhhhhqhhn lfhhlqttnn nlggttdiss gsttssmatt msmlpqtaef
541 flwphhqsy
SEQ ID NO:34
African oil palm Elaeis guineensis EgAP2-l (AILS); AY691196
NCBI Accession # AY691196; NM_001303564
1 ttcaatcaaa gctttctttc tcctcaactc cttattacgg gaataccctg gcaacgccat 61 ggacatggac acttcacaca gctggcttgc cttctcccta tcctaccacc agccctacct 121 cctcgaggct ctctcctccg cccctccaca tggtgggggg gggatgacgg cggaggagcg 181 gggaggatcg gcggaggtgg cggcgatggc ggtggtgggg ccgaagctgg aggacttcct 241 cggcgggtgt ggggaaccga tggggcggta cgctggcggc gagaccgggg atgcaggggg 301 gatctacgac tctgaactga agcacatcgc tgccgggtac ctgcaggggc taccagcgac 361 ggagcagcag gactccgaga tggcgaaggt ggcggcgccg gcggagtcac ggaaggccgt 421 cgaaaccttc ggccagcgca catctatcta ccgcggcgtc accaggcatc gatggacggg 481 gagatacgag gcgcacctgt gggacaacag ctgccgccgg gaggggcaga gccggaaagg 541 aaggcaagtc tatcttggtg gatacgataa ggaggagaag gcggcgaggg cttacgatct 601 cgcagcgctc aagtattggg gtccgaccac caccaccaac tttccaatct ccaactacga 661 gaaggagctg gaggagatga agaacatgac acgacaggag tttgtcgcat cgctcagaag 721 gaagagctct gggttctcca gaggcgcctc gatctataga ggggtcacca gacaccatca 781 acatggacgg tggcaagcaa gaattggaag ggtagcaggc aacaaagatc tttatcttgg 841 aacctttagc acgcaggaag aggcagcaga ggcctatgac attgcagcaa ttaagtttcg 901 ggggctcaat gcagtgacaa atttcgacat tagccgctac gatgtcaaga gcatagccaa 961 cagcaacctc cccattggcg ggatgacagg ccggccctcc aaggccacag aatcttcgcc 1021 atcatcctca tctgacgcca tgactgtgga agccaagcag ctgttggacg gccgggatcc 1081 ctcggcctca cttgggtttg ctgcgctccc cattaagcac gatcaggact tctggtcctt 1141 gtttgcactc caacagcagc agcagcagca gcagcagcaa agtaatcaag cttcagggtt 1201 cggtctcttc tcctctggtg tgactatgga tttctctaca gcttctaatg gtgttataag 1261 ccaagggtgt ggggggagcc ttgtgtggaa cggtggtgtt gtgggacagc agcaagagca 1321 atcacagaac aatagttgct cttctatacc gtatgcaacc cctattgcat ttggagggaa 1381 ttacgagggc tccagctatg tggggagctg ggtcacacca cccccctctt actaccacga 1441 acctgccaag cccaatgtgg cagtctttca gacgcccatc tttggaatgg aatgatatgg 1501 atgggtgggg aggtgagagg agacgcactt gcttgcagag agaaagagag agtcaaaagt 1561 gagatagaga ccatgggagg tgatgtgaac tgaccacact cacaaacata aagaagggaa 1621 ggagaacaga gggaggactg acgagaagac taacaagata tcaaaagttt tgctcatggt 1681 catgcgccca acttctttta ctttttggtt ttcttttact gacatgattc tatattgtca 1741 tcatcatcat cagtgtaatg gaaacaagaa gccttttgta aaaaaaaaaa aa
SEQ ID NO:35
Elaeis guineensis EgAP2-l
NCBI Protein Accession # AAV98627; NP_001290493
1 mdmdtshswl afslsyhqpy llealssapp hggggmtaee rggsaevaam avvgpkledf
61 lggcgepmgr yaggetgdag giydselkhl aagylqglpa teqqdsemak vaapaesrka
121 vetfgqrtsi yrgvtrhrwt gryeahlwdn scrregqsrk grqvylggyd keekaarayd
181 laalkywgpt tttnfplsny ekeleemkrim trqefvaslr rkssgfsrga siyrgvtrhh
241 qhgrwqarig rvagnkdlyl gtfstqeeaa eaydiaaikf rglnavtnfd isrydvksia
301 nsnlplggmt grpskatess pssssdamtv eakqlldgrd psaslgfaal pikhdqdfws
361 lfalqqqqqq qqqqsnqasg fglfssgvtm dfstasngvi sqgcggslvw nggvvgqqqe
421 qsqnnscssi pyatpiafgg nyegssyvgs wvtpppsyyh epakpnvavf qtpifgme
SEQ ID NO:36
Black cottonwood Populus trichocarpa BABYBOOMl (PtBBMl); POPTR_0010sl8840g
NCBI Accession # XM 002316143
1 atggcatcca tgaataactg gttaggtttc tctttatccc atcaagaact tccatcatca 61 caatctgatc atcatcaaga ccactctcaa aacacagact ctcgccttgg tttccacagt 121 gatgaaatct ctggtaccaa tgtctctggc gagtgctttg atctcacttc cgattccact 181 gctccttctc taaacctccc tgccactttt ggtatacttg aagectttag aaacaatcag 241 cctcaagatt ggaatatgaa gagtttaggc atgaatccag acactaacta caaaaccgcc 301 tcaggcctcc ctatattcat gggcacttca tgeaatagee aaaccattga tcaaaatcaa 361 gaacctaagc ttgagaactt ccttggtggc cattcttttg gtaatcatga acacaaactg 421 aatggctgca acaccatgta tgataccact ggagactatg tgttccaaaa ctgttctttg 481 caactcccat ctgaggcgac atcaaatgaa agaaccagca ataatggagg aggtgacaat 541 aaaaatagtt ccattgggtt atccatgatc aagacttggt taaggaacca gccagcaccg 601 acgcaacaag acaccaataa