WO2018096782A1 - Vehicle clutch control device and vehicle clutch control method - Google Patents

Vehicle clutch control device and vehicle clutch control method Download PDF

Info

Publication number
WO2018096782A1
WO2018096782A1 PCT/JP2017/035110 JP2017035110W WO2018096782A1 WO 2018096782 A1 WO2018096782 A1 WO 2018096782A1 JP 2017035110 W JP2017035110 W JP 2017035110W WO 2018096782 A1 WO2018096782 A1 WO 2018096782A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
clutch
engine
vehicle
capacity
Prior art date
Application number
PCT/JP2017/035110
Other languages
French (fr)
Japanese (ja)
Inventor
弘一 小辻
拓朗 平野
徹 浦沢
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2018096782A1 publication Critical patent/WO2018096782A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms

Definitions

  • the present invention relates to a vehicle clutch control device and a vehicle clutch control method.
  • Patent Document 1 discloses a technique for reducing a turbo lag at the start of a vehicle by controlling a fastening force of a pump clutch provided between an engine and a torque converter.
  • Patent Document 1 has a problem that the cost is increased by providing a pump clutch, and the axial dimension around the engine increases.
  • the present invention has been made in view of such a technical problem, and while suppressing an increase in cost and an increase in axial dimension around the engine, a decrease in engine rotation speed due to an increase in clutch engagement force is suppressed,
  • the object is to improve the acceleration feeling when the vehicle starts.
  • 1 is a schematic configuration diagram of a vehicle according to a first embodiment.
  • 3 is a flowchart showing the contents of processing executed by the transmission controller of the first embodiment.
  • 3 is a flowchart showing the contents of a clutch control process according to the first embodiment. It is the time chart which showed a mode that the clutch control of Example 1 was performed. It is a figure which shows the change of the turbine torque of Example 1, and a clutch capacity
  • FIG. 1 is a schematic configuration diagram of a vehicle 100 according to a first embodiment of the present invention.
  • a vehicle 100 includes an engine 5, a belt-type continuously variable transmission (hereinafter referred to as “CVT”) 1 that changes the rotation of the engine 5 and transmits it to drive wheels 50, and an engine 5.
  • a torque converter 6 provided between the CVT 1 and the CVT 1.
  • the engine 5 includes a supercharger 21, and the torque converter 6 includes a lockup clutch 6c.
  • the CVT 1 is an automatic transmission including a forward / reverse switching mechanism 7 as a clutch for an automatic transmission, and a primary pulley 2 and a secondary pulley 3 that are torque transmission members are arranged so that their V grooves are aligned.
  • a V-belt 4 is stretched around the V-grooves of the pulleys 2 and 3.
  • An engine 5 is arranged coaxially with the primary pulley 2, and a torque converter 6 and a forward / reverse switching mechanism 7 are provided between the engine 5 and the primary pulley 2 in order from the engine 5 side.
  • the forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, and its sun gear is coupled to the engine 5 via the torque converter 6 and the carrier is coupled to the primary pulley 2.
  • the forward / reverse switching mechanism 7 further includes a forward clutch 7b that directly connects the sun gear and the carrier of the double pinion planetary gear set 7a, and a reverse brake 7c that fixes the ring gear.
  • the forward clutch 7b When the forward clutch 7b is engaged, the input rotation from the engine 5 via the torque converter 6 is directly transmitted to the primary pulley 2, and when the reverse brake 7c is engaged, the input rotation via the torque converter 6 from the engine 5 is reversed. Is transmitted to the primary pulley 2.
  • the rotation of the primary pulley 2 is transmitted to the secondary pulley 3 via the V belt 4, and the rotation of the secondary pulley 3 is transmitted to the drive wheel 50 through the output shaft 8, the gear set 9 and the differential gear device 10.
  • one of the conical plates forming the V-grooves of the primary pulley 2 and the secondary pulley 3 is fixed to the fixed conical plates 2a, 3a.
  • the other conical plates 2b and 3b are movable conical plates that can be displaced in the axial direction.
  • These movable conical plates 2b and 3b are directed toward the fixed conical plates 2a and 3a by supplying the primary pulley pressure Pp and the secondary pulley pressure Ps created using the line pressure as the original pressure to the primary pulley chamber 2c and the secondary pulley chamber 3c.
  • the V-belt 4 is frictionally engaged with the conical plate, and power is transmitted between the primary pulley 2 and the secondary pulley 3.
  • the width of the V groove of both pulleys 2 and 3 is changed by the differential pressure between the primary pulley pressure Pp and the secondary pulley pressure Ps generated corresponding to the target gear ratio, and the V belt 4 with respect to the pulleys 2 and 3 is changed.
  • the target gear ratio is realized by continuously changing the wrapping arc diameter.
  • the primary pulley pressure Pp and the secondary pulley pressure Ps are controlled by the shift control hydraulic circuit 11 together with the engagement hydraulic pressure of the forward clutch 7b that is engaged when the forward travel mode is selected and the reverse brake 7c that is engaged when the reverse travel mode is selected.
  • the shift control hydraulic circuit 11 performs control in response to a signal from the transmission controller 12.
  • the transmission controller 12 includes a signal from the turbine rotation sensor 20 that detects the rotation speed Nt (turbine rotation Nt) of the output shaft 8 of the torque converter 6, and a primary pulley rotation sensor 13 that detects the rotation speed Np of the primary pulley 2.
  • a signal from the secondary pulley rotation sensor 14 that detects the rotational speed Ns of the secondary pulley 3 a signal from the secondary pulley pressure sensor 15 that detects the secondary pulley pressure Ps, and an accelerator that detects the accelerator opening APO.
  • An engine controller for controlling the engine 5, a signal from the operation amount sensor 16, a selection mode signal from the select switch 17 for selecting the operation mode of the CVT 1, a signal from the oil temperature sensor 18 for detecting the oil temperature TMP of the CVT 1, 19 is a signal related to the engine torque Te And Jin rotational speed Ne and the fuel injection time, etc.), the angle of the vehicle 100, i.e. a signal from the angle sensor 22 for detecting the gradient of the road surface, it is input.
  • the vehicle 100 since the engine 5 of the first embodiment includes the supercharger 21, the vehicle 100 may not have the acceleration feeling desired by the driver due to the occurrence of a turbo lag when starting. For this reason, the transmission controller 12 performs control for improving the feeling of acceleration felt by the driver when starting.
  • the transmission controller 12 sets the forward clutch 7b of the forward / reverse switching mechanism 7 serving as an automatic transmission clutch in a slip state to increase the rotation of the engine 5 and the torque converter 6,
  • the engagement force of the forward clutch 7b is increased to cause rotation.
  • Control hereinafter referred to as clutch control for transmitting the increased rotational energy of the engine 5 and the torque converter 6 to the drive wheels 50 is performed. This will be described in more detail later.
  • the transmission controller 12 determines whether to start by clutch control or to perform normal start without clutch control according to the flowchart of FIG.
  • the transmission controller 12 starts processing when the accelerator is turned from ON to OFF.
  • step S11 the transmission controller 12 determines whether the vehicle speed is equal to or lower than a predetermined vehicle speed.
  • the vehicle speed is calculated based on a signal from the secondary pulley rotation sensor 14.
  • step S12 If the transmission controller 12 determines that the vehicle speed is equal to or lower than the predetermined vehicle speed, the process proceeds to step S12. If it is determined that the vehicle speed is higher than the predetermined vehicle speed, the process proceeds to step S18.
  • the predetermined vehicle speed is, for example, 5 km / h, and is a vehicle speed at which the vehicle 100 is considered to stop as it is. In a state where the vehicle 100 is traveling, the driver can obtain an acceleration feeling at the start without performing clutch control. Therefore, when the vehicle speed is higher than the predetermined vehicle speed, the transmission controller 12 performs a normal start when the accelerator is turned from OFF to ON (Step S18, Step S19).
  • step S12 the transmission controller 12 determines whether the oil temperature TMP of the CVT 1 is within the reference range based on the signal from the oil temperature sensor 18.
  • step S13 If the transmission controller 12 determines that the oil temperature TMP is within the reference range, the process proceeds to step S13. If it is determined that the oil temperature TMP is not within the reference range, the process proceeds to step S18, and normal start is performed when the accelerator is turned from OFF to ON (step S18, step S19). Specifically, the transmission controller 12 determines that the oil temperature TMP is in the low temperature region where the oil temperature TMP is equal to or lower than the first reference temperature and the oil temperature TMP is in the high temperature region where the oil temperature TMP is equal to or higher than the second reference temperature. If it is determined that it is not within the reference range, the process proceeds to step S18. When the oil temperature TMP is in the low temperature region, the controllability of the forward clutch 7b is lowered.
  • the first reference temperature is 20 ° C., for example. Further, when the oil temperature TMP is in the high temperature region, it is considered that the forward clutch 7b is overheated when the clutch control is performed. Therefore, in this case, the forward clutch 7b is protected by prohibiting the clutch control and performing a normal start.
  • the second reference temperature is 70 ° C., for example.
  • step S13 the transmission controller 12 determines whether the ascending slope of the road surface is equal to or less than the reference angle based on the signal from the angle sensor 22.
  • step S14 determines that the road slope is equal to or smaller than the reference angle
  • step S18 determines that the road slope is larger than the reference angle
  • step S19 When the accelerator is switched from OFF to ON, a normal start is performed (step S18, step S19).
  • the reference angle is, for example, 5 degrees.
  • step S14 the transmission controller 12 determines whether the travel mode of the CVT 1 selected by the select switch 17 is the fuel consumption mode.
  • step S18 When the transmission controller 12 determines that the travel mode of the CVT 1 is the fuel consumption mode, the transmission controller 12 proceeds to step S18, and performs normal start when the accelerator is turned from OFF to ON (step S18, step S19). If it is determined that the travel mode of CVT1 is not the fuel efficiency mode, the process proceeds to step S15.
  • the fuel consumption mode is selected as the travel mode of CVT1, it is considered that the driver attaches more importance to the fuel consumption than the feeling of acceleration. Therefore, in this case, the fuel consumption is improved by prohibiting the clutch control and performing a normal start.
  • step S15 the transmission controller 12 performs standby control to bring the forward clutch 7b into a slip state, and then starts by clutch control when the accelerator is turned from OFF to ON (step S16, step S17).
  • the standby control is executed on the assumption that the clutch control is always performed when starting. Therefore, in Example 1, when it is better not to perform clutch control, standby control and clutch control are prohibited by the above processing.
  • step S21 the transmission controller 12 determines whether or not the engine torque Te exceeds the torque ( ⁇ * Ne 2 ) calculated by multiplying the capacity coefficient ⁇ of the torque converter 6 and the square of the engine rotational speed Ne. (Te> ⁇ * Ne 2 ). That is, even if the fastening pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as the automatic transmission clutch in the forward travel mode is increased to a predetermined value, that is, the capacity Tc of the forward clutch 7b is increased to a predetermined value. In addition, it is confirmed whether or not an engine torque Te that can withstand this load is generated.
  • step S21 If the transmission controller 12 determines that the engine torque Te exceeds the torque ( ⁇ * Ne 2 ) calculated by multiplying the capacity coefficient ⁇ of the torque converter 6 and the square of the engine speed Ne, the process proceeds to step S22. Transition. If it is determined that the engine torque Te does not exceed the torque ( ⁇ * Ne 2 ) calculated by multiplying the capacity coefficient ⁇ of the torque converter 6 and the square of the engine speed Ne, the process of step S21 is repeated. .
  • step S22 the transmission controller 12 increases the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as the automatic transmission clutch in the forward travel mode to a predetermined value, that is, the capacity Tc of the forward clutch 7b is predetermined.
  • the capacity is increased to the capacity Ttg01 and maintained.
  • step S23 the transmission controller 12 obtains a torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding a torque step tolerance ⁇ T, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ). Then, it is determined whether or not the current capacity Ttg01 of the forward clutch 7b has been exceeded (Ttg01 ⁇ t * ⁇ * Ne 2 + ⁇ T).
