WO2018096916A1 - パワーシートスライド装置 - Google Patents

パワーシートスライド装置 Download PDF

Info

Publication number
WO2018096916A1
WO2018096916A1 PCT/JP2017/039952 JP2017039952W WO2018096916A1 WO 2018096916 A1 WO2018096916 A1 WO 2018096916A1 JP 2017039952 W JP2017039952 W JP 2017039952W WO 2018096916 A1 WO2018096916 A1 WO 2018096916A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
sphere
fixing member
bar
curved surface
Prior art date
Application number
PCT/JP2017/039952
Other languages
English (en)
French (fr)
Inventor
貢 谷口
雄太 村上
Original Assignee
シロキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シロキ工業株式会社 filed Critical シロキ工業株式会社
Priority to US16/463,881 priority Critical patent/US20190381915A1/en
Publication of WO2018096916A1 publication Critical patent/WO2018096916A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/067Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable by linear actuators, e.g. linear screw mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/07Slide construction
    • B60N2/0702Slide construction characterised by its cross-section
    • B60N2/0705Slide construction characterised by its cross-section omega-shaped

Definitions

  • the present invention relates to a power seat slide device.
  • a power seat slide device that moves and adjusts the position of a vehicle seat (seat) in the longitudinal direction of the vehicle using power such as a motor.
  • This type of power seat slide device includes, for example, a motor on an upper rail to which a seat is fixed, and a rod screw member that is rotationally driven by the motor and screwed with a nut member that is fixed to the lower rail on the floor side. Then, the seat moves as the upper rail slides with respect to the lower rail.
  • This power seat slide device is equipped with a load transmission mechanism that transmits the load input from the seat to the upper rail to the shaft center of the bar screw member, so that a large load is applied to the motor or gear box that rotates the bar screw member. Is avoiding.
  • the load transmission mechanism of the conventional power seat slide device has a structure using a bracket that contacts a key groove or protrusion of a bar screw member whose load transmission portion rotates, sliding between the bracket and the bar screw member is not possible.
  • the rod screw member may swell during rotation due to an assembly error of the rod screw member or the nut member, dimensional variation of each member (part), or the like.
  • the waviness of the bar screw member may cause a change in rotational resistance during rotation, and the rotational speed of the bar screw member may become unstable.
  • smooth sliding (movement) of the sheet may be hindered, or abnormal noise or vibration may occur.
  • one of the problems of the present invention is, for example, a power that is less likely to generate vibration and noise when the seat is slid by smoothly sliding the sliding portion that transmits the load and stabilizing the rotation of the bar screw member. It is to obtain a seat slide device.
  • a power seat slide device includes a nut member fixed to one side of a vehicle floor side and a seat side, and the vehicle side in the front-rear direction of the floor side and the seat side. And a threaded through screw that is fixed along the other side of the floor side and the seat side, and through which the bar threaded member is rotatable.
  • a plurality of rolling members arranged in the circumferential direction.
  • the plurality of rolling members of the power seat slide device are disposed, for example, between the screw penetrating member and the screw fixing member in the front-rear direction, and the screw penetrating member and the screw fixing It may be supported by a guide member that can rotate relative to at least one of the members.
  • the guide member of the power seat slide device may include, for example, a holding portion that maintains a circumferential interval between the plurality of rolling members.
  • the screw penetrating member of the power seat slide device includes, for example, a concave portion that is recessed in the axial direction as it goes to the rotation center of the rod screw member as a sliding contact surface on which the rolling member slides.
  • a curved surface may be provided.
  • the rolling member of the power seat slide device is, for example, a sphere, and the screw penetrating member is directed toward the rotation center of the bar screw member as a sliding contact surface on which the sphere slides.
  • a convex curved surface protruding in the axial direction may be provided.
  • the rolling member of the power seat slide device is, for example, a sphere, and the slidable contact surface with which the sphere of the screw penetrating member is in sliding contact is directed toward the rotation center of the rod screw member. Accordingly, the concave curved surface may be recessed in the axial direction, and the curvature of the concave curved surface may be smaller than the curvature of the sphere.
  • the number of the rolling members of the power seat slide device according to the embodiment of the present invention may be, for example, at least three.
  • the screw penetrating member and the screw fixing member are in sliding contact with each other via the rolling member, so that the relative position between the screw penetrating member and the screw fixing member can be easily changed even when the rod screw member undulates during rotation. To do. As a result, the rotational resistance acting on the rod screw member during rotation is reduced, the rotation is stabilized, and vibration and noise are less likely to occur when the seat is slid.
  • FIG. 1 is a perspective view of a vehicle seat on which the power seat slide device of the present embodiment is installed.
  • FIG. 2 is a schematic cross-sectional view illustrating the overall configuration of the power seat slide device including the load transmission mechanism of the first embodiment.
  • FIG. 3 is an exploded perspective view of a load transmission mechanism included in the power seat slide device of FIG.
  • FIG. 4 is a cross-sectional view for explaining the details of the load transmission mechanism shown in FIG. 3 and the relationship between the curved surface shape of the screw penetrating member and the undulation center of the bar screw member.
  • FIG. 5 is a cross-sectional view for explaining the details of the modification of the screw penetrating member and the relationship between the curved shape of the screw penetrating member and the undulation center of the bar screw member.
  • FIG. 6 is a perspective view showing a modification of the rolling member and the guide member.
  • FIG. 7 is an exploded perspective view of the load transmission mechanism of the second embodiment included in the power seat slide device.
  • FIG. 8 is a cross-sectional view showing details of the load transmission mechanism of the second embodiment shown in FIG.
  • FIG. 9 is an exploded perspective view of the load transmission mechanism of the third embodiment included in the power seat slide device.
  • FIG. 10 is a cross-sectional view showing details of the load transmission mechanism of the third embodiment shown in FIG.
  • the power seat slide device is located between the seat S and the floor surface F in the vehicle interior of the vehicle.
  • the power seat slide device includes a pair of left and right seat tracks 10 extending in the longitudinal direction X (front direction Xa, rear direction Xb) of the vehicle.
  • the left and right seat tracks 10 have the same (symmetric) structure, the lower rail 16 fixed to the front bracket 12 and the rear bracket 14 arranged on the floor surface F so as to be separated from each other in the front-rear direction X, and the seat seat of the seat S And an upper rail 18 fixed to the back side of the portion Sa.
  • the seat S may include a reclining mechanism for reclining the backrest Sb with respect to the seat seat portion Sa, a tilt mechanism for tilting the seat seat portion Sa, a lifting mechanism for raising and lowering the seat seat portion Sa, and the like.
  • the reclining mechanism may be provided, for example, at a portion connecting the seat seat portion Sa and the backrest Sb, and the tilt mechanism and the lifting mechanism may be provided between the power seat slide device and the seat seat portion Sa.
  • FIG. 2 The overall configuration of the power seat slide device 20 according to the first embodiment will be described with reference to FIG.
  • the lower rail 16 and the upper rail 18 are arranged along the longitudinal direction X of the vehicle.
  • a bar screw member 22 is disposed on the upper rail 18 along the longitudinal direction (front-rear direction X).
  • a male screw portion 22a is formed on the peripheral surface of the central portion of the bar screw member 22.
  • On one end side (front side, front direction Xa side) of the bar screw member 22 is formed a small diameter portion 22c that is connected to the male screw portion 22a and partially formed with a male screw portion 22b.
  • the outer diameter of the small diameter portion 22c is set smaller than the outer diameter of the male screw portion 22a.
  • a serration portion 22d is provided on the distal end side of the bar screw member 22 so as to be connected to the small diameter portion 22c, the outer diameter is set smaller than the outer diameter of the small diameter portion 22c, and a serration extending in the axial direction is formed on the peripheral surface. Is formed.
  • a straight-shaped support part 22e that is connected to the male screw part 22a and is not formed with a screw part is formed.
  • a screw bracket 24 into which the support portion 22e at the end of the bar screw member 22 is inserted is attached to the upper rail 18.
  • the screw bracket 24 includes a taper-shaped support hole whose diameter gradually decreases toward the back side that rotatably supports the bar screw member 22.
  • the nut member 26 is fixed to the lower rail 16 in a state where the nut member 26 is housed in the nut housing 28.
  • the nut member 26 has a through hole formed in the insertion direction of the bar screw member 22, and a female screw portion 26 a is formed on the inner peripheral surface of the through hole.
  • the female screw portion 26a of the nut member 26 and the male screw portion 22a of the bar screw member 22 are screwed together.
  • the nut housing 28 is provided so as to cover the nut member 26. In a space between the inner surface of the nut housing 28 and the outer surface of the nut member 26, a vibration absorbing member, for example, a rubber sheet may be provided.
  • fixing female screw portions 28a are formed, for example, at two locations.
  • the nut member 26 has a clearance hole at a position corresponding to the position where the fixing female screw portion 28a is formed, and has a diameter larger than that of the fixing female screw portion 28a and escapes the tip of the bolt 30 screwed with the fixing female screw portion 28a. 26b is formed.
  • the lower rail 16 is formed with a through hole 16a having a diameter larger than that of the fixing female screw portion 28a at a position corresponding to the fixing female screw portion 28a and the escape hole 26b. Therefore, the nut housing 28 is fixed to the lower rail 16 by the bolts 30 that are inserted into the through holes 16a and screwed into the fixing female screw portions 28a.
  • a bent portion 18a is formed that is bent upward.
  • a gear box 32 is fixed to the bent portion 18a.
  • the gear box 32 includes a gear housing 34 and a cover 36 that covers the upper portion of the gear housing 34 and has the gear housing 34 attached thereto.
  • a gear is formed by a through hole 36 a formed in the cover 36, a through hole 34 a formed in the gear housing 34, a bolt 38 inserted through the through hole 18 b formed in the bent portion 18 a, and a nut 40 screwed into the bolt 38.
  • the box 32 is attached and fixed to the bent portion 18 a of the upper rail 18.
  • a gear reduction mechanism including a worm 42 driven by a motor (not shown) and a worm wheel 44 into which the worm 42 is screwed is provided.
  • a serration portion 44a is formed on the inner peripheral surface of the through hole formed along the rotation center axis of the worm wheel 44 on the output side of the gear reduction mechanism.
  • a serration portion 22 d of the bar screw member 22 is fitted into the serration portion 44 a of the worm wheel 44.
  • the rod screw member 22 When the rod screw member 22 is rotationally driven by a motor (not shown), the rod screw member 22 moves back and forth with respect to the nut member 26 fixed to the lower rail 16. That is, the upper rail 18 moves in the front-rear direction X along the lower rail 16. Since the seat S is fixed to the upper rail 18 as described above, the seat S can move in the front-rear direction X with respect to the floor surface F.
  • the rod screw member 22 and the upper rail 18 are also connected by a load transmission mechanism 48.
  • the load transmission mechanism 48 includes a screw fixing member 50 (a front screw fixing member 50a and a rear screw fixing member 50b) fixed to a part of the bar screw member 22, and a screw through hole 52a through which the bar screw member 22 passes rotatably.
  • a screw fixing member 50 a front screw fixing member 50a and a rear screw fixing member 50b
  • a screw through hole 52a through which the bar screw member 22 passes rotatably.
  • a sphere 54 metal ball, resin ball
  • the male thread portion 56 is inserted into a through hole provided in the upper rail 18 from the lower surface side, and a nut 58 is screwed on the upper surface side of the upper rail 18. Therefore, the screw penetrating member 52, that is, the load transmission mechanism 48 is fixed to the upper rail 18 by fastening the male screw portion 56 and the nut 58.
  • the load acting on the seat S is transmitted to the floor surface F via the upper rail 18, the load transmission mechanism 48, the rod screw member 22, the nut member 26, the nut housing 28, and the lower rail 16.
  • FIG. 3 is an exploded perspective view of the load transmission mechanism 48
  • FIG. 4 is a cross-sectional view of the load transmission mechanism 48.
  • the load transmission mechanism 48 includes a screw fixing member 50 (a front screw fixing member 50a and a rear screw fixing member 50b), a screw penetrating member 52, a sphere 54, and a guide member 60 (a front guide member 60a and a rear guide). Member 60b) and the like.
  • a front guide member 60a that supports a plurality of (three in the case of FIG.
  • spheres 54 is disposed between the front surface (front direction Xa) of the first and second surfaces.
  • a plurality are provided between the front side (front direction Xa) surface of the rear screw fixing member 50b fixed to the bar screw member 22 and the rear side surface (rear direction Xb) of the screw penetrating member 52.
  • the rear guide member 60b for supporting the three spheres 54 is disposed. That is, the screw penetrating member 52 is substantially rotatable with respect to the bar screw member 22 by the front screw fixing member 50a and the rear screw fixing member 50b fixed to the bar screw member 22 in the front-rear direction X. It is supported by the bar screw member 22 in a state in which front-rear movement is restricted.
  • the screw penetrating member 52 has a substantially rectangular main body 62 in which a convex curved surface 62a is formed on one surface side (front direction Xa) and a concave curved surface 62b is formed on the other surface side (rear direction Xb). It is comprised with the external thread part 56 provided in the upper surface of the part 62 integrally.
  • the main body portion 62 is provided with a screw through hole 52a through which the bar screw member 22 can pass, and the position of the male screw portion 56 is determined so that the center of the screw through hole 52a comes directly under the rotation center of the male screw portion 56. Yes.
  • the screw penetrating member 52 is formed of a metal such as iron, for example.
  • the convex curved surface 62a can be a curved surface that protrudes in the forward direction Xa (axial direction) toward the rotation center M of the bar screw member 22.
  • the convex curved surface 62a has a smooth surface so that the sphere 54 (only one is visible in FIG. 4) supported by the front guide member 60a can smoothly slide.
  • the concave curved surface 62b can be a curved surface that is recessed in the front direction Xa (axial direction) as it goes to the rotation center M of the bar screw member 22.
  • the surface of the concave curved surface 62b is smoothly processed so that the sphere 54 (only one is visible in FIG.
  • the front direction Xa side of the screw penetrating member 52 is a convex curved surface 62a and the rear direction Xb side is a concave curved surface 62b.
  • the present invention is not limited to this, and as shown in FIG. The position of the concave curved surface 62b may be reversed. Further, both surfaces of the screw penetrating member 52 may be concave, or both surfaces may be convex.
  • the front screw fixing member 50 a (screw fixing member 50) is a cylindrical member in which a female screw portion 64 a that is screwed into the male screw portion 22 b of the rod screw member 22 is formed in a through hole that penetrates the rod screw member 22.
  • the front screw fixing member 50 a is a member that is fixed to a part of the bar screw member 22 and rotates with the bar screw member 22, for example, a metal such as iron.
  • the front screw fixing member 50a may be a nut.
  • the screw diameter of the female screw portion 64a is, for example, slightly smaller than the screw diameter of the male screw portion 22b of the bar screw member 22, and is fixed to the bar screw member 22 by screwing the front screw fixing member 50a into the male screw portion 22b in a press-fit state.
  • the fixing position of the front screw fixing member 50a can be determined by the formation position of the male screw portion 22b.
  • the fixing of the front screw fixing member 50a to the bar screw member 22 is not limited to this.
  • the screw diameter of the female screw portion 64a of the front screw fixing member 50a is formed so as to correspond to the screw diameter of the male screw portion 22b. After being screwed and positioned, it may be fixed by caulking, welding or the like.
  • the end surface 64b of the front screw fixing member 50a on the screw penetrating member 52 side is formed with a sliding groove 64c extending in the circumferential direction for receiving a part of the surface of the sphere 54 and supporting the sphere 54 in a rollable manner.
  • the sliding groove 64 c is a groove having a depth that accepts, for example, 1 ⁇ 4 of the diameter of the sphere 54, and the curvature of the sliding groove 64 c is set equal to or slightly smaller than the curvature of the sphere 54. Therefore, the sphere 54 can be smoothly rotated while being fitted in the sliding groove 64c.
  • the rear screw fixing member 50b (screw fixing member 50) is a cylindrical member in which a through hole 66a through which the bar screw member 22 passes is formed.
  • the rear screw fixing member 50b is a member that is fixed to a part of the bar screw member 22 and rotates together with the bar screw member 22, for example, made of metal.
  • the hole diameter of the through hole 66a of the rear screw fixing member 50b is slightly smaller than the diameter of the small diameter portion 22c of the bar screw member 22, and can be fixed to the small diameter portion 22c by press-fitting.
  • the fixing of the rear screw fixing member 50b to the bar screw member 22 is not limited to this, and may be performed by, for example, caulking, welding, screw fastening, or the like.
  • the positioning of the rear screw fixing member 50b in the small diameter portion 22c is determined, for example, by bringing the end surface 66d on the rearward Xb side of the rear screw fixing member 50b into contact with the large diameter portion 22f formed in the small diameter portion 22c. Also good.
  • the end surface 66b of the rear screw fixing member 50b on the screw penetrating member 52 side is formed with a sliding groove 66c extending in the circumferential direction for receiving a part of the surface of the sphere 54 and rotatably supporting the sphere 54.
  • the sliding groove 66 c is a groove having a depth that accepts, for example, 1 ⁇ 4 of the diameter of the sphere 54, and the curvature of the sliding groove 66 c is set equal to or slightly smaller than the curvature of the sphere 54. Therefore, the sphere 54 can smoothly rotate while being fitted in the sliding groove 66c.
  • the sphere 54 that slides between the screw penetrating member 52 and the front screw fixing member 50a has a front guide member 60a (guide member) disposed between the screw penetrating member 52 and the front screw fixing member 50a in the front-rear direction X. 60).
  • the front guide member 60a is disposed in a state in which the space between the spheres 54 in the circumferential direction of the bar screw member 22 is maintained and is relatively rotatable with at least one of the screw penetrating member 52 and the front screw fixing member 50a.