taaaaacaat ggtggtgcac aaagtttgtc cctttcaatg 661 agtactgggt cacagtcagc tgettctget ctgccacttc tagcagtaaa tggaggagtt 721 aataatactg ggggagatea gagttcttct gataataaca agcaacaaaa gagtaccaca 781 ccaagtcttg atagecaaac cggtgccatc gaatcggtgc caaggaaatc tattgatact 841 tttggccaaa gaacatctat ataccgtggt gtaacgagac atagatggac eggtagatat 901 gaagctcatc tatgggacaa tagctgtaga agagaaggac aaactcggaa gggaaggcaa 961 gtttatttgg gtggttatga caaagaagag aaggcagcta gagectatga tttagcagca 1021 ttgaaatatt ggggcacgac tactacgaca aattttccaa ttaccaacta cgaaaaagag 1081 atagaagaaa tgaagcacat gactaggcag gagtatgttg cgtctcttcg gagaaaaagc 1141 agtgggtttt ctcggggtgc ttccatatat cgaggtgtaa ctagacatca teagcaegga 1201 agatggcagg caaggattgg aagagttgca gggaacaaag acctttactt gggaactttc 1261 agcacccaag aggaagcagc agaggectat gaeattgeag ccataaaatt ccgtgggctg 1321 aatgcagtaa ccaactttga catgagcaga tatgatgtta acagcatact cgagagcagc 1381 acattgccaa ttggaggcgc ggctaagegg ttgaaagagg eggagcatge tgaaatagca 1441 atggatattg cgcaaagaac agatgatcat gacaacatgg gttcacaact caccgatgga 1501 attagcagct atggtgcagt acagcatggc tggcctactg ttgeatttea acaagcacag 1561 ccttttagca tgcactatec atatggccag aggctttggt gcaagcaaga acaggactct 1621 gacaatcgca gctttcaaga gcttcatcaa ctacaattgg gaaataccca caatttcttt 1681 cagccttctg tcttacataa ccttgtgagc atggactctt cttcaatgga acatagctct 1741 ggctctaatt ccgttgtgta tagcagtgga gttaatgatg gtactagtac tggaaccaat 1801 ggaggctatc agggaattgg ttatggaagc agtgctgggt atgccgtccc aatggctacg 1861 gttatttcta ataatgacaa caaccacaat caaggaaatg gttatggaga tggagatcag 1921 gtgaaggctc tgggatacga aaacatgttt tccccgtctg atccatatca tgecaggaac 1981 ttgcattatc tttcacagca accttcagcc ggtgggatca aggctagtgc atatgatcag 2041 ggttcagcat gctacaattg ggtgccaaca gcagttccta ccattgcagc agcaaggtcc 2101 aacaacatgg ctgtttgtca tggagcacaa cctttcacag tatggaatga tggtacataa
SEQ ID NO:37
Populus trichocarpa BABY BOOM1 (PtBBMl)
NCBI Protein Accession # XP_002316179
1 masmnnwlgf slshqelpss qsdhhqdhsq ntdsrlgfhs deisgtnvsg ecfdltsdst
61 apslnlpatf gileafrrinq pqdwnmkslg mnpdtnykta sglpifmgts cnsqtidqnq
121 epklenflgg hsfgnhehkl ngcntmydtt gdyvfqncsl qlpseatsne rtsnngggdn
181 knssiglsmi ktwlrnqpap tqqdtnnkriri ggaqslslsm stgsqsaasa lpllavnggv
241 nntggdqsss dnnkqqkstt psldsqtgai esvprksidt fgqrtsiyrg vtrhrwtgry
301 eahlwdnscr regqtrkgrq vylggydkee kaaraydlaa lkywgttttt nfpltnyeke
361 ieemkhmtrq eyvaslrrks sgfsrgasiy rgvtrhhqhg rwqarigrva gnkdlylgtf
421 stqeeaaeay diaaikfrgl navtnfdmsr ydvnsiless tlpiggaakr lkeaehaeia
481 mdiaqrtddh dnmgsqltdg issygavqhg wptvafqqaq pfsmhypygq rlwckqeqds
541 dnrsfqelhq lqlgnthriff qpsvlhnlvs mdsssmehss gsrisvvyssg vndgtstgtn
601 ggyqgigygs sagyavpmat visnndnnhn qgngygdgdq vkalgyenmf spsdpyharn
661 lhylsqqpsa ggikasaydq gsacynwvpt avptiaaars nnmavchgaq pftvwndgt
SEQ ID NO:38
Black cottonwood Populus trichocarpa BABYBOOM2 (PtBBM2); POPTR_0008s07610g
NCBI Accession # XM 002311223
1 atggcctcca cgaataactg gttaggtttc tctctatccc ctcaagaact tccatcatca 61 cagtctgatc accacgatca ccctcaaaac acagactctc gccttcgttt ccactcagat 121 gaaatctctg gcaccgatgt etceggggag agctttgatc ttacttctga ctccaccgct 181 ccttctctca acctccctgc ctcttttggt atacttgaag cctttagaaa caatcaatct 241 caagattgga ataatatgaa gcgttcaggc atcaatgaag acaccagcta caataccacc 301 tcagacgtcc cgatattcat gggttcttca tgeaatagee agaacattga tcaaaatcaa 361 gaacctaagc ttgagaactt ccttggcggc cattcttttg gcaatcatga acacaaactt 421 aatgtctgca gcaccatgta tggttccact ggacactata tgttccacaa ctgttccttg 481 caactcccat ctgaggatgc atcaaatgaa agaacaagca gtaatggagg ggctgatact 541 agcatcaaca ataataacac caatagttcg attggtttat ctatgattaa gacttggcta 601 aagaaccagc cggcaccgac acaacaagac accaataata agagcaatgg eggtgcacaa 661 agcttgtccc tttcgatgag tactgggtca caatcaggtt ctgatttgee acttctagca 721 gtaaatggag gaggaaatag aactagagga gagcagagtt cttctgataa taacaaacaa 781 