  • the transmission controller 12 determines that the torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding a torque step tolerance ⁇ T, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ) If it is determined that the capacity Ttg01 of the clutch 7b has been exceeded, the process proceeds to step S24.
  • the capacity Tc of the forward clutch 7b is greater than the turbine torque Tt by adding the inertia of the forward clutch 7b in addition to the turbine torque Tt that is input. Control is performed so that the torque for the inertia is suppressed to an allowable value ⁇ T or less.
  • step S24 the transmission controller 12 sets the clutch engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as the automatic transmission clutch to the capacity Tc of the forward clutch 7b and the turbine torque Tt (torque ratio t * capacity coefficient ⁇ ). * Ne 2 ) is increased so that a torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding a torque step tolerance ⁇ T, which is a predetermined torque, matches.
  • step S25 the transmission controller 12 determines whether or not the differential rotation before and after the forward clutch 7b of the forward / reverse switching mechanism 7 (the difference between the turbine rotation Nt and the rotation speed Np of the primary pulley 2) is equal to or less than a certain value ⁇ N. (Nt ⁇ Np ⁇ ⁇ N).
  • the transmission controller 12 determines that the forward / backward differential rotation (the difference between the turbine rotation Nt and the rotation speed Np of the primary pulley 2) of the forward clutch 7b of the forward / reverse switching mechanism 7 is equal to or less than a predetermined value ⁇ N, the transmission controller 12 starts the start by clutch control. End and shift to normal control. If it is determined that the forward / backward differential rotation (difference between the turbine rotation Nt and the rotation speed Np of the primary pulley 2) of the forward / reverse switching mechanism 7 is not equal to or less than a certain value ⁇ N, the process of step S25 is repeated.
  • FIG. 5 is a graph showing changes in turbine torque Tt and clutch capacity in the first embodiment.
  • the accelerator Before time t1, the accelerator is OFF and the vehicle 100 is stopped. Further, the forward travel mode is selected as the mode of CVT1, and the forward clutch 7b is in the slip state (standby control). Therefore, the rotation speed Np of the primary pulley 2 is zero, and the engine rotation speed Ne and the turbine rotation Nt rotate at a predetermined rotation difference by the amount of slip generated in the torque converter 6.
  • the automatic transmission for the forward transmission mode is used.
  • the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as a clutch is increased to a predetermined value, that is, the capacity Tc of the forward clutch 7b is increased to a predetermined capacity Ttg01, and this is maintained after time t4.
  • the time t3 ′ which is the starting point for increasing the engagement pressure of the forward clutch 7b, is determined based on the predetermined engine speed Ne, and after the time t4 ′ is increased rapidly to the predetermined pressure, the forward clutch Since the engagement pressure of 7b is gradually increased, the engine load increases due to the decrease in turbine rotation Nt due to the increase in capacity of the forward clutch 7b, and the engine speed Ne is determined only by the engine rotation speed Ne. It can be seen that there is a case where the torque Te is not sufficiently secured, a drop in the engine rotational speed Ne occurs, and the rapid increase in vehicle acceleration is hindered.
  • the torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding the torque step tolerance ⁇ T, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ) is the current forward clutch 7b.
  • the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 is set to a torque step that is a predetermined torque between the capacity Tc of the forward clutch 7b and the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ) Is increased so that the torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding the allowable value ⁇ T of the two values coincides.
  • the clutch capacity Tc and the turbine torque Tt have a torque difference of an allowable value ⁇ T or more, so that a large step occurs in the vehicle acceleration, which is inconvenient for the passenger. Gives pleasure.
  • the clutch control device for the vehicle 100 and the clutch control method for the vehicle 100 according to the first embodiment have the following effects.
  • the forward clutch 7b for the CVT 1 serving as an automatic transmission is slipped to increase the rotation of the engine 5 and the torque converter 6, and the engine torque Te is determined by the capacity coefficient ⁇ of the torque converter 6 and the engine rotation.
  • the torque determined by the square of the speed Ne an increase in the fastening force of the forward clutch 7b of the forward / reverse switching mechanism 7 is started, and the rotational energy of the engine 5 and the torque converter 6 whose rotation has increased is supplied to the drive wheels 50. This is transmitted to increase the acceleration generated in the vehicle 100.
  • the increased clutch engagement force is maintained at the predetermined value until the torque obtained by adding the predetermined torque to the turbine torque Tt exceeds the capacity Tc of the forward clutch 7b. That is, the torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding the torque step tolerance ⁇ T, which is the predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ) is used as the capacity Tc of the forward clutch 7b.
  • the capacity Tc of the forward clutch 7b is maintained at a predetermined value Ttg01 until it exceeds. Therefore, since the capacity of the forward clutch 7b is maintained at the predetermined value Ttg01, the engine speed Ne can be rapidly increased, the acceleration generated in the vehicle 100 can be increased, and the acceleration feeling felt by the driver can be increased. It can be improved.
  • the transmission controller 12 prohibits the clutch control when the oil temperature TMP of the CVT 1 is in the low temperature region below the first reference temperature. Therefore, certainty of control can be ensured.
  • the transmission controller 12 prohibits the clutch control when the oil temperature TMP of the CVT 1 is in a high temperature range equal to or higher than the second reference temperature. Therefore, the forward clutch 7b can be prevented from overheating, and the forward clutch 7b can be protected.
  • the transmission controller 12 prohibits clutch control when the vehicle is traveling uphill where the road gradient is larger than the reference angle. Therefore, it is possible to prevent the vehicle 100 from moving backward when starting.
  • the transmission controller 12 prohibits clutch control when the fuel economy mode in which the fuel efficiency is emphasized is selected as the driving mode of the CVT 1. Therefore, the fuel consumption can be improved.
  • the engine 5 is an engine with a supercharger 21. Therefore, although turbo lag is generated when the vehicle starts, even a vehicle equipped with such a supercharger can improve the feeling of acceleration when starting.
  • FIG. 6 is a flowchart showing the contents of processing executed by the transmission controller 12 of the second embodiment
  • FIG. 7 is a time chart showing how the clutch control of the second embodiment is executed.
  • the transmission controller 12 starts processing when the accelerator is turned from OFF to ON.
  • step S31 the transmission controller 12 determines whether a predetermined time has elapsed since the accelerator was turned on.
  • step S32 If the transmission controller 12 determines that a predetermined time has elapsed since the accelerator was turned on, the process proceeds to step S32. If it is determined that the predetermined time has not elapsed since the accelerator was turned on, the process of step S31 is repeated.
  • step S32 the transmission controller 12 determines whether the accelerator opening APO is greater than or equal to the reference opening.
  • step S33 If the transmission controller 12 determines that the accelerator opening APO is greater than or equal to the reference opening, the process proceeds to step S33. If it is determined that the accelerator opening APO is less than the reference opening, the process proceeds to step S37 and a normal start is performed.
  • the accelerator opening APO after a predetermined time has elapsed after the accelerator is turned on is less than the reference opening, it is considered that the driver does not intend to accelerate the vehicle 100 and is slowly depressing the accelerator. Therefore, in this case, the fuel consumption is improved by prohibiting the clutch control and performing a normal start.
  • the predetermined time of step S31 is 0.3 sec, for example, and the reference opening degree of step S32 is 70%, for example.
  • step S33 the transmission controller 12 determines whether the oil temperature TMP of the CVT 1 is within the reference range based on the signal from the oil temperature sensor 18.
  • step S34 If the transmission controller 12 determines that the oil temperature TMP is within the reference range, the process proceeds to step S34. If it is determined that the oil temperature TMP is not within the reference range, the process proceeds to step S37 and a normal start is performed.
  • step S34 the transmission controller 12 determines whether the ascending slope of the road surface is equal to or less than the reference angle based on the signal from the angle sensor 22.
  • step S35 If the transmission controller 12 determines that the road slope is equal to or smaller than the reference angle, the process proceeds to step S35. If it is determined that the road slope is larger than the reference angle, the process proceeds to step S37 and a normal start is performed.
  • step S35 the transmission controller 12 determines whether the travel mode of the CVT 1 selected by the select switch 17 is the fuel consumption mode.
  • the transmission controller 12 determines that the travel mode of the CVT 1 is the fuel consumption mode, the transmission controller 12 proceeds to step S37 and performs normal start. If it is determined that the travel mode of CVT1 is not the fuel consumption mode, the process proceeds to step S36, and the vehicle starts with clutch control.
  • the accelerator Prior to time t1, the accelerator is OFF and the vehicle 100 is stopped. Further, the forward travel mode is selected as the mode of CVT1, and the forward clutch 7b is completely engaged. For this reason, the rotational speed Nt of the output shaft 8 of the torque converter 6 and the rotational speed Np of the primary pulley 2 of the CVT 1 are zero.
  • clutch control is started at time t2 when a predetermined time has elapsed, and the fastening force of the forward clutch 7b decreases.
  • the predetermined time is, for example, 0.3 sec.
  • the forward clutch 7b is provided downstream of the torque converter 6 in the power transmission path, the fluid of the torque converter 6 is agitated out of the torque generated by the engine 5 when the forward clutch 7b is slipped. This reduces the torque used.
  • the automatic shift in the forward travel mode is performed.
  • the fastening pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as a mechanical clutch is increased to a predetermined value, that is, the capacity Tc of the forward clutch 7b is increased to a predetermined capacity Ttg01, and this is maintained after time t4.
  • the torque (t * ⁇ * Ne 2 + ⁇ T) obtained by adding the torque step tolerance ⁇ T, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ) is the current forward clutch 7b.
  • the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 is set to a torque step where the capacity Tc of the forward clutch 7b is a predetermined torque to the turbine torque Tt (torque ratio t * capacity coefficient ⁇ * Ne 2 ).
  • the second embodiment has the following operational effects in addition to the operational effects of the first embodiment except for standby control.
  • the transmission controller 12 prohibits clutch control when the accelerator opening APO is equal to or less than the reference opening after a predetermined time has elapsed since the accelerator was turned on. In this case, it is considered that the driver does not intend to accelerate the vehicle 100. Therefore, fuel efficiency can be improved by performing normal start.
  • the engine speed Ne is increased by making the forward clutch 7b slip, but the forward clutch 7b may be in a released state. Also in the standby control of the first embodiment, the forward clutch 7b may be in a released state.
  • standby control and clutch control are performed using the forward clutch 7b.
  • the forward clutch A clutch other than 7b may be used.
  • the present invention is applied to the vehicle 100 including the supercharger 21, but the present invention may be applied to a vehicle not including the supercharger.
  • the automatic transmission provided in the vehicle 100 is CVT1, but the automatic transmission may be a stepped transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

In the present invention, a transmission controller (12) sets a forward clutch (7b) for a belt-type continuously variable transmission (1) provided on the downstream side of a torque converter (6) to a disengaged state or a slipped state and increases the rotation of an engine (5) and the torque converter (6), and once the engine torque has exceeded a torque determined by the square of a torque capacity coefficient (τ) and an engine rotation speed (Ne), the transmission controller increases the fastening force of the forward clutch (7b) and transmits the rotation energy of the torque converter (6) and the engine (5) having increased rotation to a drive wheel (50), thereby increasing the acceleration generated in the vehicle (100).