  • the front guide member 60a of the first embodiment is disposed in a state in which it can rotate relative to both the screw penetrating member 52 and the front screw fixing member 50a.
  • the front guide member 60a is an annular member formed of, for example, resin, and as shown in FIG. 3, a guide through hole 68 through which the bar screw member 22 passes is formed.
  • a guide through hole 68 for example, a plurality of guide grooves 68a that function as a holding portion that holds (guides) the sphere 54 at equal intervals are formed.
  • the guide groove 68a is a groove that extends radially from the periphery of the guide through hole 68 toward the radially outer side of the front guide member 60a.
  • three guide grooves 68a are formed at intervals of 120 ° corresponding to the number of spheres 54 to be guided.
  • the sphere 54 and the front guide member 60a are affected by the rotation of the front screw fixing member 50a in a state where the circumferential distance between the spheres 54 is maintained. Without rotation, it rotates freely in the circumferential direction of the rod screw member 22. As a result, the sphere 54 rolls on the convex curved surface 62a of the screw penetrating member 52 in a low resistance state. That is, even when the bar screw member 22 rotates while being swung, the relative position between the front screw fixing member 50a and the screw penetrating member 52 is smoothly changed to reduce fluctuations in the rotational resistance of the bar screw member 22 due to waviness. That is, the change in the rotational speed of the bar screw member 22 can be reduced.
  • the sphere 54 that slides between the screw penetrating member 52 and the rear screw fixing member 50b is, in the front-rear direction X, a rear guide member 60b (guide member) disposed between the screw penetrating member 52 and the rear screw fixing member 50b. 60).
  • the rear guide member 60b maintains the space between the spheres 54 in the circumferential direction of the bar screw member 22, and is relatively rotatable with at least one of the screw penetrating member 52 and the rear screw fixing member 50b. It is arranged with.
  • the rear guide member 60b of the first embodiment is disposed in a state in which it can rotate relative to both the screw penetrating member 52 and the rear screw fixing member 50b.
  • the rear guide member 60b is a member formed of resin, for example, and as shown in FIG. 3, a guide through hole 70 through which the bar screw member 22 penetrates is formed on one side, and a part of the rear screw fixing member 50b is formed inside. It is a bottomed cylindrical member that can be accommodated in the container.
  • a plurality of guide grooves 70a that function as a holding portion that holds (guides) the sphere 54 at equal intervals are formed.
  • the guide groove 70a is a groove extending radially from the periphery of the guide through hole 70 toward the radially outer side of the rear guide member 60b. In the case of FIG.
  • a temporary fixing portion 70c extending in the rear direction Xb is formed in the cylindrical portion 70b of the rear guide member 60b.
  • the temporary fixing portion 70c is for engaging with the end surface of the rear screw fixing member 50b in the rear direction Xb when the load transmission mechanism 48 is assembled, and temporarily fixing the rear guide member 60b to improve the assemblability.
  • the temporary fixing portion 70c is loosely fitted to the rear screw fixing member 50b so as not to prevent relative rotation between the rear guide member 60b and the rear screw fixing member 50b after assembly.
  • the sphere 54 and the rear guide member 60b are rotated by the rear screw fixing member 50b in a state where the circumferential distance between the spheres 54 is maintained. It rotates freely in the circumferential direction of the rod screw member 22 without being affected. As a result, the sphere 54 rolls on the concave curved surface 62b of the screw penetrating member 52 in a low resistance state. That is, even when the bar screw member 22 rotates while being swung, the relative position between the rear screw fixing member 50b and the screw penetrating member 52 is smoothly changed, and fluctuations in the rotational resistance of the bar screw member 22 due to waviness are reduced. That is, the change in the rotational speed of the bar screw member 22 can be reduced.
  • the guide member 60 maintains the circumferential interval of the rod screw member 22 of the sphere 54. Therefore, even when the number of the spheres 54 arranged is small, the contact state in the front-rear direction X between the screw penetrating member 52 and the screw fixing member 50 can be maintained in parallel. For example, if there are three or more spheres 54, at least three points are supported, and the inclination of the screw penetrating member 52 and the screw fixing member 50 during sliding contact can be prevented. As a result, the relative movement between the screw penetrating member 52 and the screw fixing member 50 can be performed smoothly. In the case of FIG.
  • the front guide member 60 a is disposed in a state in which it can rotate relative to both the screw penetrating member 52 and the front screw fixing member 50 a (a state in which neither is fixed).
  • the front guide member 60a may be fixed (integrated) to any one of the screw penetrating member 52 and the front screw fixing member 50a.
  • the sphere 54 rolls in the guide groove 68a without moving in the circumferential direction.
  • the rear guide member 60b is disposed in a state where the rear guide member 60b is relatively rotatable with respect to both the screw penetrating member 52 and the rear screw fixing member 50b (a state where the rear guide member 60b is not fixed to either).
  • the rear guide member 60b may be fixed (integrated) to any one of the screw penetrating member 52 and the rear screw fixing member 50b.
  • the sphere 54 rolls in the guide groove 70a without moving in the circumferential direction.
  • the load transmission mechanism 48 As described above, when the seat S supported on the upper rail 18 side is slid in the front-rear direction X, the rod screw member 22 is rotated by the motor. As shown in FIG. 2, the bar screw member 22 is rotatably supported on the upper rail 18 side, and is screwed with a nut member 26 fixed to the lower rail 16 fixed to the floor surface F side. As a result, when the bar screw member 22 rotates, the bar screw member 22 itself advances and retreats in the front-rear direction X with respect to the nut member 26.
  • the position of the screw penetrating member 52 fixed to the upper rail 18 on the rotating rod screw member 22 is determined by the front screw fixing member 50a and the rear screw fixing member 50b fixed to the rod screw member 22 through the sphere 54. ing. Accordingly, the screw fixing member 50 fixed to the rod screw member 22 pushes and moves the screw penetrating member 52, and the upper rail 18 fixed to the screw penetrating member 52, that is, the seat S is slid in the front-rear direction X direction.
  • the screw penetrating member 52 is fixed to the upper rail 18 using the male screw portion 56 and the nut 58.
  • the fixing angle of the screw penetrating member 52 may vary in the rotation direction of the male screw part 56. That is, the relative position relationship of the screw penetrating member 52 with respect to the bar screw member 22 and the front screw fixing member 50a and the rear screw fixing member 50b fixed to the bar screw member 22 may vary.
  • the rod screw member 22 to which the front screw fixing member 50a and the rear screw fixing member 50b are fixed may swell when rotating.
  • the swell causes the rod screw member 22 to move relative to the screw penetrating member 52. It becomes difficult to rotate. That is, the rotational speed of the bar screw member 22 may increase or decrease, which may cause vibration or abnormal noise when the sheet S slides.
  • the circular arc of the convex curved surface 62a and the circular arc of the concave curved surface 62b can be part of circular arcs having different radii around the same point O on the rotation center M of the bar screw member 22.
  • one surface side (for example, the rear direction Xb side) of the screw penetrating member 52 is the slidable contact surface with which the sphere 54 is slidably contacted.
  • An example is shown in which a concave curved surface 62b that is recessed in the axial direction (forward direction Xa) as it goes to M is formed.
  • the concave curved surface 62 b of the screw penetrating member 52 causes the sphere 54 to move to the rod screw member 22.
  • the other surface side (for example, the front direction Xa side) of the screw penetrating member 52 is the rotation of the bar screw member 22 as a sliding contact surface with which the sphere 54 slides.
  • the example which forms the convex curve 62a which protrudes to an axial direction (front direction Xa) as it goes to the center M is shown.
  • an assembly error (rotation) in the rotation direction of the male screw portion 56 occurs, or undulation occurs when the rod screw member 22 rotates.
  • the slidable contact surface (concave surface 62b) with which the sphere 54 is in slidable contact is formed as a concave curved surface that is recessed in the axial direction toward the rotation center M of the bar screw member 22, as shown in FIG. Is formed smaller than the curvature of the sphere 54.
  • the spherical body 54 can be brought into point contact with the concave curved surface 62b instead of contact with a plurality of points or surfaces.
  • the front direction Xa side of the screw penetrating member 52 is a convex curved surface 62a and the rear direction Xb side is a concave curved surface 62b.
  • the relationship between the convex curved surface 62a and the concave curved surface 62b is as follows. It is not limited to this.
  • the front direction Xa side of the screw penetrating member 52 may be a concave curved surface 62b
  • the rear direction Xb side may be a convex curved surface 62a.
  • the concave curved surface 62b is formed on the front direction Xa side of the screw penetrating member 52, for example, an external force (for example, a sudden force) toward the front direction Xa with respect to the load transmission mechanism 48A.
  • an external force for example, a sudden force
  • the concave curved surface 62b of the screw penetrating member 52 pushes the sphere 54 down to the rotation center M (axial center) side of the rod screw member 22. That is, the sphere 54 is prevented from jumping out in the outer peripheral direction of the front guide member 60a.
  • the upper rail 18 on the rear direction Xb side of the screw penetrating member 52 is the same as the load transmission mechanism 48.
  • Assembling error (rotation) in the rotation direction of the male screw portion 56 occurs when the screw thread member 56 is fixed, or undulation occurs when the rod screw member 22 rotates, and the convex curved surface 62a of the screw penetrating member 52 and the sphere 54 Even when the contact position changes, the point contact state is maintained.
  • the relative position change between the rear screw fixing member 50b and the screw penetrating member 52 is stably realized. Therefore, even when the bar screw member 22 undulates, the rotational speed hardly changes, and the upper rail 18 (seat S) can be smoothly slid with vibration and noise reduced.
  • the circular arc of the convex curved surface 62a and the circular arc of the concave curved surface 62b can be part of circular arcs with different radii centering on the same point O on the rotation center M of the bar screw member 22.
  • the center (point O) of the undulation is on the rear Xb side of the screw penetrating member 52, that is, on the side close to the nut member 26 screwed with the rod screw member 22.
  • the center of swell (point O) is the front direction Xa side of the screw penetrating member 52, that is, the side farther from the nut member 26 than in the case of FIG. Therefore, the load transmission mechanism 48 shown in FIG. 4 has a smaller swell amount (swing width) of the bar screw member 22 than the load transmission mechanism 48A shown in FIG.
  • the undulation amount of the bar screw member 22 can be managed by appropriately selecting the curved surface shape of the screw penetrating member 52.
  • the example in which the convex curved surface 62a is formed on one surface of the main body 62 of the screw penetrating member 52 and the concave curved surface 62b is formed on the other surface is formed on the other surface.
  • convex curved surfaces 62 a may be formed on both surfaces of the main body portion 62, or concave curved surfaces 62 b may be formed on both surfaces of the main body portion 62.
  • the spherical body 54 is rotated around the center of the rod screw member 22 regardless of whether an excessive rear load is applied to the screw penetrating member 52 or an excessive forward load is applied. It can be pushed down to the M (axis) side. Therefore, when an excessive load is applied to the screw penetrating member 52, the front guide member 60a and the rear guide member 60b are deformed or damaged, and the sphere 54 jumps out of the front guide member 60a and the rear guide member 60b (dropping off). It is easy to avoid. That is, a structure that is advantageous in terms of strength against longitudinal loads can be obtained.
  • both the front and rear direction X of the main body portion 62 of the screw penetrating member 52 are flattened. It may be a surface.
  • the end surface 64b of the front screw fixing member 50a and the end surface 66b of the rear screw fixing member 50b facing the screw penetrating member 52 via the sphere 54 may be flat.
  • the sliding groove 64c may be formed on the end surface 64b, or the sliding groove 66c may be formed on the end surface 66b.
  • the contact surface between the screw penetrating member 52 and the sphere 54 is a flat surface, as shown in FIG. 6, between the screw penetrating member 52 and the front screw fixing member 50a, and the screw penetrating member.
  • a cylindrical roller 54a may be used as a rolling member that is interposed between 52 and the rear screw fixing member 50b.
  • the guide member 60 that functions as a holding portion that holds (guides) the rollers 54a can be an annular plate member formed of, for example, resin.
  • a guide through hole 68 through which the bar screw member 22 passes is formed in the guide member 60, and a plurality of guide grooves 68a extending radially so that the rotating shaft of the roller 54a faces the center of the guide member 60 are formed.
  • FIG. 6 an example is shown in which three guide grooves 68a are formed at regular intervals (120 ° intervals).
  • the number of the rollers 54a can be changed as appropriate as long as it is three or more, and the same effect as when the sphere 54 is used can be obtained.
  • FIG. 7 shows an exploded perspective view of the load transmission mechanism 72 of the second embodiment
  • FIG. 8 shows a cross-sectional view of the load transmission mechanism 72.
  • the load transmission mechanism 72 of the second embodiment is an example in which convex curved surfaces 62 a are formed on both surfaces of the main body portion 62 of the screw penetrating member 52 in the description of the load transmission mechanism 48 of the first embodiment. Therefore, in FIG. 2, by using the load transmission mechanism 72 instead of the load transmission mechanism 48, the power seat slide device that can reduce fluctuations in the rotational speed of the bar screw member 22 even when the bar screw member 22 rotates while undulating. 20 can be obtained.
  • the structure of the load transmission mechanism 72 will be described below.
  • symbol is attached
  • the load transmission mechanism 72 includes a screw fixing member 74 (a front screw fixing member 74a and a rear screw fixing member 74b), a screw penetrating member 76, a sphere 54, and a guide member 80 (a front guide member 80a and a rear guide). Member 80b) and the like.
  • a screw fixing member 74 a front screw fixing member 74a and a rear screw fixing member 74b
  • a screw penetrating member 76 a sphere 54
  • a guide member 80 a front guide member 80a and a rear guide.
  • Member 80b and the like.
  • a front guide member 80a for supporting a plurality of (three in the case of FIG.
  • spheres 54 as rolling members is disposed between the front surface (forward direction Xa) of the rotatable screw penetrating member 76. Yes.
  • a plurality are provided between the front side (front direction Xa) surface of the rear screw fixing member 74b fixed to the bar screw member 22 and the rear side surface (rear direction Xb) of the screw penetrating member 76.
  • the rear guide member 80b for supporting the three spheres 54 is disposed.
  • the screw penetrating member 76 is substantially front and rear in a state where it can be rotated with respect to the bar screw member 22 by the front screw fixing member 74a and the rear screw fixing member 74b fixed to the bar screw member 22 in the front and rear direction X. Is supported by the bar screw member 22 in a state in which the movement of is restricted.
  • the screw penetrating member 76 includes a substantially rectangular main body portion 82 having convex curved surfaces formed on both the front direction Xa side and the rear direction Xb side, and a male screw portion integrally provided on the upper surface of the main body portion 82. 78.
  • the main body portion 82 is provided with a screw through hole 76a through which the bar screw member 22 can pass, and the position of the male screw portion 78 is determined so that the center of the screw through hole 76a is located immediately below the rotation center of the male screw portion 78. Yes.
  • the screw penetrating member 76 is made of a metal such as iron.
  • the convex curved surface 84 a and the convex curved surface 84 b can be curved surfaces that project toward the rotation center M of the bar screw member 22.
  • the convex curved surface 84a has a smooth surface so that the sphere 54 (only one is visible in FIG. 8) supported by the front guide member 80a can smoothly slide.
  • the surface of the convex curved surface 84b is smoothly processed so that the sphere 54 (only one is visible in FIG. 8) supported by the rear guide member 80b can smoothly slide.
  • the front screw fixing member 74 a (screw fixing member 74) is a cylindrical member in which a female screw portion 86 a that is screwed with the male screw portion 22 b of the rod screw member 22 is formed in a through hole that penetrates the rod screw member 22.
  • the front screw fixing member 74 a is a member that is fixed to a part of the bar screw member 22 and rotates together with the bar screw member 22, for example, a metal such as iron.
  • the front screw fixing member 74a may be a nut.
  • the screw diameter of the female screw portion 86a is, for example, slightly smaller than the screw diameter of the male screw portion 22b of the bar screw member 22, and is fixed to the rod screw member 22 by screwing the front screw fixing member 74a into the male screw portion 22b in a press-fit state. I can do it.
  • the fixing position of the front screw fixing member 74a can be determined by the formation position of the male screw portion 22b.
  • the fixing of the front screw fixing member 74a to the bar screw member 22 is not limited to this.
  • the screw diameter of the female screw portion 86a of the front screw fixing member 74a is formed to correspond to the screw diameter of the male screw portion 22b. After being screwed and positioned, it may be fixed by caulking, welding or the like.
  • An end surface 86b of the front screw fixing member 74a on the screw penetrating member 76 side is formed with a sliding groove 86c extending in the circumferential direction for receiving a part of the surface of the sphere 54 and supporting the sphere 54 in a rollable manner.
  • the sliding groove 86 c is a groove having a depth that accepts, for example, 1 ⁇ 4 of the diameter of the sphere 54, and the curvature of the sliding groove 86 c is set to be equal to or slightly smaller than the curvature of the sphere 54. Accordingly, the sphere 54 can smoothly roll while being fitted in the sliding groove 86c.
  • the rear screw fixing member 74b (screw fixing member 74) is a cylindrical member in which a through hole 88a that allows the rod screw member 22 to pass therethrough is formed.
  • the rear screw fixing member 74b is a member that is fixed to a part of the bar screw member 22 and rotates together with the bar screw member 22, for example, made of metal.
  • the hole diameter of the through hole 88a of the rear screw fixing member 74b is formed slightly smaller than the diameter of the small diameter portion 22c of the bar screw member 22, and can be fixed to the small diameter portion 22c by press-fitting.
