WO2018097995A1 - Apparatus and method for connecting two substrates for an electric component - Google Patents

Apparatus and method for connecting two substrates for an electric component Download PDF

Info

Publication number
WO2018097995A1
WO2018097995A1 PCT/US2017/061738 US2017061738W WO2018097995A1 WO 2018097995 A1 WO2018097995 A1 WO 2018097995A1 US 2017061738 W US2017061738 W US 2017061738W WO 2018097995 A1 WO2018097995 A1 WO 2018097995A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrates
gas
warping
chamber
gas inlet
Prior art date
Application number
PCT/US2017/061738
Other languages
French (fr)
Inventor
Dr. Jürgen PORTMANN
Mark Stelter
Niklaas Konopka
Dr. Jennifer LINDEN
Original Assignee
Snaptrack, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snaptrack, Inc. filed Critical Snaptrack, Inc.
Publication of WO2018097995A1 publication Critical patent/WO2018097995A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/061Cushion plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates
    • B30B15/064Press plates with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/02Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • This invention concerns an apparatus and a method for connecting two substrates for an electric component. This may especially also be an electromechanical component.
  • connection elements such as Cu carriers or polymer structures.
  • spacers are used to keep the substrates at a distance during a pre-conditioning phase, only bringing them into contact during a subsequent joining phase, when they are joined together under pressure.
  • warping of the substrates may occur. Warping may, for example, correspond to a change in the distance between the substrates in certain areas of the substrates. This may, for instance, result in an early contact between the substrates, and the joining does not take place under the conditions planned. This may in particular lead to a weak and unreliable connection of the substrates.
  • One purpose of this invention is to offer an apparatus with improved properties for connecting two substrates.
  • the components may, for example, be components for mobile radio communications. They may especially be RF components or modules such as filters or duplexers.
  • the apparatus has a chamber the substrates are inserted into. At least one gas inlet for directing a gas in a targeted manner onto the surface of at least one of the substrates is arranged in the chamber.
  • the gas inlet especially features a nozzle that is aimed at the surface of a substrate.
  • the substrates in the chamber are arranged one above the other.
  • a first substrate is arranged on a carrier, and the second substrate arranged over the first substrate.
  • the substrates may be arranged at a distance from one another during the pre-conditioning phase by means of one or several spacers. The spacers are then removed during the subsequent joining phase.
  • the substrates may be fixed onto the carrier with a holding device.
  • the spacers and/or the holding device are, for example, arranged only in one lateral edge area of the substrates.
  • warping may occur due to mechanical and/or thermal influences.
  • warping may occur due to an inhomogeneous heat expansion of one of the substrates in the bonding level, different coefficients of thermal expansion for the two
  • the gas inlet is particularly designed to control any warping of at least one of the substrates. Due to the aimed direction of the gas onto the surface of at least one of the substrates, the warping of the substrates may be intensified or reduced. This means that in particular any warping of the upper substrates towards the lower substrate can be avoided. This allows the prevention of any direct contact of the substrates during the pre-conditioning phase.
  • the available control variables are the gas flow quantity and the gas temperature.
  • the gas inlet allows an accurate control of the temperature, especially of the temperature distribution of at least one of the substrates.
  • the gas inserted may serve to provide a more homogeneous temperature distribution on the bond level.
  • the gas may serve to achieve an inhomogeneous temperature distribution.
  • the apparatus may feature at least one heating device.
  • the apparatus features an upper heating device that is arranged above the substrates.
  • the upper heating device is especially arranged above a carrier for the substrates.
  • the upper heating device may be distanced from the substrates during the pre-conditioning phase. In particular, a gap may occur between the substrates and the heating device.
  • the gas inlet may be designed to direct the gas precisely into an area between the upper heating device and the substrates and/or the carrier.
  • one nozzle of the gas inlet points to an area between the upper heating device and the carrier.
  • the upper heating device may be integrated into a pressure device that is designed to press the substrates onto each other during a joining phase.
  • the pressure device is lowered to the substrates after the pre-conditioning phase and presses the upper substrate onto the lower substrate.
  • the apparatus may feature one or several other gas inlets.
  • the further gas inlet may be designed to allow a directed and/or undirected inflow of a gas.
  • the apparatus features a gas inlet for an
  • undirected inflow of a gas into the chamber in addition to the gas inlet to direct the gas in a targeted manner onto the surface of the substrates.
  • This may use the same gas or a different gas.
  • the gas inserted without direction serves as a process gas to set a desired atmosphere, to process an adhesive and/or to flush the chamber.
  • the additional gas inlet is designed to direct a gas in a targeted manner onto the surface of at least one of the substrates. In this way, the warping of the substrates may be monitored even more carefully.
  • the apparatus features a measuring device to determine a distance between the substrates and/or any warping of at least one of the substrates.
  • the measuring device is designed for the optical determination of the distance.
  • the measuring device may have a camera that is arranged at the level of a gap between the substrates and determines the distance between the substrates in a central area of the substrates, for example. This particularly allows one to determine any undesired contact of the substrates during the pre-conditioning phase.
  • the apparatus may also feature a control circuit to control the flow quantity and/or the temperature of the gas, wherein the control circuit shows the measuring result of the measuring device as a control variable.
  • a desired value for the distance between the substrates can be set by readjusting the flow quantity and/or the gas temperature, for example, thus controlling the warping of the substrates.
  • a method for connecting two substrates for an electric component is
  • the substrates are arranged in the chamber and a gas is directed onto the surface of at least one of the substrates.
  • the gas is especially directed onto the substrates during a pre ⁇ conditioning phase. This allows to control warping, e.g. a reduction of the distance between the substrates, and especially any direct contact of the substrates during the pre-conditioning phase can be prevented.
  • warping e.g. a reduction of the distance between the substrates, and especially any direct contact of the substrates during the pre-conditioning phase can be prevented.
  • one or several spacers can be arranged between the substrates.
  • a distance between the substrates is measured during the application of the method.
  • the distance is measured, for example, by means of the measuring device described above.
  • the measured value for the distance may be used to readjust the flow quantity and/or the gas temperature.
  • Figure 1 a cross-sectional view of a set-up configuration of a chamber and a method for connecting two substrates
  • Figure 2 a cross-sectional view of another set-up
  • Figure 1 shows an apparatus 1 and a method for connecting two substrates 2, 3.
  • the apparatus 1 features a chamber 4, especially a bonding chamber.
  • the substrates 2, 3 are, for example, designed as wafers that are usually designed in a round form, or as others, e.g. rectangular or round substrates.