Description

車両のクラッチ制御装置及び車両のクラッチ制御方法Vehicle clutch control device and vehicle clutch control method
 本発明は、車両のクラッチ制御装置及び車両のクラッチ制御方法に関する。 The present invention relates to a vehicle clutch control device and a vehicle clutch control method.
 特許文献1には、エンジンとトルクコンバータとの間に設けたポンプクラッチの締結力を制御することで車両発進時のターボラグを低減する技術が開示されている。 Patent Document 1 discloses a technique for reducing a turbo lag at the start of a vehicle by controlling a fastening force of a pump clutch provided between an engine and a torque converter.
 しかしながら、特許文献1の技術は、ポンプクラッチを設けることでコストアップし、また、エンジン周りの軸方向寸法が増加する、といった問題がある。 However, the technique of Patent Document 1 has a problem that the cost is increased by providing a pump clutch, and the axial dimension around the engine increases.
 そこで、本出願人は、この問題を解決するために、特願2016-045271を提案している。しかしながら、この提案においては、所定のエンジン回転に達した後に、トルクコンバータの下流側に配置された自動変速機用のクラッチの締結力を増加させているが、トルクコンバータのタービンの回転が下がることにより、トルクコンバータ容量(エンジン負荷)が大きくなるため、エンジンのばらつき等により、エンジントルクが不足して、エンジン回転の落ち込みが発生する恐れがある。 Therefore, in order to solve this problem, the present applicant has proposed Japanese Patent Application No. 2016-045271. However, in this proposal, after reaching a predetermined engine rotation, the fastening force of the clutch for the automatic transmission arranged downstream of the torque converter is increased, but the rotation of the turbine of the torque converter decreases. As a result, the torque converter capacity (engine load) increases, and therefore engine torque becomes insufficient due to engine variations and the like, which may cause a drop in engine rotation.
 本発明は、このような技術的課題に鑑みてなされたもので、コストアップやエンジン周りの軸方向寸法の増加を抑制しつつ、クラッチの締結力増加によるエンジン回転速度の落ち込みを抑制して、車両発進時の加速感を向上することを目的とする。 The present invention has been made in view of such a technical problem, and while suppressing an increase in cost and an increase in axial dimension around the engine, a decrease in engine rotation speed due to an increase in clutch engagement force is suppressed, The object is to improve the acceleration feeling when the vehicle starts.
特開2007-170664号公報JP 2007-170664 A
 本発明の車両のクラッチ制御装置及び車両のクラッチ制御方法では、エンジントルクがトルクコンバータの容量係数とエンジン回転速度の2乗で決まるトルクを越えた後、クラッチの締結力の増加を開始するようにした。 In the vehicle clutch control device and the vehicle clutch control method according to the present invention, after the engine torque exceeds the torque determined by the square of the capacity coefficient of the torque converter and the engine rotational speed, an increase in clutch engagement force is started. did.
 よって、本発明の車両のクラッチ制御装置及び車両のクラッチ制御方法では、コストアップやエンジン周りの軸方向寸法の増加を抑制しつつ、クラッチの締結力増加によるエンジン回転速度の落ち込みを抑制して、車両発進時の加速感を向上することができる。 Therefore, in the vehicle clutch control device and the vehicle clutch control method of the present invention, while suppressing an increase in cost and an increase in axial dimension around the engine, a decrease in engine rotation speed due to an increase in clutch engagement force is suppressed, Acceleration feeling when starting the vehicle can be improved.
実施例1の車両の概略構成図である。1 is a schematic configuration diagram of a vehicle according to a first embodiment. 実施例1の変速機コントローラが実行する処理の内容を示したフローチャートである。3 is a flowchart showing the contents of processing executed by the transmission controller of the first embodiment. 実施例1のクラッチ制御の処理の内容を示したフローチャートである。3 is a flowchart showing the contents of a clutch control process according to the first embodiment. 実施例1のクラッチ制御が実行される様子を示したタイムチャートである。It is the time chart which showed a mode that the clutch control of Example 1 was performed. 実施例1のタービントルクとクラッチ容量の変化を示す図である。It is a figure which shows the change of the turbine torque of Example 1, and a clutch capacity | capacitance. 実施例2の変速機コントローラが実行する処理の内容を示したフローチャートである。It is the flowchart which showed the content of the process which the transmission controller of Example 2 performs. 実施例2のクラッチ制御が実行される様子を示したタイムチャートである。It is the time chart which showed a mode that the clutch control of Example 2 was performed.
 [実施例1]
 以下、本発明の実施例1について図1~図3を参照しながら説明する。
[Example 1]
Embodiment 1 of the present invention will be described below with reference to FIGS.
 図1は、本発明の実施例1の車両100の概略構成図である。図1に示すように、車両100は、エンジン5と、エンジン5の回転を変速して駆動輪50へ伝達するベルト式無段変速機(以下、「CVT」という。)1と、エンジン5とCVT1との間に設けられるトルクコンバータ6と、を備える。また、エンジン5は過給機21を備え、トルクコンバータ6はロックアップクラッチ6cを備える。 FIG. 1 is a schematic configuration diagram of a vehicle 100 according to a first embodiment of the present invention. As shown in FIG. 1, a vehicle 100 includes an engine 5, a belt-type continuously variable transmission (hereinafter referred to as “CVT”) 1 that changes the rotation of the engine 5 and transmits it to drive wheels 50, and an engine 5. A torque converter 6 provided between the CVT 1 and the CVT 1. The engine 5 includes a supercharger 21, and the torque converter 6 includes a lockup clutch 6c.
 CVT1は、自動変速機用クラッチとしての前後進切換え機構7を備える自動変速機であって、トルク伝達部材であるプライマリプーリ2及びセカンダリプーリ3が両者のV溝が整列するよう配設され、これらプーリ2、3のV溝にはVベルト4が掛け渡されている。プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間に、エンジン5の側から順に、トルクコンバータ6、前後進切換え機構7が設けられている。 The CVT 1 is an automatic transmission including a forward / reverse switching mechanism 7 as a clutch for an automatic transmission, and a primary pulley 2 and a secondary pulley 3 that are torque transmission members are arranged so that their V grooves are aligned. A V-belt 4 is stretched around the V-grooves of the pulleys 2 and 3. An engine 5 is arranged coaxially with the primary pulley 2, and a torque converter 6 and a forward / reverse switching mechanism 7 are provided between the engine 5 and the primary pulley 2 in order from the engine 5 side.
 前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6を介してエンジン5に結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤおよびキャリア間を直結する前進クラッチ7b、及びリングギヤを固定する後進ブレーキ7cを備える。そして、前進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転され、プライマリプーリ2へと伝達される。 The forward / reverse switching mechanism 7 includes a double pinion planetary gear set 7a as a main component, and its sun gear is coupled to the engine 5 via the torque converter 6 and the carrier is coupled to the primary pulley 2. The forward / reverse switching mechanism 7 further includes a forward clutch 7b that directly connects the sun gear and the carrier of the double pinion planetary gear set 7a, and a reverse brake 7c that fixes the ring gear. When the forward clutch 7b is engaged, the input rotation from the engine 5 via the torque converter 6 is directly transmitted to the primary pulley 2, and when the reverse brake 7c is engaged, the input rotation via the torque converter 6 from the engine 5 is reversed. Is transmitted to the primary pulley 2.
 プライマリプーリ2の回転はVベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9及びディファレンシャルギヤ装置10を経て駆動輪50へと伝達される。 The rotation of the primary pulley 2 is transmitted to the secondary pulley 3 via the V belt 4, and the rotation of the secondary pulley 3 is transmitted to the drive wheel 50 through the output shaft 8, the gear set 9 and the differential gear device 10.
 上記の動力伝達中にプライマリプーリ2及びセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2及びセカンダリプーリ3のV溝を形成する円錐板のうち一方を固定円錐板2a、3aとし、他方の円錐板2b、3bを軸線方向へ変位可能な可動円錐板としている。 In order to make it possible to change the gear ratio between the primary pulley 2 and the secondary pulley 3 during the power transmission, one of the conical plates forming the V-grooves of the primary pulley 2 and the secondary pulley 3 is fixed to the fixed conical plates 2a, 3a. The other conical plates 2b and 3b are movable conical plates that can be displaced in the axial direction.
 これら可動円錐板2b、3bは、ライン圧を元圧として作り出したプライマリプーリ圧Pp及びセカンダリプーリ圧Psをプライマリプーリ室2c及びセカンダリプーリ室3cに供給することにより固定円錐板2a、3aに向けて付勢され、これによりVベルト4を円錐板に摩擦係合させてプライマリプーリ2及びセカンダリプーリ3間での動力伝達を行う。 These movable conical plates 2b and 3b are directed toward the fixed conical plates 2a and 3a by supplying the primary pulley pressure Pp and the secondary pulley pressure Ps created using the line pressure as the original pressure to the primary pulley chamber 2c and the secondary pulley chamber 3c. As a result, the V-belt 4 is frictionally engaged with the conical plate, and power is transmitted between the primary pulley 2 and the secondary pulley 3.
 変速に際しては、目標変速比に対応させて発生させたプライマリプーリ圧Pp及びセカンダリプーリ圧Ps間の差圧により両プーリ2、3のV溝の幅を変化させ、プーリ2、3に対するVベルト4の巻き掛け円弧径を連続的に変化させることで目標変速比を実現する。 At the time of shifting, the width of the V groove of both pulleys 2 and 3 is changed by the differential pressure between the primary pulley pressure Pp and the secondary pulley pressure Ps generated corresponding to the target gear ratio, and the V belt 4 with respect to the pulleys 2 and 3 is changed. The target gear ratio is realized by continuously changing the wrapping arc diameter.
 プライマリプーリ圧Pp及びセカンダリプーリ圧Psは、前進走行モード選択時に締結する前進クラッチ7b、及び後進走行モード選択時に締結する後進ブレーキ7cの締結油圧と共に変速制御油圧回路11によって制御される。変速制御油圧回路11は変速機コントローラ12からの信号に応答して制御を行う。 The primary pulley pressure Pp and the secondary pulley pressure Ps are controlled by the shift control hydraulic circuit 11 together with the engagement hydraulic pressure of the forward clutch 7b that is engaged when the forward travel mode is selected and the reverse brake 7c that is engaged when the reverse travel mode is selected. The shift control hydraulic circuit 11 performs control in response to a signal from the transmission controller 12.
 変速機コントローラ12には、トルクコンバータ6の出力軸8の回転速度Nt(タービン回転Nt)を検出するタービン回転センサ20からの信号と、プライマリプーリ2の回転速度Npを検出するプライマリプーリ回転センサ13からの信号と、セカンダリプーリ3の回転速度Nsを検出するセカンダリプーリ回転センサ14からの信号と、セカンダリプーリ圧Psを検出するセカンダリプーリ圧センサ15からの信号と、アクセル開度APOを検出するアクセル操作量センサ16からの信号と、CVT1の動作モードを選択するセレクトスイッチ17からの選択モード信号と、CVT1の油温TMPを検出する油温センサ18からの信号と、エンジン5を制御するエンジンコントローラ19からのエンジントルクTeに関する信号(エンジン回転速度Neや燃料噴射時間等)と、車両100の角度、すなわち路面の勾配を検出する角度センサ22からの信号と、が入力される。 The transmission controller 12 includes a signal from the turbine rotation sensor 20 that detects the rotation speed Nt (turbine rotation Nt) of the output shaft 8 of the torque converter 6, and a primary pulley rotation sensor 13 that detects the rotation speed Np of the primary pulley 2. , A signal from the secondary pulley rotation sensor 14 that detects the rotational speed Ns of the secondary pulley 3, a signal from the secondary pulley pressure sensor 15 that detects the secondary pulley pressure Ps, and an accelerator that detects the accelerator opening APO. An engine controller for controlling the engine 5, a signal from the operation amount sensor 16, a selection mode signal from the select switch 17 for selecting the operation mode of the CVT 1, a signal from the oil temperature sensor 18 for detecting the oil temperature TMP of the CVT 1, 19 is a signal related to the engine torque Te And Jin rotational speed Ne and the fuel injection time, etc.), the angle of the vehicle 100, i.e. a signal from the angle sensor 22 for detecting the gradient of the road surface, it is input.
 ところで、上述したように、実施例1のエンジン5は過給機21を備えるので、車両100は、発進時にターボラグが発生して運転者が所望する加速感を得られない場合がある。このため、変速機コントローラ12は、発進時に運転者が感じる加速感を向上させるための制御を行うようになっている。 Incidentally, as described above, since the engine 5 of the first embodiment includes the supercharger 21, the vehicle 100 may not have the acceleration feeling desired by the driver due to the occurrence of a turbo lag when starting. For this reason, the transmission controller 12 performs control for improving the feeling of acceleration felt by the driver when starting.
 具体的には、変速機コントローラ12は、車両100の発進時に、自動変速機用クラッチとしての前後進切換え機構7の前進クラッチ7bをスリップ状態としてエンジン5及びトルクコンバータ6の回転を上昇させ、エンジンコントローラ19からのエンジントルクTeに関する信号によるエンジントルクTeが前記トルクコンバータ6の容量係数τとエンジン回転速度Neの2乗で決まるトルクを越えた後に、前進クラッチ7bの締結力を増加させて回転が上昇したエンジン5及びトルクコンバータ6の回転エネルギーを駆動輪50に伝達する制御(以下、クラッチ制御という。)を行う。これについては後でより詳しく説明する。 Specifically, when the vehicle 100 starts, the transmission controller 12 sets the forward clutch 7b of the forward / reverse switching mechanism 7 serving as an automatic transmission clutch in a slip state to increase the rotation of the engine 5 and the torque converter 6, After the engine torque Te based on the signal related to the engine torque Te from the controller 19 exceeds the torque determined by the square of the capacity coefficient τ of the torque converter 6 and the engine rotational speed Ne, the engagement force of the forward clutch 7b is increased to cause rotation. Control (hereinafter referred to as clutch control) for transmitting the increased rotational energy of the engine 5 and the torque converter 6 to the drive wheels 50 is performed. This will be described in more detail later.