caaaagacca caccgagtct tgatagccaa accggtgcca tcgaagtggt gecaaggaaa 841 tctattgata ettttggeca aagaacttct atatacegtg gtgtaacaag acatagatgg 901 actggtagat atgaagctca tctatgggac aatagttgta gaagagaagg acaaactcgc 961 aagggaaggc aaggtggtta tgacaaagaa gataaggcag ctagagctta tgatttagca 1021 gcattgaaat actggggcac taccaccaca acaaattttc caatgagcaa ctacgaaaaa 1081 gagatagaag aaatgaagca catgactagg caggagcatg ttgegtctet tcgaaggaaa 1141 agtagtgggt tttctcgggg ggcttccatt tatcgaggtg taactagaca tcatcaacat 1201 ggaagatggc aagcaaggat tggcagagtt gcagggaaca aagaccttta cttgggaact 1261 ttcagcaccc aagaagaagc agcagaggcc tatgacattg cagccataaa attccgtgga 1321 ctgaatgcgg tgaccaactt cgacatgaac agatatgatg ttaacagcat aatggagagc 1381 agcacattgc caattggggg tgcggctaag cggttgaaag aggcggagca tgctgaaatt 1441 acaacgcgtg tgcaaagaac agatgatcat gacagcacga gttcacaact caccgatggg 1501 attagcaact atggtactgc tgcacaccat ggctggccta ctattgcatt tcaacaagct 1561 caggctttta ccatgcacta tccctatggc cagaggcttt ggtgcaagca agaacaggac 1621 tctgacaatc atagctttca agagcttcat caattacaat tgggaaacac gcaaaatttc 1681 cttcagcctt cggttctaca taacgtcatg agcatggaat cgtcttcaat ggaacacagc 1741 tctggctctg attctgttat gtatagcagt ggaggccacg atggtaccgg tactggaacc 1801 aacggaagct atcagggaat tggctatgga agcaatactg ggtatgccat cccaatggct 1861 acagttatag ctaatgatgt aaacacccaa gatcaaggaa atggttatgg agatggagag 1921 gtgaaggctc ttggctatga aaatatgttt tcctcgtcgg atccttatca tgctagaaat 1981 ttgtactatc tttcgcagca atcatctgcc ggtgtgatca aggctagtgc atatgatcag 2041 ggttcaacat gtaacaattg gttgccaaca gcagttccta ctattgcagc gaggtctaac 2101 aatatggctg tttgccatgg agctccaact ttcacagtat ggaacgagag tacataa
SEQ ID NO:39
Populus trichocarpa BABY BOOM2 (PtBBM2)
NCBI Protein Accession # XP_002311259
1 mastnnwlgf slspqelpss qsdhhdhpqn tdsrlrfhsd eisgtdvsge sfdltsdsta
61 pslnlpasfg ileafrnnqs qdwnnmkrsg inedtsyntt sdvpifmgss cnsqnidqnq 121 epkleriflgg hsfgnhehkl nvcstmygst ghymfhncsl qlpsedasne rtssriggadt 181 sinnnntnss iglsmiktwl knqpaptqqd tnnksnggaq slslsmstgs qsgsdlplla 241 vngggnrtrg eqsssdririkq qkttpsldsq tgaievvprk sidtfgqrts iyrgvtrhrw 301 tgryeahlwd nscrregqtr kgrqggydke dkaaraydla alkywgtttt tnfpmsnyek 361 eieemkhmtr qehvaslrrk ssgfsrgasi yrgvtrhhqh grwqarigrv agrikdlylgt 421 fstqeeaaea ydiaaikfrg lnavtnfdmn rydvnsimes stlpiggaak rlkeaehaei 481 ttrvqrtddh dstssqltdg isnygtaahh gwptiafqqa qaf tmhypyg qrlwckqeqd 541 sdnhsfqelh qlqlgntqnf lqpsvlhnvm smesssmehs sgsdsvmyss gghdgtgtgt 601 ngsyqgigyg sntgyaipma tviandvntq dqgngygdge vkalgyenmf sssdpyharn 661 lyylsqqssa gvikasaydq gstcnnwlpt avptiaarsn nmavchgapt ftvwnest
SEQ ID NO:40
Larixgmelinii var. olgensisxLarix kaempferiBABYBOOM(BBM); KJ004517
NCBI Accession # KJ004517
i cgtcgactga taagaagcct gatatatggg gagggatgag ataacatatt taatgagagt
61 tagcttgcca gcggtgttga gccaatgacc accccaggaa accaatttag ccttgatttt 121 gttgattatt tcaagccatt gagaagcctt tgcagtgccc atagttaaag gaaggcctaa 181 atattcgatg gagtcccact cagcttatcc cataaagcct aaggaattag aaatccgaag 241 gatggttggt tgatctaccc tccaaccata cactgcactt tttcgcttat taaccaaagc 301 tccagaaact ctgcagaagc tgtgaattac aacgttgaag gccctggcaa tttttaatga 361 ggcaccaccc aagaggaggg aatcattagc gaacaaggaa tggtttaaag gttctatttc 421 tttcaccaca cagatacctg gagatgtccc tgctagcttc tcagctgtca attttcggct 481 aagagaatcg accatcaaaa tatacgggaa aggggacagg gggcagccct acctaatacc 541 cctcgtggct tggaagtaac tagc tggcct gccatttaca aggggggaaa tccacgactt 601 ttctatacac gctttgatta acctgacaaa gtcaacactg aaaccaaagg aaagaagaac 661 ttgaaaaaga aaggagtgtc ttacctgatc gaaggcatta gccatatcca gctttatgag 721 catccctttc tcttgccgct gataactaga gtggatggtt tcctacacta ggatcacatt 781 atccatgata tgtcttcctt tgacaaaccc tccatgactg ggggagataa gtttatccag 841 tagaggcttg atgcggtttg ccaggagttt ggacagagtt ttatatgaag cattgcacag 901 cgaaattggt ctgaaatggt caaaggtccc agggtttgtc tccttgggga