  • the substrates 2, 3 have, for example, lateral dimensions of 15 cm to 30 cm each.
  • the substrates 2, 3 that are connected with one another serve as housings for RF components or RF modules.
  • the components may especially be produced in DSSP technology (die- sized SAW package technology) or eWLP technology (embedded wafer level ball grid array technology) . These technology offer a very high degree of miniaturization.
  • the substrates 2, 3 may feature the same material, e.g. Si, LiTaC>3, LiNb03 or S1O 2 .
  • the substrates 2, 3 may also have different materials.
  • the substrates 2, 3 are arranged in the chamber 4 as a first step.
  • the substrates 2, 3 are especially placed on a carrier 5.
  • the first substrate 2 is placed onto the carrier 5, and the second substrate 3 arranged over the first substrate 2.
  • the second substrate 3 is arranged at a distance from the first substrate 2 during a pre-conditioning phase by means of one or several spacers 6.
  • the spacers 6 are removed at the end of the pre-conditioning phase.
  • the spacers 6 are only arranged on the lateral edge of the substrate 2, 3. Between the substrates is a cavity 7. For example, three spacers 6 are provided.
  • the substrates 2, 3 are mechanically fixed on the carrier 5 by means of a holding device 8.
  • the holding device 8 is, for example, designed as a clamping device that presses the second substrate 3 in its edge area to the first substrate 2 and/or the spacer 6.
  • the substrates 2, 3 are, for example, connected to one another by adhesive bonding or polymer bonding.
  • adhesive bonding an adhesive is, for example, applied to at least one of the
  • the adhesive is, for example, a glue or a photoresist.
  • the adhesive or the polymer may be applied without a structure, especially over the entire area, or in a structured manner. For example, the adhesive is applied to the lower
  • the substrate 2 may feature many insertion slots, wherein the adhesive is applied around each insertion slot.
  • the substrates 2, 3 may alternatively also be connected to each other by eutectic bonding or direct bonding. For example, it may be a copper/tin-copper or a copper-copper bond. Other metals may also be used for the connection. For example, the metallic
  • the desired conditions for the connection of the substrates 2, 3 are adjusted.
  • a desired temperature at the substrate 2, 3 location is set.
  • the chamber 4 may have one or several heating devices 9, 10.
  • a lower heating device 9 is arranged below the first substrate 2.
  • the lower heating device 9 is designed as a heating plate.
  • the carrier 5 may be arranged on the lower heating device 9.
  • An upper heating device 10 may additionally be arranged in the chamber 4.
  • the upper heating device 10 is, for example, placed above the second substrate 3.
  • the upper heating device 10 may be integrated into a pressure device 11 that is held at a distance from the second substrate 3 during the pre-conditioning phase, then is moved closer to the second substrate 3 at the end of the pre-conditioning phase and presses the second substrate 3 to the first substrate 2 during the joining phase.
  • the pressure device 11 is, for example, designed as a movable die.
  • warping 12 of the substrates 2, 3 may occur. Especially, the surface of at least one of the substrates 2, 3 is no longer level. For example, warping 12 may occur due to an inhomogeneous heat expansion of one of the
  • warping 12 occurs in a central area of the second substrate 3 in one direction towards the top. Consequently, the distance d between the two substrates 2, 3 in one of the central areas of the substrates 2, 3 is greater than in an edge area of the substrates 2, 3.
  • substrates 2, 3 may come into contact before this is desirable according to the process sequence. For adhesive bonds, this may lead to a modified degassing behavior and thus to bubbles in the connection. For other connections, premature contact of the substrates 2, 3 may lead to gases no longer reaching the entire surface of the substrates 2, 3. This may lead to a weak and unreliable connection of the substrates.
  • the chamber 4 has a gas inlet 13 for inserting a gas 14 in a directed manner onto the surface of at least one of the substrates 2, 3.
  • the gas inlet 13 has, for instance, a nozzle 15 that points in the direction of the substrates 2, 3.
  • the substrate size, and type of substrate there may be one or several such gas inlets 13.
  • the gas 14 is in particular directed in a targeted manner onto the surface of the second substrate 3. This may influence the heating of the second substrate 3 or both substrates 2, 3.
  • the gas 14 modifies the transfer of the heat generated by the upper heating device 10 on the second substrate 3. This may especially influence the heat transfer by convection. This allows an increase or a decrease of the warping 12.
  • the influence of the gas 14 on the second substrate can be adjusted in a targeted manner.
  • the gas 14 may feature one or several different gas components.
  • the gas 14 may have other functions besides its function of influencing the warping, especially during pre-conditioning.
  • the gas 14 serves as a process gas to set a desired atmosphere, to process an adhesive and/or to flush the chamber 4.
  • reducing gases are inserted into the chamber 4 for CuSn bonding connections, and nitrogen for adhesive
  • the gas 14 may also simply serve to adjust the warping and be selected in such a way that it does not
  • the chamber 4 may have an undirected gas inlet 16 in addition to the directed gas inlet 13.
  • the undirected gas inlet 16 is, for example, arranged at the bottom of the chamber 4.
  • a gas 17 especially a process gas, may be inserted into the chamber 4.
  • the undirected gas inlet 16 does not serve to influence the warping of the substrates 2, 3.
  • the gas 17 inserted through the undirected gas inlet 16 may be the same gas as the gas 14 inserted through the directed gas inlet 13. However, they may also be different gases.
  • the spacer 6 is removed and the pressure device 11 moved to the second substrate 3.
  • the second substrate 3 is pressed to the first substrate 2 and the substrates 2, 3 are connected with one another.
  • the gas inlet 13 can be turned off or remain turned on during this joining phase.
  • Figure 2 shows a further apparatus 1 for connecting two substrates 2, 3.
  • the apparatus 1 features a control circuit 21 to control the flow quantity and/or the temperature of the gas 14.
  • a measuring device 18 serves to measure a distance d between the substrates 2, 3 for this. The distance d in this case serves as a measure for the warping.
  • the measuring device 18 features optical
  • a camera that is arranged at the level of the gap between the two substrates 2, 3.
  • the measuring device 18 is in particular placed at a point where the spacer 6 is not. This is not visible in detail in the cross-sectional view so as to maintain clear presentation.
  • a light source is arranged on a side opposite the camera.
  • the distance d between the substrates 2, 3 may serve as a control variable in the control circuit 21.
  • the result of the distance measuring is input to circuit electronics 19 as an actual value x.
  • a nominal value w is determined that compares the control electronics 19 with the actual value x and from that determines an actuating value y for an actuator 20.
  • the actuator 20 is, for example, designed as a flow quantity controller and/or heater. Depending on the actuating value y, the flow quantity and/or the temperature of the gas 14 is modified until the actual value x of the distance d corresponds to the nominal value w.
  • the directed gas inlet 13 prevents warping of the upper substrate 3, or the upper substrate 3 is caused to slightly warp upwards.
  • the actuator 20 may additionally serve as a flow quantity control and/or heater for the gas 17 inserted via the undirected gas inlet 16.
  • a measuring device 18 to measure the distance d may also be provided without there being any adjustment.
  • the measuring value serves, for instance, as a measure of the quality of the manufactured product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