 一方、例えば、運転者がCVT1の走行モードとして燃費を重視する燃費モードを選択している場合のように、クラッチ制御による発進を行わないほうがよい場合がある。よって、変速機コントローラ12は、クラッチ制御による発進をするか、或いは、クラッチ制御を行わない通常の発進をするかを、図2のフローチャートに従って判定する。 On the other hand, there are cases where it is better not to start by clutch control, for example, when the driver has selected a fuel consumption mode that places importance on fuel consumption as the driving mode of CVT1. Therefore, the transmission controller 12 determines whether to start by clutch control or to perform normal start without clutch control according to the flowchart of FIG.
 以下、図2のフローチャートを参照しながら変速機コントローラ12が実行する処理について説明する。 Hereinafter, processing executed by the transmission controller 12 will be described with reference to the flowchart of FIG.
 変速機コントローラ12は、アクセルがONからOFFになると処理を開始する。 The transmission controller 12 starts processing when the accelerator is turned from ON to OFF.
 ステップS11では、変速機コントローラ12は、車速が所定車速以下かを判定する。車速は、セカンダリプーリ回転センサ14からの信号に基づいて演算される。 In step S11, the transmission controller 12 determines whether the vehicle speed is equal to or lower than a predetermined vehicle speed. The vehicle speed is calculated based on a signal from the secondary pulley rotation sensor 14.
 変速機コントローラ12は、車速が所定車速以下と判定すると、処理をステップS12に移行する。また、車速が所定車速よりも高いと判定すると、処理をステップS18に移行する。 If the transmission controller 12 determines that the vehicle speed is equal to or lower than the predetermined vehicle speed, the process proceeds to step S12. If it is determined that the vehicle speed is higher than the predetermined vehicle speed, the process proceeds to step S18.
 所定車速は、例えば、5km/hであって、車両100がこのまま停止すると考えられる車速である。車両100が走行している状態では、クラッチ制御を行わなくても運転者が発進時の加速感を得ることができる。よって、変速機コントローラ12は、車速が所定車速よりも高い場合は、アクセルがOFFからONになると通常の発進を行う(ステップS18、ステップS19)。 The predetermined vehicle speed is, for example, 5 km / h, and is a vehicle speed at which the vehicle 100 is considered to stop as it is. In a state where the vehicle 100 is traveling, the driver can obtain an acceleration feeling at the start without performing clutch control. Therefore, when the vehicle speed is higher than the predetermined vehicle speed, the transmission controller 12 performs a normal start when the accelerator is turned from OFF to ON (Step S18, Step S19).
 ステップS12では、変速機コントローラ12は、油温センサ18からの信号に基づいて、CVT1の油温TMPが基準範囲内にあるかを判定する。 In step S12, the transmission controller 12 determines whether the oil temperature TMP of the CVT 1 is within the reference range based on the signal from the oil temperature sensor 18.
 変速機コントローラ12は、油温TMPが基準範囲内にあると判定すると、処理をステップS13に移行する。また、油温TMPが基準範囲内にないと判定すると、処理をステップS18に移行し、アクセルがOFFからONになると通常の発進を行う(ステップS18、ステップS19)。具体的には、変速機コントローラ12は、油温TMPが第1基準温度以下の低温領域にある場合と、油温TMPが第2基準温度以上の高温領域にある場合とにおいて、油温TMPが基準範囲内にないと判定して処理をステップS18に移行する。油温TMPが低温領域にある場合は、前進クラッチ7bの制御性が低下する。よって、この場合は、クラッチ制御を禁止して通常の発進を行うことで制御の確実性を確保している。なお、第1基準温度は、例えば、20℃である。また、油温TMPが高温領域にある場合は、クラッチ制御を行うと前進クラッチ7bが過熱することが考えられる。よって、この場合は、クラッチ制御を禁止して通常の発進を行うことで前進クラッチ7bの保護を図っている。なお、第2基準温度は、例えば、70℃である。 If the transmission controller 12 determines that the oil temperature TMP is within the reference range, the process proceeds to step S13. If it is determined that the oil temperature TMP is not within the reference range, the process proceeds to step S18, and normal start is performed when the accelerator is turned from OFF to ON (step S18, step S19). Specifically, the transmission controller 12 determines that the oil temperature TMP is in the low temperature region where the oil temperature TMP is equal to or lower than the first reference temperature and the oil temperature TMP is in the high temperature region where the oil temperature TMP is equal to or higher than the second reference temperature. If it is determined that it is not within the reference range, the process proceeds to step S18. When the oil temperature TMP is in the low temperature region, the controllability of the forward clutch 7b is lowered. Therefore, in this case, the certainty of control is ensured by prohibiting clutch control and performing normal start. The first reference temperature is 20 ° C., for example. Further, when the oil temperature TMP is in the high temperature region, it is considered that the forward clutch 7b is overheated when the clutch control is performed. Therefore, in this case, the forward clutch 7b is protected by prohibiting the clutch control and performing a normal start. The second reference temperature is 70 ° C., for example.
 ステップS13では、変速機コントローラ12は、角度センサ22からの信号に基づいて、路面の上り勾配が基準角度以下かを判定する。 In step S13, the transmission controller 12 determines whether the ascending slope of the road surface is equal to or less than the reference angle based on the signal from the angle sensor 22.
 変速機コントローラ12は、路面の上り勾配が基準角度以下と判定すると、処理をステップS14に移行する。また、路面の上り勾配が基準角度よりも大きいと判定すると、処理をステップS18に移行し、アクセルがOFFからONになると通常の発進を行う(ステップS18、ステップS19)。路面の勾配が基準角度よりも大きい上り走行の場合は、クラッチ制御を行うと車両100が後退することが考えられる。よって、この場合は、クラッチ制御を禁止して通常の発進を行うことで車両100が後退することを防止している。なお、基準角度は、例えば、5度である。 When the transmission controller 12 determines that the road slope is equal to or smaller than the reference angle, the process proceeds to step S14. If it is determined that the road slope is larger than the reference angle, the process proceeds to step S18. When the accelerator is switched from OFF to ON, a normal start is performed (step S18, step S19). In the case of uphill traveling where the slope of the road surface is larger than the reference angle, it is conceivable that the vehicle 100 moves backward when clutch control is performed. Therefore, in this case, the vehicle 100 is prevented from moving backward by prohibiting the clutch control and performing a normal start. Note that the reference angle is, for example, 5 degrees.
 ステップS14では、変速機コントローラ12は、セレクトスイッチ17により選択されたCVT1の走行モードが燃費モードかを判定する。 In step S14, the transmission controller 12 determines whether the travel mode of the CVT 1 selected by the select switch 17 is the fuel consumption mode.
 変速機コントローラ12は、CVT1の走行モードが燃費モードであると判定すると、処理をステップS18に移行し、アクセルがOFFからONになると通常の発進を行う(ステップS18、ステップS19)。また、CVT1の走行モードが燃費モードでないと判定すると、処理をステップS15に移行する。CVT1の走行モードとして燃費モードが選択されている場合は、運転者が加速感よりも燃費を重視していると考えられる。よって、この場合は、クラッチ制御を禁止して通常の発進を行うことで燃費の向上を図っている。 When the transmission controller 12 determines that the travel mode of the CVT 1 is the fuel consumption mode, the transmission controller 12 proceeds to step S18, and performs normal start when the accelerator is turned from OFF to ON (step S18, step S19). If it is determined that the travel mode of CVT1 is not the fuel efficiency mode, the process proceeds to step S15. When the fuel consumption mode is selected as the travel mode of CVT1, it is considered that the driver attaches more importance to the fuel consumption than the feeling of acceleration. Therefore, in this case, the fuel consumption is improved by prohibiting the clutch control and performing a normal start.
 ステップS15では、変速機コントローラ12は、前進クラッチ7bをスリップ状態にする待機制御を行い、その後アクセルがOFFからONになると、クラッチ制御による発進を行う(ステップS16、ステップS17)。 In step S15, the transmission controller 12 performs standby control to bring the forward clutch 7b into a slip state, and then starts by clutch control when the accelerator is turned from OFF to ON (step S16, step S17).
 上述したように、待機制御は、発進時に必ずクラッチ制御を行うことを前提として実行される。よって、実施例1では、クラッチ制御を行わないほうがよい場合については、上記の処理により待機制御及びクラッチ制御を禁止している。 As described above, the standby control is executed on the assumption that the clutch control is always performed when starting. Therefore, in Example 1, when it is better not to perform clutch control, standby control and clutch control are prohibited by the above processing.
 以下、図3のフローチャートを参照しながら変速機コントローラ12がステップS17のクラッチ制御を実行する処理について詳細に説明する。 Hereinafter, the process in which the transmission controller 12 executes the clutch control in step S17 will be described in detail with reference to the flowchart of FIG.
 変速機コントローラ12は、図2のステップS17のクラッチ制御に入ると、クラッチ制御の処理を開始する。 When the transmission controller 12 enters the clutch control in step S17 of FIG. 2, it starts the clutch control process.
 ステップS21では、変速機コントローラ12は、エンジントルクTeが前記トルクコンバータ6の容量係数τとエンジン回転速度Neの2乗を掛けて算出されるトルク(τ*Ne2)を越えたか否かを判定する(Te>τ*Ne2)。すなわち、前進走行モードにある自動変速機用クラッチとしての前後進切換え機構7の前進クラッチ7bの締結圧を所定値まで上昇させても、すなわち、前進クラッチ7bの容量Tcを所定値まで増加させても、この負荷に耐えられるエンジントルクTeが発生しているか否かを確認している。 In step S21, the transmission controller 12 determines whether or not the engine torque Te exceeds the torque (τ * Ne 2 ) calculated by multiplying the capacity coefficient τ of the torque converter 6 and the square of the engine rotational speed Ne. (Te> τ * Ne 2 ). That is, even if the fastening pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as the automatic transmission clutch in the forward travel mode is increased to a predetermined value, that is, the capacity Tc of the forward clutch 7b is increased to a predetermined value. In addition, it is confirmed whether or not an engine torque Te that can withstand this load is generated.
 変速機コントローラ12は、エンジントルクTeが前記トルクコンバータ6の容量係数τとエンジン回転速度Neの2乗を掛けて算出されるトルク(τ*Ne2)を越えたと判定すると、処理をステップS22に移行する。また、エンジントルクTeが前記トルクコンバータ6の容量係数τとエンジン回転速度Neの2乗を掛けて算出されるトルク(τ*Ne2)を越えていないと判定すると、ステップS21の処理を繰り返し行う。 If the transmission controller 12 determines that the engine torque Te exceeds the torque (τ * Ne 2 ) calculated by multiplying the capacity coefficient τ of the torque converter 6 and the square of the engine speed Ne, the process proceeds to step S22. Transition. If it is determined that the engine torque Te does not exceed the torque (τ * Ne 2 ) calculated by multiplying the capacity coefficient τ of the torque converter 6 and the square of the engine speed Ne, the process of step S21 is repeated. .
 ステップS22では、変速機コントローラ12は、前進走行モードにある自動変速機用クラッチとしての前後進切換え機構7の前進クラッチ7bの締結圧を所定値まで上昇させ、すなわち前進クラッチ7bの容量Tcを所定容量Ttg01まで増加させ、これを維持する。 In step S22, the transmission controller 12 increases the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as the automatic transmission clutch in the forward travel mode to a predetermined value, that is, the capacity Tc of the forward clutch 7b is predetermined. The capacity is increased to the capacity Ttg01 and maintained.
 ステップS23では、変速機コントローラ12は、タービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が、現在の前進クラッチ7bの容量Ttg01を越えたか否かを判定する(Ttg01<t*τ*Ne2+ΔT)。 In step S23, the transmission controller 12 obtains a torque (t * τ * Ne 2 + ΔT) obtained by adding a torque step tolerance ΔT, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ). Then, it is determined whether or not the current capacity Ttg01 of the forward clutch 7b has been exceeded (Ttg01 <t * τ * Ne 2 + ΔT).
 変速機コントローラ12は、タービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が、現在の前進クラッチ7bの容量Ttg01を越えたと判定すると、処理をステップS24に移行する。なお、前進クラッチ7bの容量Tcは、入力されるタービントルクTtに加え、前進クラッチ7bのイナーシャ分が付加され、タービントルクTtより大きくなる。このイナーシャ分のトルクを許容値ΔT以下に抑えるように制御している。また、タービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が、現在の前進クラッチ7bの容量Ttg01を越えていないと判定すると、ステップS23の処理を繰り返し行う。 The transmission controller 12 determines that the torque (t * τ * Ne 2 + ΔT) obtained by adding a torque step tolerance ΔT, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) If it is determined that the capacity Ttg01 of the clutch 7b has been exceeded, the process proceeds to step S24. The capacity Tc of the forward clutch 7b is greater than the turbine torque Tt by adding the inertia of the forward clutch 7b in addition to the turbine torque Tt that is input. Control is performed so that the torque for the inertia is suppressed to an allowable value ΔT or less. Further, a torque (t * τ * Ne 2 + ΔT) obtained by adding a torque step tolerance ΔT, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) is a current capacity of the forward clutch 7b. If it is determined that it does not exceed Ttg01, the process of step S23 is repeated.