ttaaagctaa 961 aaaggtagag tttgtactgc ctcccacctt ggctttatgg agaaaacatt tgatcatccg 1021 taataagtca atcttaatta tgtcccaaca aattctatag aaatggatgg aaaactcatc 1081 gagcccaggt gctttgtccg gctccatcac ccagataaca ttgttgatct cagtttcggt 1141 gaagggaagc aaaagtccaa cattttcctc ctcatcaacc aatcttggca cattagttaa 1201 gaaatctgag aattcttgtt cagaatccaa tccttcatcc gtgtagagct aatgaaagtg 1261 agaagttgca gcctctttga gttgatcgat ctctttgtgg acagacccat caggagtagt 1321 gatttcatca acatggttac gcaagaggcg agctttaaat tgattatgga agaaggatgt 1381 atttctatcg ccagacttga accagaggca tctggattta agcctccaat gctcttcctc 1441 ctgcctgtaa gagcggagtg cgttaagttg ggcagcttgc tcactttgaa tatcagagat 1501 ggtaatgtct ttatcctcca actccatttg ctgggcgagc ctatgacagg agtattccag 1561 cctagacagg ggaagaacca aaggcttcta gatttaatcc tccaattctc ttcctcctgc 1621 ctataagagt ggaatgtgtt aagttgggca gcttgctcat tctaaatgtc agagatggta 1681 atatatttaa actccagatc catttgcatg tctaacaact gatttgtaga ttgctttcta 1741 caactacaag cagaggttga aggattttta atccactgtt tcaaatccaa tttagtagct 1801 tttaatttat gctcccaaac atagctgagc gagcctatga caggagtatt ccagacattt 1861 aaaacggtgt ccataaaccc ttatctaaca gcccagagag gactgaaccg gaaggggatg 1921 ggacccaatc tttattcttt ctcaagttgt agtaaaatag gcttatgatc agaagtcaat 1981 ttttgtagaa ctctagtaga gatgatcttt ttttccatca gaaaggtact ttgcaataag 2041 aatctatcca accgggctga aatgtggtgt ctcccaactc tgttatttgt ccatgtgtat 2101 ggattttctg tgagaggagg gcaggctgag gttgaaactg gaggctaccc ctcgactgtg 2161 tagggtggca gctgggaaga gagacaagag gaggtaggga ggagaatact ttgtcagggg 2221 ttgtagggcc ccttaggatg gcagccttcc caatgcaatg cataaatccg gtggaaccgc 2281 agcggttttt aaggcgaatg cgtgctactg acggagttat gaagggatgg agtttttgac 2341 ctttggttct tcccctgtct ttctattcat gtagaataag ggtgcacggc ctttacctcc 2401 cggtattctg ctgattcgat tgtgtatcgt ttggatttgc aaagaagcgc ccttcgtttc 2461 cggacctttg ataccttctt gccct tccga ttctggcgcc cgctcactgg aattcaagac 2521 tgttctcttc agtcagtcta ggtatgcggt cacccaagca aaacaacata aaagggcttt 2581 ttggctcttc ctgattttct tttggtttta ggcttcattc attgctcttt ttttcttccc 2641 ttcagtcctg gatgttttgc tcatttttgc atatactgat gggctcagga aaataggtgc 2701 tataacagga tttagggatt ttgaaagaaa tggggtcgac gagcaattgg cttgcgtttt 2761 ctctgtcgcc ccatctgact gtggatatgc cggactcgac ccagccacgg tcgacctctg 2821 ctgcttctaa tcatagtcgt catcataatg atttcagcaa tggcactgtt catgattgtt 2881 atgagcttca tcccacagat actatgcaga tgcctttgag gcctgatggc tcactttgta 2941 tactggaagc actcgaccgg acacagaata atcaaggtat agcccttggg gaatatattc 3001 tcacttgatt tcaaaccgac caagctgata atatgctgta tttccttggg gaaataaaga 3061 aatgacttgt caatgctttc cggcccttct agctcacagc ctagatcaca cttcatggcg 3121 ggttcgtgtt tgtttttatt cttacttccc atcaggtctg agacttttgt tttttcatca 3181 actcctgcta gcttggaaca ttttctgtta gccctcaata tacggttctg tcctgtacaa 3241 tacttatttt ggatattatg cggtcctagg gcttattgac gtactgagaa tcttccttcc 3301 caaacttctc cagcaacaaa gtcaatcagt ttcaaacata gtactgattg ccacatttta 3361 tcccacaacg cacgagtcaa atggatccat tctacacggc tgaaagcaac ttgaattatg 3421 gcctccccac aaatcttcct atcagatccg acggtatcta tttaccatat atcacaacca 3481 atgcagcgcg gcagggtgct tattgattgt ttttttccat atggctttca tttcctggca 3541 gtctgagtct cttagcattt ctgttataaa gcaaagtaga atatatatac atatataagc 3601 ttgcatattt atgtgttact ggctcaaaat tttcttccat ggtactaatt ttattcgttc 3661 ctggttactt atcagattgg caactgaaaa gtctggagaa ccctggaagc atggatttgg 3721 aatcagatgt gcaatcacag cagatgatga agtcggagct gtcgatacta gccgggggta 3781 gcagtgaaca gatgtctgca tccattgggc gccataagaa cgtggaccaa gaaggcccaa 3841 agttggagga ttttcttggt ggagcttctc tgagaggaca ctataacgat gcgagaactg 3901 attcaatcta tggaaacgac gatgccttcg atgagaagat gatggcgccg ggcttgcggg 3961 atgttgtgcc gaattgcttg aacggttttg atgtcacaga cactgaattg tcgtctggct 4021 cgaagaaaac tgatcaaaac caggattcta cgagaaatat taactccatc cagaactccc 4081 ttgtacagga ttcatatgat caaaattcga acgatcaata tatgttccag gactgcagcc 