An apparatus (1) for connecting two substrates (2, 3) for an electric component features a chamber (4) for inserting the substrates (2, 3), wherein a gas inlet (13) is arranged to direct a gas (14) in the chamber (4) in a targeted manner on the surface of at least one of the substrates (2, 3). The gas inlet (13) is particularly designed to control any warping of at least one of the substrates (2, 3), which may occur during a pre-conditioning phase due to inhomogeneous heat expansion of one of the substrates (2, 3) in the bonding level, different coefficients of thermal expansion of the two substrates (2, 3) or inhomogeneous temperature distribution. Thanks to the aimed direction of the gas (14) onto the surface of at least one of the substrates (2, 3), the warping of the substrates (2, 3) may be intensified or reduced, in particular any warping of the upper substrate (3) towards the lower substrate (2) can be avoided. This allows the prevention of any direct contact of the substrates (2, 3) during the pre-conditioning phase. During the pre-conditioning phase, one or several spacers (6) can be arranged between the substrates (2, 3), the spacers (6) being removed at the end of the pre-conditioning phase. In one set-up configuration, the apparatus (1) features a measuring device (for example, a device for optical distance determination such as a camera (18) arranged at the level of a gap between the substrates (2, 3)) to determine a distance (d) between the substrates (2, 3) and/or any warping of at least one of the substrates (2, 3). The apparatus may also feature a control circuit (21) to control and readjust the flow quantity and/or the temperature of the gas (14), thus controlling the warping of the substrates (2, 3), wherein the control circuit (21) shows the measuring result of the measuring device (18) as a control variable.