  • the fixing of the rear screw fixing member 74b to the bar screw member 22 is not limited to this, and may be performed by, for example, caulking, welding, screw fastening, or the like. Further, the positioning of the rear screw fixing member 74b in the small diameter portion 22c is determined, for example, by bringing the end surface 88d on the rear direction Xb side of the rear screw fixing member 74b into contact with the large diameter portion 22f formed in the small diameter portion 22c. Also good.
  • the end surface 88b of the rear screw fixing member 74b on the screw penetrating member 76 side is formed with a sliding groove 88c extending in the circumferential direction for receiving a part of the surface of the sphere 54 and supporting the sphere 54 in a rollable manner.
  • the sliding groove 88 c is a groove having a depth that accepts, for example, 1 ⁇ 4 of the diameter of the sphere 54, and the curvature of the sliding groove 88 c is set to be equal to or slightly smaller than the curvature of the sphere 54. Accordingly, the sphere 54 can smoothly roll while fitted in the sliding groove 88c.
  • the sphere 54 that slides between the screw penetrating member 76 and the front screw fixing member 74a has a front guide member 80a (guide member) disposed between the screw penetrating member 76 and the front screw fixing member 74a in the front-rear direction X. 80).
  • the front guide member 80a is disposed in a state in which the space between the spheres 54 in the circumferential direction of the bar screw member 22 is maintained and is relatively rotatable with at least one of the screw penetrating member 76 and the front screw fixing member 74a.
  • the front guide member 80a of the second embodiment is disposed in a state in which it can rotate relative to both the screw penetrating member 76 and the front screw fixing member 74a.
  • the front guide member 80a is an annular member formed of resin, for example, and as shown in FIG. 7, a guide through hole 90 through which the bar screw member 22 passes is formed.
  • a guide through hole 90 for example, a plurality of guide grooves 90a that function as a holding portion that holds (guides) the sphere 54 at equal intervals are formed.
  • the guide groove 90a is a groove extending radially from the periphery of the guide through hole 90 toward the radially outer side of the front guide member 80a. In the case of FIG. 7, three guide grooves 90a are formed at intervals of 120 ° corresponding to the number of spheres 54 to be guided.
  • the sphere 54 and the front guide member 80a are affected by the rotation of the front screw fixing member 74a while maintaining the circumferential interval between the spheres 54. Without rotation, it rotates freely in the circumferential direction of the rod screw member 22. As a result, the sphere 54 rolls on the convex curved surface 84a of the screw penetrating member 76 in a low resistance state. That is, even when the bar screw member 22 rotates while being swung, the relative position between the front screw fixing member 74a and the screw penetrating member 76 is smoothly changed to reduce fluctuations in the rotational resistance of the bar screw member 22 due to waviness. That is, the change in the rotational speed of the bar screw member 22 can be reduced.
  • the sphere 54 that slides between the screw penetrating member 76 and the rear screw fixing member 74b is, in the front-rear direction X, a rear guide member 80b (guide member) disposed between the screw penetrating member 76 and the rear screw fixing member 74b. 80).
  • the rear guide member 80b can be shared with the front guide member 80a when the convex curved surface 84a and the convex curved surface 84b of the screw penetrating member 76 have the same shape.
  • the front guide member 80a is used as the rear guide member 80b, the front and back surfaces may be reversed, and the sphere 54 can be supported between the screw penetrating member 76 and the rear screw fixing member 74b so as to be able to roll.
  • the types of parts can be reduced, which can contribute to a reduction in design cost, part cost, part management cost, and the like.
  • the convex curved surface 84a and the convex curved surface 84b formed on the main body portion 82 of the screw penetrating member 76 are, for example, centered on a point G that is the intersection of the rotational axis of the rod screw member 22 and the rotational axis of the male threaded portion 78 of the screw penetrating member 76. Can be part of the spherical surface. In this case, for example, when fixing the load transmission mechanism 72 to the upper rail 18, an assembly error (rotation) in the rotation direction of the male screw portion 78 occurs, or even when the rod screw member 22 swells during rotation, The bar screw member 22 undulates around the point G.
  • the front screw fixing member 74 a and the rear screw fixing member 74 b smoothly rotate on the convex curved surface 84 a and the convex curved surface 84 b of the screw penetrating member 76 via the sphere 54.
  • the waviness operation becomes resistance to rotation of the bar screw member 22. That is, fluctuations in the rotational speed of the bar screw member 22 can be reduced, and vibration and abnormal noise when the upper rail 18 (seat S) slides can be reduced.
  • the front guide member 80a is disposed so as to be rotatable relative to the screw penetrating member 76 and the front screw fixing member 74a.
  • the rear guide member 80b is disposed so as to be rotatable relative to the screw penetrating member 76 and the rear screw fixing member 74b. Therefore, when the front screw fixing member 74a and the rear screw fixing member 74b rotate together with the rod screw member 22, the sphere 54, the front guide member 80a, and the rear guide member 80b are in a state in which the circumferential intervals of the spheres 54 are maintained.
  • the rod screw member 22 freely rotates in the circumferential direction without being affected by the rotation of the front screw fixing member 74a and the rear screw fixing member 74b.
  • the sphere 54 rolls on the convex curved surface 84a and the convex curved surface 84b of the screw penetrating member 76 in a low resistance state. That is, even when the bar screw member 22 rotates while undulating, the relative movement between the screw penetrating member 76 and the front screw fixing member 74a and the relative position movement between the screw penetrating member 76 and the rear screw fixing member 74b are executed more smoothly. Thus, the rotational speed of the bar screw member 22 is further stabilized.
  • the circumferential interval of the rod screw member 22 of the sphere 54 is maintained by the guide member 80. Therefore, even when the number of the spheres 54 arranged is small, the contact state in the front-rear direction X between the screw penetrating member 76 and the screw fixing member 74 can be maintained in parallel. For example, if there are three or more spheres 54, at least three points are supported, and the inclination of the screw penetrating member 76 and the screw fixing member 74 during sliding contact can be prevented. As a result, the relative movement between the screw penetrating member 76 and the screw fixing member 74 can be smoothly performed.
  • the front guide member 80a may be fixed to either the screw penetrating member 76 or the front screw fixing member 74a, or may be integrally formed.
  • the rear guide member 80b may be fixed to either the screw penetrating member 76 or the rear screw fixing member 74b, or may be integrally formed.
  • the types of parts can be reduced, which can contribute to a reduction in design cost, part cost, part management cost, assembly man-hours, and the like.
  • the screw penetrating member 76 protrudes on both surfaces in the front-rear direction X as the slidable contact surface with which the sphere 54 slides is directed toward the rotation center M of the bar screw member 22.
  • a convex curved surface 84a and a convex curved surface 84b are formed.
  • both surfaces of the main-body part 82 of the screw penetration member 76 mentioned above showed the example which formed the convex curved surfaces 84a and 84b, it is good also considering this both surfaces as a flat surface.
  • the sliding groove 86c was formed in the end surface 86b of the front screw fixing member 74a
  • the sliding groove 88c was formed in the end surface 88b of the back screw fixing member 74b
  • the end surface 86b and the end surface 88b were flat surfaces. It is good.
  • a sphere 54 as a rolling member may be used, or instead of the sphere 54, for example, a cylindrical roller 54a as described in FIG. Good. In this case, similarly to the case where the roller 54a is used in the first embodiment, the same effect as the case where the sphere 54 is used can be obtained.
  • FIG. 9 is an exploded perspective view of the load transmission mechanism 92 according to the third embodiment
  • FIG. 10 is a cross-sectional view of the load transmission mechanism 92.
  • the load transmission mechanism 92 according to the third embodiment includes a screw penetration member 94 (bracket) fixed to the upper rail 18 side, a screw fixing member 96, a sphere 54, and a guide member 98 that guides the sphere 54 (frontward).
  • the screw penetrating member 94 of the load transmission mechanism 92 includes a front wall portion 94 a and a rear wall portion 94 b provided so as to sandwich a pair of end surfaces of the screw fixing member 96.
  • the cross section of the front-back direction X which connected 96 by the connection part 94c provided so that 96 might be straddled across the front-back direction X is a substantially C-shaped member.
  • the screw penetrating member 94 is made of metal (for example, iron or the like), and the front through hole 100a through which the bar screw member 22 is rotatably penetrated at a substantially central portion in the front-rear direction X of the front wall portion 94a and the rear wall portion 94b.
  • the rear through hole 100b is formed. Further, a through hole penetrating in the vertical direction of the vehicle is formed at a substantially central portion in the front-rear direction X of the connecting portion 94c, and a bolt 102 is inserted and fixed in the through hole. As in the other embodiments, the bolt 102 is fastened with a nut, whereby the load transmission mechanism 92 (screw penetration member 94) is fixed to the upper rail 18. In addition, fixation of the load transmission mechanism 92 (screw penetration member 94) with respect to the upper rail 18 may use not only the fastening of the volt
  • a concave curved surface 106 a is formed on the inner wall surface 104 a of the front wall portion 94 a of the screw penetrating member 94.
  • the concave curved surface 106a can be a curved surface that is recessed in the front direction Xa (axial direction) as it goes to the rotation center M of the bar screw member 22.
  • the surface of the concave curved surface 106a is smoothly processed so that the sphere 54 (only one is visible in FIG. 10) supported by the front guide member 98a can smoothly slide.
  • a concave curved surface 106b is formed on the inner wall surface 104b of the rear wall portion 94b.
  • the concave curved surface 106b can be a curved surface that is recessed in the rear direction Xb (axial direction) as it goes toward the rotation center M of the bar screw member 22.
  • the surface of the concave curved surface 106b is smoothly processed so that the sphere 54 (only one is visible in FIG. 10) supported by the rear guide member 98b can smoothly slide.
  • the screw fixing member 96 is a cylindrical member in which a female screw portion 108a that engages with the male screw portion 22b of the rod screw member 22 is formed in a through hole through which the rod screw member 22 passes.
  • the screw fixing member 96 is a member that is fixed to a part of the bar screw member 22 and rotates together with the bar screw member 22, for example, a metal such as iron.
  • the screw fixing member 96 may be a nut.
  • the screw diameter of the female screw portion 108a is slightly smaller than the screw diameter of the male screw portion 22b of the rod screw member 22, and the screw fixing member 96 can be fixed by being screwed into the male screw portion 22b.
  • the fixing position of the screw fixing member 96 can be determined by the formation position of the male screw portion 22b.
  • the fixing of the screw fixing member 96 to the rod screw member 22 is not limited to this.
  • the screw diameter of the female screw portion 108a of the screw fixing member 96 is formed so as to correspond to the screw diameter of the male screw portion 22b. After positioning, it may be fixed by caulking or welding.
  • a sliding groove 96c extending in the circumferential direction for receiving a part of the surface of the sphere 54 and supporting the sphere 54 in a rollable manner. Is formed.
  • the sliding groove 96 c is a groove having a depth that accepts, for example, 1 ⁇ 4 of the diameter of the sphere 54, and the curvature of the sliding groove 96 c is set to be equal to or slightly smaller than the curvature of the sphere 54. Accordingly, the sphere 54 can be smoothly rotated while being fitted in the sliding groove 96c.
  • a front guide member 98a that supports a plurality of (three in FIG. 9) spheres 54 is provided.
  • a rear guide that supports a plurality of (three in FIG. 9) spheres 54 between the rear end surface 96b of the screw fixing member 96 (rearward direction Xb) and the inner wall surface 104b of the rear wall portion 94b.
  • a member 98b is disposed.
  • the front guide member 98a is disposed in a state in which the space between the spheres 54 in the circumferential direction of the bar screw member 22 is maintained, and the front guide member 98a is relatively rotatable with at least one of the inner wall surface 104a of the screw penetrating member 94 and the screw fixing member 96.
  • the front guide member 98 a is a cup-shaped member made of, for example, resin, and can be arranged so as to cover the end surface 96 a of the screw fixing member 96.
  • a guide through hole 98c through which the bar screw member 22 penetrates and a plurality of sphere receiving holes 98d functioning as a holding portion for holding (guiding) the sphere 54.
  • the sphere receiving hole 98d is a hole having a diameter of, for example, about 70% of the diameter of the sphere 54.
  • a part of the sphere 54 is a concave curved surface of the front wall portion 94a. It is held so as not to come out of the front guide member 98a while protruding toward the 106a side.
  • three spherical body receiving holes 98d are formed at intervals of 120 °, for example, corresponding to the number of spherical bodies 54 to be guided.
  • the rear guide member 98b has the same structure as the front guide member 98a. Therefore, when the screw fixing member 96 rotates together with the rod screw member 22, the sphere 54, the front guide member 98a, and the rear guide member 98b are screwed in a state where the circumferential spacing of the rod screw member 22 of each sphere 54 is maintained.
  • the screw penetrating member 94 is integrally advanced and retracted in the front-rear direction X. That is, even when the bar screw member 22 rotates while being swung, the relative position between the screw penetrating member 94 and the screw fixing member 96 is smoothly changed to reduce fluctuations in the rotational resistance of the bar screw member 22 due to waviness. That is, the change in the rotational speed of the bar screw member 22 can be reduced.
  • the load transmission mechanism 92 can reduce fluctuations in the rotational speed even when the bar screw member 22 rotates while wavy, and can reduce the occurrence of vibration and abnormal noise when the upper rail 18 (seat S) slides. it can.
  • the circumferential interval of the rod screw member 22 of the sphere 54 is maintained by the guide member 98. Therefore, even when the number of the spheres 54 arranged is small, the contact state in the front-rear direction X between the screw penetrating member 94 and the screw fixing member 96 can be maintained in parallel. For example, if there are three or more spheres 54, at least three points are supported, and the inclination of the screw penetrating member 94 and the screw fixing member 96 during sliding contact can be prevented. As a result, the relative movement between the screw penetrating member 94 and the screw fixing member 96 can be performed smoothly.
  • the front guide member 98a may be fixed to either the end surface 96a of the screw fixing member 96 or the inner wall surface 104a of the front wall portion 94a, or may be integrally formed. Also good.
  • the rear guide member 98b may be fixed to either the end surface 96b of the screw fixing member 96 or the inner wall surface 104b of the rear wall portion 94b, or may be formed integrally. In this case, the types of parts can be reduced, which can contribute to a reduction in design cost, part cost, part management cost, assembly man-hours, and the like.
  • the front guide member 98a and the rear guide member 98b can be shared.
  • the front guide member 98a is used as the rear guide member 98b, the front and back sides may be reversed, and the sphere 54 can be supported in a rollable manner between the screw fixing member 96 and the inner wall surface 104b of the rear wall portion 94b.
  • a concave curved surface 106a is formed on the inner wall surface 104a of the front wall portion 94a of the screw penetrating member 94, and a concave curved surface is formed on the inner wall surface 104b of the rear wall portion 94b. 106b is formed.
  • the spherical body 54 is placed on the rotation center M (axial center) side of the rod screw member 22 regardless of whether an excessive rear load is applied to the screw penetrating member 94 or an excessive forward load is applied. Can be pushed down.
  • the slidable contact surfaces (concave curved surfaces 106a and 106b) with which the sphere 54 is slidably contacted are curved surfaces that are recessed in the axial direction toward the rotation center M of the bar screw member 22, as shown in FIG.
  • the curvatures of the curved surfaces 106 a and 106 b are formed to be smaller than the curvature of the sphere 54.
  • the spherical body 54 can be brought into point contact with respect to the concave curved surfaces 106a and 106b instead of a plurality of points or surface contact.
  • the guide groove 68a (90a) and the spherical body receiving hole 98d are shown as having a groove width and a hole diameter that hold one rolling member one by one.
  • the circumferential width of the bar screw member 22 of the guide groove 68a (90a) or the spherical body receiving hole 98d is increased. You may enable it to move in the circumferential direction.
  • the groove width of the guide groove 68a (90a) may be a long groove expanded in the circumferential direction, or the spherical body receiving hole 98d may be a long hole expanded in the circumferential direction.
  • the rolling freedom degree of the rolling member sliding between the screw penetrating member 52 (76, 94) and the screw fixing member 50 (74, 96) can be further improved, and the rolling member can be made smoother. It becomes easy to roll.
  • a holding portion having another shape may be used.
  • a protrusion or the like may be provided so as to restrict the movement across both sides of the rolling member in the circumferential direction.
  • a pair of close projections that substantially sandwich the rolling member so as to substantially restrict circumferential movement may be provided.
  • a pair of protrusions may be provided so as to be separated by a larger interval than the size of the rolling member so as to allow a certain amount of circumferential movement.
  • the mold is simpler than the case where the guide groove 68a (90a) or the spherical body receiving hole 98d is formed by forming the holding portion with a protrusion. Can contribute to the reduction of parts costs.
  • the nut member 26 housed in the nut housing 28 is fixed to the lower rail 16 that is one side of the floor surface F and the seat S, and the upper rail 18 that is the other side of the floor surface F and the seat S.
  • positioned along the front-back direction X was shown.
  • the rod screw member 22, the gear box 32, and the load transmission mechanism 48 (48A, 72, 92) are fixed to the lower rail 16, and the nut member 26 accommodated in the nut housing 28 is fixed to the upper rail 18. The same effect can be obtained.
  • the power seat slide apparatus 20 showed the example containing the lower rail 16 and the upper rail 18.
  • the bar screw member 22, the gear box 32, and the load transmission mechanism 48 (48A, 72, 92) are directly fixed to the back surface side of the seat S, and the nut member 26 housed in the nut housing 28 is placed on the floor surface. You may make it fix to F directly and can acquire the same effect.
  • convex curved surface 62b, 106a, 106b ... concave curved surface, 64c, 66c, 86c, 88c, 96c ... sliding groove, 68, 70, 90 ... guide through hole, 68a, 70a, 90a ... guide groove, 94a ... front wall, 94b ... rear wall, F ... floor surface, S ... Door, X ... the front-rear direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Seats For Vehicles (AREA)
  • Transmission Devices (AREA)