4141 tccagctgcc tccaaattcc ggggcaaaca atatgattgg cttgtcgatg atcaagacat 4201 ggctgaggag tcaaccatgc ccagaaaaca agatgaatgc ggccaccaat tcaagcaccc 4261 cgacctcagc taaagaccag tcccttggca acctaacaaa tatacaatct ttatccctct 4321 ccatgagccc gggctctcaa tccagctcac ccttggctct tcctgtgcaa tatcagaata 4381 caaacgctga cagcccttca tctgaaagta agaagcgctc tttagaaaag caaagcctag 4441 ttagtgtaga agctacccca aggaaatcca tcgatacatt tggccagcgc acttcgatat 4501 atcgtggtgt cactaggtat ttggaacaaa ttttcttcca gctcattcta gacttacttc 4561 atatgtctgt tatttttttt ggtagtcgag gagaacggtt gtaaatgtct ataaatatgt 4621 aatgctgcag acatagatgg actgggaggt atgaggctca tctgtgggac aatagttgca 4681 ggagagaggg ccagacccga aagggtagac aaggtgagct ttgcaagatc aaaaatatct 4741 tctcacattt tggtttcttt catgcaacat ggtcatggtg atttgtgtta ccatggctgc 4801 attttggttc gccgtagttt gcattttctg aagtccaagc atacataaca ttgcaaaact 4861 aaataataaa tttttgtgtg gctgtgtcac gtgcatgggc aacgttgatc ggattgaaca 4921 ttcttcagtc tatttgggta agagcaatgt tcattcttgg tttcaaatta aaactcagtt 4981 tcttctttaa tttccttgta cagatcttgt acctgcagta tgttcatcaa gatctacgcg 5041 attcattgct taaagtgatt ctaactttca tatatcgcct tgttagaatt tgtcaatgta 5101 cctaataaaa ttcagccttt ttagctggct taattccagt ttagatcatt ttggttatac 5161 cagtgtccat ctaatcttga tgagcaaacg agagaacaag ggtggaatga aattaacatg 5221 attatttgac gttcgatgca agtttgctgt ttgaaagagt gcaaccaaca aaatctaatc 5281 acctatctga tcatttgaac gttattttta aacattacag gtggatatga caaagaagag 5341 aaggcagcta gggcttacga ccttgcagct ctgaaatatt ggggcccaac aactaccaca 5401 aattttccag tgcgaatcaa tatttttctt tcgtttcatt ctgtatatgg aaaactgtat 5461 aaatataaaa gaattaatta aatgtctaag tcacgcactt agatttcaat gaaactattt 5521 ttgacgtttc ttactccata tttttttttg ataccagcct gaaataaaag acttttttct 5581 tttggcagac tggcaattat gagaaagagc tagaggagat gaaacatatg acaaggcagg 5641 agtacgttgc atctctcaga aggtatgttc gttttattac tagttaaggt attgcaattc 5701 tgtaggcgag gtatatttga aaacaatagt ataaagctta ttaagtcaca taaatcttgg 5761 atatttgtgc agaaagagca gcggattctc tagaggagca tcaatttacc gtggagtaac 5821 aaggtttggc ttgctatatt tctgaattgc agtcaaatgt attttggaat aatagtaaca 5881 ggatgtgtag caaattacta taaagtttac aagcataaag aaactagaaa ataag ta taa 5941 atttgggact aactacgaaa tgagattgaa caaaaggaac tggaactcat gaataagttg 6001 ctatttttgt ttcttctaca tatcattaat ggaatttaaa aatctagagc agaatatata 6061 agctgacttc aattataaaa catagaacat tgtcaaggtt caacatataa tagtttttca 6121 gatccttctt acctaaaact tctaaaagct ccatagatta gtatgctctt atcgtacttc 6181 aaaattcctg ttaggttaac tgaatcttag attattgaat attatattta taatgtcccg 6241 aattccagaa gaatctggag ggtaggaatc cactgacaaa ttcaggtttt ccttccagtg 6301 tgggagatag aaacccataa gtggtcgttc aaaaagtcgt gatgagtttt gcagtttctg 6361 caagtagtga aaatttgagc tttcttcgga tgacttaaca tgttttataa tacttggcag 6421 cacttcaaaa acaatgttca gtggacattg ctttttagtt ccctcattcc attgttcaga 6481 ggaaaaagtt ggaacacatt ccttggtcgc tttaatatgg ttaataggaa ttcaagagcc 6541 aactcactga atttatgata ataggaaagt tactgtattt gtccatataa gcacttctaa 6601 gtagaggatg gctcgttgat agaagaaaac agaactctca gaagcagttt tggatatatg 6661 ttccataaca ccaccatggg aatggattta gaattcagaa ataaaatgtt atcttcttta 6721 ttaatggagt ttgttcctga taatttcaat ttacttaaac aacgcatgga ttgtggcttg 6781 acagaatcaa attaaggtat aaattgttcc ttgaccatta attatgttcc atgctttatc 6841 tgcaaaagaa tgaaatcaca ttaatctcta cagatgtcct gaataggtta ttgaaagaaa 6901 cttgtttttt a111ca 11aa aaaaacatgt acagagattt gaagaaaagc gtttttttct 6961 gaccttaaag ggcactactt cagtctctaa gatcagttac ctgcttcagg attggttctc 7021 ccttataggt atagcttaat aagctactgt gatttaaggt tgaaactttt catatcgata 7081 cagtgcagat caaaacctga atcaaaattc ttcaaatcaa aagatattgg gaggaaaatg 7141 gtgccatcct ttctgagga t gtatttttga aatccgaagg ccaaaacatt aaatcataca 7201 gtgttcacat aggcattaga attattagtc gaagttaaat tttctgtaac ttgcatcagc 7261 cgtgtgaatt agtgtacatt ttttgatgtt tgtaaacctt cgaatccctt ggtaagttgt 7321 tcacccttta gtataatgag acttgttttt tctatcacct gaacattttc ttgaagttgc 7381 actgtatatt gtatgcatct aatattgaag ctcactataa gtaatttagg ctttcagtgc 7441 taataatcga tttgtattga acgtaccaga catcaccaac atggaaggtg gcaggctcga 7501 ataggaagag ttgctggaaa caaagatttg tatctgggaa cctttagtaa gttctatcat 7561 gtttatgtaa atacctatgc tcctttaagg tgttctgaga tttctcaagc tctttgcttg 7621 ttagtgaaat gatgaaaatc ctttttaacg aattcactta atttcatgaa taggttcaca 7681 ggaagaagca gctgaagcct atgacatcgc tgccatcaaa ttcagaggtc tcaatgctgt 7741 gacaaacttt gacatgacca gatacgacgt caatagcata cttgaaagca gcacactacc 7801 cataggagga gctgctgcaa agcgcatcaa ggacgcggag ccatctgatc caagtgtaga 7861 tggtcgtcgt acagatgatg aaataagcag cacaattagt tcacagatag cagacacctt 7921 aaccagttat ggcaacgctg cttatccaaa tgggcacgcc ggatggccga taattgcatt 7981 tcagcagcaa acaaatccac atgcaccagc tttttacagt cagcaaaggg ctgcagctgg 8041 atggtgcaaa caggagcata ataatattca aaatcatgac ctccaactgc actttcaatc 8101 cagcactcag aattttctcc agccatcaat gatgacatca aatgctaata ctgttttgca 8161 taatctcatg aacttagaat cttctgctca gcttgatggg actaacacca actctaattc 8221 aggcctcttc agtaacattt caggcaacct ggcaggcaac agtctgcaga tggctaattc 8281 acctattcca tctgggataa cagtatgtga cagtgctaga actcctttca gtactgaaaa 8341 tgatggcagc agtacaaaaa attctagtta taatgataac atgctatcta attcagatcc 8401 111tgcaagg ggcctatatt acttatcaca gcattcaccc agcgtggtca aagccaacta 8461 cgaaaatgca gcgtataaca attggatgac accggctgtt cagactttag caccaaggcc 8521 taatctgaca gtttgtcatg cccccatttt cactgtatgg aacgacacct aagaagcaca 8581 ggctagtatc gcatgaccag tccttggatt aaaggactgg aaaatattcc aaggaataaa 8641 agtggagctg atcttactgg aattgtgaag cgaaccctgt aacctatctt tctcatgcag 8701 gcaatataat gtacacctta gctcctactt cgctcacatt tttggaaggg cctaaggcat 8761 tattgctaaa ttgggttttt gtaattcggc aactatctac ttttaagcct ctcaggcttc 8821 attttgaagg aacgaaatgt tgaaattatt gcctatagaa ggcacactaa ctaactctta 8881 ctattttatt agcccggctt agccagcaat gtgatcaaat gcatcattgt aaaaagaaca 8941 cagcaatttt cctcgatcat tacttgcgat gcaaactgtt actctatttt cttgtgatat 9001 aaaaatatct gcagaagttt cttttttggg acc
SEQ ID NO:41
Larixgmelinii var. olgensisxLarbc kaempferiBABYBOOM (BBM); KJ004517
NCBI Protein Accession # AHH34920.1
1 mgstsnwlaf slsphltvdm pdstqprsts aasnhsrhhn dfsngtvhdc yelhptdtmq 61 mplrpdgslc ilealdrtqn nqdwqlksle npgsmdlesd vqsqqmmkse lsilaggsse 121 qmsaslgrhk nvdqegpkle dflggaslrg hyndartdsl ygriddafdek mmapglrdvv 181 pnclngfdvt dtelssgskk tdqnqdstrn insiqnslvq dsydqnsndq ymfqdcslql 241 ppnsgannmi glsmiktwlr sqpcpenkmii aatnsstpts akdqslgnlt nlqslslsms 301 pgsqssspla lpvqyqntna dspsseskkr slekqslvsv eatprksidt fgqrtsiyrg 361 vtrhrwtgry eahlwdriscr regqtrkgrq vylggydkee kaaraydlaa lkywgptttt 421 nfptgnyeke leemkhmtrq eyvaslrrks sgfsrgasiy rgvtrhhqhg rwqarigrva 481 gnkdlylgtf ssqeeaaeay diaaikfrgl navtnfdmtr ydvnsiless tlpiggaaak 541 rikdaepsdp svdgrrtdde isstissqia dtltsygnaa ypnghagwpi iafqqqtnph 601 apafysqqra aagwckqehn niqnhdlqlh fqsstqnflq psmmtsnant vlhnlmnles 661 saqldgtntn snsglfsnis gnlagnslqm anspipsgit vcdsartpfs tendgsstkn 721 ssyndnmlsn sdpfarglyy lsqhspsvvk anyenaaynn wmtpavqtla prpnltvcha 781 piftvwndt

Claims

WHAT IS CLAIMED IS: 1. A plant comprising a promoter expressed in an egg cell ofthe plant, wherein the promoter is operably linked to a polynucleotide encoding a BABY BOOM polypeptide, wherein the BABY BOOM polypeptide:
a. is from a sexually-reproducing plant, or
b. comprises a first amino acid sequence that is at least 60% (e.g., at least 70%, 80%, 90%, 95%, or 98%) identical to SEQ ID NO:1, or
c. comprises a second amino acid sequence that is at least 50% (e.g., at least 60%, 70%, 80%, 90%, 95%, or 98%) identical to SEQ ID NO:3, or
d. a combination oftwo, or all three, ofa, b, and c.
2. The plant ofclaim 1, wherein the BABY BOOM polypeptide is at least 70% identical to at least one ofSEQ ID NO: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, or 41.