Description

APPARATUS AND ME THOD FOR CONNECTING TWO SUBSTRATES FOR AN
ELECTRIC COMPONENT
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to German Patent Application No. 102016122486.3, filed November 22, 2016, which is expressly incorporated herein by reference in its entirety.
Description
This invention concerns an apparatus and a method for connecting two substrates for an electric component. This may especially also be an electromechanical component.
In order to reduce the height of the component as well as the lateral extension of electrical components, wafer bonding
technology is increasingly employed for individual component manufacturer and the production of modules. For this, two wafers or other substrates are connected with one another applying pressure and temperature. The substrates are inserted into a chamber for this process to take place, then are heated and subsequently joined. The connection may occur across the entire surface or alternatively across individual connection elements such as Cu carriers or polymer structures.
In order to have the joining of the substrates take place under the desired conditions, spacers are used to keep the substrates at a distance during a pre-conditioning phase, only bringing them into contact during a subsequent joining phase, when they are joined together under pressure. During the pre-conditioning phase, warping of the substrates may occur. Warping may, for example, correspond to a change in the distance between the substrates in certain areas of the substrates. This may, for instance, result in an early contact between the substrates, and the joining does not take place under the conditions planned. This may in particular lead to a weak and unreliable connection of the substrates.
One purpose of this invention is to offer an apparatus with improved properties for connecting two substrates.
According to a first aspect of the present invention, an
apparatus for connecting two substrates for an electric
component is specified. The components may, for example, be components for mobile radio communications. They may especially be RF components or modules such as filters or duplexers.
The apparatus has a chamber the substrates are inserted into. At least one gas inlet for directing a gas in a targeted manner onto the surface of at least one of the substrates is arranged in the chamber. The gas inlet especially features a nozzle that is aimed at the surface of a substrate.
Notably, the substrates in the chamber are arranged one above the other. For example, a first substrate is arranged on a carrier, and the second substrate arranged over the first substrate. The substrates may be arranged at a distance from one another during the pre-conditioning phase by means of one or several spacers. The spacers are then removed during the subsequent joining phase. In addition, the substrates may be fixed onto the carrier with a holding device. The spacers and/or the holding device are, for example, arranged only in one lateral edge area of the substrates.
During the pre-conditioning phase, there may be warping of at least one of the substrates especially in a central area. Such warping may occur due to mechanical and/or thermal influences. For example, warping may occur due to an inhomogeneous heat expansion of one of the substrates in the bonding level, different coefficients of thermal expansion for the two
substrates or due to an inhomogeneous temperature distribution. If there is, for example, a warping of the upper substrate in the direction of the lower substrate, there may be undesired contact of the substrates during the pre-conditioning phase.
The gas inlet is particularly designed to control any warping of at least one of the substrates. Due to the aimed direction of the gas onto the surface of at least one of the substrates, the warping of the substrates may be intensified or reduced. This means that in particular any warping of the upper substrates towards the lower substrate can be avoided. This allows the prevention of any direct contact of the substrates during the pre-conditioning phase. The available control variables are the gas flow quantity and the gas temperature.
For example, the gas inlet allows an accurate control of the temperature, especially of the temperature distribution of at least one of the substrates. In this way, the gas inserted may serve to provide a more homogeneous temperature distribution on the bond level. Alternatively, the gas may serve to achieve an inhomogeneous temperature distribution.
The apparatus may feature at least one heating device. For example, the apparatus features an upper heating device that is arranged above the substrates. The upper heating device is especially arranged above a carrier for the substrates. The upper heating device may be distanced from the substrates during the pre-conditioning phase. In particular, a gap may occur between the substrates and the heating device. In this case, the gas inlet may be designed to direct the gas precisely into an area between the upper heating device and the substrates and/or the carrier. Especially, one nozzle of the gas inlet points to an area between the upper heating device and the carrier.
The upper heating device may be integrated into a pressure device that is designed to press the substrates onto each other during a joining phase. In particular, the pressure device is lowered to the substrates after the pre-conditioning phase and presses the upper substrate onto the lower substrate.
The apparatus may feature one or several other gas inlets. The further gas inlet may be designed to allow a directed and/or undirected inflow of a gas.
For example, the apparatus features a gas inlet for an
undirected inflow of a gas into the chamber in addition to the gas inlet to direct the gas in a targeted manner onto the surface of the substrates. This may use the same gas or a different gas. For example, the gas inserted without direction serves as a process gas to set a desired atmosphere, to process an adhesive and/or to flush the chamber.
Alternatively, the additional gas inlet is designed to direct a gas in a targeted manner onto the surface of at least one of the substrates. In this way, the warping of the substrates may be monitored even more carefully.