 ステップS24では、変速機コントローラ12は、自動変速機用クラッチとしての前後進切換え機構7の前進クラッチ7bのクラッチ締結圧を、前進クラッチ7bの容量TcとタービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が一致するように、上昇させる。 In step S24, the transmission controller 12 sets the clutch engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as the automatic transmission clutch to the capacity Tc of the forward clutch 7b and the turbine torque Tt (torque ratio t * capacity coefficient τ). * Ne 2 ) is increased so that a torque (t * τ * Ne 2 + ΔT) obtained by adding a torque step tolerance ΔT, which is a predetermined torque, matches.
 ステップS25では、変速機コントローラ12は、前後進切換え機構7の前進クラッチ7bの前後の差回転(タービン回転Ntとプライマリプーリ2の回転速度Npとの差)が一定値ΔN以下か否かを判定する(Nt―Np≦ΔN)。 In step S25, the transmission controller 12 determines whether or not the differential rotation before and after the forward clutch 7b of the forward / reverse switching mechanism 7 (the difference between the turbine rotation Nt and the rotation speed Np of the primary pulley 2) is equal to or less than a certain value ΔN. (Nt−Np ≦ ΔN).
 変速機コントローラ12は、前後進切換え機構7の前進クラッチ7bの前後の差回転(タービン回転Ntとプライマリプーリ2の回転速度Npとの差)が一定値ΔN以下と判定すると、クラッチ制御による発進を終了し、通常制御に移行する。また、前後進切換え機構7の前後の差回転(タービン回転Ntとプライマリプーリ2の回転速度Npとの差)が一定値ΔN以下ではないと判定すると、ステップS25の処理を繰り返し行う。 When the transmission controller 12 determines that the forward / backward differential rotation (the difference between the turbine rotation Nt and the rotation speed Np of the primary pulley 2) of the forward clutch 7b of the forward / reverse switching mechanism 7 is equal to or less than a predetermined value ΔN, the transmission controller 12 starts the start by clutch control. End and shift to normal control. If it is determined that the forward / backward differential rotation (difference between the turbine rotation Nt and the rotation speed Np of the primary pulley 2) of the forward / reverse switching mechanism 7 is not equal to or less than a certain value ΔN, the process of step S25 is repeated.
 次に、図4に示すタイムチャートに基づき、待機制御およびクラッチ制御が実行される様子について、比較例(先願)による発進の場合と実施例1による発進の場合と比較して、説明する。また、図5は、実施例1のタービントルクTtとクラッチ容量の変化を示す図である。 Next, how the standby control and the clutch control are executed will be described based on the time chart shown in FIG. 4 in comparison with the case of the start by the comparative example (prior application) and the case of the start by the first embodiment. FIG. 5 is a graph showing changes in turbine torque Tt and clutch capacity in the first embodiment.
 時刻t1より前は、アクセルOFFかつ車両100が停止中である。また、CVT1のモードとして前進走行モードが選択されており、前進クラッチ7bはスリップ状態(待機制御)である。このため、プライマリプーリ2の回転速度Npはゼロであり、エンジン回転速度Neとタービン回転Ntはトルクコンバータ6内で発生する滑りの分だけ所定回転差で回転している。 Before time t1, the accelerator is OFF and the vehicle 100 is stopped. Further, the forward travel mode is selected as the mode of CVT1, and the forward clutch 7b is in the slip state (standby control). Therefore, the rotation speed Np of the primary pulley 2 is zero, and the engine rotation speed Ne and the turbine rotation Nt rotate at a predetermined rotation difference by the amount of slip generated in the torque converter 6.
 時刻t2で、アクセルがOFFからONになると、速やかにクラッチ制御が開始される。なお、前進クラッチ7bはスリップ状態(待機制御)を維持する。 At time t2, when the accelerator is turned from OFF to ON, clutch control is started immediately. The forward clutch 7b maintains the slip state (standby control).
 時刻t3で、エンジントルクTeが前記トルクコンバータ6の容量係数τとエンジン回転速度Neの2乗を掛けて算出されるトルク(τ*Ne2)を越えると、前進走行モードにある自動変速機用クラッチとしての前後進切換え機構7の前進クラッチ7bの締結圧を所定値まで上昇させ、すなわち前進クラッチ7bの容量Tcを所定容量Ttg01まで増加させ、時刻t4以降は、これを維持する。これに対し、比較例では前進クラッチ7bの締結圧上昇開始点である時刻t3'を所定のエンジン回転速度Neで判定し、所定圧まで急激に上昇させた後の時刻t4'以降も、前進クラッチ7bの締結圧を徐々ではあるが上昇させるため、前進クラッチ7bの容量増加が発生することによるタービン回転Ntの低下でエンジン負荷が上昇し、またエンジン回転速度Neのみで判定しているため、エンジントルクTeが十分確保されていない場合があり、エンジン回転速度Neの落ち込みが発生し、車両加速度の速やかな上昇を阻害していることがわかる。 When the engine torque Te exceeds the torque (τ * Ne 2 ) calculated by multiplying the capacity coefficient τ of the torque converter 6 and the square of the engine rotational speed Ne at time t3, the automatic transmission for the forward transmission mode is used. The engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as a clutch is increased to a predetermined value, that is, the capacity Tc of the forward clutch 7b is increased to a predetermined capacity Ttg01, and this is maintained after time t4. On the other hand, in the comparative example, the time t3 ′, which is the starting point for increasing the engagement pressure of the forward clutch 7b, is determined based on the predetermined engine speed Ne, and after the time t4 ′ is increased rapidly to the predetermined pressure, the forward clutch Since the engagement pressure of 7b is gradually increased, the engine load increases due to the decrease in turbine rotation Nt due to the increase in capacity of the forward clutch 7b, and the engine speed Ne is determined only by the engine rotation speed Ne. It can be seen that there is a case where the torque Te is not sufficiently secured, a drop in the engine rotational speed Ne occurs, and the rapid increase in vehicle acceleration is hindered.
 時刻t5で、タービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が、現在の前進クラッチ7bの容量Ttg01を越えると、前後進切換え機構7の前進クラッチ7bの締結圧を、前進クラッチ7bの容量TcとタービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が一致するように、上昇させる。時刻t6で、前後進切換え機構7の前進クラッチ7bの前後の差回転(タービン回転Ntとプライマリプーリ2の回転速度Npとの差)が一定値ΔN以下になると、前後進切換え機構7の前進クラッチ7bの締結圧を完全締結圧に上昇させる。この時、トルク段差の許容値ΔT分の段差が車両加速度に生じるが、許容値以内のため乗員がショックを感じることは抑制できる。これに対し、比較例ではクラッチの容量TcとタービントルクTt(トルク比t*容量係数τ*Ne2)に許容値ΔT以上のトルク差があるので、車両加速度に大きな段差が生じ、乗員に不快感を与える。 At time t5, the torque (t * τ * Ne 2 + ΔT) obtained by adding the torque step tolerance ΔT, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) is the current forward clutch 7b. When the capacity Ttg01 of the forward / reverse switching mechanism 7 is exceeded, the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 is set to a torque step that is a predetermined torque between the capacity Tc of the forward clutch 7b and the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) Is increased so that the torque (t * τ * Ne 2 + ΔT) obtained by adding the allowable value ΔT of the two values coincides. At time t6, when the forward / backward differential rotation of the forward clutch 7b of the forward / reverse switching mechanism 7 (difference between the turbine rotation Nt and the rotational speed Np of the primary pulley 2) becomes equal to or less than a certain value ΔN, the forward clutch of the forward / reverse switching mechanism 7 The fastening pressure of 7b is increased to the full fastening pressure. At this time, a step corresponding to the allowable value ΔT of the torque step is generated in the vehicle acceleration, but since it is within the allowable value, it can be suppressed that the occupant feels a shock. On the other hand, in the comparative example, the clutch capacity Tc and the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) have a torque difference of an allowable value ΔT or more, so that a large step occurs in the vehicle acceleration, which is inconvenient for the passenger. Gives pleasure.
 次に、作用効果を説明する。実施例1の車両100のクラッチ制御装置及び車両100のクラッチ制御方法にあっては、以下に列挙する作用効果を奏する。 Next, the function and effect will be described. The clutch control device for the vehicle 100 and the clutch control method for the vehicle 100 according to the first embodiment have the following effects.
 (1)車両100の発進時に、自動変速機としてのCVT1用の前進クラッチ7bをスリップ状態としてエンジン5及びトルクコンバータ6の回転を上昇させ、エンジントルクTeがトルクコンバータ6の容量係数τとエンジン回転速度Neの2乗で決まるトルクを越えた後に、前後進切換え機構7の前進クラッチ7bの締結力の増加を開始させて、回転が上昇したエンジン5及びトルクコンバータ6の回転エネルギーを駆動輪50に伝達し、車両100に発生する加速度を上昇させる、こととした。よって、前進クラッチ7bの容量増加のためタービン回転Ntが下がることでエンジン負荷が上昇しても、必要なエンジントルクTeが十分確保できているため、エンジン回転速度Neの落ち込みを発生させず、車両100に発生する加速度を急激に上昇させることができ、運転者が感じる加速感を向上できる。また、CVT1の前進クラッチ7bを用いてエンジン5やトルクコンバータ6の回転を上昇させるので、コストアップやエンジン周りの軸方向寸法の増加を抑制しつつ車両発進時の加速感を向上できる。 (1) When the vehicle 100 starts, the forward clutch 7b for the CVT 1 serving as an automatic transmission is slipped to increase the rotation of the engine 5 and the torque converter 6, and the engine torque Te is determined by the capacity coefficient τ of the torque converter 6 and the engine rotation. After exceeding the torque determined by the square of the speed Ne, an increase in the fastening force of the forward clutch 7b of the forward / reverse switching mechanism 7 is started, and the rotational energy of the engine 5 and the torque converter 6 whose rotation has increased is supplied to the drive wheels 50. This is transmitted to increase the acceleration generated in the vehicle 100. Therefore, even if the engine load increases due to the turbine rotation Nt decreasing due to the increase in the capacity of the forward clutch 7b, the necessary engine torque Te is sufficiently secured, so that the engine rotation speed Ne does not drop, and the vehicle The acceleration generated in 100 can be rapidly increased, and the acceleration feeling felt by the driver can be improved. Further, since the rotation of the engine 5 and the torque converter 6 is increased using the forward clutch 7b of the CVT 1, it is possible to improve the feeling of acceleration when starting the vehicle while suppressing an increase in cost and an increase in the axial dimension around the engine.
 (2)タービントルクTtに所定トルクを加算したトルクが前進クラッチ7bの容量Tcを越えるまで、増加させたクラッチの締結力を前記所定値に維持する。すなわち、タービントルクTt(トルク比t*容量係数τ*Ne2)に前記所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が前進クラッチ7bの容量Tcを越えるまで、前進クラッチ7bの容量Tcを所定値Ttg01に維持する、こととした。よって、前進クラッチ7bの容量を所定値Ttg01に維持しているので、エンジン回転速度Neの速やかな上昇を発生させ、車両100に発生する加速度を上昇させることができ、運転者が感じる加速感を向上できる。 (2) The increased clutch engagement force is maintained at the predetermined value until the torque obtained by adding the predetermined torque to the turbine torque Tt exceeds the capacity Tc of the forward clutch 7b. That is, the torque (t * τ * Ne 2 + ΔT) obtained by adding the torque step tolerance ΔT, which is the predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) is used as the capacity Tc of the forward clutch 7b. The capacity Tc of the forward clutch 7b is maintained at a predetermined value Ttg01 until it exceeds. Therefore, since the capacity of the forward clutch 7b is maintained at the predetermined value Ttg01, the engine speed Ne can be rapidly increased, the acceleration generated in the vehicle 100 can be increased, and the acceleration feeling felt by the driver can be increased. It can be improved.
 (3)増加させた前進クラッチ7bの容量Tcを前記所定値Ttg01に維持した後、タービントルクTtに前記所定トルクを加算したトルクが前進クラッチ7bの容量Tcを越えると、前進クラッチ7bの容量TcがタービントルクTtに前記許容値ΔT分を加算したトルクとなるように前進クラッチ7bの容量Tcを増加させる、こととした。よって、この時、完全締結時のタービントルクTtと前進クラッチ7bの容量Tcの段差すなわち許容値ΔT分の段差が車両加速度に生じるが、許容値以内のため乗員がショックを感じることは抑制できる。 (3) If the torque obtained by adding the predetermined torque to the turbine torque Tt exceeds the capacity Tc of the forward clutch 7b after maintaining the increased capacity Tc of the forward clutch 7b at the predetermined value Ttg01, the capacity Tc of the forward clutch 7b The capacity Tc of the forward clutch 7b is increased so that the torque obtained by adding the allowable value ΔT to the turbine torque Tt is obtained. Therefore, at this time, a step between the turbine torque Tt at the time of complete engagement and the capacity Tc of the forward clutch 7b, that is, a step corresponding to the allowable value ΔT occurs in the vehicle acceleration, but it can be suppressed that the passenger feels a shock because it is within the allowable value.
 (4)待機制御によって、車両100が停止する前に前進クラッチ7bが予めスリップ状態になっている、こととした。よって、車両100の発進時に、速やかにクラッチ制御を開始できる。 (4) By the standby control, the forward clutch 7b is in a slip state before the vehicle 100 stops. Therefore, the clutch control can be quickly started when the vehicle 100 starts.
 (5)変速機コントローラ12は、CVT1の油温TMPが第1基準温度以下の低温領域にある場合は、クラッチ制御を禁止する、こととした。よって、制御の確実性を確保できる。 (5) The transmission controller 12 prohibits the clutch control when the oil temperature TMP of the CVT 1 is in the low temperature region below the first reference temperature. Therefore, certainty of control can be ensured.
 (6)変速機コントローラ12は、CVT1の油温TMPが第2基準温度以上の高温領域にある場合は、クラッチ制御を禁止する、こととした。よって、前進クラッチ7bが過熱することを防止でき、前進クラッチ7bを保護できる。 (6) The transmission controller 12 prohibits the clutch control when the oil temperature TMP of the CVT 1 is in a high temperature range equal to or higher than the second reference temperature. Therefore, the forward clutch 7b can be prevented from overheating, and the forward clutch 7b can be protected.