Abstract

パワーシートスライド装置(20)は、例えば、車両のフロア側とシート側のうち一方側に固定されるナット部材(26)と、フロア側とシート側のうち他方側に車両の前後方向に沿って配置され、ナット部材(26)と螺合する棒ねじ部材(22)と、フロア側とシート側のうち他方側に固定され、棒ねじ部材(22)が回転可能に貫通する貫通穴(52a)が形成されたねじ貫通部材(52)と、棒ねじ部材(22)の軸方向の一部に固定されたねじ固定部材(50)と、軸方向において、ねじ貫通部材(52)とねじ固定部材(50)との間に摺接するように棒ねじ部材(22)を中心に周方向に配置される複数の転動部材(54)と、を備える。

Description

パワーシートスライド装置
 本発明は、パワーシートスライド装置に関する。
 従来、車両のシート(座席)の位置をモータ等の動力を用いて車両の前後方向に移動調整するパワーシートスライド装置が知られている。この種のパワーシートスライド装置は、例えば、シートが固定されたアッパレールにモータと、このモータによって回転駆動するとともに、フロア側のロアレールに固定されたナット部材と螺合する棒ねじ部材を備える。そして、ロアレールに対してアッパレールがスライドすることでシートが移動する。このパワーシートスライド装置は、シートからアッパレールへ入力される荷重を棒ねじ部材の軸心へ伝達する荷重伝達機構を備えることで、棒ねじ部材を回転させるモータやギヤボックス等に大きな荷重がかかることを回避している。
特開2000-85420号公報
 しかしながら、従来のパワーシートスライド装置の荷重伝達機構は、荷重伝達部分が回転する棒ねじ部材のキー溝や突起に接触するブラケットを用いた構造であるため、ブラケットと棒ねじ部材との摺動がスムーズに行われない場合があった。例えば、棒ねじ部材やナット部材の組立誤差や各部材(部品)の寸法ばらつき等により棒ねじ部材が回転時にうねってしまう場合がある。このとき棒ねじ部材とブラケットとの摺動がスムーズでない場合、棒ねじ部材のうねりは、回転時の回転抵抗の変化を招き、棒ねじ部材の回転速度が不安定になる場合がある。その結果、シートの滑らかなスライド(移動)を妨げたり、異音や振動が発生したりする場合があった。
 そこで、本発明の課題の一つは、例えば、荷重伝達を行う摺動部分の摺動をスムーズにして棒ねじ部材の回転を安定させて、シートのスライド時に振動や異音が発生しにくいパワーシートスライド装置を得ることである。
 本発明の実施形態にかかるパワーシートスライド装置は、車両のフロア側とシート側のうち一方側に固定されるナット部材と、上記フロア側と上記シート側のうち他方側に上記車両の前後方向に沿って配置され、上記ナット部材と螺合する棒ねじ部材と、上記フロア側と上記シート側のうち他方側に固定され、上記棒ねじ部材が回転可能に貫通する貫通穴が形成されたねじ貫通部材と、上記棒ねじ部材の軸方向の一部に固定されたねじ固定部材と、上記軸方向において、上記ねじ貫通部材と上記ねじ固定部材との間に摺接するように上記棒ねじ部材を中心に周方向に配置される複数の転動部材と、を備える。
 本発明の実施形態にかかるパワーシートスライド装置の上記複数の転動部材は、例えば、上記前後方向において上記ねじ貫通部材と上記ねじ固定部材との間に配置され、上記ねじ貫通部材と上記ねじ固定部材の少なくとも一方と相対回転可能なガイド部材に支持されてもよい。
 本発明の実施形態にかかるパワーシートスライド装置のガイド部材は、例えば、複数の転動部材の周方向の間隔を維持する保持部を備えてもよい。
 本発明の実施形態にかかるパワーシートスライド装置の上記ねじ貫通部材は、例えば、上記転動部材が摺接する摺接面として上記棒ねじ部材の回転中心に向かうのに連れて上記軸方向に凹む凹曲面を備えてもよい。
 本発明の実施形態にかかるパワーシートスライド装置の上記転動部材は、例えば、球体であり、上記ねじ貫通部材は、上記球体が摺接する摺接面として上記棒ねじ部材の回転中心に向かうのに連れて上記軸方向に突出する凸曲面を備えてもよい。
 本発明の実施形態にかかるパワーシートスライド装置の上記転動部材は、例えば、球体であり、上記ねじ貫通部材の上記球体が摺接する摺接面は、上記棒ねじ部材の回転中心に向かうのに連れて上記軸方向に凹む凹曲面であり、上記凹曲面の曲率は、上記球体の曲率より小さく形成されてもよい。
 本発明の実施形態にかかるパワーシートスライド装置の上記転動部材は、例えば、少なくとも3個以上であってもよい。
 上記パワーシートスライド装置では、転動部材を介してねじ貫通部材とねじ固定部材とが摺接するため、棒ねじ部材が回転時にうねる場合でもねじ貫通部材とねじ固定部材との相対位置が容易に変化する。その結果、回転時に棒ねじ部材に働く回転抵抗が軽減され回転が安定し、シートのスライド時に振動や異音が発生しにくくなる。
図1は、本実施形態のパワーシートスライド装置が設置される車両用のシートの斜視図である。 図2は、実施形態1の荷重伝達機構を含むパワーシートスライド装置の全体構成を説明する概略断面図である。 図3は、図2のパワーシートスライド装置に含まれる荷重伝達機構の分解斜視図である。 図4は、図3に示す荷重伝達機構の詳細と、ねじ貫通部材の曲面形状と棒ねじ部材のうねり中心の関係を説明する断面図である。 図5は、ねじ貫通部材の変形例の詳細と、ねじ貫通部材の曲面形状と棒ねじ部材のうねり中心の関係を説明する断面図である。 図6は、転動部材とガイド部材の変形例を示す斜視図である。 図7は、パワーシートスライド装置に含まれる実施形態2の荷重伝達機構の分解斜視図である。 図8は、図7に示す実施形態2の荷重伝達機構の詳細を示す断面図である。 図9は、パワーシートスライド装置に含まれる実施形態3の荷重伝達機構の分解斜視図である。 図10は、図9に示す実施形態3の荷重伝達機構の詳細を示す断面図である。
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。なお、本明細書において、序数は、部材(部品)や部位等を区別するために便宜上付与されており、優先順位や順番を示すものではない。
 図1を用いて、本実施形態のパワーシートスライド装置が設置された車両用シートの全体構成を説明する。パワーシートスライド装置は、シートSと車両の車室内のフロア面Fとの間に位置する。パワーシートスライド装置は、車両の前後方向X(前方向Xa、後方向Xb)に延びる左右一対のシートトラック10を備える。左右のシートトラック10は、同一(対称)構造であり、フロア面F上で前後方向Xに離間して配置された前ブラケット12および後ブラケット14に固定されるロアレール16と、シートSのシート座部Saの裏面側に固定されるアッパレール18とを含む。そして、フロア面F側に固定されたロアレール16に対してシートSを支持するアッパレール18が前後方向Xに移動可能に係合している。なお、シートSは、シート座部Saに対して背もたれSbをリクライニングさせるリクライニング機構やシート座部Saをチルトさせるチルト機構、シート座部Saを昇降させる昇降機構等を備えてもよい。リクライニング機構は、例えば、シート座部Saと背もたれSbを接続する部分に設けられ、チルト機構や昇降機構は、パワーシートスライド装置とシート座部Saとの間に設けられてもよい。
<実施形態1>
 図2を用いて実施形態1のパワーシートスライド装置20の全体構成を説明する。図2において、ロアレール16およびアッパレール18は車両の前後方向Xに沿って配置される。アッパレール18には、その長手方向(前後方向X)に沿って、棒ねじ部材22が配置されている。この棒ねじ部材22の中央部は、周面に雄ねじ部22aが形成されている。棒ねじ部材22の一方の端部側(前部側、前方向Xa側)には、雄ねじ部22aに連設されて一部に雄ねじ部22bが形成された小径部22cが形成されている。小径部22cの外径は、雄ねじ部22aの外径より小さく設定されている。さらに、棒ねじ部材22の先端側には、小径部22cに連設され、外径が小径部22cの外径より小さく設定され、周面に軸方向に延びるセレーションが形成されたセレーション部22dが形成されている。棒ねじ部材22の他方の端部側(後部側、後方向Xb側)には、雄ねじ部22aに連設され、ねじ部が形成されていないストレート形状の支持部22eが形成されている。アッパレール18には、棒ねじ部材22の端部の支持部22eが挿入されるねじブラケット24が取り付けられている。ねじブラケット24は、棒ねじ部材22を回転可能に支持する奥側に向かうのに連れて徐々に径が小さくなるテーパ状の支持穴を備える。
 ロアレール16には、ナット部材26がナットハウジング28に収納された状態で固定されている。ナット部材26は、棒ねじ部材22の挿入方向に貫通穴が形成され、その貫通穴の内周面に雌ねじ部26aが形成されている。そして、ナット部材26の雌ねじ部26aと棒ねじ部材22の雄ねじ部22aが螺合している。ナットハウジング28は、ナット部材26を覆うように設けられている。ナットハウジング28の内面とナット部材26の外面との間の空間には、振動吸収用の部材、例えばゴムシートが設けられてもよい。ナットハウジング28の下面には、固定用雌ねじ部28aが例えば2カ所に形成されている。また、ナット部材26には、固定用雌ねじ部28aの形成位置に対応する位置に、固定用雌ねじ部28aより大径で、かつ固定用雌ねじ部28aと螺合するボルト30の先端を逃げる逃げ穴26bが形成されている。ロアレール16には、固定用雌ねじ部28aおよび逃げ穴26bに対応する位置に固定用雌ねじ部28aより大径の貫通穴16aが形成されている。したがって、貫通穴16aに挿通され、固定用雌ねじ部28aと螺合するボルト30によりナットハウジング28がロアレール16に固定される。
 アッパレール18の一方の端部(前部、前方向Xa端部)には、上方に向かって折り曲げられた折曲げ部18aが形成されている。この折曲げ部18aにギヤボックス32が固定されている。
 ギヤボックス32は、ギヤハウジング34と、当該ギヤハウジング34の上部を覆うと共に、ギヤハウジング34が取り付けられたカバー36とを備える。カバー36に形成された貫通穴36a、ギヤハウジング34に形成された貫通穴34a、折曲げ部18aに形成された貫通穴18bを挿通するボルト38と、当該ボルト38に螺合するナット40によりギヤボックス32はアッパレール18の折曲げ部18aに取り付けられ固定される。
 ギヤハウジング34内には、図示しないモータで駆動されるウォーム42と、当該ウォーム42が螺合するウォームホイール44とからなる歯車減速機構が設けられている。そして、歯車減速機構の出力側であるウォームホイール44の回転中心軸に沿って形成された貫通穴の内周面にはセレーション部44aが形成されている。そして、ウォームホイール44のセレーション部44aには、棒ねじ部材22のセレーション部22dが嵌合している。このセレーション嵌合により、ウォームホイール44と棒ねじ部材22とは、回転軸方向(前後方向X)の相対移動が許容された状態で一体となって回転する。
 図示しないモータにより棒ねじ部材22が回転駆動されると、ロアレール16に固定されたナット部材26に対して棒ねじ部材22が進退移動することになる。すなわち、アッパレール18はロアレール16に沿って前後方向Xに移動する。前述したようにアッパレール18にはシートSが固定されているので、フロア面Fに対してシートSが前後方向Xに移動可能となる。
 本実施形態1において、棒ねじ部材22とアッパレール18とは、荷重伝達機構48でも接続されている。荷重伝達機構48は、棒ねじ部材22の一部に固定されたねじ固定部材50(前方ねじ固定部材50a、後方ねじ固定部材50b)と、棒ねじ部材22が回転可能に貫通するねじ貫通穴52aが形成されたねじ貫通部材52と、ねじ固定部材50およびねじ貫通部材52と摺接するように配置された複数の転動部材として例えば球体54(金属球、樹脂球)等で構成されている。ねじ貫通部材52には、一体的に雄ねじ部56が形成されている。雄ねじ部56は、アッパレール18に設けられた貫通穴に下面側から挿入され、アッパレール18の上面側でナット58が螺合している。したがって、ねじ貫通部材52、すなわち荷重伝達機構48は、雄ねじ部56とナット58の締結によりアッパレール18に固定されている。
 つまり、シートSに作用した荷重は、アッパレール18、荷重伝達機構48、棒ねじ部材22、ナット部材26、ナットハウジング28、ロアレール16を介してフロア面Fに伝達される。
 図3には、荷重伝達機構48の分解斜視図が示され、図4には、荷重伝達機構48の断面図が示されている。
 図3に示すように、荷重伝達機構48は、ねじ固定部材50(前方ねじ固定部材50a、後方ねじ固定部材50b)、ねじ貫通部材52、球体54、ガイド部材60(前方ガイド部材60a、後方ガイド部材60b)等で構成されている。実施形態1の荷重伝達機構48の場合、棒ねじ部材22に固定される前方ねじ固定部材50aの後方側(後方向Xb)の面と、棒ねじ部材22に対して回転可能なねじ貫通部材52の前方側(前方向Xa)の面との間に複数(図3の場合3個)の球体54を支持する前方ガイド部材60aが配置されている。同様に、棒ねじ部材22に固定される後方ねじ固定部材50bの前方側(前方向Xa)の面と、ねじ貫通部材52の後方側(後方向Xb)の面との間に複数(図3の場合3個)の球体54を支持する後方ガイド部材60bが配置されている。つまり、ねじ貫通部材52は、前後方向Xの前後で棒ねじ部材22に固定される前方ねじ固定部材50aおよび後方ねじ固定部材50bによって棒ねじ部材22に対して回転可能な状態で、実質的に前後の移動が規制された状態で棒ねじ部材22に支持されている。
 図4を用いて、まず、荷重伝達機構48のねじ貫通部材52の詳細を説明する。ねじ貫通部材52は、一例として、一面側(前方向Xa)に凸曲面62aが形成され、他面側(後方向Xb)に凹曲面62bが形成された略矩形の本体部62と、当該本体部62の上面に一体的に設けられた雄ねじ部56とで構成される。本体部62には、棒ねじ部材22が貫通可能なねじ貫通穴52aが設けられ、雄ねじ部56の回転中心の直下にねじ貫通穴52aの中心がくるように雄ねじ部56の位置が定められている。ねじ貫通部材52は、例えば鉄等の金属で形成される。凸曲面62aは、棒ねじ部材22の回転中心Mに向かうのに連れて前方向Xa(軸方向)に突出する曲面とすることができる。凸曲面62aは、前方ガイド部材60aによって支持された球体54(図4では1個のみ見えている)がスムーズに摺接できるように、表面が滑らかに加工されている。同様に、凹曲面62bは、棒ねじ部材22の回転中心Mに向かうのに連れて前方向Xa(軸方向)に凹む曲面とすることができる。凹曲面62bは、後方ガイド部材60bによって支持された球体54(図4では1個のみ見えている)がスムーズに摺接できるように、表面が滑らかに加工されている。なお、図4の場合、ねじ貫通部材52の前方向Xa側を凸曲面62aとし、後方向Xb側を凹曲面62bにしているが、これに限らず、図5に示すように、凸曲面62aと凹曲面62bの位置を逆にしてもよい。また、ねじ貫通部材52の両方の面を凹形状としてもよいし、両方の面を凸形状にしてもよい。
 前方ねじ固定部材50a(ねじ固定部材50)は、棒ねじ部材22を貫通させる貫通穴に、棒ねじ部材22の雄ねじ部22bと螺合する雌ねじ部64aが形成された筒状の部材である。前方ねじ固定部材50aは、棒ねじ部材22の一部に固定され、棒ねじ部材22とともに回転する、例えば鉄等の金属で形成された部材である。前方ねじ固定部材50aはナットであってもよい。雌ねじ部64aのねじ径は、例えば、棒ねじ部材22の雄ねじ部22bのねじ径より僅かに小さく形成し、前方ねじ固定部材50aを雄ねじ部22bに圧入状態でねじ込むことにより棒ねじ部材22に固定できるようにしている。雄ねじ部22bの形成位置によって前方ねじ固定部材50aの固定位置を定めることができる。なお、棒ねじ部材22に対する前方ねじ固定部材50aの固定は、これに限らず、例えば、前方ねじ固定部材50aの雌ねじ部64aのねじ径を雄ねじ部22bのねじ径に対応するように形成し、螺合させ位置決めした後に、かしめや溶接等により固定してもよい。
 前方ねじ固定部材50aのねじ貫通部材52側の端面64bには、球体54の表面の一部を受け入れるとともに、球体54を転動可能に支持する周方向に延びる摺動溝64cが形成されている。摺動溝64cは、球体54の直径の例えば1/4を受け入れるような深さの溝で、摺動溝64cの曲率は、球体54の曲率と同等か僅かに小さく設定されている。したがって、球体54は摺動溝64cに嵌まった状態でスムーズに回動することができる。
 後方ねじ固定部材50b(ねじ固定部材50)は、棒ねじ部材22を貫通させる貫通穴66aが形成された筒状の部材である。後方ねじ固定部材50bは、棒ねじ部材22の一部に固定され、棒ねじ部材22とともに回転する、例えば金属で形成された部材である。例えば、後方ねじ固定部材50bの貫通穴66aの穴径は、棒ねじ部材22の小径部22cの直径より僅かに小さく形成され、小径部22cに圧入により固定することができる。なお、棒ねじ部材22に対する後方ねじ固定部材50bの固定は、これに限らず、例えば、かしめや溶接、ねじ締結等で実施してもよい。また、後方ねじ固定部材50bの小径部22cにおける位置決めは、例えば、小径部22cに形成された大径部22fに後方ねじ固定部材50bの後方向Xb側の端面66dを当接させることにより決めてもよい。
 後方ねじ固定部材50bのねじ貫通部材52側の端面66bには、球体54の表面の一部を受け入れるとともに、球体54を回動可能に支持する周方向に延びる摺動溝66cが形成されている。摺動溝66cは、球体54の直径の例えば1/4を受け入れるような深さの溝で、摺動溝66cの曲率は、球体54の曲率と同等か僅かに小さく設定されている。したがって、球体54は摺動溝66cに嵌まった状態でスムーズに回動することができる。
 ねじ貫通部材52と前方ねじ固定部材50aとの間で摺動する球体54は、前後方向Xにおいて、ねじ貫通部材52と前方ねじ固定部材50aとの間に配置される前方ガイド部材60a(ガイド部材60)に支持される。前方ガイド部材60aは、棒ねじ部材22の周方向における球体54の間隔を維持するとともに、ねじ貫通部材52と前方ねじ固定部材50aの少なくとも一方と相対回転可能な状態で配置される。実施形態1の前方ガイド部材60aは、ねじ貫通部材52と前方ねじ固定部材50aとの両方に対して相対回転可能な状態で配置されている。前方ガイド部材60aは、例えば樹脂で形成された円環状の部材であり、図3に示すように、棒ねじ部材22が貫通するガイド貫通穴68が形成されている。ガイド貫通穴68には、例えば等間隔で球体54を保持する(ガイドする)保持部として機能するガイド溝68aが複数形成されている。ガイド溝68aは、ガイド貫通穴68の周縁から前方ガイド部材60aの径方向外側に向かい放射状に延びた溝である。図3の場合、ガイド溝68aは、ガイドする球体54の数に対応して、120°間隔で3個形成されている。
 したがって、棒ねじ部材22とともに前方ねじ固定部材50aが回転すると、球体54および前方ガイド部材60aは、各球体54の周方向の間隔が維持された状態で、前方ねじ固定部材50aの回転に影響されることなく、自由に棒ねじ部材22の周方向に回転する。その結果、球体54は低抵抗状態でねじ貫通部材52の凸曲面62a上で転動する。つまり、棒ねじ部材22がうねりながら回転した場合でも、前方ねじ固定部材50aとねじ貫通部材52との相対位置をスムーズに変化させて、うねりによる棒ねじ部材22の回転抵抗の変動を軽減する。つまり、棒ねじ部材22の回転速度の変化を軽減できる。
 ねじ貫通部材52と後方ねじ固定部材50bとの間で摺動する球体54は、前後方向Xにおいて、ねじ貫通部材52と後方ねじ固定部材50bとの間に配置される後方ガイド部材60b(ガイド部材60)に支持される。後方ガイド部材60bは、前方ガイド部材60aと同様に、棒ねじ部材22の周方向における球体54の間隔を維持するとともに、ねじ貫通部材52と後方ねじ固定部材50bの少なくとも一方と相対回転可能な状態で配置される。実施形態1の後方ガイド部材60bは、ねじ貫通部材52と後方ねじ固定部材50bとの両方に対して相対回転可能な状態で配置されている。後方ガイド部材60bは、例えば樹脂で形成された部材であり、図3に示すように、片側に棒ねじ部材22が貫通するガイド貫通穴70が形成され、後方ねじ固定部材50bの一部を内部に収容可能な有底の筒状の部材である。ガイド貫通穴70には、例えば等間隔で球体54を保持する(ガイドする)保持部として機能するガイド溝70aが複数形成されている。ガイド溝70aは、ガイド貫通穴70の周縁から後方ガイド部材60bの径方向外側に向かい放射状に延びた溝である。図3の場合、ガイド溝70aは、ガイドする球体54の数に対応して、120°間隔で3個形成されている。なお、後方ガイド部材60bの円筒部70bには、後方向Xbに延びる仮止め部70cが形成されている。仮止め部70cは、荷重伝達機構48のアセンブリ時に後方ねじ固定部材50bの後方向Xbの端面と係合して、後方ガイド部材60bを仮止めして組み立て性を向上させるためのものである。仮止め部70cは、アセンブリ後の後方ガイド部材60bと後方ねじ固定部材50bとの相対回転を妨げないように、後方ねじ固定部材50bと遊嵌するようになっている。
 このように、棒ねじ部材22とともに後方ねじ固定部材50bが回転すると、球体54および後方ガイド部材60bは、各球体54の周方向の間隔が維持された状態で、後方ねじ固定部材50bの回転に影響されることなく、自由に棒ねじ部材22の周方向に回転する。その結果、球体54は低抵抗状態でねじ貫通部材52の凹曲面62b上で転動する。つまり、棒ねじ部材22がうねりながら回転した場合でも、後方ねじ固定部材50bとねじ貫通部材52との相対位置をスムーズに変化させて、うねりにより棒ねじ部材22の回転抵抗の変動を軽減する。つまり、棒ねじ部材22の回転速度の変化を軽減できる。
 また、荷重伝達機構48は、ガイド部材60によって、球体54の棒ねじ部材22の周方向の間隔が維持されている。そのため、配置される球体54の数が少ない場合でも、ねじ貫通部材52とねじ固定部材50との前後方向Xの接触状態を平行に維持することができる。例えば、球体54が3個以上存在すれば、少なくとも三点支持となりねじ貫通部材52とねじ固定部材50の摺接時の傾きは防止できる。その結果、ねじ貫通部材52とねじ固定部材50の相対移動をスムーズに行うことができる。なお、図4の場合、前方ガイド部材60aは、ねじ貫通部材52と前方ねじ固定部材50aの両方に対して相対回転可能な状態(いずれにも固定されていない状態)で配置されているが、別の実施形態では、前方ガイド部材60aは、ねじ貫通部材52と前方ねじ固定部材50aのうちいずれか一方に固定(一体化)されてもよい。この場合、球体54は、周方向に移動することなく、ガイド溝68aの中で転動することになる。同様に、後方ガイド部材60bは、ねじ貫通部材52と後方ねじ固定部材50bの両方に対して相対回転可能な状態(いずれにも固定されていない状態)で配置されているが、別の実施形態では、後方ガイド部材60bは、ねじ貫通部材52と後方ねじ固定部材50bのうちいずれか一方に固定(一体化)されてもよい。この場合、球体54は、周方向に移動することなく、ガイド溝70aの中で転動することになる。このように、前方ガイド部材60aや後方ガイド部材60bを前方の部品または後方の部品と一体化することにより、部品点数の削減や組立工数の削減に寄与することができる。
 このように構成される荷重伝達機構48の動作について説明する。上述したように、アッパレール18側に支持されたシートSを前後方向Xにスライドさせる場合、モータにより棒ねじ部材22を回転させる。図2に示すように、棒ねじ部材22は、アッパレール18側に回転可能に支持され、フロア面F側に固定されたロアレール16に固定されたナット部材26と螺合している。その結果、棒ねじ部材22が回転すると、ナット部材26を基準に棒ねじ部材22自体が前後方向Xに進退する。アッパレール18に固定されたねじ貫通部材52は、球体54を介して棒ねじ部材22に固定された前方ねじ固定部材50aと後方ねじ固定部材50bによって回転する棒ねじ部材22上での位置が決められている。したがって、棒ねじ部材22に固定されたねじ固定部材50がねじ貫通部材52を押し動かし、ねじ貫通部材52に固定されたアッパレール18、つまりシートSを前後方向X方向にスライドさせる。
 前述したように、ねじ貫通部材52は、雄ねじ部56およびナット58を用いてアッパレール18に固定される。雄ねじ部56をアッパレール18に固定するときに雄ねじ部56の回転方向にねじ貫通部材52の固定角度がばらつく場合がある。つまり、棒ねじ部材22および当該棒ねじ部材22に固定される前方ねじ固定部材50aと後方ねじ固定部材50bに対するねじ貫通部材52の相対位置関係がばらつく場合がある。その結果、前方ねじ固定部材50aおよび後方ねじ固定部材50bが固定された棒ねじ部材22が回転する際にうねる場合がある。ねじ貫通部材52と前方ねじ固定部材50aおよび後方ねじ固定部材50bとの間に球体54が存在せず、面接触していた場合、このうねりにより、ねじ貫通部材52に対して棒ねじ部材22が回転しにくくなる。つまり、棒ねじ部材22の回転速度が増減して、それに起因してシートSのスライド時の振動や異音が発生する場合がある。
 一方、本実施形態1のように、ねじ貫通部材52と前方ねじ固定部材50aおよび後方ねじ固定部材50bとの間に球体54を介在させる場合、ねじ貫通部材52に対して前方ねじ固定部材50aおよび後方ねじ固定部材50bは点接触となる。その結果、棒ねじ部材22がうねりながら回転する場合、ねじ貫通部材52と前方ねじ固定部材50aおよび後方ねじ固定部材50bとの相対位置が低抵抗で容易に変化可能となる。つまり、うねりながら回転する棒ねじ部材22に抵抗を与えにくくなる。その結果、棒ねじ部材22はうねりながらでもスムーズに回転する。そして、うねりによる棒ねじ部材22の回転速度の増減が軽減され、シートSのスライド時の振動や異音の発生を軽減することができる。
 なお、凸曲面62aの円弧と凹曲面62bの円弧は、棒ねじ部材22の回転中心M上の同じ点Oを中心する半径の異なる円弧の一部とすることができる。凸曲面62aおよび凹曲面62bを同じ点Oを中心とする円弧の一部とすることにより、点Oを中心として棒ねじ部材22がうねる場合、ねじ貫通部材52とガイド部材60との相対位置がよりスムーズに変化するので、うねりによる影響、つまり、棒ねじ部材22の回転の変動を効率的に抑制して棒ねじ部材22をスムーズに回転させることができる。
 また、図4に示す荷重伝達機構48の場合、前述したように、ねじ貫通部材52の一面側(例えば後方向Xb側)は、球体54が摺接する摺接面として棒ねじ部材22の回転中心Mに向かうのに連れて軸方向(前方向Xa)に凹む凹曲面62bを形成する例を示している。この場合、例えば、荷重伝達機構48に対して後方向Xbに向かう外力(例えば、急加速等に基づく負荷)が加わった場合、ねじ貫通部材52の凹曲面62bは、球体54を棒ねじ部材22の回転中心M(軸心)側に押し下げる。つまり、球体54が後方ガイド部材60bの外周方向に飛び出さないようにしている。したがって、ねじ貫通部材52に後方向Xbの過大な荷重が加わった場合でも、球体54が後方ガイド部材60bを変形させたり破損させたりして、後方ガイド部材60bから脱落してしまうことを回避しやすくなる。つまり、後方荷重に対して強度的に有利な構造とすることができる。
 一方、図4に示す荷重伝達機構48の場合、前述したように、ねじ貫通部材52の他面側(例えば前方向Xa側)は、球体54が摺接する摺接面として棒ねじ部材22の回転中心Mに向かうのに連れて軸方向(前方向Xa)に突出する凸曲面62aを形成する例を示している。この場合、例えば、上述したように荷重伝達機構48をアッパレール18に固定する際に雄ねじ部56の回転方向の組付け誤差(回転)が生じたり、棒ねじ部材22の回転時のうねりが生じたりして、ねじ貫通部材52の凸曲面62aと球体54との接触位置が変化する場合でも、点接触状態が維持される。その結果、前方ねじ固定部材50aとねじ貫通部材52との相対位置変化が安定して実現される。したがって、棒ねじ部材22がうねる場合でも回転速度の変動が発生しにくくなり、アッパレール18(シートS)のスライドを振動や異音が軽減された状態でスムーズに実施できる。
 なお、球体54が摺接する摺接面(凹曲面62b)を、図4に示すように、棒ねじ部材22の回転中心Mに向かうのに連れて軸方向に凹む凹曲面とする場合、凹曲面の曲率は、球体54の曲率より小さく形成する。この場合、凹曲面62bに対して球体54を複数点接触や面接触ではなく、点接触させることが可能になる。その結果、上述したように、過大な荷重が作用した場合に凹曲面62bによって球体54を棒ねじ部材22の回転中心M側に押し込む効果を維持しつつ、凸曲面62aで得られる点接触による効果、つまり、後方ねじ固定部材50bとねじ貫通部材52との相対位置変化をスムーズに安定して実現する効果を得ることができる。
 図4に示す荷重伝達機構48は、ねじ貫通部材52の前方向Xa側を凸曲面62aとし、後方向Xb側を凹曲面62bとする例であるが、凸曲面62aと凹曲面62bの関係はこれに限定されない。例えば、図5に示すように、ねじ貫通部材52の前方向Xa側を凹曲面62bとし、後方向Xb側を凸曲面62aとしてもよい。図5に示す荷重伝達機構48Aと、図4の荷重伝達機構48とは、ねじ貫通部材52の凸曲面62aと凹曲面62bの関係が逆になっているが、基本的な構造は同じである。したがって、同じ構成に関しては同じ符号を付し詳細な説明を省略する。
 図5に示す荷重伝達機構48Aの構成においても、棒ねじ部材22がうねりながら回転する場合、球体54が転動することによって、ねじ貫通部材52と前方ねじ固定部材50aおよび後方ねじ固定部材50bとの相対位置関係がスムーズに変化する。その結果、上述した荷重伝達機構48と同様の効果を得ることが可能で、棒ねじ部材22がうねりながら回転する場合でも、回転速度の変動が発生し難く、振動や異音の発生を抑制しつつ、アッパレール18(シートS)のスライドをスムーズに実現することができる。
 図5に示す荷重伝達機構48Aの場合、凹曲面62bがねじ貫通部材52の前方向Xa側に形成されているので、例えば、荷重伝達機構48Aに対して前方向Xaに向かう外力(例えば、急減速等に基づく負荷)が加わった場合、ねじ貫通部材52の凹曲面62bは、球体54を棒ねじ部材22の回転中心M(軸心)側に押し下げる。つまり、球体54が前方ガイド部材60aの外周方向に飛び出さないようにしている。したがって、ねじ貫通部材52に前方向Xaの過大な荷重が加わった場合でも、球体54が前方ガイド部材60aを変形させたり破損させたりして、前方ガイド部材60aから脱落してしまうことを回避しやすくなる。つまり、前方荷重に対して強度的に有利な構造とすることができる。
 なお、荷重伝達機構48Aの場合、凸曲面62aがねじ貫通部材52の後方向Xb側に形成されているので、ねじ貫通部材52の後方向Xb側では、荷重伝達機構48と同様に、アッパレール18に固定する際に雄ねじ部56の回転方向の組付け誤差(回転)が生じたり、棒ねじ部材22の回転時のうねりが生じたりして、ねじ貫通部材52の凸曲面62aと球体54との接触位置が変化する場合でも、点接触状態が維持される。その結果、後方ねじ固定部材50bとねじ貫通部材52との相対位置変化が安定して実現される。したがって、棒ねじ部材22がうねる場合でも回転速度の変動が発生しにくくなり、アッパレール18(シートS)のスライドを振動や異音が軽減された状態でスムーズに実施できる。
 荷重伝達機構48Aにおいても、凸曲面62aの円弧と凹曲面62bの円弧は、棒ねじ部材22の回転中心M上の同じ点Oを中心する半径の異なる円弧の一部とすることができる。凸曲面62aおよび凹曲面62bを同じ点Oを中心とする円弧の一部とすることにより、点Oを中心として棒ねじ部材22がうねる場合、ねじ貫通部材52とガイド部材60との相対位置がよりスムーズに変化するので、うねりによる影響、つまり、棒ねじ部材22の回転の変動を効率的に抑制して棒ねじ部材22をスムーズに回転させることができる。
 図4に示す荷重伝達機構48の場合、うねりの中心(点O)は、ねじ貫通部材52の後方向Xb側、つまり、棒ねじ部材22と螺合するナット部材26に近い側になる。一方、図5に示す荷重伝達機構48Aの場合、うねりの中心(点O)は、ねじ貫通部材52の前方向Xa側、つまり、図4の場合に比べてナット部材26から遠い側になる。したがって、図4に示す荷重伝達機構48は、図5に示す荷重伝達機構48Aに比べて棒ねじ部材22のうねり量(揺れ幅)が小さくなる。このように、ねじ貫通部材52の曲面形状を適宜選択することにより棒ねじ部材22のうねり量の管理を行うことができる。
 図4に示す荷重伝達機構48および図5に示す荷重伝達機構48Aの例では、ねじ貫通部材52の本体部62の一面に凸曲面62a、他面に凹曲面62bを形成する例を示したが、これに限らない。例えば、後述する図7、図8で詳細に説明するように本体部62の両面に凸曲面62aを形成してもよいし、本体部62の両面に凹曲面62bを形成してもよい。本体部62の両面に凹曲面62bを形成する場合は、ねじ貫通部材52に過大な後方荷重が作用した場合でも、過大な前方荷重が作用した場合でも、球体54を棒ねじ部材22の回転中心M(軸心)側に押し下げることができる。したがって、ねじ貫通部材52に過大な荷重が加わった場合に、前方ガイド部材60aや後方ガイド部材60bを変形させたり破損させたりして球体54が前方ガイド部材60aや後方ガイド部材60bから飛び出す(脱落してしまう)ことが回避しやすくなる。つまり、前後荷重に対して強度的に有利な構造とすることができる。
 また、変形例として、棒ねじ部材22の回転時のうねりが少ない場合やうねり対策を他の構造で実現できる場合は、例えば、ねじ貫通部材52の本体部62の前後方向Xの両面を扁平な面としてもよい。この場合、球体54を介してねじ貫通部材52と対向する前方ねじ固定部材50aの端面64bや後方ねじ固定部材50bの端面66bも扁平な面としてもよい。また、上述した実施形態と同様に、端面64bに摺動溝64cを形成したり、端面66bに摺動溝66cを形成したりしてもよい。この構成においても、球体54の介在により、ねじ貫通部材52と前方ねじ固定部材50aおよび後方ねじ固定部材50bとの摺動性能が、球体54が存在しない場合に比べて改善される。その結果、ねじ貫通部材52の構造を簡略化しつつ、また部品コストを低減しつつ、シートSのスムーズなスライドを実現できる。
 なお、上述したように、ねじ貫通部材52と球体54との接触面を扁平な面とする場合、図6に示すように、ねじ貫通部材52と前方ねじ固定部材50aの間、およびねじ貫通部材52と後方ねじ固定部材50bとの間に介在させる転動部材として、例えば円筒状のコロ54aを用いてもよい。この場合、コロ54aを保持する(ガイドする)保持部として機能するガイド部材60は、例えば樹脂等で形成する円環状の板部材とすることができる。ガイド部材60には、棒ねじ部材22が貫通するガイド貫通穴68が形成されるとともに、コロ54aの回転軸がガイド部材60の中心を向くように放射状に延びるガイド溝68aが複数形成されている。図6の場合、一例としてガイド溝68aを等間隔(120°間隔)で3個形成している例を示す。なお、コロ54aの配置数は、3個以上であれば適宜変更可能であり、球体54を用いる場合と同様の効果を得ることができる。
<実施形態2>
 図7には、実施形態2の荷重伝達機構72の分解斜視図が示され、図8には、荷重伝達機構72の断面図が示されている。実施形態2の荷重伝達機構72は、実施形態1の荷重伝達機構48の説明において、ねじ貫通部材52の本体部62の両面に凸曲面62aを形成した例である。したがって、図2において、荷重伝達機構48に代えて荷重伝達機構72を用いることにより、棒ねじ部材22がうねりながら回転する場合でも棒ねじ部材22の回転速度の変動を軽減可能なパワーシートスライド装置20を得ることができる。以下に荷重伝達機構72の構造を説明する。なお、荷重伝達機構48と同様な構成には同じ符号を付し、詳細な説明は省略する。
 図7に示すように、荷重伝達機構72は、ねじ固定部材74(前方ねじ固定部材74a、後方ねじ固定部材74b)、ねじ貫通部材76、球体54、ガイド部材80(前方ガイド部材80a、後方ガイド部材80b)等で構成されている。実施形態2の荷重伝達機構72の場合も荷重伝達機構48と同様に、棒ねじ部材22に固定される前方ねじ固定部材74aの後方側(後方向Xb)の面と、棒ねじ部材22に対して回転可能なねじ貫通部材76の前方側(前方向Xa)の面との間に複数(図7の場合3個)の転動部材としての球体54を支持する前方ガイド部材80aが配置されている。同様に、棒ねじ部材22に固定される後方ねじ固定部材74bの前方側(前方向Xa)の面と、ねじ貫通部材76の後方側(後方向Xb)の面との間に複数(図7の場合3個)の球体54を支持する後方ガイド部材80bが配置されている。つまり、ねじ貫通部材76は前後方向Xの前後で棒ねじ部材22に固定された前方ねじ固定部材74aおよび後方ねじ固定部材74bによって棒ねじ部材22に対して回転可能な状態で、実質的に前後の移動が規制された状態で棒ねじ部材22に支持されている。
 図8を用いて、ねじ貫通部材76の詳細を説明する。ねじ貫通部材76は、前方向Xa側および後方向Xb側の両方の面に凸曲面が形成された、略矩形の本体部82と、当該本体部82の上面に一体的に設けられた雄ねじ部78とで構成される。本体部82には、棒ねじ部材22が貫通可能なねじ貫通穴76aが設けられ、雄ねじ部78の回転中心の直下にねじ貫通穴76aの中心がくるように雄ねじ部78の位置が定められている。ねじ貫通部材76は、例えば鉄等の金属で形成される。凸曲面84a、凸曲面84bは、棒ねじ部材22の回転中心Mに向かうのに連れて突出する曲面とすることができる。凸曲面84aは、前方ガイド部材80aによって支持された球体54(図8では1個のみ見えている)がスムーズに摺接できるように、表面が滑らかに加工されている。同様に、凸曲面84bは、後方ガイド部材80bによって支持された球体54(図8では1個のみ見えている)がスムーズに摺接できるように、表面が滑らかに加工されている。
 前方ねじ固定部材74a(ねじ固定部材74)は、棒ねじ部材22を貫通させる貫通穴に、棒ねじ部材22の雄ねじ部22bと螺合する雌ねじ部86aが形成された筒状の部材である。前方ねじ固定部材74aは、棒ねじ部材22の一部に固定され、棒ねじ部材22とともに回転する、例えば鉄等の金属で形成された部材である。前方ねじ固定部材74aはナットであってもよい。雌ねじ部86aのねじ径は、例えば、棒ねじ部材22の雄ねじ部22bのねじ径より僅かに小さく形成し、前方ねじ固定部材74aを雄ねじ部22bに圧入状態でねじ込むことにより棒ねじ部材22に固定できるようにしている。雄ねじ部22bの形成位置によって前方ねじ固定部材74aの固定位置を定めることができる。なお、棒ねじ部材22に対する前方ねじ固定部材74aの固定は、これに限らず、例えば、前方ねじ固定部材74aの雌ねじ部86aのねじ径を雄ねじ部22bのねじ径に対応するように形成し、螺合させ位置決めした後に、かしめや溶接等により固定してもよい。
 前方ねじ固定部材74aのねじ貫通部材76側の端面86bには、球体54の表面の一部を受け入れるとともに、球体54を転動可能に支持する周方向に延びる摺動溝86cが形成されている。摺動溝86cは、球体54の直径の例えば1/4を受け入れるような深さの溝で、摺動溝86cの曲率は、球体54の曲率と同等か僅かに小さく設定されている。したがって、球体54は摺動溝86cに嵌まった状態でスムーズに転動することができる。
 後方ねじ固定部材74b(ねじ固定部材74)は、棒ねじ部材22を貫通させる貫通穴88aが形成された筒状の部材である。後方ねじ固定部材74bは、棒ねじ部材22の一部に固定され、棒ねじ部材22とともに回転する、例えば金属で形成された部材である。例えば、後方ねじ固定部材74bの貫通穴88aの穴径は、棒ねじ部材22の小径部22cの直径より僅かに小さく形成され、小径部22cに圧入により固定することができる。なお、棒ねじ部材22に対する後方ねじ固定部材74bの固定は、これに限らず、例えば、かしめや溶接、ねじ締結等で実施してもよい。また、後方ねじ固定部材74bの小径部22cにおける位置決めは、例えば、小径部22cに形成された大径部22fに後方ねじ固定部材74bの後方向Xb側の端面88dを当接させることにより決めてもよい。
 後方ねじ固定部材74bのねじ貫通部材76側の端面88bには、球体54の表面の一部を受け入れるとともに、球体54を転動可能に支持する周方向に延びる摺動溝88cが形成されている。摺動溝88cは、球体54の直径の例えば1/4を受け入れるような深さの溝で、摺動溝88cの曲率は、球体54の曲率と同等か僅かに小さく設定されている。したがって、球体54は摺動溝88cに嵌まった状態でスムーズに転動することができる。
 ねじ貫通部材76と前方ねじ固定部材74aとの間で摺動する球体54は、前後方向Xにおいて、ねじ貫通部材76と前方ねじ固定部材74aとの間に配置される前方ガイド部材80a(ガイド部材80)に支持される。前方ガイド部材80aは、棒ねじ部材22の周方向における球体54の間隔を維持するとともに、ねじ貫通部材76と前方ねじ固定部材74aの少なくとも一方と相対回転可能な状態で配置される。実施形態2の前方ガイド部材80aは、ねじ貫通部材76と前方ねじ固定部材74aとの両方に対して相対回転可能な状態で配置されている。前方ガイド部材80aは、例えば樹脂で形成された円環状の部材であり、図7に示すように、棒ねじ部材22が貫通するガイド貫通穴90が形成されている。ガイド貫通穴90には、例えば等間隔で球体54を保持する(ガイドする)保持部として機能するガイド溝90aが複数形成されている。ガイド溝90aは、ガイド貫通穴90の周縁から前方ガイド部材80aの径方向外側に向かい放射状に延びた溝である。図7の場合、ガイド溝90aは、ガイドする球体54の数に対応して、120°間隔で3個形成されている。
 したがって、棒ねじ部材22とともに前方ねじ固定部材74aが回転すると、球体54および前方ガイド部材80aは、各球体54の周方向の間隔が維持された状態で、前方ねじ固定部材74aの回転に影響されることなく、自由に棒ねじ部材22の周方向に回転する。その結果、球体54は低抵抗状態でねじ貫通部材76の凸曲面84a上で転動する。つまり、棒ねじ部材22がうねりながら回転した場合でも、前方ねじ固定部材74aとねじ貫通部材76との相対位置をスムーズに変化させて、うねりによる棒ねじ部材22の回転抵抗の変動を軽減する。つまり、棒ねじ部材22の回転速度の変化を軽減できる。
 ねじ貫通部材76と後方ねじ固定部材74bとの間で摺動する球体54は、前後方向Xにおいて、ねじ貫通部材76と後方ねじ固定部材74bとの間に配置される後方ガイド部材80b(ガイド部材80)に支持される。後方ガイド部材80bは、ねじ貫通部材76の凸曲面84aと凸曲面84bの形状が同じ場合、前方ガイド部材80aと共用可能である。前方ガイド部材80aを後方ガイド部材80bとして用いる場合、表裏を反転すればよく、ねじ貫通部材76と後方ねじ固定部材74bとの間に球体54を転動可能に支持することができる。この場合、部品の種類が削減でき、設計コストや部品コストの低減、部品管理コストの低減等に寄与することができる。
 ねじ貫通部材76の本体部82に形成された凸曲面84aおよび凸曲面84bは、例えば、棒ねじ部材22の回転軸とねじ貫通部材76の雄ねじ部78の回転軸の交点である点Gを中心とする球面の一部とすることができる。この場合、例えば、荷重伝達機構72をアッパレール18に固定する際に雄ねじ部78の回転方向の組付け誤差(回転)が生じたり、棒ねじ部材22の回転時のうねりが生じたりする場合でも、棒ねじ部材22は、点Gを中心としてうねる。すなわち、前方ねじ固定部材74aおよび後方ねじ固定部材74bは、球体54を介してねじ貫通部材76の凸曲面84aおよび凸曲面84b上でスムーズに回動する。その結果、組み立て誤差や各部材の寸法精度の誤差に基づき棒ねじ部材22にうねりが発生する場合でも、そのうねり動作が棒ねじ部材22の回転の抵抗になることを軽減できる。つまり、棒ねじ部材22の回転速度の変動を軽減し、アッパレール18(シートS)のスライド時の振動や異音の発生を軽減することができる。
 ねじ貫通部材76の場合も前方ガイド部材80aは、ねじ貫通部材76および前方ねじ固定部材74aに対して相対回転可能に配置されている。同様に、後方ガイド部材80bは、ねじ貫通部材76および後方ねじ固定部材74bに対して相対回転可能に配置されている。したがって、棒ねじ部材22とともに前方ねじ固定部材74aおよび後方ねじ固定部材74bが回転すると、球体54、前方ガイド部材80a、後方ガイド部材80bは、各球体54の周方向の間隔が維持された状態で、前方ねじ固定部材74aおよび後方ねじ固定部材74bの回転に影響されることなく、自由に棒ねじ部材22の周方向に回転する。その結果、球体54は低抵抗状態でねじ貫通部材76の凸曲面84aおよび凸曲面84b上で転動する。つまり、棒ねじ部材22がうねりながら回転した場合でも、ねじ貫通部材76と前方ねじ固定部材74aの相対位置の移動、ねじ貫通部材76と後方ねじ固定部材74bの相対位置の移動がよりスムーズに実行され、棒ねじ部材22の回転速度がより安定する。
 また、荷重伝達機構72は、ガイド部材80によって、球体54の棒ねじ部材22の周方向の間隔が維持されている。そのため、配置される球体54の数が少ない場合でも、ねじ貫通部材76とねじ固定部材74との前後方向Xの接触状態を平行に維持することができる。例えば、球体54が3個以上存在すれば、少なくとも三点支持となりねじ貫通部材76とねじ固定部材74の摺接時の傾きは防止できる。その結果、ねじ貫通部材76とねじ固定部材74の相対移動をスムーズに行うことができる。なお、別の実施形態においては、前方ガイド部材80aは、ねじ貫通部材76または前方ねじ固定部材74aのいずれか一方に固定されてもよいし、一体的に形成されてもよい。同様に、後方ガイド部材80bは、ねじ貫通部材76または後方ねじ固定部材74bのいずれか一方に固定されてもよいし、一体的に形成されてもよい。この場合、部品の種類が削減でき、設計コストや部品コストの低減、部品管理コストの低減、組立工数の低減等に寄与できる。
 荷重伝達機構72の場合、前述したように、ねじ貫通部材76は、前後方向Xの両面に、球体54が摺接する摺接面として棒ねじ部材22の回転中心Mに向かうのに連れて突出する凸曲面84a、凸曲面84bを形成している。この場合、例えば、上述したように荷重伝達機構72をアッパレール18に固定する際に雄ねじ部78の回転方向の組付け誤差(回転)が生じたり、棒ねじ部材22の回転時のうねりが生じたりして、ねじ貫通部材76の凸曲面84a(84b)と球体54との接触位置が変化する場合でも、点接触状態が維持される。その結果、前方ねじ固定部材74a(後方ねじ固定部材74b)とねじ貫通部材52との相対位置変化が安定して実現される。したがって、棒ねじ部材22がうねる場合でも回転速度の変動が発生しにくくなり、アッパレール18(シートS)のスライドを振動や異音が軽減された状態でスムーズに実施できる。
 なお、上述したねじ貫通部材76の本体部82の両面は、凸曲面84a,84bを形成した例を示したが、この両面を扁平な面としてもよい。また、前方ねじ固定部材74aの端面86bに摺動溝86cを形成し、後方ねじ固定部材74bの端面88bに摺動溝88cを形成した例を示したが、端面86bおよび端面88bを扁平な面としてもよい。また、このような扁平な面とする場合、転動部材としての球体54を利用してよいし、球体54に代えて、図6で説明したような、例えば円筒状のコロ54aを用いてもよい。この場合、実施形態1でコロ54aを用いた場合と同様に、球体54を用いる場合と同様の効果を得ることができる。