In one set-up configuration, the apparatus features a measuring device to determine a distance between the substrates and/or any warping of at least one of the substrates. For example, the measuring device is designed for the optical determination of the distance. The measuring device may have a camera that is arranged at the level of a gap between the substrates and determines the distance between the substrates in a central area of the substrates, for example. This particularly allows one to determine any undesired contact of the substrates during the pre-conditioning phase.
The apparatus may also feature a control circuit to control the flow quantity and/or the temperature of the gas, wherein the control circuit shows the measuring result of the measuring device as a control variable. In this way, a desired value for the distance between the substrates can be set by readjusting the flow quantity and/or the gas temperature, for example, thus controlling the warping of the substrates.
According to a further aspect of this invention, a method for connecting two substrates for an electric component is
described, in which the apparatus described above is used. The substrates are arranged in the chamber and a gas is directed onto the surface of at least one of the substrates.
The gas is especially directed onto the substrates during a pre¬ conditioning phase. This allows to control warping, e.g. a reduction of the distance between the substrates, and especially any direct contact of the substrates during the pre-conditioning phase can be prevented. During the pre-conditioning phase, one or several spacers can be arranged between the substrates.
In one set-up configuration, a distance between the substrates is measured during the application of the method. The distance is measured, for example, by means of the measuring device described above. The measured value for the distance may be used to readjust the flow quantity and/or the gas temperature.
Multiple aspects of an invention are described in the present disclosure. All properties that are disclosed with regard to the apparatus or the method are also accordingly disclosed with regard to the respective other aspect and even if the respective property is not explicitly mentioned within the context of the other aspect. Furthermore, the description of the objects given here is not limited to the individual specific set-up configurations.
Instead, the features of the individual set-up configurations can be arbitrarily combined as far as is technically meaningful.
In the following, the objects described here are explained in more detail on the basis of schematic example set-up configurations.
Shown are :
Figure 1 a cross-sectional view of a set-up configuration of a chamber and a method for connecting two substrates,
Figure 2 a cross-sectional view of another set-up
configuration of a chamber and a method for
connecting two substrates.
In the following Figures, the same reference characters
preferably refer to corresponding functional or structural parts of the various embodiments.
Figure 1 shows an apparatus 1 and a method for connecting two substrates 2, 3. The apparatus 1 features a chamber 4, especially a bonding chamber. The substrates 2, 3 are, for example, designed as wafers that are usually designed in a round form, or as others, e.g. rectangular or round substrates. The substrates 2, 3 have, for example, lateral dimensions of 15 cm to 30 cm each.
For example, the substrates 2, 3 that are connected with one another serve as housings for RF components or RF modules. The components may especially be produced in DSSP technology (die- sized SAW package technology) or eWLP technology (embedded wafer level ball grid array technology) . These technology offer a very high degree of miniaturization.
The substrates 2, 3 may feature the same material, e.g. Si, LiTaC>3, LiNb03 or S1O2. The substrates 2, 3 may also have different materials.
The substrates 2, 3 are arranged in the chamber 4 as a first step. The substrates 2, 3 are especially placed on a carrier 5. The first substrate 2 is placed onto the carrier 5, and the second substrate 3 arranged over the first substrate 2. The second substrate 3 is arranged at a distance from the first substrate 2 during a pre-conditioning phase by means of one or several spacers 6. The spacers 6 are removed at the end of the pre-conditioning phase.
The spacers 6 are only arranged on the lateral edge of the substrate 2, 3. Between the substrates is a cavity 7. For example, three spacers 6 are provided.
The substrates 2, 3 are mechanically fixed on the carrier 5 by means of a holding device 8. The holding device 8 is, for example, designed as a clamping device that presses the second substrate 3 in its edge area to the first substrate 2 and/or the spacer 6.
The substrates 2, 3 are, for example, connected to one another by adhesive bonding or polymer bonding. For adhesive bonding, an adhesive is, for example, applied to at least one of the
substrates 2, 3. The adhesive is, for example, a glue or a photoresist. The adhesive or the polymer may be applied without a structure, especially over the entire area, or in a structured manner. For example, the adhesive is applied to the lower
substrate 2. The substrate 2 may feature many insertion slots, wherein the adhesive is applied around each insertion slot. The substrates 2, 3 may alternatively also be connected to each other by eutectic bonding or direct bonding. For example, it may be a copper/tin-copper or a copper-copper bond. Other metals may also be used for the connection. For example, the metallic
structures to connect the substrates 2, 3 in a frame shape or as supporting elements.
During a preconditioning phase, the desired conditions for the connection of the substrates 2, 3 are adjusted. In particular, a desired temperature at the substrate 2, 3 location is set. For this purpose, the chamber 4 may have one or several heating devices 9, 10. For example, a lower heating device 9 is arranged below the first substrate 2. In particular, the lower heating device 9 is designed as a heating plate. The carrier 5 may be arranged on the lower heating device 9.
An upper heating device 10 may additionally be arranged in the chamber 4. The upper heating device 10 is, for example, placed above the second substrate 3. The upper heating device 10 may be integrated into a pressure device 11 that is held at a distance from the second substrate 3 during the pre-conditioning phase, then is moved closer to the second substrate 3 at the end of the pre-conditioning phase and presses the second substrate 3 to the first substrate 2 during the joining phase. The pressure device 11 is, for example, designed as a movable die.