 (7)変速機コントローラ12は、路面の勾配が基準角度よりも大きい上り走行の場合は、クラッチ制御を禁止する、こととした。よって、発進時に車両100が後退することを防止できる。 (7) The transmission controller 12 prohibits clutch control when the vehicle is traveling uphill where the road gradient is larger than the reference angle. Therefore, it is possible to prevent the vehicle 100 from moving backward when starting.
 (8)変速機コントローラ12は、CVT1の走行モードとして燃費を重視する燃費モードが選択されている場合は、クラッチ制御を禁止する、こととした。よって、燃費の向上を図ることができる。 (8) The transmission controller 12 prohibits clutch control when the fuel economy mode in which the fuel efficiency is emphasized is selected as the driving mode of the CVT 1. Therefore, the fuel consumption can be improved.
 (9)エンジン5は、過給機21付きエンジンである。よって、車両発進時にターボラグが発生するが、このような過給機を備えた車両であっても、発進時の加速感を向上できる。 (9) The engine 5 is an engine with a supercharger 21. Therefore, although turbo lag is generated when the vehicle starts, even a vehicle equipped with such a supercharger can improve the feeling of acceleration when starting.
 [実施例2]
 図6は、実施例2の変速機コントローラ12が実行する処理の内容を示したフローチャート、図7は、実施例2のクラッチ制御が実行される様子を示したタイムチャートである。
[Example 2]
FIG. 6 is a flowchart showing the contents of processing executed by the transmission controller 12 of the second embodiment, and FIG. 7 is a time chart showing how the clutch control of the second embodiment is executed.
 変速機コントローラ12は、アクセルがOFFからONになると処理を開始する。 The transmission controller 12 starts processing when the accelerator is turned from OFF to ON.
 ステップS31では、変速機コントローラ12は、アクセルONになってから所定時間経過したかを判定する。 In step S31, the transmission controller 12 determines whether a predetermined time has elapsed since the accelerator was turned on.
 変速機コントローラ12は、アクセルONになってから所定時間経過したと判定すると、処理をステップS32に移行する。また、アクセルONになってから所定時間経過していないと判定すると、ステップS31の処理を繰り返し行う。 If the transmission controller 12 determines that a predetermined time has elapsed since the accelerator was turned on, the process proceeds to step S32. If it is determined that the predetermined time has not elapsed since the accelerator was turned on, the process of step S31 is repeated.
 ステップS32では、変速機コントローラ12は、アクセル開度APOが基準開度以上かを判定する。 In step S32, the transmission controller 12 determines whether the accelerator opening APO is greater than or equal to the reference opening.
 変速機コントローラ12は、アクセル開度APOが基準開度以上と判定すると、処理をステップS33に移行する。また、アクセル開度APOが基準開度未満と判定すると、処理をステップS37に移行し、通常の発進を行う。 If the transmission controller 12 determines that the accelerator opening APO is greater than or equal to the reference opening, the process proceeds to step S33. If it is determined that the accelerator opening APO is less than the reference opening, the process proceeds to step S37 and a normal start is performed.
 アクセルONから所定時間経過後のアクセル開度APOが基準開度未満の場合は、運転者が車両100を加速させることを意図しておらず、アクセルをゆっくり踏み込んでいる状態と考えられる。よって、この場合は、クラッチ制御を禁止して通常の発進を行うことで燃費の向上を図っている。なお、ステップS31の所定時間は、例えば、0.3secであり、ステップS32の基準開度は、例えば、70%である。 If the accelerator opening APO after a predetermined time has elapsed after the accelerator is turned on is less than the reference opening, it is considered that the driver does not intend to accelerate the vehicle 100 and is slowly depressing the accelerator. Therefore, in this case, the fuel consumption is improved by prohibiting the clutch control and performing a normal start. In addition, the predetermined time of step S31 is 0.3 sec, for example, and the reference opening degree of step S32 is 70%, for example.
 ステップS33では、変速機コントローラ12は、油温センサ18からの信号に基づいて、CVT1の油温TMPが基準範囲内にあるかを判定する。 In step S33, the transmission controller 12 determines whether the oil temperature TMP of the CVT 1 is within the reference range based on the signal from the oil temperature sensor 18.
 変速機コントローラ12は、油温TMPが基準範囲内にあると判定すると、処理をステップS34に移行する。また、油温TMPが基準範囲内にないと判定すると、処理をステップS37に移行し、通常の発進を行う。 If the transmission controller 12 determines that the oil temperature TMP is within the reference range, the process proceeds to step S34. If it is determined that the oil temperature TMP is not within the reference range, the process proceeds to step S37 and a normal start is performed.
 ステップS34では、変速機コントローラ12は、角度センサ22からの信号に基づいて、路面の上り勾配が基準角度以下かを判定する。 In step S34, the transmission controller 12 determines whether the ascending slope of the road surface is equal to or less than the reference angle based on the signal from the angle sensor 22.
 変速機コントローラ12は、路面の上り勾配が基準角度以下と判定すると、処理をステップS35に移行する。また、路面の上り勾配が基準角度よりも大きいと判定すると、処理をステップS37に移行し、通常の発進を行う。 If the transmission controller 12 determines that the road slope is equal to or smaller than the reference angle, the process proceeds to step S35. If it is determined that the road slope is larger than the reference angle, the process proceeds to step S37 and a normal start is performed.
 ステップS35では、変速機コントローラ12は、セレクトスイッチ17により選択されたCVT1の走行モードが燃費モードかを判定する。 In step S35, the transmission controller 12 determines whether the travel mode of the CVT 1 selected by the select switch 17 is the fuel consumption mode.
 変速機コントローラ12は、CVT1の走行モードが燃費モードであると判定すると、処理をステップS37に移行し、通常の発進を行う。また、CVT1の走行モードが燃費モードでないと判定すると、処理をステップS36に移行し、クラッチ制御による発進を行う。 If the transmission controller 12 determines that the travel mode of the CVT 1 is the fuel consumption mode, the transmission controller 12 proceeds to step S37 and performs normal start. If it is determined that the travel mode of CVT1 is not the fuel consumption mode, the process proceeds to step S36, and the vehicle starts with clutch control.
 続いて、図7に示すタイムチャートを参照しながら、クラッチ制御が実行される様子について説明する。 Next, the manner in which clutch control is executed will be described with reference to the time chart shown in FIG.
 時刻t1よりも前は、アクセルOFFかつ車両100が停止中である。また、CVT1のモードとして前進走行モードが選択されており、前進クラッチ7bが完全に締結されている。このため、トルクコンバータ6の出力軸8の回転速度NtとCVT1のプライマリプーリ2の回転速度Npとがゼロになっている。 Prior to time t1, the accelerator is OFF and the vehicle 100 is stopped. Further, the forward travel mode is selected as the mode of CVT1, and the forward clutch 7b is completely engaged. For this reason, the rotational speed Nt of the output shaft 8 of the torque converter 6 and the rotational speed Np of the primary pulley 2 of the CVT 1 are zero.
 時刻t1でアクセルONになると、所定時間が経過した時刻t2にクラッチ制御が開始され、前進クラッチ7bの締結力が減少する。所定時間は、例えば、0.3secである。 When the accelerator is turned on at time t1, clutch control is started at time t2 when a predetermined time has elapsed, and the fastening force of the forward clutch 7b decreases. The predetermined time is, for example, 0.3 sec.
 前進クラッチ7bは、トルクコンバータ6よりも動力伝達経路における下流側に設けられているので、前進クラッチ7bがスリップ状態となることで、エンジン5が発生するトルクのうちトルクコンバータ6の流体を攪拌するために使われるトルクが減少する。 Since the forward clutch 7b is provided downstream of the torque converter 6 in the power transmission path, the fluid of the torque converter 6 is agitated out of the torque generated by the engine 5 when the forward clutch 7b is slipped. This reduces the torque used.
 このため、クラッチ制御による発進の場合は、前進クラッチ7bが締結状態のまま発進する通常の発進の場合よりも、エンジン5自身の回転上昇に使われるトルクが増加し、エンジン回転速度Neの上昇が促進される。 For this reason, in the case of starting by clutch control, the torque used for increasing the rotation of the engine 5 itself is increased and the increase in the engine speed Ne is higher than in the case of normal starting in which the forward clutch 7b starts with the engaged state. Promoted.
 よって、例えば、アクセルONになってからの経過時間である時刻t3において、クラッチ制御による発進の場合は、エンジン回転速度Neが上昇している。また、回転速度Ntの変化からわかるように、トルクコンバータ6の回転速度も大きく上昇している。 Thus, for example, at time t3, which is the elapsed time since the accelerator is turned on, in the case of starting by clutch control, the engine speed Ne is increased. Further, as can be seen from the change in the rotational speed Nt, the rotational speed of the torque converter 6 is also greatly increased.
 そして、時刻t3で、エンジントルクTeが前記トルクコンバータ6の容量係数τとエンジン回転速度Neの2乗を掛けて算出されるトルク(τ*Ne2)を越えると、前進走行モードにある自動変速機用クラッチとしての前後進切換え機構7の前進クラッチ7bの締結圧を所定値まで上昇させ、すなわち前進クラッチ7bの容量Tcを所定容量Ttg01まで増加させ、時刻t4以降は、これを維持する。 At time t3, when the engine torque Te exceeds the torque (τ * Ne 2 ) calculated by multiplying the capacity coefficient τ of the torque converter 6 and the square of the engine speed Ne, the automatic shift in the forward travel mode is performed. The fastening pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 as a mechanical clutch is increased to a predetermined value, that is, the capacity Tc of the forward clutch 7b is increased to a predetermined capacity Ttg01, and this is maintained after time t4.
 時刻t5で、タービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)が、現在の前進クラッチ7bの容量Ttg01を越えると、前後進切換え機構7の前進クラッチ7bの締結圧を、前進クラッチ7bの容量TcがタービントルクTt(トルク比t*容量係数τ*Ne2)に所定トルクであるトルク段差の許容値ΔTを加算したトルク(t*τ*Ne2+ΔT)に一致するように上昇させる。時刻t6で、前後進切換え機構7の前進クラッチ7bの前後の差回転(タービン回転Ntとプライマリプーリ2の回転速度Npとの差)が一定値ΔN以下になると、前後進切換え機構7の前進クラッチ7bの締結圧を完全締結圧に上昇させる。この時、許容値ΔT分の段差が車両加速度に生じるが、許容値以内のため乗員が感じることは抑制できる。 At time t5, the torque (t * τ * Ne 2 + ΔT) obtained by adding the torque step tolerance ΔT, which is a predetermined torque, to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ) is the current forward clutch 7b. Exceeding the capacity Ttg01, the engagement pressure of the forward clutch 7b of the forward / reverse switching mechanism 7 is set to a torque step where the capacity Tc of the forward clutch 7b is a predetermined torque to the turbine torque Tt (torque ratio t * capacity coefficient τ * Ne 2 ). To the torque (t * τ * Ne 2 + ΔT) obtained by adding the allowable value ΔT. At time t6, when the forward / backward differential rotation of the forward clutch 7b of the forward / reverse switching mechanism 7 (difference between the turbine rotation Nt and the rotational speed Np of the primary pulley 2) becomes equal to or less than a certain value ΔN, the forward clutch of the forward / reverse switching mechanism 7 The fastening pressure of 7b is increased to the full fastening pressure. At this time, a step corresponding to the allowable value ΔT occurs in the vehicle acceleration, but it can be suppressed that the passenger feels because it is within the allowable value.
 よって、実施例2では、待機制御を除く、第1実施例の作用効果に加え、以下の作用効果を有している。 Therefore, the second embodiment has the following operational effects in addition to the operational effects of the first embodiment except for standby control.
 (1)変速機コントローラ12は、アクセルONになってから所定時間経過後のアクセル開度APOが基準開度以下の場合は、クラッチ制御を禁止する。この場合は、運転者が車両100を加速させることを意図していないと考えられる。よって、通常の発進を行うことで燃費の向上を図ることができる。 (1) The transmission controller 12 prohibits clutch control when the accelerator opening APO is equal to or less than the reference opening after a predetermined time has elapsed since the accelerator was turned on. In this case, it is considered that the driver does not intend to accelerate the vehicle 100. Therefore, fuel efficiency can be improved by performing normal start.
 [他の実施例]
 以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
[Other embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on the Example, the concrete structure of this invention is not limited to the structure shown in the Example, and is the range which does not deviate from the summary of invention. Any design changes are included in the present invention.
 例えば、実施例では、クラッチ制御において、前進クラッチ7bをスリップ状態とすることでエンジン回転速度Neを上昇させているが、前進クラッチ7bは解放状態であってもよい。また、実施例1の待機制御においても、前進クラッチ7bは解放状態であってもよい。 For example, in the embodiment, in the clutch control, the engine speed Ne is increased by making the forward clutch 7b slip, but the forward clutch 7b may be in a released state. Also in the standby control of the first embodiment, the forward clutch 7b may be in a released state.
 また、実施例では、前進クラッチ7bを用いて待機制御及びクラッチ制御を行っているが、エンジン5から駆動輪50までの動力伝達経路においてトルクコンバータ6の下流側に設けられていれば、前進クラッチ7b以外のクラッチを用いてもよい。 In the embodiment, standby control and clutch control are performed using the forward clutch 7b. However, if the power transmission path from the engine 5 to the drive wheels 50 is provided on the downstream side of the torque converter 6, the forward clutch A clutch other than 7b may be used.
 また、実施例では、過給機21を備える車両100に本発明を適用しているが、過給機を備えない車両に本発明を適用してもよい。 In the embodiment, the present invention is applied to the vehicle 100 including the supercharger 21, but the present invention may be applied to a vehicle not including the supercharger.
 また、実施例では、車両100が備える自動変速機をCVT1としているが、自動変速機は、有段変速機であってもよい。 In the embodiment, the automatic transmission provided in the vehicle 100 is CVT1, but the automatic transmission may be a stepped transmission.