3. The plant ofclaim 1, wherein the BABY BOOM polypeptide further comprises a third amino acid sequence at least 80% (e.g., at least 90%, 95%, or 98%) identical to SEQ ID NO:2
4. The plant ofclaim 1, wherein the plant is a rice plant.
5. The plant ofclaim 1, wherein the promoter is heterologous to the plant.
6. The plant ofclaim 1, wherein the promoter is native to the plant except contains at least one non-naturally-occurring mutation resulting in expression in the egg cell.
7. The plant ofclaim 1, wherein the promoter is not expressed in the leafof the plant.
8. The plant ofclaim 1, wherein the plant comprises a heterologous protein that binds to the promoter, wherein the heterologous protein comprises a transcriptional activation domain.
9. The plant ofclaim 8, wherein the heterologous protein comprises a deactivated Cas9 (dCas9) protein.
10. The plant ofclaim 8 or 9, wherein the transcriptional activation domain comprises VP64.
11. A method ofmaking haploid plants, the method comprising, providing a plant ofany ofclaims 1-10, wherein the plant produces progeny; selecting haploid progeny from the plant.
12. The method ofclaim 11, wherein the progeny are seeds for haploid plants.
13. The method ofclaim 11, wherein the selecting comprises separating haploid progeny from non-haploid progeny.
14. A method ofmaking the plant ofany ofclaims 1-7, comprising introducing in a plant an expression cassette comprising the promoter operably linked to the polynucleotide.
15. The method ofclaim 14, wherein the plant is diploid and the method further comprises
exposing the plantto conditions such thatthe plant produces progeny;
and
selecting progeny from the plant for progeny that are haploid.
16. A method ofmaking the plant ofany ofclaims 1-4 or 6-7, comprising inducing an in situ mutation in a native promoter ofthe plant to alter the native promoter into a promoter that is expressed in the egg cell.
17. The method ofclaim 16, wherein the in situ mutation is introduced by a method comprising contacting the native promoter with a guide RNA and a CRISPR-associated endonuclease.
18. The method ofclaim 17, wherein the CRTSPR-associated endonuclease is Cas9.
19. The method ofany ofclaims 16-18, wherein the plant is diploid and the method further comprises
exposing the plantto conditions such thatthe plant produces progeny;
and
selecting progeny from the plant for progeny that are haploid.
20. A method ofmaking the plant ofany ofclaims 1-4 or 11-13, comprising introducing a heterologous protein that binds to the promoter into egg cells ofthe plant, wherein the heterologous protein comprises a transcriptional activation domain.
21. The method ofclaim 20, wherein the heterologous protein comprises a deactivated Cas9 (dCas9) protein.
22. The plant ofclaim 20 or 21, wherein the transcriptional activation domain comprises VP64.
23. The method ofclaim 16, wherein the introducing comprises introducing an expression cassette encoding the heterologous protein into the plant and inducing expression ofthe heterologous protein in the egg cell.
24. The method ofany of claims 20-23, wherein the plant is diploid and the method further comprises
exposing the plantto conditions such thatthe plant produces progeny;
and
selecting progeny from the plant for progeny that are haploid.
25. A method ofmaking clonal plants from a parent plant, the method comprising,
providing a plant ofany ofclaims 1-10, wherein the plant is a parent plant that produces gametes having the same number ofchromosomes as somatic cells in the plant, exposing the parent plant to conditions such that the parent plant produces progeny; and
selecting progeny that are clones ofthe parent plant.
26. The method ofclaim 25, wherein the somatic cells are diploid and the selected progeny are diploid.
27. The method ofclaim 25 or 26, wherein the gametes are egg cells.
PCT/US2017/063249 2016-11-28 2017-11-27 Induction of haploid plants using baby boom1 gene WO2018098420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2018/062663 WO2019104346A1 (en) 2017-11-27 2018-11-27 Synthetic apomixis in a crop plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662427043P 2016-11-28 2016-11-28
US62/427,043 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018098420A1 true WO2018098420A1 (en) 2018-05-31

Family

ID=62195589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/063249 WO2018098420A1 (en) 2016-11-28 2017-11-27 Induction of haploid plants using baby boom1 gene

Country Status (1)

Country Link
WO (1) WO2018098420A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257418A (en) * 2019-05-09 2019-09-20 湖南杂交水稻研究中心 A kind of method of fixed rice heterosis
CN110423768A (en) * 2019-07-02 2019-11-08 湖南杂交水稻研究中心 Pass through the method for the fixed rice heterosis of adventitious embryo mode
WO2020214986A1 (en) 2019-04-18 2020-10-22 Pioneer Hi-Bred International, Inc. Embryogenesis factors for cellular reprogramming of a plant cell
WO2022087601A1 (en) 2020-10-21 2022-04-28 Pioneer Hi-Bred International, Inc. Doubled haploid inducer
WO2022087616A1 (en) 2020-10-21 2022-04-28 Pioneer Hi-Bred International, Inc. Parthenogenesis factors and methods of using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130055472A1 (en) * 2011-08-31 2013-02-28 E.I. Du Pont De Nemours And Company Methods for tissue culture and transformation of sugarcane
US20150247157A1 (en) * 2012-01-06 2015-09-03 Pioneer Hi Bred International Inc Somatic ovule specific promoter and methods of use
WO2016049258A2 (en) * 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
US20160304901A1 (en) * 2013-10-21 2016-10-20 University Of Georgia Research Foundation, Inc. Gene for induction of parthenogenesis, a component of apomictic reproduction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130055472A1 (en) * 2011-08-31 2013-02-28 E.I. Du Pont De Nemours And Company Methods for tissue culture and transformation of sugarcane
US20150247157A1 (en) * 2012-01-06 2015-09-03 Pioneer Hi Bred International Inc Somatic ovule specific promoter and methods of use
US20160304901A1 (en) * 2013-10-21 2016-10-20 University Of Georgia Research Foundation, Inc. Gene for induction of parthenogenesis, a component of apomictic reproduction
WO2016049258A2 (en) * 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020214986A1 (en) 2019-04-18 2020-10-22 Pioneer Hi-Bred International, Inc. Embryogenesis factors for cellular reprogramming of a plant cell
US20220240467A1 (en) * 2019-04-18 2022-08-04 Pioneer Hi-Bred International, Inc. Embryogenesis factors for cellular reprogramming of a plant cell
CN110257418A (en) * 2019-05-09 2019-09-20 湖南杂交水稻研究中心 A kind of method of fixed rice heterosis
CN110423768A (en) * 2019-07-02 2019-11-08 湖南杂交水稻研究中心 Pass through the method for the fixed rice heterosis of adventitious embryo mode
CN110423768B (en) * 2019-07-02 2023-06-13 湖南杂交水稻研究中心 Method for fixing rice heterosis by adventitious embryo mode
WO2022087601A1 (en) 2020-10-21 2022-04-28 Pioneer Hi-Bred International, Inc. Doubled haploid inducer
WO2022087616A1 (en) 2020-10-21 2022-04-28 Pioneer Hi-Bred International, Inc. Parthenogenesis factors and methods of using same

Similar Documents

Publication Publication Date Title
KR102607893B1 (en) Methods and compositions for increasing yield of short stature plants through manipulation of gibberellin metabolism
CN106998665B (en) Haploid plant production
WO2018098420A1 (en) Induction of haploid plants using baby boom1 gene
CN101365786B (en) Plants having improved growth characteristics and methods for making same
CN110511945B (en) Rice fertility regulation gene, mutant and application thereof
CN107630031B (en) Method and system for regulating and controlling plant fertility
AU2016355682A1 (en) Haploid induction compositions and methods for use therefor
CN115175556B (en) Novel genetic loci associated with soybean rust resistance
CN101868544A (en) Plants having increased yield-related traits and a method for making the same
CN111295447B (en) Corn elite event MZIR098
CN108291234A (en) Multiple sporinite forms gene
AU2016295291A1 (en) Wheat plants resistant to powdery mildew
KR20080075908A (en) Nucleic acids and methods for producing seeds having a full diploid complement of the maternal genome in the embryo
CN108012523A (en) Plant with increased seed size
CN112725374A (en) Method for creating plant haploid induction line and application thereof
WO2016138021A1 (en) Haploid induction
AU2017234920A1 (en) Methods and compositions for producing clonal, non-reduced, non-recombined gametes
CN113874388A (en) Parthenogenesis genes
JP2019103526A (en) Manipulation of self-incompatibility in plants
KR20230088741A (en) Modified promoters of parthenogenetic genes
CN108441499A (en) Male fertile related gene HT2925 and its application
CN114072512A (en) Sterile gene and related construct and application thereof
CN105579583B (en) The breeding of Female sterile clone and cross-breeding technology
CN107446031B (en) Plant glutelin transport and storage related protein OsVHA-E1, and coding gene and application thereof
CN109912706B (en) Gene, protein and molecular marker related to rice weakness and premature senility and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874360

Country of ref document: EP

Kind code of ref document: A1