During the pre-conditioning phase, warping 12 of the substrates 2, 3 may occur. Especially, the surface of at least one of the substrates 2, 3 is no longer level. For example, warping 12 may occur due to an inhomogeneous heat expansion of one of the
substrates 2, 3 on the bonding level, different thermal expansion coefficients for the two substrates 2, 3, or due to an
inhomogeneous temperature distribution. In addition, instances of warping 12 may also occur due to the influence of the holding device 8.
For example, warping 12 occurs in a central area of the second substrate 3 in one direction towards the top. Consequently, the distance d between the two substrates 2, 3 in one of the central areas of the substrates 2, 3 is greater than in an edge area of the substrates 2, 3.
There may also be warping of the second substrate 3 downwards, i.e. in the direction of the first substrate 2. The two
substrates 2, 3 may come into contact before this is desirable according to the process sequence. For adhesive bonds, this may lead to a modified degassing behavior and thus to bubbles in the connection. For other connections, premature contact of the substrates 2, 3 may lead to gases no longer reaching the entire surface of the substrates 2, 3. This may lead to a weak and unreliable connection of the substrates.
In order to prevent undesired warping 12, the chamber 4 has a gas inlet 13 for inserting a gas 14 in a directed manner onto the surface of at least one of the substrates 2, 3. The gas inlet 13 has, for instance, a nozzle 15 that points in the direction of the substrates 2, 3. Depending on the chamber 1, the substrate size, and type of substrate, there may be one or several such gas inlets 13.
The gas 14 is in particular directed in a targeted manner onto the surface of the second substrate 3. This may influence the heating of the second substrate 3 or both substrates 2, 3. For example, the gas 14 modifies the transfer of the heat generated by the upper heating device 10 on the second substrate 3. This may especially influence the heat transfer by convection. This allows an increase or a decrease of the warping 12. Through adjustment of the gas flow quantity and/or the gas temperature, the influence of the gas 14 on the second substrate can be adjusted in a targeted manner.
The gas 14 may feature one or several different gas components. The gas 14 may have other functions besides its function of influencing the warping, especially during pre-conditioning. For example, the gas 14 serves as a process gas to set a desired atmosphere, to process an adhesive and/or to flush the chamber 4. In particular, reducing gases are inserted into the chamber 4 for CuSn bonding connections, and nitrogen for adhesive
connections. The gas 14 may also simply serve to adjust the warping and be selected in such a way that it does not
negatively impact the pre-conditioning.
The chamber 4 may have an undirected gas inlet 16 in addition to the directed gas inlet 13. The undirected gas inlet 16 is, for example, arranged at the bottom of the chamber 4. Through the undirected gas inlet 16, a gas 17, especially a process gas, may be inserted into the chamber 4. The undirected gas inlet 16 does not serve to influence the warping of the substrates 2, 3. The gas 17 inserted through the undirected gas inlet 16 may be the same gas as the gas 14 inserted through the directed gas inlet 13. However, they may also be different gases.
After the pre-conditioning phase, the spacer 6 is removed and the pressure device 11 moved to the second substrate 3. The second substrate 3 is pressed to the first substrate 2 and the substrates 2, 3 are connected with one another. The gas inlet 13 can be turned off or remain turned on during this joining phase.
Figure 2 shows a further apparatus 1 for connecting two substrates 2, 3. In addition to the elements shown in Figure 1, the apparatus 1 features a control circuit 21 to control the flow quantity and/or the temperature of the gas 14. A measuring device 18 serves to measure a distance d between the substrates 2, 3 for this. The distance d in this case serves as a measure for the warping.
For example, the measuring device 18 features optical
monitoring, in particular, a camera that is arranged at the level of the gap between the two substrates 2, 3. The measuring device 18 is in particular placed at a point where the spacer 6 is not. This is not visible in detail in the cross-sectional view so as to maintain clear presentation. For example, a light source is arranged on a side opposite the camera.
The distance d between the substrates 2, 3 may serve as a control variable in the control circuit 21. The result of the distance measuring is input to circuit electronics 19 as an actual value x. In addition, a nominal value w is determined that compares the control electronics 19 with the actual value x and from that determines an actuating value y for an actuator 20. The actuator 20 is, for example, designed as a flow quantity controller and/or heater. Depending on the actuating value y, the flow quantity and/or the temperature of the gas 14 is modified until the actual value x of the distance d corresponds to the nominal value w.
This in particular allows the prevention of any contact of the substrates 2, 3 during the pre-conditioning phase. For example, the directed gas inlet 13 prevents warping of the upper substrate 3, or the upper substrate 3 is caused to slightly warp upwards.
The actuator 20 may additionally serve as a flow quantity control and/or heater for the gas 17 inserted via the undirected gas inlet 16.
As an alternative to the apparatus 1 with the control circuit 21 described above, a measuring device 18 to measure the distance d may also be provided without there being any adjustment. In this case, the measuring value serves, for instance, as a measure of the quality of the manufactured product.
List of reference signs
1 apparatus
2 first substrate
3 second substrate
4 chamber
5 carrier
6 spacer
7 cavity
8 holding device
9 lower heating device
10 upper heating device
11 pressure device
12 warping
13 gas inlet
14 gas
15 nozzle
16 undirected gas inlet
17 gas
18 measuring device
19 control electronics
20 actuator
21 control circuit d distance
x actual value
w nominal value y actuating value

Claims

Claims
1. Apparatus for connecting two substrates for an electric component,
featuring a chamber (4) for inserting the substrates (2, 3), wherein a gas inlet (13) is arranged to direct a gas (14) in the chamber (4) in a targeted manner onto the surface of at least one of the substrates (2, 3) .
2. Apparatus according to claim 1,
in which the gas inlet (13) is designed to prevent any direct contact of the substrates (2, 3) .
3. Apparatus according to one of the preceding claims,
in which the gas inlet (13) is designed to adjust the
temperature of at least one of the substrates (2, 3) .
4. Apparatus according to one of the preceding claims,
featuring an upper heating device (10) that is arranged above a carrier (9) for the substrates (2, 3), wherein the gas inlet (13) for directing the gas (14) in a targeted manner is designed to be in an area between the upper heating device (10) and the carrier ( 9 ) .
5. Apparatus according to claim 4,
in which the upper heating device (10) is integrated into a pressure device (11) that is designed to press the second
substrate (3) onto the first substrate (2) in a joining phase.
6. Apparatus according to one of the preceding claims,
featuring at least one further gas inlet to the directed and/or undirected inlet of a gas (14) into the chamber (4) .
7. Apparatus according to claim 6, in which the further gas inlet (16) is designed for the undirected inflow of a gas (14) into the chamber (4) .
8. Apparatus according to claim 6,
in which the further gas inlet to direct a gas (14) is
purposefully designed on the surface of at least one of the substrates (2, 3) .
9. Apparatus according to one of the preceding claims,
featuring a measuring device (18) to determine a distance (d) between the substrates (2, 3) .
10. Apparatus according to claim 9,
featuring a control circuit (21) to control the flow quantity and/or the temperature of the gas (14), wherein the control circuit (21) shows the measuring result of the measuring device (18) as a control variable.
11. Method for connecting two substrates for an electric component by an apparatus according to one of the preceding claims,
wherein the substrates (2, 3) are arranged in the chamber (4) and a gas (14) is directed onto the surface of at least one of the substrates (2, 3) .
12. Method according to claim 11,
wherein a spacer (6) is arranged between the substrates (2, 3) during a pre-conditioning phase, and wherein the gas (14) is allowed to flow in at least during the pre-conditioning phase.
13. Method according to one of the claims 11 or 12,
wherein the gas (14) prevents any direct contact of the
substrates (2, 3) during the pre-conditioning phase.
14. Method according to one of the claims 11 or 12, wherein a distance (d) between the substrates (2, 3) is measured, and the measured distance (d) value is used to adjust the flow quantity and/or the temperature of the gas (14) .
PCT/US2017/061738 2016-11-22 2017-11-15 Apparatus and method for connecting two substrates for an electric component WO2018097995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016122486.3 2016-11-22
DE102016122486.3A DE102016122486A1 (en) 2016-11-22 2016-11-22 Device and method for connecting two substrates for an electrical component

Publications (1)

Publication Number Publication Date
WO2018097995A1 true WO2018097995A1 (en) 2018-05-31

Family

ID=60574734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/061738 WO2018097995A1 (en) 2016-11-22 2017-11-15 Apparatus and method for connecting two substrates for an electric component

Country Status (2)

Country Link
DE (1) DE102016122486A1 (en)
WO (1) WO2018097995A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476128B2 (en) * 2020-08-25 2022-10-18 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102008A (en) * 1980-12-17 1982-06-24 Toshiba Corp Control of warp of semiconductor wafer
JPH0887779A (en) * 1994-09-16 1996-04-02 Nkk Corp Coating method and coating device for optical recording medium
JP2000299330A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Method and apparatus for mounting bare chip, and mounting board thereon
JP2002237678A (en) * 2001-02-07 2002-08-23 Sanyo Electric Co Ltd Method for manufacturing ceramic multilayer interconnection substrate
JP2008300394A (en) * 2007-05-29 2008-12-11 Nikon Corp Substrate joining device and substrate joining method
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method
JP2013243333A (en) * 2012-04-24 2013-12-05 Tadatomo Suga Chip-on wafer bonding method and bonding device and structure including chip and wafer
US20160005635A1 (en) * 2013-03-29 2016-01-07 Tokyo Ohka Kogyo Co., Ltd. Attachment method
JP2016054195A (en) * 2014-09-03 2016-04-14 セイコーインスツル株式会社 Manufacturing method of package and package

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963157B1 (en) * 2010-07-22 2013-04-26 Soitec Silicon On Insulator METHOD AND APPARATUS FOR BONDING BY MOLECULAR ADHESION OF TWO PLATES
US20130199730A1 (en) * 2012-02-08 2013-08-08 Innovative Micro Technology Wafer bonding chamber with dissimilar wafer temperatures
US9922851B2 (en) * 2014-05-05 2018-03-20 International Business Machines Corporation Gas-controlled bonding platform for edge defect reduction during wafer bonding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102008A (en) * 1980-12-17 1982-06-24 Toshiba Corp Control of warp of semiconductor wafer
JPH0887779A (en) * 1994-09-16 1996-04-02 Nkk Corp Coating method and coating device for optical recording medium
JP2000299330A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Method and apparatus for mounting bare chip, and mounting board thereon
JP2002237678A (en) * 2001-02-07 2002-08-23 Sanyo Electric Co Ltd Method for manufacturing ceramic multilayer interconnection substrate
JP2008300394A (en) * 2007-05-29 2008-12-11 Nikon Corp Substrate joining device and substrate joining method
WO2013121858A1 (en) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 Method for manufacturing connector, and connection method
JP2013243333A (en) * 2012-04-24 2013-12-05 Tadatomo Suga Chip-on wafer bonding method and bonding device and structure including chip and wafer
US20160005635A1 (en) * 2013-03-29 2016-01-07 Tokyo Ohka Kogyo Co., Ltd. Attachment method
JP2016054195A (en) * 2014-09-03 2016-04-14 セイコーインスツル株式会社 Manufacturing method of package and package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DRAGOI V: "From magic to technology: materials integration by wafer bonding", PROCEEDINGS OF SPIE, vol. 6123, 612314, 24 February 2006 (2006-02-24), XP040219581, DOI: 10.1117/12.646450 *

Also Published As

Publication number Publication date
DE102016122486A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6691576B2 (en) Flip chip laser bonding apparatus and flip chip laser bonding method
US20080164298A1 (en) Apparatus and method for depositing and reflowing solder paste on a microelectronic workpiece
JP6603401B2 (en) Bonding equipment
JP6129352B2 (en) Joining apparatus, joining method, and pressure unit
CN110678288B (en) Method for producing a welded connection
CN101901770B (en) Method for manufacturing integrated circuit packaging structure
US20130023089A1 (en) Less expensive high power plastic surface mount package
WO2018097995A1 (en) Apparatus and method for connecting two substrates for an electric component
US7670873B2 (en) Method of flip-chip mounting
JP5892685B2 (en) Crimping apparatus and crimping method
JP2012054270A (en) Method of manufacturing light-emitting device
CN1874654B (en) Soldering method, electronic part, and part-exchanging method
JP2009505387A (en) Thermode device for multiple semiconductor components
JP2014179420A (en) Method for bonding electronic component
KR20150066470A (en) Method for mounting a microchip on a substrate
JP5892686B2 (en) Crimping apparatus and temperature control method
KR102174929B1 (en) Laser reflow method of laser reflow apparatus
US8058106B2 (en) MEMS device package with vacuum cavity by two-step solder reflow method
KR20200129435A (en) Workpiece transfer module of laser reflow equipment
KR20150105587A (en) Apparatus for preventing warpage of semiconductor package module
JP5798212B2 (en) Method and apparatus for adjusting substrate warpage
KR101541392B1 (en) Apparatus for manufacturing semiconductor device and method of fabricating the semiconductor device using the same
JP3014989B2 (en) Electronic component manufacturing equipment
JP2007115924A (en) Method for manufacturing bonded structure
KR20240033314A (en) Device for semiconductor package reflow and method for semiconductor package reflow

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809115

Country of ref document: EP

Kind code of ref document: A1