Claims (6)

  1.  エンジンと、前記エンジンの回転を変速して駆動輪へ伝達する自動変速機と、前記エンジンと前記自動変速機との間に設けられるトルクコンバータと、前記トルクコンバータの下流側に設けられた前記自動変速機用のクラッチを備える車両のクラッチ制御装置であって、
     前記車両の発進時に、前記自動変速機用のクラッチを解放状態又はスリップ状態として前記エンジン及び前記トルクコンバータの回転を上昇させ、エンジントルクが前記トルクコンバータの容量係数とエンジン回転速度の2乗で決まるトルクを越えた後に、前記自動変速機用のクラッチの締結力の増加を開始させて、回転が上昇した前記エンジン及び前記トルクコンバータの回転エネルギーを前記駆動輪に伝達し、前記車両に発生する加速度を上昇させる、
     車両のクラッチ制御装置。
    An engine, an automatic transmission that shifts the rotation of the engine and transmits it to drive wheels, a torque converter provided between the engine and the automatic transmission, and the automatic provided downstream of the torque converter A vehicle clutch control device including a transmission clutch,
    When the vehicle starts, the clutch for the automatic transmission is released or slipped to increase the rotation of the engine and the torque converter, and the engine torque is determined by the square of the capacity coefficient of the torque converter and the engine rotation speed. After the torque is exceeded, an increase in the engagement force of the clutch for the automatic transmission is started to transmit the rotational energy of the engine and the torque converter whose rotation has increased to the drive wheels, and the acceleration generated in the vehicle Rise,
    Vehicle clutch control device.
  2.  請求項1に記載の車両のクラッチ制御装置であって、
     前記締結力を増加させた前記クラッチの容量を、タービントルクに所定トルクを加算したトルクが前記クラッチの容量を越えるまで、所定容量に維持する、
     車両のクラッチ制御装置。
    The vehicle clutch control device according to claim 1,
    Maintaining the capacity of the clutch with the increased fastening force at a predetermined capacity until the torque obtained by adding the predetermined torque to the turbine torque exceeds the capacity of the clutch;
    Vehicle clutch control device.
  3.  請求項2に記載の車両のクラッチ制御装置であって、
     前記締結力を増加させた前記クラッチの容量を前記所定容量に維持し、タービントルクに前記所定トルクを加算したトルクが前記クラッチの容量を越えた後、前記クラッチの容量がタービントルクに前記所定トルクを加算したトルクとなるように、前記クラッチの前記締結力を増加させて前記クラッチの容量を増加させる、
     車両のクラッチ制御装置。
    The vehicle clutch control device according to claim 2,
    After the torque obtained by adding the predetermined torque to the turbine torque exceeds the clutch capacity, the clutch capacity is increased to the turbine torque and the predetermined torque is maintained. To increase the engagement force of the clutch to increase the capacity of the clutch so that the torque obtained by adding
    Vehicle clutch control device.
  4.  エンジンと、前記エンジンの回転を変速して駆動輪へ伝達する自動変速機と、前記エンジンと前記自動変速機との間に設けられるトルクコンバータと、前記トルクコンバータの下流側に設けられた前記自動変速機用のクラッチを備える車両のクラッチ制御方法であって、
     前記車両の発進時に、前記自動変速機用のクラッチを解放状態又はスリップ状態として前記エンジン及び前記トルクコンバータの回転を上昇させ、エンジントルクが前記トルクコンバータの容量係数とエンジン回転速度の2乗で決まるトルクを越えた後に、前記自動変速機用のクラッチの締結力の増加を開始させて、回転が上昇した前記エンジン及び前記トルクコンバータの回転エネルギーを前記駆動輪に伝達し、前記車両に発生する加速度を上昇させる、
     車両のクラッチ制御方法。
    An engine, an automatic transmission that shifts the rotation of the engine and transmits it to drive wheels, a torque converter provided between the engine and the automatic transmission, and the automatic provided downstream of the torque converter A clutch control method for a vehicle including a clutch for a transmission,
    When the vehicle starts, the clutch for the automatic transmission is released or slipped to increase the rotation of the engine and the torque converter, and the engine torque is determined by the square of the capacity coefficient of the torque converter and the engine rotation speed. After the torque is exceeded, an increase in the engagement force of the clutch for the automatic transmission is started to transmit the rotational energy of the engine and the torque converter whose rotation has increased to the drive wheels, and the acceleration generated in the vehicle Rise,
    Vehicle clutch control method.
  5.  請求項4に記載の車両のクラッチ制御方法であって、
     前記締結力を増加させた前記クラッチの容量を、タービントルクに所定トルクを加算したトルクが前記クラッチの容量を越えるまで、所定容量に維持する、
     車両のクラッチ制御方法。
    The vehicle clutch control method according to claim 4,
    Maintaining the capacity of the clutch with the increased fastening force at a predetermined capacity until the torque obtained by adding the predetermined torque to the turbine torque exceeds the capacity of the clutch;
    Vehicle clutch control method.
  6.  請求項5に記載の車両のクラッチ制御方法であって、
     前記締結力を増加させた前記クラッチの容量を前記所定容量に維持し、タービントルクに前記所定トルクを加算したトルクが前記クラッチの容量を越えた後、前記クラッチの容量がタービントルクに前記所定トルクを加算したトルクとなるように、前記クラッチの前記締結力を増加させて前記クラッチの容量を増加させる、
     車両のクラッチ制御方法。
    The vehicle clutch control method according to claim 5,
    After the torque obtained by adding the predetermined torque to the turbine torque exceeds the clutch capacity, the clutch capacity is increased to the turbine torque and the predetermined torque is maintained. To increase the engagement force of the clutch to increase the capacity of the clutch so that the torque obtained by adding
    Vehicle clutch control method.
PCT/JP2017/035110 2016-11-24 2017-09-28 Vehicle clutch control device and vehicle clutch control method WO2018096782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228206 2016-11-24
JP2016228206A JP2020029865A (en) 2016-11-24 2016-11-24 Clutch control device of vehicle and clutch control method of vehicle