<実施形態3>
 図9には、実施形態3の荷重伝達機構92の分解斜視図が示され、図10には、荷重伝達機構92の断面図が示されている。実施形態3の荷重伝達機構92は、図9に示すように、アッパレール18側に固定されるねじ貫通部材94(ブラケット)、ねじ固定部材96、球体54、球体54をガイドするガイド部材98(前方ガイド部材98a、後方ガイド部材98b)等で構成されている。
 荷重伝達機構92のねじ貫通部材94は、図9、図10に示すように、ねじ固定部材96の一対の端面を挟むように設けられた前方壁部94aと後方壁部94bとをねじ固定部材96を前後方向Xに跨ぐように設けられた接続部94cによって接続した、前後方向Xの断面が略C字形状の部材である。ねじ貫通部材94は、金属(例えば鉄等)で形成され、前方壁部94aと後方壁部94bの前後方向Xの略中央部には、棒ねじ部材22が回転可能に貫通する前方貫通穴100a、後方貫通穴100bがそれぞれ形成されている。また、接続部94cの前後方向Xの略中央部には、車両の上下方向に貫通する貫通穴が形成され、この貫通穴にボルト102が挿通され固定されている。他の実施形態と同様に、ボルト102がナットで締結されることで、荷重伝達機構92(ねじ貫通部材94)がアッパレール18に固定される。なお、アッパレール18に対する荷重伝達機構92(ねじ貫通部材94)の固定は、ボルト102とナットの締結に限らず、溶接等他の技術を用いてもよい。
 ねじ貫通部材94の前方壁部94aの内壁面104aには、凹曲面106aが形成されている。凹曲面106aは、棒ねじ部材22の回転中心Mに向かうのに連れて前方向Xa(軸方向)に凹む曲面とすることができる。凹曲面106aは、前方ガイド部材98aによって支持された球体54(図10では1個のみ見えている)がスムーズに摺接できるように、表面が滑らかに加工されている。同様に、後方壁部94bの内壁面104bにも、凹曲面106bが形成されている。凹曲面106bは、棒ねじ部材22の回転中心Mに向かうのに連れて後方向Xb(軸方向)に凹む曲面とすることができる。凹曲面106bは、後方ガイド部材98bによって支持された球体54(図10では1個のみ見えている)がスムーズに摺接できるように、表面が滑らかに加工されている。
 ねじ固定部材96は、棒ねじ部材22が貫通する貫通穴に棒ねじ部材22の雄ねじ部22bと螺合する雌ねじ部108aが形成された筒状の部材である。ねじ固定部材96は、棒ねじ部材22の一部に固定され、棒ねじ部材22とともに回転する、例えば鉄等の金属で形成された部材である。ねじ固定部材96はナットであってもよい。雌ねじ部108aのねじ径は、例えば、棒ねじ部材22の雄ねじ部22bのねじ径より僅かに小さく形成し、ねじ固定部材96を雄ねじ部22bに圧入状態でねじ込むことにより固定できるようにしている。雄ねじ部22bの形成位置によってねじ固定部材96の固定位置を定めることができる。なお、棒ねじ部材22に対するねじ固定部材96の固定は、これに限らず、例えば、ねじ固定部材96の雌ねじ部108aのねじ径を雄ねじ部22bのねじ径に対応するように形成し、螺合させ位置決めした後に、かしめや溶接等により固定してもよい。
 ねじ固定部材96の前後方向Xの両端面(端面96a、端面96b)には、球体54の表面の一部を受け入れるとともに、球体54を転動可能に支持する周方向に延びる摺動溝96cが形成されている。摺動溝96cは、球体54の直径の例えば1/4を受け入れるような深さの溝で、摺動溝96cの曲率は、球体54の曲率と同等か僅かに小さく設定されている。したがって、球体54は摺動溝96cに嵌まった状態でスムーズに回動することができる。
 ねじ固定部材96の前方側(前方向Xa)の端面96aと、前方壁部94aの内壁面104aとの間に、複数(図9の場合3個)の球体54を支持する前方ガイド部材98aが配置されている。同様に、ねじ固定部材96の後方側(後方向Xb)の端面96bと、後方壁部94bの内壁面104bとの間に、複数(図9の場合3個)の球体54を支持する後方ガイド部材98bが配置されている。前方ガイド部材98aは、棒ねじ部材22の周方向における球体54の間隔を維持するとともに、ねじ貫通部材94の内壁面104aとねじ固定部材96の少なくとも一方と相対回転可能な状態で配置される。
 図10に示すように、前方ガイド部材98aは、例えば樹脂で形成されたカップ状の部材であり、ねじ固定部材96の端面96aを覆うように配置可能である。前方ガイド部材98aのカップ底面には、棒ねじ部材22が貫通するガイド貫通穴98cと、球体54を保持する(ガイドする)保持部として機能する複数の球体受穴98dが設けられている。球体受穴98dは、球体54の直径の例えば70%程度の直径の穴で、図10に示すように球体54をカップ内側から嵌めた場合、球体54の一部が前方壁部94aの凹曲面106a側に突出しつつ、前方ガイド部材98aから抜け出ないように保持している。図9の場合、球体受穴98dは、ガイドする球体54の数に対応して、例えば120°間隔で3個形成されている。後方ガイド部材98bも前方ガイド部材98aと同様な構造である。したがって、棒ねじ部材22とともにねじ固定部材96が回転すると、球体54および前方ガイド部材98a、後方ガイド部材98bは、各球体54の棒ねじ部材22の周方向の間隔が維持された状態で、ねじ固定部材96の回転に影響されることなく、自由に棒ねじ部材22の周方向に回転する。その結果、球体54は低抵抗状態でねじ貫通部材94の内壁面104a(内壁面104b)の凹曲面106a(凹曲面106b)上で転動する。棒ねじ部材22と一体で回転するねじ固定部材96は、棒ねじ部材22の回転によりナット部材26に対して前後方向Xに進退するときに、転動可能な球体54を介してねじ貫通部材94の前方壁部94aまたは後方壁部94bを押す。そして、ねじ貫通部材94を一体的に前後方向Xに進退させる。つまり、棒ねじ部材22がうねりながら回転した場合でも、ねじ貫通部材94とねじ固定部材96との相対位置をスムーズに変化させて、うねりによる棒ねじ部材22の回転抵抗の変動を軽減する。つまり、棒ねじ部材22の回転速度の変化を軽減できる。このように、荷重伝達機構92は、棒ねじ部材22がうねりながら回転する場合でも回転速度の変動を軽減し、アッパレール18(シートS)のスライド時の振動や異音の発生を軽減することができる。
 また、荷重伝達機構92は、ガイド部材98によって、球体54の棒ねじ部材22の周方向の間隔が維持されている。そのため、配置される球体54の数が少ない場合でも、ねじ貫通部材94とねじ固定部材96との前後方向Xの接触状態を平行に維持することができる。例えば、球体54が3個以上存在すれば、少なくとも三点支持となりねじ貫通部材94とねじ固定部材96の摺接時の傾きは防止できる。その結果、ねじ貫通部材94とねじ固定部材96の相対移動をスムーズに行うことができる。なお、別の実施形態においては、前方ガイド部材98aは、ねじ固定部材96の端面96aまたは、前方壁部94aの内壁面104aのいずれか一方に固定されてもよいし、一体的に形成されてもよい。同様に、後方ガイド部材98bは、ねじ固定部材96の端面96bまたは、後方壁部94bの内壁面104bのいずれか一方に固定されてもよいし、一体的に形成されてもよい。この場合、部品の種類が削減でき、設計コストや部品コストの低減、部品管理コストの低減、組立工数の低減等に寄与できる。
 なお、ねじ固定部材96の前後の端面96a,96bの形状および摺動溝96cの形状が同じ場合、前方ガイド部材98aと後方ガイド部材98bとは共用可能である。前方ガイド部材98aを後方ガイド部材98bとして用いる場合、表裏を反転すればよく、ねじ固定部材96と後方壁部94bの内壁面104bとの間に球体54を転動可能に支持することができる。
 ねじ貫通部材94の前方壁部94aの内壁面104aに形成される凹曲面106aと、後方壁部94bの内壁面104bに形成される凹曲面106b、例えば、棒ねじ部材22の回転軸とねじ貫通部材94のねじ貫通部材94のボルト102の回転軸の交点である点Hを中心とする球面の一部とすることができる。この場合、例えば、荷重伝達機構92をアッパレール18に固定する際にボルト102の回転方向の組付け誤差(回転)が生じたり、棒ねじ部材22の回転時のうねりが生じたりする場合でも、棒ねじ部材22は、点Hを中心としてうねる。すなわち、ねじ貫通部材94は、球体54を介してねじ固定部材96とスムーズに回動する。その結果、組み立て誤差や各部材の寸法精度の誤差に基づき棒ねじ部材22にうねりが発生する場合でも、そのうねり動作が棒ねじ部材22の回転の抵抗になることを軽減できる。つまり、棒ねじ部材22の回転速度の変動を軽減し、アッパレール18(シートS)のスライド時の振動や異音の発生を軽減することができる。
 なお、図10に示すように、荷重伝達機構92の場合、ねじ貫通部材94の前方壁部94aの内壁面104aには凹曲面106aが形成され、後方壁部94bの内壁面104bには凹曲面106bが形成されている。実施形態1で説明したように、ねじ貫通部材94に過大な後方荷重が作用した場合でも、過大な前方荷重が作用した場合でも、球体54を棒ねじ部材22の回転中心M(軸心)側に押し下げることができる。したがって、ねじ貫通部材94に過大な荷重が加わった場合に、前方ガイド部材98aや後方ガイド部材98bを変形させたり破損させたりして球体54が前方ガイド部材98aや後方ガイド部材98bから飛び出す(脱落してしまう)ことが回避しやすくなる。つまり、前後荷重に対して強度的に有利な構造とすることができる。
 また、球体54が摺接する摺接面(凹曲面106a,106b)を、図10に示すように、棒ねじ部材22の回転中心Mに向かうのに連れて軸方向に凹む曲面とする場合、凹曲面106a,106bの曲率は、球体54の曲率より小さく形成する。この場合、凹曲面106a,106bに対して球体54を複数点接触や面接触ではなく、点接触させることが可能になる。その結果、上述したように、過大な荷重が作用した場合に凹曲面106a,106bによって球体54を棒ねじ部材22の回転中心M側に押し込む効果を維持しつつ、実施形態1で説明したような凸曲面62aで得られる点接触による効果、つまり、ねじ貫通部材94とねじ固定部材96との相対位置変化をスムーズに安定して実現する効果を得ることができる。
 なお、上述したねじ貫通部材94の前方壁部94aに凹曲面106aを形成し、後方壁部94bに凹曲面106bを形成した例を示したが、これらの面を扁平な面としてもよい。また、ねじ固定部材96の端面96aおよび端面96bに摺動溝96c形成した例を示したが、扁平な面としてもよい。また、このような扁平な面とする場合、転動部材としての球体54を利用してよいし、球体54に代えて、図6で説明したような、例えば円筒状のコロ54aを用いることができる。この場合も、実施形態1でコロ54aを用いた場合と同様に、球体54を用いる場合と同様の効果を得ることができる。
 上述した各実施形態では、ガイド部材を用いて、複数(例えば3個)の転動部材(球体54やコロ54a)をガイドする例を示したが、ガイドする転動部材の数は適宜変更可能であり、数が多いほど安定した摺接を行うことができる。また、棒ねじ部材22の周辺に転動部材を十分多く配置する場合は、ガイド部材を省略してもよい。この場合、例えば、転動部材が棒ねじ部材22の周方向で偏っても、ねじ貫通部材52(76,94)とねじ固定部材50(74,96)との摺接時の傾きが実質的に防止される場合は、ガイド部材を省略してもよい。同様に、転動部材を棒ねじ部材22の周方向に密集して配置して、周方向で転動部材の配置に所定値以上の疎密が生じない場合には、ガイド部材を省略してもよい。
 また、各実施形態において、ガイド溝68a(90a)や球体受穴98dは、転動部材をそれぞれ一つずつ保持するような溝幅や穴径の場合を示した。別の実施形態では、転動部材の棒ねじ部材22の周方向の極端な偏りが防止できれば、ガイド溝68a(90a)や球体受穴98dの棒ねじ部材22の周方向の幅を広くして周方向に移動できるようにしてもよい。例えば、ガイド溝68a(90a)の溝幅を周方向に拡大した長溝にしたり、球体受穴98dを周方向に拡大した長穴にしたりしてもよい。この場合、ねじ貫通部材52(76,94)とねじ固定部材50(74,96)との間で摺動する転動部材の転動自由度がより向上できて、転動部材をよりスムーズに転動させやすくなる。
 また、ガイド部材60(80,98)が転動部材を保持する場合、ガイド溝68a(90a)や球体受穴98dに限らず、他の形状の保持部を用いてもよい。例えば、転動部材の周方向の両側を挟んで移動を規制するように突起等を設けてもよい。この場合、ガイド溝68a(90a)や球体受穴98dと同様に周方向の移動を実質的に規制するように転動部材を実質的に挟持するような接近した一対の突起を設けてもよい。また、周方向の移動をある程度許容するように転動部材の大きさより大きな間隔で離間するような一対の突起を設けてもよい。ガイド部材60(80,98)を樹脂で形成する場合、上述したように、保持部を突起で形成することにより、ガイド溝68a(90a)や球体受穴98dを形成する場合より金型のシンプル化が可能になり、部品コスト軽減に寄与できる。
 上述した各実施形態では、フロア面FとシートSのうち一方側であるロアレール16にナットハウジング28に収納されたナット部材26を固定し、フロア面FとシートSのうち他方側であるアッパレール18に前後方向Xに沿って配置される棒ねじ部材22およびギヤボックス32、荷重伝達機構48(48A,72,92)を固定した例を示した。別の実施形態では、ロアレール16に棒ねじ部材22、ギヤボックス32、荷重伝達機構48(48A,72,92)を固定し、アッパレール18にナットハウジング28に収納されたナット部材26を固定してもよく、同様の効果を得ることができる。また、本実施形態では、パワーシートスライド装置20がロアレール16およびアッパレール18を含む例を示した。別の実施形態では、棒ねじ部材22、ギヤボックス32、荷重伝達機構48(48A,72,92)をシートSの裏面側に直接固定し、ナットハウジング28に収納されたナット部材26をフロア面Fに直接固定するようにしてもよく、同様の効果を得ることができる。
 以上、本発明の実施形態を例示したが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。本発明は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。これら様々な形態や変形された形態は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、各構成や形状等のスペック(構造や、種類、方向、形状、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
 16…ロアレール、18…アッパレール、20…パワーシートスライド装置、22…棒ねじ部材、26…ナット部材、32…ギヤボックス、48,72,92…荷重伝達機構、50,74,96…ねじ固定部材、50a,74a…前方ねじ固定部材、50b,74b…後方ねじ固定部材、52,76,94…ねじ貫通部材、54…球体、54a…コロ、60,80,98…ガイド部材、60a,80a,98a…前方ガイド部材、60b,80b,98b…後方ガイド部材、62a,84a,84b…凸曲面、62b,106a,106b…凹曲面、64c,66c,86c,88c,96c…摺動溝、68,70,90…ガイド貫通穴、68a,70a,90a…ガイド溝、94a…前方壁部、94b…後方壁部、F…フロア面、S…シート、X…前後方向。

Claims (7)

  1.  車両のフロア側とシート側のうち一方側に固定されるナット部材と、
     前記フロア側と前記シート側のうち他方側に前記車両の前後方向に沿って配置され、前記ナット部材と螺合する棒ねじ部材と、
     前記フロア側と前記シート側のうち他方側に固定され、前記棒ねじ部材が回転可能に貫通する貫通穴が形成されたねじ貫通部材と、
     前記棒ねじ部材の軸方向の一部に固定されたねじ固定部材と、
     前記軸方向において、前記ねじ貫通部材と前記ねじ固定部材との間に摺接するように前記棒ねじ部材を中心に周方向に配置される複数の転動部材と、
     を備えるパワーシートスライド装置。
  2.  前記複数の転動部材は、前記前後方向において前記ねじ貫通部材と前記ねじ固定部材との間に配置され、前記ねじ貫通部材と前記ねじ固定部材の少なくとも一方と相対回転可能なガイド部材に支持される請求項1に記載のパワーシートスライド装置。
  3.  前記ガイド部材は、前記複数の転動部材の前記周方向の間隔を維持する保持部を備える請求項2に記載のパワーシートスライド装置。
  4.  前記ねじ貫通部材は、前記転動部材が摺接する摺接面として前記棒ねじ部材の回転中心に向かうのに連れて前記軸方向に凹む凹曲面を備える請求項1に記載のパワーシートスライド装置。
  5.  前記転動部材は、球体であり、
     前記ねじ貫通部材は、前記球体が摺接する摺接面として前記棒ねじ部材の回転中心に向かうのに連れて前記軸方向に突出する凸曲面を備える請求項1に記載のパワーシートスライド装置。
  6.  前記転動部材は、球体であり、
     前記ねじ貫通部材の前記球体が摺接する摺接面は、前記棒ねじ部材の回転中心に向かうのに連れて前記軸方向に凹む凹曲面であり、
     前記凹曲面の曲率は、前記球体の曲率より小さく形成される請求項1に記載のパワーシートスライド装置。
  7.  前記転動部材は、少なくとも3個以上である請求項1に記載のパワーシートスライド装置。
PCT/JP2017/039952 2016-11-28 2017-11-06 パワーシートスライド装置 WO2018096916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/463,881 US20190381915A1 (en) 2016-11-28 2017-11-06 Power seat slide device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-230587 2016-11-28
JP2016230587A JP2018086905A (ja) 2016-11-28 2016-11-28 パワーシートスライド装置

Publications (1)

Publication Number Publication Date
WO2018096916A1 true WO2018096916A1 (ja) 2018-05-31

Family

ID=62194905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039952 WO2018096916A1 (ja) 2016-11-28 2017-11-06 パワーシートスライド装置

Country Status (3)

Country Link
US (1) US20190381915A1 (ja)
JP (1) JP2018086905A (ja)
WO (1) WO2018096916A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224512A1 (de) * 2016-12-08 2018-06-14 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Fahrzeugsitzanordnung mit einer bodenschienenseitig angeordneten Antriebseinrichtung
US20180304777A1 (en) * 2017-04-25 2018-10-25 Toyota Boshoku Kabushiki Kaisha Sliding device
CN109080508B (zh) * 2018-08-28 2020-04-07 延锋安道拓座椅机械部件有限公司 一种马达直连丝杆电动滑轨
WO2023233312A1 (de) 2022-05-31 2023-12-07 Adient Us Llc Längseinsteller und fahrzeugsitz
DE102022208884A1 (de) 2022-05-31 2023-11-30 Adient Us Llc Längseinsteller und Fahrzeugsitz

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155846U (ja) * 1987-03-31 1988-10-13
JP2000280796A (ja) * 1999-03-31 2000-10-10 Shiroki Corp パワー式スライドシート装置
JP2013063772A (ja) * 2012-12-10 2013-04-11 Shiroki Corp 車両用シートのパワースライド装置
JP2013173516A (ja) * 2012-01-24 2013-09-05 Shiroki Corp パワーシートスライド装置
JP2017226356A (ja) * 2016-06-23 2017-12-28 アイシン精機株式会社 車両用シートスライド装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155846U (ja) * 1987-03-31 1988-10-13
JP2000280796A (ja) * 1999-03-31 2000-10-10 Shiroki Corp パワー式スライドシート装置
JP2013173516A (ja) * 2012-01-24 2013-09-05 Shiroki Corp パワーシートスライド装置
JP2013063772A (ja) * 2012-12-10 2013-04-11 Shiroki Corp 車両用シートのパワースライド装置
JP2017226356A (ja) * 2016-06-23 2017-12-28 アイシン精機株式会社 車両用シートスライド装置

Also Published As

Publication number Publication date
US20190381915A1 (en) 2019-12-19
JP2018086905A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2018096916A1 (ja) パワーシートスライド装置
EP1452419B1 (en) Electric power steering device
EP1884446B1 (en) Steering apparatus equipped with ring type support yoke
US20070108360A1 (en) Seat slide device
US20060237619A1 (en) Power seat slide apparatus for vehicle
EP2933133B1 (en) Vehicular seat slide device
EP2572961A1 (en) Steering apparatus for vehicle
JP2010036828A (ja) エネルギー吸収ステアリングコラム
JP5294007B2 (ja) ラック軸支持装置および車両用操舵装置
JP2010095006A (ja) 電動式パワーステアリング装置
US10876623B2 (en) Compensating arrangement for compensating axial play, and transmission unit
US11465667B2 (en) Rack and pinion type steering gear unit
JP5228984B2 (ja) エネルギー吸収ステアリングコラム
KR101803901B1 (ko) 유격방지 기능을 구비한 자동차 시트 슬라이드용 기어박스
KR101863608B1 (ko) 자동차의 스티어링 컬럼
JP2013210005A (ja) 電動パワーステアリング装置
KR101884186B1 (ko) 유격방지 기능을 구비한 자동차 시트 슬라이드용 기어박스
CN106741129B (zh) 机械转向机
CN116788345A (zh) 用于车辆的转向柱
KR102076011B1 (ko) 차량용 스티어링 구조체
CN111051185B (zh) 动力转向装置
JP2012228905A (ja) シートベルト装置
JP2012116337A (ja) ステアリング装置の伸縮軸機構
JPWO2020039880A1 (ja) ラックアンドピニオン式ステアリングギヤユニット
KR102540925B1 (ko) 랙바의 지지구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872903

Country of ref document: EP

Kind code of ref document: A1