Publications (1)

Publication Number Publication Date
WO2018096782A1 true WO2018096782A1 (en) 2018-05-31

Family

ID=62196195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035110 WO2018096782A1 (en) 2016-11-24 2017-09-28 Vehicle clutch control device and vehicle clutch control method

Country Status (2)

Country Link
JP (1) JP2020029865A (en)
WO (1) WO2018096782A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272622A (en) * 1992-03-30 1993-10-19 Toyota Motor Corp Oil temperature estimation device for automatic transmission
JPH11351372A (en) * 1998-06-10 1999-12-24 Toyota Motor Corp Control device for re-start of vehicle engine
JP2006125213A (en) * 2004-10-26 2006-05-18 Nissan Motor Co Ltd Engine control device for power train

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272622A (en) * 1992-03-30 1993-10-19 Toyota Motor Corp Oil temperature estimation device for automatic transmission
JPH11351372A (en) * 1998-06-10 1999-12-24 Toyota Motor Corp Control device for re-start of vehicle engine
JP2006125213A (en) * 2004-10-26 2006-05-18 Nissan Motor Co Ltd Engine control device for power train

Also Published As

Publication number Publication date
JP2020029865A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5234171B2 (en) Driving force control device
JP5762261B2 (en) Shift control device for continuously variable transmission
JP6052239B2 (en) Control device for vehicle transmission
WO2015118895A1 (en) Control device for continuously variable transmission
JP2010208518A (en) Power transmission control device for vehicle
JP5340790B2 (en) Vehicle power transmission control device
WO2014017356A1 (en) Control device and control method for automatic transmission
JP2019184027A (en) Control device of power transmission device for vehicle
JP2013022999A (en) Power transmission control device for vehicle
WO2016013238A1 (en) Hybrid vehicle control device and control method therefor
JP2017036783A (en) Control device of power transmission device
JP2019152295A (en) Control device for power transmission device for vehicle
JP2006002900A (en) Starting friction element controller of vehicle
JP7139035B2 (en) control device for continuously variable transmission
WO2018096782A1 (en) Vehicle clutch control device and vehicle clutch control method
WO2017135171A1 (en) Vehicle control device and vehicle control method
WO2016017201A1 (en) Vehicle control device and control method
JP7118555B2 (en) control device for continuously variable transmission
JP5322749B2 (en) Vehicle power transmission control device
CN109973644B (en) Control device for vehicle power transmission device
JP2017020622A (en) Control device of power transmission device
JP2017096404A (en) Control device of power transmission device for vehicle
JP2020023989A (en) Control device of vehicle drive unit
JP2019124255A (en) Control device of transmission for vehicle
JP2017160976A (en) Clutch control device for vehicle and clutch control method for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP