WO2014017356A1 - Control device and control method for automatic transmission - Google Patents

Control device and control method for automatic transmission Download PDF

Info

Publication number
WO2014017356A1
WO2014017356A1 PCT/JP2013/069413 JP2013069413W WO2014017356A1 WO 2014017356 A1 WO2014017356 A1 WO 2014017356A1 JP 2013069413 W JP2013069413 W JP 2013069413W WO 2014017356 A1 WO2014017356 A1 WO 2014017356A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction element
automatic transmission
hydraulic pressure
state
power source
Prior art date
Application number
PCT/JP2013/069413
Other languages
French (fr)
Japanese (ja)
Inventor
若山 英史
公祐 和久
訓卓 青山
真美子 井上
詔生 浅井
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2014526874A priority Critical patent/JP5768188B2/en
Priority to KR1020157002284A priority patent/KR20150036238A/en
Priority to CN201380039960.2A priority patent/CN104508331B/en
Priority to KR1020167033094A priority patent/KR101929107B1/en
Publication of WO2014017356A1 publication Critical patent/WO2014017356A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18066Coasting
    • B60Y2300/18083Coasting without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/192Power-up or power-down of the driveline, e.g. start up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/72Continous variable transmissions [CVT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a control device and control method of an automatic transmission in a vehicle that performs stopping and restarting of a driving power source.
  • An idle stop technology is widely used to improve fuel efficiency by stopping an engine that is a driving power source when the vehicle is stopped.
  • so-called coast stop control in which the engine is stopped before the vehicle stops, such as at the time of deceleration, as well as when the vehicle is stopped, has been put to practical use.
  • engagement of a friction element such as a clutch is controlled by hydraulic pressure.
  • switching of the friction element may be performed in preparation for reacceleration and re-start.
  • the oil pump driven by the engine can not generate the hydraulic pressure, so the supply of the hydraulic pressure for switching the friction element may be reduced.
  • JP2006-170295A automatically stops the engine while the vehicle is traveling to place the automatic transmission in a neutral state, and after the engine stops, operates the electric oil pump to generate a friction element. It is disclosed to supply hydraulic pressure, that is, to initiate so-called precharging.
  • the friction element in the engagement state may slip, and thus, the torque may be lost due to slip or the engagement may occur.
  • the shock may change the longitudinal acceleration of the vehicle, which may cause the driver to feel uncomfortable.
  • the present invention has been made in view of such problems, and it is an object of the present invention to provide a control device of an automatic transmission capable of suppressing a slip of a friction element and reducing a sense of discomfort given to a driver in coast stop control. I assume.
  • a transmission source driving a vehicle, an oil pressure source driven by the driving source to generate an oil pressure, and a transmission gear ratio according to the engagement state of the first friction element and the second friction element
  • a control unit for transmitting the driving force of the driving force source to the driving wheels, and a control unit for controlling the operation of the driving force source, the hydraulic pressure source, and the transmission mechanism.
  • the control unit outputs a stop command to the drive power source to stop the drive power source when the vehicle is in a traveling state, the first friction element is in the engaged state, and the second friction element is in the release state.
  • a friction element control unit for controlling an engagement state of the first friction element and the second friction element, the friction element control unit stopping the driving force source by the coast stop control unit.
  • the second friction element is started to be supplied with hydraulic pressure after the command is issued until the rotation of the hydraulic pressure source is stopped.
  • a driving force source for driving a vehicle an oil pressure source driven by the driving force source to generate an oil pressure, and a fastening state of a first friction element and a second friction element
  • the automatic transmission in a vehicle includes: an automatic transmission that changes the transmission gear ratio and transmits the driving force of the driving force source to the driving wheels; and a control unit that controls the operation of the driving force source, the hydraulic pressure source, and the transmission mechanism.
  • the control method of The control method is such that when the vehicle is in a traveling state, the first friction element is in the engaged state, and the second friction element is in the release state, the drive power source stop command is output to stop the drive power source. Then, the supply of oil pressure to the second friction element is started while the rotation of the oil pressure source is stopped.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing an example of the configuration of the transmission controller according to the embodiment of the present invention.
  • FIG. 3 is an explanatory view showing an example of a shift map according to the embodiment of the present invention.
  • Drawing 4 is an explanatory view at the time of coast stop control of a comparative example
  • Drawing 5 is an explanatory view at the time of coast stop control of an embodiment of the present invention.
  • FIG. 6 is a flowchart of coast stop control according to the embodiment of this invention.
  • FIG. 1 is a schematic block diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention.
  • the vehicle is equipped with an engine 1 as a power source.
  • the output rotation of the engine 1 is performed via a torque converter 2 with a lockup clutch, a first gear train 3, a continuously variable transmission (hereinafter simply referred to as "transmission 4"), a second gear train 5, and a final reduction gear 6. And is transmitted to the drive wheel 7.
  • the second gear train 5 is provided with a parking mechanism 8 which mechanically locks the output shaft of the transmission 4 in a non-rotatable manner during parking.
  • the vehicle is provided with a mechanical oil pump 10m, which receives rotation of the engine 1 and is driven using a portion of the power of the engine 1, and an electric oil pump 10e, which is driven by receiving power supply from the battery 13. It is done.
  • the transmission 4 controls the hydraulic control circuit 11, which controls the hydraulic pressure supplied from at least one of the mechanical oil pump 10m and the electric oil pump 10e, and supplies the hydraulic control circuit 11, the engine 1 and the hydraulic control circuit 11.
  • a controller 12 is provided.
  • the transmission 4 includes a continuously variable transmission mechanism (hereinafter, referred to as “variator 20”) and an auxiliary transmission mechanism 30 provided in series with the variator 20.
  • the "in series” means that the variator 20 and the auxiliary transmission mechanism 30 are provided in series in the same power transmission path.
  • the auxiliary transmission mechanism 30 may be directly connected to the output shaft of the variator 20 as in this example, or may be connected via another transmission or power transmission mechanism (for example, a gear train).
  • the variator 20 is a belt-type continuously variable transmission mechanism including a primary pulley 21, a secondary pulley 22, and a belt (V-belt) 23 wound around the pulleys 21 and 22.
  • the pulleys 21 and 22 each have a fixed conical plate, a movable conical plate disposed with the sheave surface facing the fixed conical plate and forming a V-groove between the fixed conical plate, and a back surface of the movable conical plate And hydraulic cylinders 23a and 23b for axially displacing the movable conical plate.
  • the auxiliary transmission mechanism 30 is a transmission mechanism having two forward gears and one reverse gear.
  • the auxiliary transmission mechanism 30 is connected to a Ravigneaux type planetary gear mechanism 31 connecting carriers of two planet gears, and a plurality of rotating elements constituting the Ravigneaux type planetary gear mechanism 31, and a plurality of frictions that change the linkage state thereof.
  • An element (Low brake 32, High clutch 33, Rev brake 34) is provided.
  • the gear position of the auxiliary transmission mechanism 30 becomes the first gear. If the High clutch 33 is engaged and the Low brake 32 and the Rev brake 34 are released, the gear position of the auxiliary transmission mechanism 30 becomes the second gear whose gear ratio is smaller than the first gear. If the Rev brake 34 is engaged and the Low brake 32 and the High clutch 33 are released, the gear position of the auxiliary transmission mechanism 30 is in reverse.
  • the gear position of the auxiliary transmission mechanism 30 is the first speed, it is expressed as "the transmission 4 is in the low speed mode", and when it is the second speed, it is expressed as "the transmission 4 is in the high speed mode”. .
  • the controller 12 is a control unit that controls the engine 1 and the transmission 4 in an integrated manner, and as shown in FIG. 2, the CPU 121, a storage device 122 composed of a RAM and ROM, an input interface 123, and an output interface 124. , And a bus 125 interconnecting them.
  • the storage device 122 stores a control program of the engine 1, a shift control program of the transmission 4, and a shift map (FIG. 3) used in the shift control program.
  • the CPU 121 reads out and executes the transmission control program stored in the storage device 122, performs various arithmetic processing on various signals input through the input interface 123, and generates a fuel injection signal, an ignition timing signal, and a throttle. An opening degree signal and a transmission control signal are generated, and the generated transmission control signal is output to the hydraulic control circuit 11 via the output interface 124.
  • Various values used by the CPU 121 in the arithmetic processing, and the arithmetic result thereof are stored in the storage device 122 as appropriate.
  • the hydraulic control circuit 11 is composed of a plurality of flow paths and a plurality of hydraulic control valves.
  • the hydraulic control circuit 11 controls a plurality of hydraulic control valves based on the shift control signal from the controller 12 to switch the supply path of the hydraulic pressure, and the necessary hydraulic pressure is generated from the hydraulic pressure generated by the mechanical oil pump 10m or the electric oil pump 10e. It prepares and supplies this to each part of the transmission 4. As a result, the transmission ratio v Ratio of the variator 20 and the gear position of the auxiliary transmission mechanism 30 are changed, and the transmission 4 is shifted.
  • FIG. 3 shows an example of a shift map stored in the storage device 122 of the controller 12 of this embodiment.
  • the operating point of the transmission 4 is determined based on the vehicle speed VSP and the primary rotational speed Npri.
  • the slope of the line connecting the operating point of the transmission 4 and the zero point of the lower left corner of the shift map is the transmission ratio of the transmission 4 (the overall transmission ratio obtained by multiplying the transmission ratio v Ratio of the variator 20 by the transmission ratio sub Ratio of the auxiliary transmission mechanism 30 Hereinafter, it is referred to as “through gear ratio Ratio”.
  • a shift line is set for each accelerator opening APO, and the shift of the transmission 4 is performed according to a shift line selected according to the accelerator opening APO.
  • a shift line selected according to the accelerator opening APO.
  • all load lines shift lines when the accelerator opening APO is 8/8
  • partial lines shift lines when the accelerator opening APO is 4/8
  • a coast line acceleration opening Only the shift line
  • the transmission 4 can obtain the low speed mode Lowest line obtained by maximizing the transmission ratio vRatio of the variator 20 and the low speed mode highest line obtained by minimizing the transmission ratio vRatio of the variator 20 It is possible to shift between gears. At this time, the operating point of the transmission 4 moves in the A area and the B area.
  • the transmission 4 when the transmission 4 is in the high speed mode, the transmission 4 can obtain the high speed mode Lowest line obtained by maximizing the transmission ratio v Ratio of the variator 20 and the high speed mode highest obtained by minimizing the transmission ratio v Ratio of the variator 20. You can shift between the lines. At this time, the operating point of the transmission 4 moves in the B area and the C area.
  • the controller 12 controls the transmission ratio of the variator 20 and the auxiliary transmission mechanism 30 by setting the through transmission ratio Ratio corresponding to the vehicle speed VSP and the accelerator opening APO (the driving state of the vehicle) with reference to the transmission map.
  • the controller 12 stops the rotation of the engine 1 while the vehicle is traveling, in addition to the idle stop control that stops the rotation of the engine 1 while the vehicle is stopped, in order to suppress the fuel consumption. Perform coast stop control.
  • the coast stop control is control for automatically stopping the engine 1 to suppress the fuel consumption while the vehicle is traveling in the low vehicle speed region.
  • the coast stop control is common to the fuel cut control performed when the accelerator is off and to stop the fuel supply to the engine 1, but the normal fuel cut control is performed at relatively high speed traveling and the engine brake While the lockup clutch of the torque converter 2 is engaged in order to secure it, the coast stop control is executed at a relatively low speed traveling just before the vehicle stops, and the engine 1 is rotated with the lockup clutch released. It differs in the point to make it stop.
  • the controller 12 first determines, for example, the following conditions (a) to (f).
  • the controller 12 determines that the coast stop condition is satisfied when the conditions (a) to (f) are satisfied.
  • the coast stop condition is satisfied, the supply of fuel to the engine 1 is stopped and the rotation of the engine 1 is stopped.
  • FIG. 4 is an explanatory view at the time of coast stop control of a comparative example in the embodiment of the present invention, and shows problems of the prior art.
  • the output shaft rotational speed No of the transmission 4 from the top, the output shaft rotational speed No of the transmission 4, the engine rotational speed Ne, the line pressure PL, the indicated pressure (solid line) and the actual pressure (dotted line) of the low brake 32, the indicated pressure (solid line) of the high clutch 33 And actual pressure (dotted line) and acceleration of the vehicle.
  • the primary hydraulic pressure Ppri is a value that is adjusted by the hydraulic control circuit 11 and the hydraulic pressure supplied to each part of the transmission 4 is exemplified.
  • a vehicle speed VSP can be obtained by multiplying the output rotational speed No by the reduction ratio of the final reduction gear, the wheel diameter of the drive wheel 7 and the like.
  • the command pressure of the High clutch 33 and the actual pressure are described with a slight difference, but this is merely a disagreement for the sake of explanation, and in practice the command pressure and the actual pressure are Match
  • FIG. 4 shows an operation in the case where the coast stop condition is satisfied at timing t01 and the engine 1 is stopped while the vehicle is gradually decelerating.
  • FIG. 4 shows a state where the vehicle speed VSP is decelerated along the cost line shown in FIG. 3 and the transition from the region C to the region B occurs. Therefore, the auxiliary transmission mechanism 30 is in the high speed mode, and among the friction elements, the Low brake 32 is controlled to the released state, and the High clutch 33 is controlled to the engaged state.
  • the High clutch 33 is engaged in the auxiliary transmission mechanism 30 to prevent a time lag for engaging the friction element. As a power transmission state.
  • the auxiliary transmission mechanism 30 is shifted to the low speed mode in preparation for re-start, that is, the High clutch 33 is released and the Low brake 32 is controlled to the engaged state.
  • a so-called precharging is performed, in which a predetermined hydraulic pressure is supplied to the Low brake 32, which is a friction element in the released state in the coast stop state, before the vehicle stops. Start.
  • a predetermined hydraulic pressure is supplied to the Low brake 32, which is a friction element in the released state in the coast stop state, before the vehicle stops. Start.
  • the controller 12 stops the supply of fuel to the engine 1, releases the lockup clutch of the torque converter, and stops the rotation of the engine 1 (timing t01 ).
  • the hydraulic pressure that can be discharged by the electric oil pump 10e is smaller than the mechanical oil pump 10m. This is because the transmission 4 does not have to transmit a large torque when the engine 1 is stopped, and the variator 20 or the auxiliary transmission mechanism This is because it is only necessary to secure the minimum hydraulic pressure necessary for fastening 30. By reducing the capacity of the electric oil pump 10e, the size and weight of the electric oil pump 10e can be reduced.
  • the controller 12 determines to shift the auxiliary transmission mechanism 30 from the high speed mode to the constant speed mode. In other words, since it is certain that the vehicle will stop, the auxiliary transmission mechanism 30 is shifted from the high speed mode to the low speed mode to prepare for the subsequent restart. Specifically, the Low brake 32 is engaged, and the High clutch 33 is released.
  • precharging is started to instruct an oil pressure in which the instructed oil pressure is higher than a predetermined standby oil pressure.
  • Precharge control is performed in preparation for controlling the friction element in the released state to the engaged state.
  • a predetermined hydraulic pressure is supplied to the friction element for a predetermined time (or predetermined amount) to reduce the distance between the friction facings, such as by compression of the return spring of the friction element in the released state. That is, the precharging is to supply hydraulic pressure to the friction element in order to reduce the distance between the plurality of friction plates provided on the friction element so as to be in a state immediately before power is transmitted to the friction element.
  • the friction element is controlled to the standby pressure which is the preparation for fastening.
  • the standby pressure prepares the friction element to immediately transmit torque when the hydraulic pressure is further raised and supplied from the same pressure.
  • the controller 12 starts precharging the Low brake 32 at timing t03.
  • the transmission 4 is supplied with only the hydraulic pressure discharged by the electric oil pump 10e, and the hydraulic pressure at this time is smaller than the hydraulic pressure supplied by the mechanical oil pump 10m.
  • the hydraulic pressure when the hydraulic pressure is used by the start of precharging, the hydraulic pressure is transiently lowered, and the other hydraulic pressure to which the hydraulic pressure is supplied, in this case, the hydraulic pressure supplied to the high clutch 33 in the engaged state is also transient. Decrease.
  • the high clutch 33 which is a friction element transmitting torque
  • the friction element performs slip-re-engagement due to this temporary slip
  • the torque loss due to the slip and the engagement shock accompanying the re-engagement of the slipped friction element cause a change in longitudinal acceleration of the vehicle, giving the driver a sense of discomfort.
  • the high clutch 33 which is a friction element transmitting torque
  • this is caused by starting the precharging in a state where the hydraulic pressure supplied to the transmission 4 is reduced by the coast stop control.
  • a friction element might not generate
  • Drawing 5 is an explanatory view at the time of coast stop control of an embodiment of the present invention.
  • the output shaft rotational speed No of the transmission 4 the engine rotational speed Ne, the line pressure PL, the command pressure of the low brake 32 (solid line) and the actual pressure (dotted line), and the command pressure of the high clutch 33 (solid line) And actual pressure (dotted line) and acceleration of the vehicle.
  • the primary hydraulic pressure Ppri is a value that is adjusted by the hydraulic control circuit 11 and the hydraulic pressure supplied to each part of the transmission 4 is exemplified.
  • a vehicle speed VSP can be obtained by multiplying the output rotational speed No by the reduction ratio of the final reduction gear, the wheel diameter of the drive wheel 7 and the like.
  • FIG. 5 shows an operation in the case where the coast stop condition is satisfied at timing t11 and the engine 1 is stopped in a state where the vehicle is decelerating gradually.
  • FIG. 5 shows a state where the vehicle speed VSP decelerates along the cost line shown in FIG. 3 and transitions from the C region to the B region, similarly to FIG. Therefore, the auxiliary transmission mechanism 30 is in the high speed mode, and among the friction elements, the Low brake 32 is controlled to the released state, and the High clutch 33 is controlled to the engaged state.
  • the controller 12 stops the supply of fuel to the engine 1 to stop the rotation of the engine 1, and simultaneously releases the lockup clutch of the torque converter.
  • the controller 12 starts precharging of the low brake 32, which is a friction element on the fastening side, as a preparatory step of shifting the auxiliary transmission mechanism 30 from the high speed mode to the low speed mode.
  • the controller 12 starts driving of the electric oil pump 10 e. Thereafter, the rotation of the engine 1 is completely stopped (timing t12), and thereafter the hydraulic pressure is supplied by the electric oil pump 10e.
  • the low brake 32 and the high clutch 33 are maintained in the standby state and the engaged state, respectively, by the hydraulic pressure supplied by the electric oil pump 10 e.
  • the low brake 32 on the fastening side starts precharging and stands by the standby pressure after the precharging is completed.
  • the standby pressure is a hydraulic pressure before the Low brake 32 starts to have a torque transfer capacity when the hydraulic pressure is further raised. This hydraulic pressure is supplied by the electric oil pump 10e.
  • Such control prevents the occurrence of slip-re-engagement of the friction element during coast stop control, and the torque loss or slipped friction associated with the slip that occurs when the friction element performs slip-re-engagement It is possible to reduce the discomfort to the driver due to the fastening shock accompanying the re-engagement of the element.
  • the embodiment of the present invention starts precharging of the low brake 32, which is a friction element on the fastening side, after the controller 12 outputs the coast stop command to the engine 1 until the rotation of the engine 1 is stopped. Is a feature.
  • the mechanical oil pump 10m is driven by the rotation of the engine 1 to start precharging while the hydraulic pressure (higher than that supplied by the electric oil pump 10e) by the mechanical oil pump 10m is secured. it can. As a result, it is possible to prevent the torque transmission capacity of the friction element (High clutch 33) in the engaged state and the belt holding force of the variator 20 from being reduced.
  • control is performed so as to start precharging between the time when the controller 12 outputs the coast stop command and the time when the rotation of the engine 1 is stopped.
  • start precharging before outputting the coast stop command that is, before timing t11 in FIG. That is, in a state where the engine 1 rotates and the mechanical oil pump 10m is driven, precharging of the Low brake 32, which is a friction element on the fastening side, is started.
  • the lockup clutch is in the engaged state, and the High clutch 33 is in the engaged state. That is, there are a plurality of targets that supply hydraulic pressure and perform torque transmission.
  • the variator 20 also transmits torque by the belt holding force.
  • torque transmission from the lockup clutch is performed for the purpose of preventing engine stalling by torque input from the drive wheel side such as sudden braking.
  • the capacity is set to the minimum capacity that can maintain torque transmission.
  • the controller 12 outputs the coast stop command to the engine 1, the engine 1 is still rotated by the inertia force until the rotation of the engine 1 is stopped. Precharge is started while the oil pump 10m is in operation. As a result, the supplied hydraulic pressure can be sufficiently secured, and the occurrence of slip of the high clutch 33, which is a frictional element in the engaged state, can be suppressed.
  • the precharge is started in a state where the mechanical oil pump 10m is driven, but the precharge does not necessarily have to be completed in a state where the mechanical oil pump 10m is driven. That is, it is not necessary to secure the necessary hydraulic pressure for the pre-charge control for the necessary time (or amount).
  • a large hydraulic pressure is required for the pre-charge control, but if the pre-charge control can be assisted by the mechanical oil pump 10 m as much as possible when the hydraulic pressure is insufficient due to the coast stop control, only the electric oil pump 10 e Even when the hydraulic pressure is reduced, the drop in hydraulic pressure can be suppressed.
  • FIG. 6 is a flowchart of coast stop control executed by the controller 12 according to the embodiment of this invention.
  • the flowchart shown in FIG. 6 is executed in the controller 12 at a predetermined cycle (for example, every 10 ms).
  • step S10 the controller 12 acquires the state of the vehicle from various sensors, switches, and the like. Specifically, each signal such as the vehicle speed VSP, the brake signal BRK, and the accelerator opening APO is acquired. The engagement state of the friction elements (Low brake 32, High clutch 33, Rev brake 34) of the auxiliary transmission mechanism 30 is acquired.
  • step S20 the controller 12 determines whether a coast stop condition is satisfied. Specifically, when the above conditions (a) to (f) are satisfied, it is determined that the coast stop condition is satisfied. In the present embodiment, regarding the conditions (e) and (f), it is assumed that the coast stop condition is satisfied when the high clutch 33 is in the engaged state and the low brake 32 is in the released state.
  • the process proceeds to step S30, and when it is determined that the coast stop condition is not established, the process proceeds to step S100.
  • step S30 the controller 12 determines whether a flag F is established (whether F is 1).
  • the flag F is a flag that is established when execution of the coast stop control is actually started after the coast stop condition is established. If the flag F has already been established, the process proceeds to step S60 without performing the processes of steps S40 and S50. If the flag F is not established, the process proceeds to step S40.
  • step S40 the controller 12 outputs a coast stop command to stop the engine 1, and outputs a signal to drive the electric oil pump 10e to drive the electric oil pump 10e. At this time, a release command for the lockup clutch is also output at the same time.
  • step S40 the controller 12 shifts to step S50 and establishes the flag F. After step S50, the process proceeds to step S60.
  • step S60 it is determined whether sudden deceleration of the vehicle has been detected.
  • the controller 12 detects a rapid deceleration, for example, by a brake signal BRK from the brake sensor 47, a change in acceleration of the vehicle, or the like.
  • a brake signal BRK from the brake sensor 47
  • a change in acceleration of the vehicle or the like.
  • the sudden deceleration of the vehicle is the case where the first time required to stop the vehicle is compared with the second time required to shift from the current gear ratio to the gear ratio corresponding to the lowest or the lowest. This is a decelerating state in which the first time is shorter than the second time.
  • step S90 the controller 12 stops the precharging in progress. That is, the supply of the hydraulic pressure to the low brake 32 is stopped.
  • step S90 the process of this flowchart is temporarily ended, and the process returns to another process.
  • step S70 it is determined whether the engine rotation speed Ne has become zero, that is, whether the rotation of the engine 1 has stopped.
  • step S80 the controller 12 starts or maintains precharging of the engagement-side friction element (here, the low brake 32).
  • the process of this flowchart is temporarily ended, and the process returns to another process.
  • step S20 when it is determined that the coast stop condition is not established, the process proceeds to step S100, and when the coast stop control has already been executed, the controller 12 performs the coast stop control to end. Stop output of stop command. As a result, the engine 1 restarts, and the coast stop ends. In order to prevent hunting at the start and end of the coast stop, hysteresis may be provided in the condition of the coast stop end.
  • step S100 the controller 12 sets the flag F to not established in step S110, temporarily terminates the process according to this flowchart, and returns to another process.
  • the embodiment of the present invention includes an engine 1 as a driving power source for driving a vehicle, a mechanical oil pump 10m as a hydraulic power source driven by the driving power source to generate hydraulic pressure, and A transmission 4 having an auxiliary transmission mechanism 30 whose transmission gear ratio is changed according to the engagement state of the friction element (High clutch 33) and the second friction element (Low brake 32) to transmit the driving force of the driving force source to the driving wheels.
  • a controller 12 for controlling the operation of the engine 1, the mechanical oil pump 10m, and the transmission 4 are used in a vehicle.
  • the controller 12 is configured as a coast stop control unit that performs a coast stop to stop the engine in the traveling state of the vehicle.
  • the controller 12 is configured as a friction element control unit that controls the Low brake to the engaged state when the High clutch 33 is in the engaged state and the Low brake 32 is in the released state during the coast stop.
  • the controller 12 starts precharging to supply the hydraulic pressure in order to put the Low brake 32 in the engagement preparation state after the stop of the engine 1 is instructed until the drive of the engine 1 is stopped.
  • the engine 1 is still rotated by the inertial force and the mechanical oil pump 10m is driven during the period from when the engine 1 is instructed to stop until the driving of the engine 1 is stopped.
  • Precharge of the low brake 32 which is the second friction element, is started.
  • the High clutch 33 which is the first friction element, is in the engaged state and transmitting torque, and the occurrence of the slip of the first friction element is suppressed.
  • the controller 12 starts precharging when a stop of the engine 1 is commanded (substantially simultaneously).
  • the hydraulic pressure generated by the mechanical oil pump 10m (the engine rotation speed Ne is zero While the precharging can be completed)
  • the decrease in oil pressure is suppressed, and the occurrence of the slip of the high clutch 33 which is the first friction element is suppressed. Therefore, it is possible to suppress the change in longitudinal acceleration of the vehicle from being caused by the torque loss due to the slip of the friction element and the fastening shock accompanying the re-engagement of the slipped friction element, thereby reducing the discomfort given to the driver.
  • the auxiliary transmission mechanism 30 of the transmission 4 has a high speed mode in which the high clutch 33 is in the first state of engagement, and a low speed mode in which the low brake 32 is in the second state of engagement. It is set to the transmission gear ratio on the Low side of the high speed mode.
  • the Low brake 32 is controlled to be in the engaged state to change to the low speed mode which is the second state.
  • the driving force can be secured because the vehicle can be re-accelerated and re-started at a lower gear ratio.
  • the transmission 4 is provided with a torque converter 2 having a lockup clutch, and when performing a coast stop, the engine 1 is stopped and the lockup clutch is released.
  • a torque converter 2 having a lockup clutch
  • the vehicle speed range in which the engine 1 is stopped can be expanded to the vehicle speed at which the lockup clutch is released.
  • the area to be stopped can be expanded to improve the fuel consumption.
  • the transmission 4 has a variator 20 which is a continuously variable transmission mechanism capable of changing the transmission gear ratio by changing the winding diameter of the power transmission belt held by the hydraulic pressure supplied to the pulley. Then, the controller 12 starts precharging between the start of coast stop control and the stop of the engine 1 as described above, but stops precharging when detecting that the vehicle is rapidly decelerating. It is configured to
  • the transmission 4 is a mechanical oil pump 10m as a first hydraulic pressure source driven by the engine 1 as a hydraulic pressure source, and an electric oil as a second hydraulic pressure source capable of supplying hydraulic pressure regardless of the driving state of the engine 1 It has a pump 10e.
  • the controller 12 is configured to command the drive of the electric oil pump 10 e during coast stop control.
  • the hydraulic pressure can be supplied to the transmission 4 even when the engine 1 is stopped, and the friction element can be maintained in the fastening preparation state. Furthermore, the belt gripping force of the variator 20 can be secured.
  • the belt-type continuously variable transmission mechanism is provided as the variator 20.
  • the variator 20 is a continuously variable transmission mechanism in which a chain is wound between pulleys 21 and 22 instead of the belt 23. May be Alternatively, the variator 20 may be a toroidal continuously variable transmission mechanism in which a tiltable power roller is disposed between an input disc and an output disc.
  • the engine 1 which is an internal combustion engine was demonstrated to the example as an example of a driving force source in the said embodiment, it is not limited to this, You may use a motor and another driving force source.
  • the auxiliary transmission mechanism 30 is a transmission mechanism having two gears, first and second, as forward gear positions, but three or more gear stages are used as the auxiliary gear mechanism 30 as forward gear positions. It does not matter as a transmission mechanism which it has. In this case, there is a possibility that another friction element may intervene, but the friction element for achieving the gear ratio on the Low side in preparation for restart upon coast stop control is the same as the low brake 32 described above. Can be performed.
  • the auxiliary transmission mechanism 30 is configured using a Ravigneaux type planetary gear mechanism, but is not limited to such a configuration.
  • the auxiliary transmission mechanism 30 may be configured by combining a normal planetary gear mechanism and a friction element, or a plurality of power transmission paths configured by a plurality of gear trains having different gear ratios, and these power transmissions You may comprise by the friction element which switches a path
  • the implementation area of the precharging is from the start of coast stop control to the stop of the rotation of the engine 1
  • the timing of the end of the implementation area of the precharging is necessarily the stop of the rotation of the engine 1. It does not have to be.
  • engine rotation speed Ne> predetermined threshold may be adopted, or line pressure PL> predetermined threshold (threshold by which discharge pressure can be surely ensured). It is good also as a predetermined threshold (threshold by which discharge pressure can be secured reliably)> lapse of predetermined time from the start of coast stop control.
  • the best mode of the precharge control start timing is the start of the coast stop control.
  • the precharge control may be started with a delay from the start of the coast stop control.
  • This delay is, for example, as engine rotation speed Ne ⁇ predetermined threshold value (threshold value for ensuring discharge pressure), line pressure PL> predetermined threshold value (threshold value for ensuring discharge pressure) It is also good. It may be determined by the elapse of a predetermined time from the start of the coast stop control> a predetermined threshold (a threshold at which the discharge pressure can be reliably ensured).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

The present invention is equipped with: a coasting-stop control unit that stops the drive power source and performs a coasting stop when a first friction element is engaged and a second friction element is disengaged, when a vehicle is travelling; and a friction element control unit that controls the engagement of the first friction element and the engagement of the second friction element. The friction element control unit begins the supply of hydraulic pressure to the second friction element in the interval between the issuing of the command from the coasting-stop control unit to stop the drive power source and the stopping of the rotation of the hydraulic pressure source.

Description

自動変速機の制御装置及び制御方法Control device and control method of automatic transmission
 本発明は、駆動力源の停止、再始動を行う車両における自動変速機の制御装置及び制御方法に関する。 The present invention relates to a control device and control method of an automatic transmission in a vehicle that performs stopping and restarting of a driving power source.
 停車時に駆動力源であるエンジンを停止して燃料効率を向上するアイドルストップ技術が広く用いられている。さらなる燃料性能の向上を目的として、車両停車時だけでなく、減速時など、車両が停車する前にエンジンを停止するいわゆるコーストストップ制御が実用化されている。 2. Description of the Related Art An idle stop technology is widely used to improve fuel efficiency by stopping an engine that is a driving power source when the vehicle is stopped. In order to further improve the fuel performance, so-called coast stop control, in which the engine is stopped before the vehicle stops, such as at the time of deceleration, as well as when the vehicle is stopped, has been put to practical use.
 車両に搭載される自動変速機は、油圧によりクラッチ等の摩擦要素の締結が制御される。車両が減速、停車した場合は、再加速、再発進に備えて、摩擦要素の切換えを行う場合がある。一方、走行中にエンジンを停止した場合は、エンジンにより駆動されるオイルポンプが油圧を発生できないので、摩擦要素の切換えのための油圧の供給が低下する場合がある。 In an automatic transmission mounted on a vehicle, engagement of a friction element such as a clutch is controlled by hydraulic pressure. When the vehicle decelerates and stops, switching of the friction element may be performed in preparation for reacceleration and re-start. On the other hand, when the engine is stopped while traveling, the oil pump driven by the engine can not generate the hydraulic pressure, so the supply of the hydraulic pressure for switching the friction element may be reduced.
 このような自動変速機の制御として、JP2006-170295Aには、車両の走行中にエンジンを自動停止させて、自動変速機をニュートラル状態とし、エンジン停止後、電動オイルポンプを作動して摩擦要素に油圧を供給する、いわゆるプリチャージを開始するものが開示されている。 As control of such an automatic transmission, JP2006-170295A automatically stops the engine while the vehicle is traveling to place the automatic transmission in a neutral state, and after the engine stops, operates the electric oil pump to generate a friction element. It is disclosed to supply hydraulic pressure, that is, to initiate so-called precharging.
 JP2006-170295Aでは、コーストストップ制御開始からアイドルストップ制御開始までの間は自動変速機をニュートラル状態としているため、コーストストップ中に再加速要求があったときには、ニュートラル状態から摩擦要素を締結するまでのタイムラグが発生する。そこで、いずれかの摩擦要素を締結状態としてタイムラグの発生を低減しつつ、次の変速に備え解放状態の摩擦要素に、トルク容量を持たない程度の油圧を供給して、締結を準備することも考えられる。 In JP2006-170295A, since the automatic transmission is in the neutral state from the start of the coast stop control to the start of the idle stop control, when there is a reacceleration request during the coast stop, the process from the neutral state to the engagement of the friction element A time lag occurs. Therefore, it is also possible to prepare the fastening by supplying a hydraulic pressure having no torque capacity to the friction element in the released state to prepare for the next shift while reducing any occurrence of time lag by setting one of the friction elements in the engaged state. Conceivable.
 しかし、締結を準備するための解放状態の摩擦要素に油圧を供給する開始タイミングによっては、締結状態の摩擦要素がスリップすることにより、スリップに伴うトルク抜けやスリップした摩擦要素の再締結に伴う締結ショックが車両の前後加速度変化となり運転者に違和感を与える可能性がある。 However, depending on the start timing of supplying hydraulic pressure to the friction element in the release state to prepare for fastening, the friction element in the engagement state may slip, and thus, the torque may be lost due to slip or the engagement may occur. The shock may change the longitudinal acceleration of the vehicle, which may cause the driver to feel uncomfortable.
 すなわち、メカニカルポンプが駆動されない状態で解放状態の摩擦要素への油圧の供給を開始すると、自動変速機に供給される油圧が低下して、締結状態の摩擦要素がスリップすることにより、上記の通り運転者に違和感を与える可能性がある。 That is, when the supply of oil pressure to the friction element in the released state is started while the mechanical pump is not driven, the oil pressure supplied to the automatic transmission is reduced and the friction element in the engaged state slips, as described above. There is a possibility that the driver may feel discomfort.
 本発明はこのような問題点に鑑みてなされたものであり、コーストストップ制御において、摩擦要素のスリップを抑制して運転者に与える違和感を低減できる自動変速機の制御装置を提供することを目的とする。 The present invention has been made in view of such problems, and it is an object of the present invention to provide a control device of an automatic transmission capable of suppressing a slip of a friction element and reducing a sense of discomfort given to a driver in coast stop control. I assume.
 本発明の一実施態様によると、車両を駆動する駆動力源と、駆動力源により駆動されて油圧を発生する油圧源と、第1の摩擦要素及び第2の摩擦要素の締結状態によって変速比が変更され、駆動力源の駆動力を駆動輪へと伝達する変速機と、駆動力源、油圧源及び変速機構の動作を制御する制御部と、を備える車両における自動変速機の制御装置に適用される。制御部は、車両が走行状態であって、第1の摩擦要素が締結状態かつ第2の摩擦要素が解放状態のとき、駆動力源に停止指令を出力して駆動力源を停止させるコーストストップを行うコーストストップ制御部と、第1の摩擦要素及び第2の摩擦要素の締結状態を制御する摩擦要素制御部と、を備え、摩擦要素制御部は、コーストストップ制御部により駆動力源の停止が指令されてから、油圧源の回転が停止するまでの間に、第2の摩擦要素に油圧の供給を開始する。 According to one embodiment of the present invention, a transmission source driving a vehicle, an oil pressure source driven by the driving source to generate an oil pressure, and a transmission gear ratio according to the engagement state of the first friction element and the second friction element And a control unit for transmitting the driving force of the driving force source to the driving wheels, and a control unit for controlling the operation of the driving force source, the hydraulic pressure source, and the transmission mechanism. Applied. The control unit outputs a stop command to the drive power source to stop the drive power source when the vehicle is in a traveling state, the first friction element is in the engaged state, and the second friction element is in the release state. And a friction element control unit for controlling an engagement state of the first friction element and the second friction element, the friction element control unit stopping the driving force source by the coast stop control unit. The second friction element is started to be supplied with hydraulic pressure after the command is issued until the rotation of the hydraulic pressure source is stopped.
 また、本発明の別の実施態様によると、車両を駆動する駆動力源と、駆動力源により駆動されて油圧を発生する油圧源と、第1の摩擦要素及び第2の摩擦要素の締結状態によって変速比が変更され、駆動力源の駆動力を駆動輪へと伝達する自動変速機と、駆動力源、油圧源及び伝達機構の動作を制御する制御部と、を備える車両における自動変速機の制御方法に適用される。制御方法は、車両が走行状態であって、第1の摩擦要素が締結状態かつ第2の摩擦要素が解放状態のとき、駆動力源の停止指令を出力し、駆動力源の停止が指令されてから、油圧源の回転が停止するまでの間に、第2の摩擦要素に油圧の供給を開始する。 Further, according to another embodiment of the present invention, a driving force source for driving a vehicle, an oil pressure source driven by the driving force source to generate an oil pressure, and a fastening state of a first friction element and a second friction element The automatic transmission in a vehicle includes: an automatic transmission that changes the transmission gear ratio and transmits the driving force of the driving force source to the driving wheels; and a control unit that controls the operation of the driving force source, the hydraulic pressure source, and the transmission mechanism. Applied to the control method of The control method is such that when the vehicle is in a traveling state, the first friction element is in the engaged state, and the second friction element is in the release state, the drive power source stop command is output to stop the drive power source. Then, the supply of oil pressure to the second friction element is started while the rotation of the oil pressure source is stopped.
 上記態様によると、駆動力源の停止が指令されてから駆動力源の駆動が停止するまでの間、すなわち、駆動力源が慣性力により未だ回転し油圧源により油圧が供給されている間に、第2の摩擦要素に油圧を供給する。油圧源により、第2の摩擦要素に必要な油圧を確保できるとともに締結状態の第1の摩擦要素に油圧を供給できるので、締結状態の第1の摩擦要素のスリップの発生を抑制でき、スリップに伴うトルク抜けやスリップした摩擦要素の再締結に伴う締結ショックが車両の前後加速度変化となることを抑制して、運転者に与える違和感を低減できる。 According to the above aspect, during a period from when the driving power source is instructed to stop until when the driving power source stops being driven, that is, while the driving power source is still rotated by inertia force and supplied with oil pressure by the oil pressure source. , Supply hydraulic pressure to the second friction element. Since the hydraulic pressure source can ensure the necessary hydraulic pressure for the second friction element and can supply the hydraulic pressure to the first friction element in the engaged state, the occurrence of slip of the first friction element in the engaged state can be suppressed, It is possible to suppress a sense of incongruity given to the driver by suppressing that the fastening shock accompanying the torque loss and the re-engagement of the slipped friction element becomes the longitudinal acceleration change of the vehicle.
図1は、本発明の実施形態の無段変速機を搭載した車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention. 図2は、本発明の実施形態の変速機コントローラの構成の一例を示す説明図である。FIG. 2 is an explanatory view showing an example of the configuration of the transmission controller according to the embodiment of the present invention. 図3は、本発明の実施形態の変速マップの一例を示す説明図である。FIG. 3 is an explanatory view showing an example of a shift map according to the embodiment of the present invention. 図4は、比較例のコーストストップ制御時の説明図である Drawing 4 is an explanatory view at the time of coast stop control of a comparative example 図5は、本発明の実施形態のコーストストップ制御時の説明図である。Drawing 5 is an explanatory view at the time of coast stop control of an embodiment of the present invention. 図6は、本発明の実施形態のコーストストップ制御のフローチャートである。FIG. 6 is a flowchart of coast stop control according to the embodiment of this invention.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 図1は本発明の実施形態に係る無段変速機を搭載した車両の概略構成図である。車両は動力源としてエンジン1を備える。エンジン1の出力回転は、ロックアップクラッチ付きトルクコンバータ2、第1ギヤ列3、無段変速機(以下、単に「変速機4」という。)、第2ギヤ列5、終減速装置6を介して駆動輪7へと伝達される。第2ギヤ列5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられている。 FIG. 1 is a schematic block diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention. The vehicle is equipped with an engine 1 as a power source. The output rotation of the engine 1 is performed via a torque converter 2 with a lockup clutch, a first gear train 3, a continuously variable transmission (hereinafter simply referred to as "transmission 4"), a second gear train 5, and a final reduction gear 6. And is transmitted to the drive wheel 7. The second gear train 5 is provided with a parking mechanism 8 which mechanically locks the output shaft of the transmission 4 in a non-rotatable manner during parking.
 車両には、エンジン1の回転が入力され、エンジン1の動力の一部を利用して駆動されるメカオイルポンプ10mと、バッテリ13から電力供給を受けて駆動される電動オイルポンプ10eとが設けられている。変速機4には、メカオイルポンプ10m及び電動オイルポンプ10eの少なくとも一方から供給される油圧を調圧して変速機4の各部に供給する油圧制御回路11と、油圧制御回路11及びエンジン1を制御するコントローラ12とが設けられている。 The vehicle is provided with a mechanical oil pump 10m, which receives rotation of the engine 1 and is driven using a portion of the power of the engine 1, and an electric oil pump 10e, which is driven by receiving power supply from the battery 13. It is done. The transmission 4 controls the hydraulic control circuit 11, which controls the hydraulic pressure supplied from at least one of the mechanical oil pump 10m and the electric oil pump 10e, and supplies the hydraulic control circuit 11, the engine 1 and the hydraulic control circuit 11. A controller 12 is provided.
 変速機4は、無段変速機構(以下、「バリエータ20」という。)と、バリエータ20に対して直列に設けられる副変速機構30とを備える。「直列に設けられる」とは同動力伝達経路においてバリエータ20と副変速機構30が直列に設けられるという意味である。副変速機構30は、この例のようにバリエータ20の出力軸に直接接続されていてもよいし、その他の変速ないし動力伝達機構(例えば、ギヤ列)を介して接続されていてもよい。 The transmission 4 includes a continuously variable transmission mechanism (hereinafter, referred to as “variator 20”) and an auxiliary transmission mechanism 30 provided in series with the variator 20. The "in series" means that the variator 20 and the auxiliary transmission mechanism 30 are provided in series in the same power transmission path. The auxiliary transmission mechanism 30 may be directly connected to the output shaft of the variator 20 as in this example, or may be connected via another transmission or power transmission mechanism (for example, a gear train).
 バリエータ20は、プライマリプーリ21と、セカンダリプーリ22と、プーリ21、22の間に掛け回されるベルト(Vベルト)23とを備えるベルト式無段変速機構である。プーリ21、22は、それぞれ固定円錐板と、固定円錐板に対してシーブ面を対向させた状態で配置され固定円錐板との間にV溝を形成する可動円錐板と、可動円錐板の背面に設けられて可動円錐板を軸方向に変位させる油圧シリンダ23a、23bとを備える。油圧シリンダ23a、23bに供給される油圧を調整すると、V溝の幅が変化してベルト23と各プーリ21、22との接触半径が変化し、バリエータ20の変速比vRatioが無段階に変化する。 The variator 20 is a belt-type continuously variable transmission mechanism including a primary pulley 21, a secondary pulley 22, and a belt (V-belt) 23 wound around the pulleys 21 and 22. The pulleys 21 and 22 each have a fixed conical plate, a movable conical plate disposed with the sheave surface facing the fixed conical plate and forming a V-groove between the fixed conical plate, and a back surface of the movable conical plate And hydraulic cylinders 23a and 23b for axially displacing the movable conical plate. When the hydraulic pressure supplied to the hydraulic cylinders 23a and 23b is adjusted, the width of the V groove changes, the contact radius between the belt 23 and each pulley 21 and 22 changes, and the transmission ratio vRatio of the variator 20 changes steplessly. .
 副変速機構30は前進2段・後進1段の変速機構である。副変速機構30は、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構31と、ラビニョウ型遊星歯車機構31を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦要素(Lowブレーキ32、Highクラッチ33、Revブレーキ34)とを備える。各摩擦要素32~34への供給油圧を調整し、各摩擦要素32~34の締結・解放状態を変更すると、副変速機構30の変速段が変更される。 The auxiliary transmission mechanism 30 is a transmission mechanism having two forward gears and one reverse gear. The auxiliary transmission mechanism 30 is connected to a Ravigneaux type planetary gear mechanism 31 connecting carriers of two planet gears, and a plurality of rotating elements constituting the Ravigneaux type planetary gear mechanism 31, and a plurality of frictions that change the linkage state thereof. An element (Low brake 32, High clutch 33, Rev brake 34) is provided. By adjusting the oil pressure supplied to each of the friction elements 32 to 34 and changing the engagement / release state of each of the friction elements 32 to 34, the gear position of the auxiliary transmission mechanism 30 is changed.
 例えば、Lowブレーキ32を締結し、Highクラッチ33とRevブレーキ34を解放すれば副変速機構30の変速段は1速となる。Highクラッチ33を締結し、Lowブレーキ32とRevブレーキ34を解放すれば副変速機構30の変速段は1速よりも変速比が小さな2速となる。Revブレーキ34を締結し、Lowブレーキ32とHighクラッチ33を解放すれば副変速機構30の変速段は後進となる。以下の説明では、副変速機構30の変速段が1速であるとき「変速機4が低速モードである」と表現し、2速であるとき「変速機4が高速モードである」と表現する。 For example, when the Low brake 32 is engaged and the High clutch 33 and the Rev brake 34 are released, the gear position of the auxiliary transmission mechanism 30 becomes the first gear. If the High clutch 33 is engaged and the Low brake 32 and the Rev brake 34 are released, the gear position of the auxiliary transmission mechanism 30 becomes the second gear whose gear ratio is smaller than the first gear. If the Rev brake 34 is engaged and the Low brake 32 and the High clutch 33 are released, the gear position of the auxiliary transmission mechanism 30 is in reverse. In the following description, when the gear position of the auxiliary transmission mechanism 30 is the first speed, it is expressed as "the transmission 4 is in the low speed mode", and when it is the second speed, it is expressed as "the transmission 4 is in the high speed mode". .
 コントローラ12は、エンジン1及び変速機4を統括的に制御する制御手段であり、図2に示すように、CPU121と、RAM・ROMからなる記憶装置122と、入力インターフェース123と、出力インターフェース124と、これらを相互に接続するバス125とから構成される。 The controller 12 is a control unit that controls the engine 1 and the transmission 4 in an integrated manner, and as shown in FIG. 2, the CPU 121, a storage device 122 composed of a RAM and ROM, an input interface 123, and an output interface 124. , And a bus 125 interconnecting them.
 入力インターフェース123には、アクセルペダルの開度(以下、「アクセル開度APO」という。)を検出するアクセル開度センサ41の出力信号、変速機4の入力回転速度(=プライマリプーリ21の回転速度、以下、「プライマリ回転速度Npri」という。)を検出する回転速度センサ42の出力信号、車両の走行速度(以下、「車速VSP」という。)を検出する車速センサ43の出力信号、変速機4の油温を検出する油温センサ44の出力信号、セレクトレバー45の位置を検出するインヒビタスイッチ46の出力信号、ブレーキペダルの踏み込み量及びブレーキの液圧を検出するブレーキセンサ47の出力信号などが入力される。 The input interface 123 includes an output signal of an accelerator opening sensor 41 for detecting an opening of the accelerator pedal (hereinafter referred to as "accelerator opening APO"), an input rotational speed of the transmission 4 (= rotational speed of the primary pulley 21). Hereinafter, the output signal of the rotational speed sensor 42 for detecting "primary rotational speed Npri", the output signal of the vehicle speed sensor 43 for detecting the traveling speed of the vehicle (hereinafter referred to as "vehicle speed VSP"), transmission 4 Output signal of the oil temperature sensor 44 which detects the oil temperature of the motor, output signal of the inhibitor switch 46 which detects the position of the select lever 45, output signal of the brake sensor 47 which detects the depression amount of the brake pedal and the hydraulic pressure of the brake It is input.
 記憶装置122には、エンジン1の制御プログラム、変速機4の変速制御プログラム、変速制御プログラムで用いる変速マップ(図3)が格納されている。CPU121は、記憶装置122に格納されている変速制御プログラムを読み出して実行し、入力インターフェース123を介して入力される各種信号に対して各種演算処理を施して、燃料噴射信号、点火時期信号、スロットル開度信号、変速制御信号を生成し、生成した変速制御信号を、出力インターフェース124を介して油圧制御回路11に出力する。CPU121が演算処理で使用する各種値、その演算結果は記憶装置122に適宜格納される。 The storage device 122 stores a control program of the engine 1, a shift control program of the transmission 4, and a shift map (FIG. 3) used in the shift control program. The CPU 121 reads out and executes the transmission control program stored in the storage device 122, performs various arithmetic processing on various signals input through the input interface 123, and generates a fuel injection signal, an ignition timing signal, and a throttle. An opening degree signal and a transmission control signal are generated, and the generated transmission control signal is output to the hydraulic control circuit 11 via the output interface 124. Various values used by the CPU 121 in the arithmetic processing, and the arithmetic result thereof are stored in the storage device 122 as appropriate.
 油圧制御回路11は複数の流路、複数の油圧制御弁で構成される。油圧制御回路11は、コントローラ12からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換え、メカオイルポンプ10m又は電動オイルポンプ10eが発生した油圧から必要な油圧を調製し、これを変速機4の各部位に供給する。これにより、バリエータ20の変速比vRatio、副変速機構30の変速段が変更され、変速機4の変速が行われる。 The hydraulic control circuit 11 is composed of a plurality of flow paths and a plurality of hydraulic control valves. The hydraulic control circuit 11 controls a plurality of hydraulic control valves based on the shift control signal from the controller 12 to switch the supply path of the hydraulic pressure, and the necessary hydraulic pressure is generated from the hydraulic pressure generated by the mechanical oil pump 10m or the electric oil pump 10e. It prepares and supplies this to each part of the transmission 4. As a result, the transmission ratio v Ratio of the variator 20 and the gear position of the auxiliary transmission mechanism 30 are changed, and the transmission 4 is shifted.
 図3は、本実施形態のコントローラ12の記憶装置122に格納される変速マップの一例を示している。 FIG. 3 shows an example of a shift map stored in the storage device 122 of the controller 12 of this embodiment.
 変速マップ上では変速機4の動作点が車速VSPとプライマリ回転速度Npriとに基づき決定される。変速機4の動作点と変速マップ左下隅の零点を結ぶ線の傾きが変速機4の変速比(バリエータ20の変速比vRatioに副変速機構30の変速比subRatioを掛けて得られる全体の変速比、以下、「スルー変速比Ratio」という。)を表している。 On the shift map, the operating point of the transmission 4 is determined based on the vehicle speed VSP and the primary rotational speed Npri. The slope of the line connecting the operating point of the transmission 4 and the zero point of the lower left corner of the shift map is the transmission ratio of the transmission 4 (the overall transmission ratio obtained by multiplying the transmission ratio v Ratio of the variator 20 by the transmission ratio sub Ratio of the auxiliary transmission mechanism 30 Hereinafter, it is referred to as “through gear ratio Ratio”.
 変速マップには、アクセル開度APO毎に変速線が設定されており、変速機4の変速はアクセル開度APOに応じて選択される変速線に従って行われる。図3には簡単のため、全負荷線(アクセル開度APO=8/8のときの変速線)、パーシャル線(アクセル開度APO=4/8のときの変速線)、コースト線(アクセル開度APO=0のときの変速線)のみが示されている。 In the shift map, a shift line is set for each accelerator opening APO, and the shift of the transmission 4 is performed according to a shift line selected according to the accelerator opening APO. For simplicity in FIG. 3, all load lines (shift lines when the accelerator opening APO is 8/8), partial lines (shift lines when the accelerator opening APO is 4/8), and a coast line (accelerator opening Only the shift line) when the degree APO = 0 is shown.
 変速機4が低速モードのときは、変速機4はバリエータ20の変速比vRatioを最大にして得られる低速モード最Low線とバリエータ20の変速比vRatioを最小にして得られる低速モード最High線の間で変速することができる。このとき、変速機4の動作点はA領域とB領域内を移動する。 When the transmission 4 is in the low speed mode, the transmission 4 can obtain the low speed mode Lowest line obtained by maximizing the transmission ratio vRatio of the variator 20 and the low speed mode highest line obtained by minimizing the transmission ratio vRatio of the variator 20 It is possible to shift between gears. At this time, the operating point of the transmission 4 moves in the A area and the B area.
 一方、変速機4が高速モードのときは、変速機4はバリエータ20の変速比vRatioを最大にして得られる高速モード最Low線とバリエータ20の変速比vRatioを最小にして得られる高速モード最High線の間で変速することができる。このとき、変速機4の動作点はB領域とC領域内を移動する。 On the other hand, when the transmission 4 is in the high speed mode, the transmission 4 can obtain the high speed mode Lowest line obtained by maximizing the transmission ratio v Ratio of the variator 20 and the high speed mode highest obtained by minimizing the transmission ratio v Ratio of the variator 20. You can shift between the lines. At this time, the operating point of the transmission 4 moves in the B area and the C area.
 コントローラ12は、変速マップを参照して、車速VSP及びアクセル開度APO(車両の運転状態)に対応するスルー変速比Ratioを設定して、バリエータ20及び副変速機構30の変速比を制御する。 The controller 12 controls the transmission ratio of the variator 20 and the auxiliary transmission mechanism 30 by setting the through transmission ratio Ratio corresponding to the vehicle speed VSP and the accelerator opening APO (the driving state of the vehicle) with reference to the transmission map.
 本実施形態のコントローラ12は、燃料消費量を抑制するために、車両が停止している間にエンジン1の回転を停止するアイドルストップ制御に加え、車両が走行中にもエンジン1の回転を停止させるコーストストップ制御を行う。 The controller 12 according to the present embodiment stops the rotation of the engine 1 while the vehicle is traveling, in addition to the idle stop control that stops the rotation of the engine 1 while the vehicle is stopped, in order to suppress the fuel consumption. Perform coast stop control.
 コーストストップ制御では、低車速域で車両が走行している間、エンジン1を自動的に停止させて燃料消費量を抑制する制御である。コーストストップ制御は、アクセルオフ時に実行される燃料カット制御とエンジン1への燃料供給を停止する点で共通するが、通常の燃料カット制御は、比較的高速走行時において実行され、かつエンジンブレーキを確保するためにトルクコンバータ2のロックアップクラッチが係合されているのに対し、コーストストップ制御は、車両停止直前の比較的低速走行時に実行され、ロックアップクラッチを解放状態としてエンジン1の回転を停止させる点において相違する。 The coast stop control is control for automatically stopping the engine 1 to suppress the fuel consumption while the vehicle is traveling in the low vehicle speed region. The coast stop control is common to the fuel cut control performed when the accelerator is off and to stop the fuel supply to the engine 1, but the normal fuel cut control is performed at relatively high speed traveling and the engine brake While the lockup clutch of the torque converter 2 is engaged in order to secure it, the coast stop control is executed at a relatively low speed traveling just before the vehicle stops, and the engine 1 is rotated with the lockup clutch released. It differs in the point to make it stop.
 コーストストップ制御を実行するにあたって、コントローラ12は、まず、例えば以下に示す条件(a)~(f)を判断する。
(a):アクセルペダルから足が離されている(アクセル開度APO=0)
(b):ブレーキペダルが踏み込まれている(ブレーキセンサ47がON)
(c):車速が所定の低車速(例えば、15km/h)以下
(d):ロックアップクラッチが解放されている
(e):Highクラッチ33の締結状態
(f):Lowブレーキ32の締結状態
 これらの条件は、言い換えると運転者に停車意図があることを判断する条件である。
In performing the coast stop control, the controller 12 first determines, for example, the following conditions (a) to (f).
(A): A foot is released from the accelerator pedal (accelerator opening APO = 0)
(B): The brake pedal is depressed (brake sensor 47 is ON)
(C): Vehicle speed is lower than a predetermined low vehicle speed (for example, 15 km / h) (d): Lock-up clutch is released (e): High clutch 33 engaged state (f): Low brake 32 engaged state These conditions are, in other words, conditions for judging that the driver intends to stop.
 コントローラ12は、これら(a)~(f)の条件が成立した場合にコーストストップ条件が成立したことを判断する。コーストストップ条件が成立した場合に、エンジン1への燃料の供給を停止して、エンジン1の回転を停止させる。 The controller 12 determines that the coast stop condition is satisfied when the conditions (a) to (f) are satisfied. When the coast stop condition is satisfied, the supply of fuel to the engine 1 is stopped and the rotation of the engine 1 is stopped.
 次に、このように構成された車両のコーストストップ制御を説明する。 Next, coast stop control of the vehicle configured as described above will be described.
 図4は、本発明の実施形態における、比較例のコーストストップ制御時の説明図であり、従来技術の問題点を示す。 FIG. 4 is an explanatory view at the time of coast stop control of a comparative example in the embodiment of the present invention, and shows problems of the prior art.
 図4は、上段から、変速機4の出力軸回転速度No、エンジン回転速度Ne、ライン圧PL、Lowブレーキ32の指示圧(実線)及び実圧(点線)、Highクラッチ33の指示圧(実線)及び実圧(点線)、車両の加速度、をそれぞれ示す。プライマリ油圧Ppriは、油圧制御回路11により調圧されて変速機4の各部の供給される油圧を例示する値である。出力回転速度Noに終減速装置の減速比や駆動輪7の車輪径等を乗算することにより車速VSPが得られる。図4においてHighクラッチ33の指示圧と実圧とが微少な差分を持って記載されているが、これは説明のために不一致とさせているだけで、実際には指示圧と実圧とは一致する。 In FIG. 4, from the top, the output shaft rotational speed No of the transmission 4, the engine rotational speed Ne, the line pressure PL, the indicated pressure (solid line) and the actual pressure (dotted line) of the low brake 32, the indicated pressure (solid line) of the high clutch 33 And actual pressure (dotted line) and acceleration of the vehicle. The primary hydraulic pressure Ppri is a value that is adjusted by the hydraulic control circuit 11 and the hydraulic pressure supplied to each part of the transmission 4 is exemplified. A vehicle speed VSP can be obtained by multiplying the output rotational speed No by the reduction ratio of the final reduction gear, the wheel diameter of the drive wheel 7 and the like. In FIG. 4, the command pressure of the High clutch 33 and the actual pressure are described with a slight difference, but this is merely a disagreement for the sake of explanation, and in practice the command pressure and the actual pressure are Match
 図4は、車両が徐々に減速している状態において、タイミングt01でコーストストップ条件が成立して、エンジン1を停止する場合の動作を示す。 FIG. 4 shows an operation in the case where the coast stop condition is satisfied at timing t01 and the engine 1 is stopped while the vehicle is gradually decelerating.
 図4は、車両の運転状態が、図3に示すコ-スト線に沿って車速VSPが減速して、C領域からB領域へと遷移する状態を示す。従って副変速機構30は高速モードであり、摩擦要素のうち、Lowブレーキ32は解放状態に、Highクラッチ33は締結状態に、それぞれ制御されている。 FIG. 4 shows a state where the vehicle speed VSP is decelerated along the cost line shown in FIG. 3 and the transition from the region C to the region B occurs. Therefore, the auxiliary transmission mechanism 30 is in the high speed mode, and among the friction elements, the Low brake 32 is controlled to the released state, and the High clutch 33 is controlled to the engaged state.
 コーストストップ制御によりエンジンが停止されているとき、アクセルペダルの踏み込みなどの再加速要求があったときに、摩擦要素を締結するタイムラグを防止するために、副変速機構30においてHighクラッチ33を締結状態として動力伝達状態としておく。 When the engine is stopped by the coast stop control, and there is a reacceleration request such as depression of the accelerator pedal, the High clutch 33 is engaged in the auxiliary transmission mechanism 30 to prevent a time lag for engaging the friction element. As a power transmission state.
 コーストストップにより車両が停止した後は、再発進に備えて、副変速機構30を低速モードに移行する、すなわち、Highクラッチ33を解放状態として、Lowブレーキ32を締結状態へと制御する。 After the vehicle is stopped due to the coast stop, the auxiliary transmission mechanism 30 is shifted to the low speed mode in preparation for re-start, that is, the High clutch 33 is released and the Low brake 32 is controlled to the engaged state.
 このとき、応答性を向上するため、車両が停止するよりも前にコーストストップ状態で解放状態の摩擦要素であるLowブレーキ32に所定油圧を供給して締結の準備状態とする、いわゆるプリチャージを開始する。以下、その詳細を説明する。 At this time, in order to improve responsiveness, a so-called precharging is performed, in which a predetermined hydraulic pressure is supplied to the Low brake 32, which is a friction element in the released state in the coast stop state, before the vehicle stops. Start. The details will be described below.
 前述のように、コントローラ12は、コーストストップ条件が成立した場合に、エンジン1への燃料の供給を停止し、トルクコンバータのロックアップクラッチを解放して、エンジン1の回転を停止させる(タイミングt01)。 As described above, when the coast stop condition is satisfied, the controller 12 stops the supply of fuel to the engine 1, releases the lockup clutch of the torque converter, and stops the rotation of the engine 1 (timing t01 ).
 エンジン1への燃料の供給が停止し、ロックアップクラッチが解放された場合は、エンジン1の回転速度が漸次減少する。これに伴って、エンジン1の駆動力によって油圧を発生させるメカオイルポンプ10mの回転も漸次減少する。その後、エンジン1の回転が完全に停止した場合は(タイミングt02)、メカオイルポンプ10mの回転も停止し、プライマリ圧が低下する。 When the fuel supply to the engine 1 is stopped and the lockup clutch is released, the rotational speed of the engine 1 gradually decreases. Along with this, the rotation of the mechanical oil pump 10m that generates the hydraulic pressure by the driving force of the engine 1 also gradually decreases. Thereafter, when the rotation of the engine 1 is completely stopped (timing t02), the rotation of the mechanical oil pump 10m is also stopped, and the primary pressure is reduced.
 エンジン1の停止中もバリエータ20の各プーリによるベルトの挟持力及び副変速機構30の摩擦要素の締結に油圧が必要となる。このために、コントローラ12は、エンジン1のコーストストップ制御を開始したとき、電動オイルポンプ10eの駆動を開始する。これにより、メカオイルポンプ10mの駆動が停止して油圧が供給されない状態となっても、電動オイルポンプ10eの油圧を油圧制御回路11に供給することができる。 Even when the engine 1 is stopped, hydraulic pressure is required to clamp the belt by the pulleys of the variator 20 and to fasten the friction elements of the auxiliary transmission mechanism 30. For this reason, when the coast stop control of the engine 1 is started, the controller 12 starts driving of the electric oil pump 10 e. As a result, even if the mechanical oil pump 10m stops driving and the hydraulic pressure is not supplied, the hydraulic pressure of the electric oil pump 10e can be supplied to the hydraulic control circuit 11.
 電動オイルポンプ10eが吐出可能な油圧は、メカオイルポンプ10mよりも小さい、これは、エンジン1が停止している状態では変速機4が大きなトルクを伝達する必要はなく、バリエータ20又は副変速機構30の締結に必要な最低限度の油圧を確保できればよいためである。電動オイルポンプ10eの容量を小さくすることにより、電動オイルポンプ10eのサイズ、重量を小さくできる。 The hydraulic pressure that can be discharged by the electric oil pump 10e is smaller than the mechanical oil pump 10m. This is because the transmission 4 does not have to transmit a large torque when the engine 1 is stopped, and the variator 20 or the auxiliary transmission mechanism This is because it is only necessary to secure the minimum hydraulic pressure necessary for fastening 30. By reducing the capacity of the electric oil pump 10e, the size and weight of the electric oil pump 10e can be reduced.
 このように、コーストストップ状態では供給される油圧が小さくなる。 Thus, in the coast stop state, the supplied hydraulic pressure becomes smaller.
 ここで、コントローラ12は、副変速機構30を高速モードから定速モードへと移行することを決定する。すなわち、車両が停車することが確実な状態であるので、副変速機構30を高速モードから低速モードに移行させて、以降の再発進に備える。具体的には、Lowブレーキ32を締結状態として、Highクラッチ33を解放状態とする。 Here, the controller 12 determines to shift the auxiliary transmission mechanism 30 from the high speed mode to the constant speed mode. In other words, since it is certain that the vehicle will stop, the auxiliary transmission mechanism 30 is shifted from the high speed mode to the low speed mode to prepare for the subsequent restart. Specifically, the Low brake 32 is engaged, and the High clutch 33 is released.
 このとき、解放状態のLowブレーキ32を締結状態に制御するに先だって、指示油圧を所定の待機油圧よりも高めた油圧を指示するプリチャージを開始する。プリチャージ制御は、解放状態の摩擦要素を締結状態へと制御するための準備として実行される。所定の油圧を所定時間(又は所定の量)だけ摩擦要素に供給して、解放状態にある摩擦要素のリターンスプリングの圧縮等により摩擦フェーシング間の距離を縮小する。すなわち、プリチャージとは、摩擦要素において動力が伝達される直前の状態となるように、摩擦要素に設けられる複数の摩擦板の間隔を詰めるために、摩擦要素に油圧を供給することである。プリチャージが完了した後に摩擦要素は締結準備状態であるスタンバイ圧に制御される。スタンバイ圧は、同圧からさらに油圧を上昇して供給した場合に摩擦要素が直ちにトルクを伝達することできるように準備するものである。 At this time, prior to controlling the low brake 32 in the released state to the engaged state, precharging is started to instruct an oil pressure in which the instructed oil pressure is higher than a predetermined standby oil pressure. Precharge control is performed in preparation for controlling the friction element in the released state to the engaged state. A predetermined hydraulic pressure is supplied to the friction element for a predetermined time (or predetermined amount) to reduce the distance between the friction facings, such as by compression of the return spring of the friction element in the released state. That is, the precharging is to supply hydraulic pressure to the friction element in order to reduce the distance between the plurality of friction plates provided on the friction element so as to be in a state immediately before power is transmitted to the friction element. After the precharging is completed, the friction element is controlled to the standby pressure which is the preparation for fastening. The standby pressure prepares the friction element to immediately transmit torque when the hydraulic pressure is further raised and supplied from the same pressure.
 ここで、コーストストップ状態でプライマリ油圧が低下している場合にプリチャージを開始すると、次のように、プリチャージ制御によりその他の摩擦要素に供給される油圧が低下するという問題が発生しうる。 Here, when precharging is started when the primary oil pressure is reduced in the coast stop state, there may occur a problem that the oil pressure supplied to the other friction elements is reduced by the precharging control as follows.
 図4において、コントローラ12は、タイミングt03においてLowブレーキ32のプリチャージを開始する。このとき、変速機4は電動オイルポンプ10eが吐出する油圧のみで賄われており、このときの油圧はメカオイルポンプ10mにより供給される油圧よりも小さい。 In FIG. 4, the controller 12 starts precharging the Low brake 32 at timing t03. At this time, the transmission 4 is supplied with only the hydraulic pressure discharged by the electric oil pump 10e, and the hydraulic pressure at this time is smaller than the hydraulic pressure supplied by the mechanical oil pump 10m.
 そのため、プリチャージの開始により油圧が用いられた場合には、油圧が過渡的に低下し、油圧が供給されている他の摩擦要素、ここでは締結状態のHighクラッチ33に供給される油圧も過渡的に低下する。 Therefore, when the hydraulic pressure is used by the start of precharging, the hydraulic pressure is transiently lowered, and the other hydraulic pressure to which the hydraulic pressure is supplied, in this case, the hydraulic pressure supplied to the high clutch 33 in the engaged state is also transient. Decrease.
 このとき、車両は未だ走行中であるので、トルクを伝達している摩擦要素であるHighクラッチ33が一時的にスリップする可能性がある。この一時的なスリップにより摩擦要素がスリップ-再締結を行った場合に、スリップに伴うトルク抜けやスリップした摩擦要素の再締結に伴う締結ショックが車両の前後加速度変化となり、運転者に違和感を与える場合がある。 At this time, since the vehicle is still traveling, there is a possibility that the high clutch 33, which is a friction element transmitting torque, may slip temporarily. When the friction element performs slip-re-engagement due to this temporary slip, the torque loss due to the slip and the engagement shock accompanying the re-engagement of the slipped friction element cause a change in longitudinal acceleration of the vehicle, giving the driver a sense of discomfort. There is a case.
 すなわちこれは、コーストストップ制御によって、変速機4に供給される油圧が小さくなった状態でプリチャージを開始することが原因となって発生するものである。 That is, this is caused by starting the precharging in a state where the hydraulic pressure supplied to the transmission 4 is reduced by the coast stop control.
 そこで、本発明の実施形態では、次のように構成することによって、コーストストップ制御時に摩擦要素がスリップを発生することがないように構成した。 So, in embodiment of this invention, it comprised so that a friction element might not generate | occur | produce a slip at the time of coast stop control by comprising as follows.
 図5は、本発明の実施形態のコーストストップ制御時の説明図である。 Drawing 5 is an explanatory view at the time of coast stop control of an embodiment of the present invention.
 図5は、上段から、変速機4の出力軸回転速度No、エンジン回転速度Ne、ライン圧PL、Lowブレーキ32の指示圧(実線)及び実圧(点線)、Highクラッチ33の指示圧(実線)及び実圧(点線)、車両の加速度、をそれぞれ示す。プライマリ油圧Ppriは、油圧制御回路11により調圧されて変速機4の各部の供給される油圧を例示する値である。出力回転速度Noに終減速装置の減速比や駆動輪7の車輪径等を乗算することにより車速VSPが得られる。図5においてHighクラッチ33の指示圧と実圧とが微少な差分を持って記載されているが、これは説明のために不一致とさせているだけで、実際には指示圧と実圧とは一致する。 In FIG. 5, the output shaft rotational speed No of the transmission 4, the engine rotational speed Ne, the line pressure PL, the command pressure of the low brake 32 (solid line) and the actual pressure (dotted line), and the command pressure of the high clutch 33 (solid line) And actual pressure (dotted line) and acceleration of the vehicle. The primary hydraulic pressure Ppri is a value that is adjusted by the hydraulic control circuit 11 and the hydraulic pressure supplied to each part of the transmission 4 is exemplified. A vehicle speed VSP can be obtained by multiplying the output rotational speed No by the reduction ratio of the final reduction gear, the wheel diameter of the drive wheel 7 and the like. Although the indicated pressure and the actual pressure of the High clutch 33 are described with a slight difference in FIG. 5, this is merely a disagreement for the sake of explanation, and in fact, the indicated pressure and the actual pressure are Match
 図5は、図4と同様に、車両が徐々に減速している状態において、タイミングt11でコーストストップ条件が成立して、エンジン1を停止する場合の動作を示す。 Similarly to FIG. 4, FIG. 5 shows an operation in the case where the coast stop condition is satisfied at timing t11 and the engine 1 is stopped in a state where the vehicle is decelerating gradually.
 図5は、図4と同様に、車両の運転状態が、図3に示すコ-スト線に沿って車速VSPが減速して、C領域からB領域へと遷移する状態を示す。従って副変速機構30は高速モードであり、摩擦要素のうち、Lowブレーキ32は解放状態に、Highクラッチ33は締結状態に、それぞれ制御されている。 FIG. 5 shows a state where the vehicle speed VSP decelerates along the cost line shown in FIG. 3 and transitions from the C region to the B region, similarly to FIG. Therefore, the auxiliary transmission mechanism 30 is in the high speed mode, and among the friction elements, the Low brake 32 is controlled to the released state, and the High clutch 33 is controlled to the engaged state.
 タイミングt11で、コーストストップ条件が成立した場合は、コントローラ12は、エンジン1への燃料の供給を停止して、エンジン1の回転を停止させると同時に、トルクコンバータのロックアップクラッチを解放する。 When the coast stop condition is satisfied at timing t11, the controller 12 stops the supply of fuel to the engine 1 to stop the rotation of the engine 1, and simultaneously releases the lockup clutch of the torque converter.
 ここで、コントローラ12は、副変速機構30を高速モードから低速モードへと移行する準備段階として、締結側の摩擦要素であるLowブレーキ32のプリチャージを開始する。 Here, the controller 12 starts precharging of the low brake 32, which is a friction element on the fastening side, as a preparatory step of shifting the auxiliary transmission mechanism 30 from the high speed mode to the low speed mode.
 すなわち、コーストストップ制御を開始した直後(タイミングt11)から、エンジン1の回転が停止するまで(タイミングt12)は、エンジン1の回転によりメカオイルポンプ10mが駆動して油圧が供給されている。メカオイルポンプ10mが駆動して油圧が供給されている間に、締結側のLowブレーキ32のプリチャージを開始する。 That is, from immediately after the start of the coast stop control (timing t11) until the rotation of the engine 1 is stopped (timing t12), the mechanical oil pump 10m is driven by the rotation of the engine 1 and the hydraulic pressure is supplied. While the mechanical oil pump 10m is driven to supply hydraulic pressure, precharging of the low brake 32 on the engagement side is started.
 コントローラ12は、エンジン1のコーストストップ制御を開始したとき、電動オイルポンプ10eの駆動を開始する。その後、エンジン1の回転が完全に停止し(タイミングt12)、以降は、電動オイルポンプ10eによって油圧が供給される。 When the coast stop control of the engine 1 is started, the controller 12 starts driving of the electric oil pump 10 e. Thereafter, the rotation of the engine 1 is completely stopped (timing t12), and thereafter the hydraulic pressure is supplied by the electric oil pump 10e.
 Lowブレーキ32及びHighクラッチ33は、電動オイルポンプ10eによって供給される油圧により、それぞれ待機状態及び締結状態が維持される。特に締結側のLowブレーキ32は、プリチャージが開始され、プリチャージが完了した後は、スタンバイ圧によって待機する。スタンバイ圧とは、これ以上油圧を上昇させたときにLowブレーキ32がトルク伝達容量を持ち始める手前の油圧である。この油圧は電動オイルポンプ10eにより供給される。 The low brake 32 and the high clutch 33 are maintained in the standby state and the engaged state, respectively, by the hydraulic pressure supplied by the electric oil pump 10 e. In particular, the low brake 32 on the fastening side starts precharging and stands by the standby pressure after the precharging is completed. The standby pressure is a hydraulic pressure before the Low brake 32 starts to have a torque transfer capacity when the hydraulic pressure is further raised. This hydraulic pressure is supplied by the electric oil pump 10e.
 このような制御によって、コーストストップ制御中に摩擦要素のスリップ-再締結が発生することが防止されて、摩擦要素がスリップ-再締結を行った場合に発生するスリップに伴うトルク抜けやスリップした摩擦要素の再締結に伴う締結ショックによる運転者への違和感を低減できる。 Such control prevents the occurrence of slip-re-engagement of the friction element during coast stop control, and the torque loss or slipped friction associated with the slip that occurs when the friction element performs slip-re-engagement It is possible to reduce the discomfort to the driver due to the fastening shock accompanying the re-engagement of the element.
 本発明の実施形態は、コントローラ12がコーストストップ指令をエンジン1に出力してから、エンジン1の回転が停止するまでの間に、締結側の摩擦要素であるLowブレーキ32のプリチャージを開始することが特徴である。 The embodiment of the present invention starts precharging of the low brake 32, which is a friction element on the fastening side, after the controller 12 outputs the coast stop command to the engine 1 until the rotation of the engine 1 is stopped. Is a feature.
 この特徴により、エンジン1の回転によりメカオイルポンプ10mが駆動されてメカオイルポンプ10mによる油圧(電動オイルポンプ10eが供給するよりも高い油圧)が確保されている間にプリチャージを開始することができる。これにより、締結状態の摩擦要素(Highクラッチ33)のトルク伝達容量やバリエータ20のベルト挟持力が低下することが防止される。 With this feature, the mechanical oil pump 10m is driven by the rotation of the engine 1 to start precharging while the hydraulic pressure (higher than that supplied by the electric oil pump 10e) by the mechanical oil pump 10m is secured. it can. As a result, it is possible to prevent the torque transmission capacity of the friction element (High clutch 33) in the engaged state and the belt holding force of the variator 20 from being reduced.
 本発明の実施形態では、コントローラ12がコーストストップ指令を出力してからエンジン1の回転が停止するまでの間に、プリチャージを開始するように制御した。ここで、別の方法として、コーストストップ指令を出力する以前、すなわち、図5のタイミングt11以前でプリチャージを開始することも考えられる。すなわち、エンジン1が回転しメカオイルポンプ10mが駆動している状態で、締結側の摩擦要素であるLowブレーキ32のプリチャージを開始する。 In the embodiment of the present invention, control is performed so as to start precharging between the time when the controller 12 outputs the coast stop command and the time when the rotation of the engine 1 is stopped. Here, as another method, it is conceivable to start precharging before outputting the coast stop command, that is, before timing t11 in FIG. That is, in a state where the engine 1 rotates and the mechanical oil pump 10m is driven, precharging of the Low brake 32, which is a friction element on the fastening side, is started.
 しかし、タイミングt11以前は、エンジン1が駆動し、ロックアップクラッチが締結状態、かつ、Highクラッチ33が締結状態となっている。すなわち、油圧を供給してトルク伝達を行う対象が複数存在している。バリエータ20もベルト挟持力によりトルクを伝達している。 However, before the timing t11, the engine 1 is driven, the lockup clutch is in the engaged state, and the High clutch 33 is in the engaged state. That is, there are a plurality of targets that supply hydraulic pressure and perform torque transmission. The variator 20 also transmits torque by the belt holding force.
 さらにこのような状態、すなわち車速VSPが低下し、エンジン回転速度Neが低い状態では、急ブレーキ等の駆動輪側からのトルク入力によりエンジン1のエンストを防止する目的で、ロックアップクラッチのトルク伝達容量を、トルク伝達を維持可能な最低限の容量に設定している。 Furthermore, in such a state, that is, when the vehicle speed VSP decreases and the engine rotational speed Ne is low, torque transmission from the lockup clutch is performed for the purpose of preventing engine stalling by torque input from the drive wheel side such as sudden braking. The capacity is set to the minimum capacity that can maintain torque transmission.
 すなわち、コーストストップが許可される直前の状態では、エンジン1によりメカオイルポンプ10mが駆動されていても、油圧の供給対象が複数あるため油圧の余裕代が少なく、特にロックアップクラッチはトルク伝達容量が低く設定されている。 That is, in the state immediately before the coast stop is permitted, even if the mechanical oil pump 10m is driven by the engine 1, there are a plurality of hydraulic pressure supply targets, and the margin of the hydraulic pressure is small. Is set low.
 このとき、前述のように締結側の摩擦要素であるLowブレーキ32のプリチャージを開始すると、プリチャージ制御に用いられる油圧により変速機4における油圧が不足気味となる。その結果として、ロックアップクラッチのスリップや、締結状態のHighクラッチ33のスリップが発生し、図4で前述したように運転者に違和感を与える可能性がある。 At this time, when precharging of the low brake 32, which is a friction element on the fastening side, is started as described above, the hydraulic pressure in the transmission 4 may be insufficient due to the hydraulic pressure used for the precharge control. As a result, a slip of the lockup clutch and a slip of the high clutch 33 in the engaged state may occur, which may cause the driver to feel uncomfortable as described above with reference to FIG.
 本発明の実施形態は、前述のように、コントローラ12がコーストストップ指令をエンジン1に出力してから、エンジン1の回転が停止するまでの間、すなわち、エンジン1が慣性力により未だ回転しメカオイルポンプ10mが駆動している状態でプリチャージを開始する。これにより、供給される油圧を十分に確保できて、締結状態の摩擦要素であるHighクラッチ33のスリップの発生を抑制できる。 In the embodiment of the present invention, as described above, after the controller 12 outputs the coast stop command to the engine 1, the engine 1 is still rotated by the inertia force until the rotation of the engine 1 is stopped. Precharge is started while the oil pump 10m is in operation. As a result, the supplied hydraulic pressure can be sufficiently secured, and the occurrence of slip of the high clutch 33, which is a frictional element in the engaged state, can be suppressed.
 本発明の実施形態では、メカオイルポンプ10mが駆動している状態でプリチャージを開始するが、必ずしもメカオイルポンプ10mが駆動している状態でプリチャージが完了する必要はない。すなわち、プリチャージ制御のために必要な油圧を必要な時間(又は量)だけ必ずしも確保する必要はない。プリチャージ制御には大きな油圧が必要となるが、コーストストップ制御により油圧が不足気味となるときに、メカオイルポンプ10mにより少しでもプリチャージ制御を補助することができれば、以降、電動オイルポンプ10eのみの油圧となった場合にも、油圧の低下が抑えられる。 In the embodiment of the present invention, the precharge is started in a state where the mechanical oil pump 10m is driven, but the precharge does not necessarily have to be completed in a state where the mechanical oil pump 10m is driven. That is, it is not necessary to secure the necessary hydraulic pressure for the pre-charge control for the necessary time (or amount). A large hydraulic pressure is required for the pre-charge control, but if the pre-charge control can be assisted by the mechanical oil pump 10 m as much as possible when the hydraulic pressure is insufficient due to the coast stop control, only the electric oil pump 10 e Even when the hydraulic pressure is reduced, the drop in hydraulic pressure can be suppressed.
 図6は、本発明の実施形態のコントローラ12が実行するコーストストップ制御のフローチャートである。 FIG. 6 is a flowchart of coast stop control executed by the controller 12 according to the embodiment of this invention.
 図6に示すフローチャートは、コントローラ12において所定の周期(例えば10ms毎)で実行される。 The flowchart shown in FIG. 6 is executed in the controller 12 at a predetermined cycle (for example, every 10 ms).
 まず、ステップS10では、コントローラ12は、各種センサやスイッチ等から車両の状態を取得する。具体的には、車速VSP、ブレーキ信号BRK、アクセル開度APO等の各信号を取得する。副変速機構30の摩擦要素(Lowブレーキ32、Highクラッチ33、Revブレーキ34)の締結状態を取得する。 First, in step S10, the controller 12 acquires the state of the vehicle from various sensors, switches, and the like. Specifically, each signal such as the vehicle speed VSP, the brake signal BRK, and the accelerator opening APO is acquired. The engagement state of the friction elements (Low brake 32, High clutch 33, Rev brake 34) of the auxiliary transmission mechanism 30 is acquired.
 次に、ステップS20では、コントローラ12は、コーストストップ条件が成立したか否かを判定する。具体的には、前述の条件(a)~(f)の条件が成立した場合にコーストストップ条件が成立したことを判断する。本実施形態では、条件(e)、(f)については、Highクラッチ33が締結状態であり、Lowブレーキ32が解放状態であるときにコーストストップ条件が成立したとする。コーストストップ条件が成立したと判定した場合はステップS30に移行し、コーストストップ条件が成立していないと判定した場合は、ステップS100に移行する。 Next, in step S20, the controller 12 determines whether a coast stop condition is satisfied. Specifically, when the above conditions (a) to (f) are satisfied, it is determined that the coast stop condition is satisfied. In the present embodiment, regarding the conditions (e) and (f), it is assumed that the coast stop condition is satisfied when the high clutch 33 is in the engaged state and the low brake 32 is in the released state. When it is determined that the coast stop condition is established, the process proceeds to step S30, and when it is determined that the coast stop condition is not established, the process proceeds to step S100.
 ステップS30では、コントローラ12は、フラグFが成立しているか否か(Fが1であるか否か)を判定する。フラグFは、コーストストップ条件が成立した後、実際にコーストストップ制御の実行が開始された場合に成立するフラグである。フラグFが既に成立している場合は、ステップS40及びS50の処理を行うことなくステップS60に移行する。フラグFが成立していない場合は、ステップS40に移行する。 In step S30, the controller 12 determines whether a flag F is established (whether F is 1). The flag F is a flag that is established when execution of the coast stop control is actually started after the coast stop condition is established. If the flag F has already been established, the process proceeds to step S60 without performing the processes of steps S40 and S50. If the flag F is not established, the process proceeds to step S40.
 ステップS40では、コントローラ12は、コーストストップ指令を出力してエンジン1を停止させると共に、電動オイルポンプ10eを駆動させる信号を出力して電動オイルポンプ10eを駆動させる。このとき、同時にロックアップクラッチの解放指令も出力する。ステップS40の後、コントローラ12はステップS50に移行して、フラグFを成立させる。ステップS50の後にステップS60に移行する。 In step S40, the controller 12 outputs a coast stop command to stop the engine 1, and outputs a signal to drive the electric oil pump 10e to drive the electric oil pump 10e. At this time, a release command for the lockup clutch is also output at the same time. After step S40, the controller 12 shifts to step S50 and establishes the flag F. After step S50, the process proceeds to step S60.
 ステップS60では、車両の急減速を検出したか否かを判定する。コントローラ12は、例えば、ブレーキセンサ47からのブレーキ信号BRKや、車両の加速度の変化等により急減速を検出する。車両が急減速した場合は、バリエータ20のLow戻しを行う必要がある。このとき、プリチャージが開始されていると、プリチャージ制御に油圧が取られてしまい、バリエータ20のLow戻しが不完全となる可能性がある。車両の急減速とは、停車までに要する第1の時間と、現在の変速比から最Low又は最Lowに相当する変速比まで変速するのに要する第2の時間と、を比較した場合に、第1の時間が第2の時間よりも短くなる減速状態である。 In step S60, it is determined whether sudden deceleration of the vehicle has been detected. The controller 12 detects a rapid deceleration, for example, by a brake signal BRK from the brake sensor 47, a change in acceleration of the vehicle, or the like. When the vehicle suddenly decelerates, it is necessary to perform the Low return of the variator 20. At this time, if the precharging is started, the hydraulic pressure is taken for the precharging control, and the Low return of the variator 20 may be incomplete. The sudden deceleration of the vehicle is the case where the first time required to stop the vehicle is compared with the second time required to shift from the current gear ratio to the gear ratio corresponding to the lowest or the lowest. This is a decelerating state in which the first time is shorter than the second time.
 そこで、車両の急減速を検出した場合はステップS90に移行し、コントローラ12は、実行中のプリチャージを停止させる。すなわち、Lowブレーキ32への油圧の供給を停止する。ステップS90の処理の後、本フローチャートによる処理を一旦終了し、他の処理に戻る。 Therefore, when the rapid deceleration of the vehicle is detected, the process proceeds to step S90, and the controller 12 stops the precharging in progress. That is, the supply of the hydraulic pressure to the low brake 32 is stopped. After the process of step S90, the process of this flowchart is temporarily ended, and the process returns to another process.
 車両の急減速が検出されない場合は、ステップS70に移行し、エンジン回転速度Neがゼロとなったか否か、すなわちエンジン1の回転が停止したか否かを判定する。 If rapid deceleration of the vehicle is not detected, the process proceeds to step S70, and it is determined whether the engine rotation speed Ne has become zero, that is, whether the rotation of the engine 1 has stopped.
 エンジン回転速度Neがゼロとなった場合は、メカオイルポンプ10mの回転が停止し、油圧の供給源が電動オイルポンプ10eのみとなる。この場合も、低下した油圧がプリチャージ制御に取られてしまい、図4で説明した従来技術と同様の違和感を与える可能性がある。そこで、エンジン回転速度Neがゼロとなった場合は、ステップS90に移行し、コントローラ12は、実行中のプリチャージを停止させる。 When the engine rotational speed Ne becomes zero, the mechanical oil pump 10m stops rotating, and the hydraulic pressure supply source is only the electric oil pump 10e. Also in this case, the lowered hydraulic pressure is taken to the pre-charge control, which may give the same sense of incongruity as the prior art described with reference to FIG. Therefore, when the engine rotation speed Ne becomes zero, the process proceeds to step S90, and the controller 12 stops the precharging in progress.
 エンジン回転速度Neがゼロでないと判定した場合は、ステップS80に移行し、コントローラ12は、締結側の摩擦要素(ここではLowブレーキ32)のプリチャージを開始又は維持する。ステップS80の処理の後、本フローチャートによる処理を一旦終了し、他の処理に戻る。 If it is determined that the engine rotational speed Ne is not zero, the process proceeds to step S80, where the controller 12 starts or maintains precharging of the engagement-side friction element (here, the low brake 32). After the process of step S80, the process of this flowchart is temporarily ended, and the process returns to another process.
 ステップS20において、コーストストップ条件が成立していないと判定した場合は、ステップS100に移行し、コントローラ12は、既にコーストストップ制御が実行されている場合は、コーストストップ制御を終了させるために、コーストストップ指令の出力を停止する。これによりエンジン1が再始動して、コーストストップが終了する。コーストストップの開始、終了のハンチングを防止するために、コーストストップ終了の条件にヒステリシスを設けてもよい。 In step S20, when it is determined that the coast stop condition is not established, the process proceeds to step S100, and when the coast stop control has already been executed, the controller 12 performs the coast stop control to end. Stop output of stop command. As a result, the engine 1 restarts, and the coast stop ends. In order to prevent hunting at the start and end of the coast stop, hysteresis may be provided in the condition of the coast stop end.
 ステップS100の後、コントローラ12は、ステップS110において、フラグFを非成立に設定して、本フローチャートによる処理を一旦終了し、他の処理に戻る。 After step S100, the controller 12 sets the flag F to not established in step S110, temporarily terminates the process according to this flowchart, and returns to another process.
 このような制御によって、コーストストップ制御が実行されたときに、締結側の摩擦要素(例えばLowブレーキ32)の締結に先立ってプリチャージを開始することができる。 With such control, when coast stop control is performed, precharging can be started prior to engagement of the engagement-side friction element (e.g., the low brake 32).
 以上説明したように、本発明の実施形態は、車両を駆動する駆動力源としてのエンジン1と、駆動力源により駆動されて油圧を発生する油圧源としてのメカオイルポンプ10mと、第1の摩擦要素(Highクラッチ33)及び第2の摩擦要素(Lowブレーキ32)の締結状態によって変速比が変更され、駆動力源の駆動力を駆動輪へと伝達する副変速機構30を有する変速機4と、これらエンジン1、メカオイルポンプ10m及び変速機4の動作を制御するコントローラ12と、を備える車両に用いられる。 As described above, the embodiment of the present invention includes an engine 1 as a driving power source for driving a vehicle, a mechanical oil pump 10m as a hydraulic power source driven by the driving power source to generate hydraulic pressure, and A transmission 4 having an auxiliary transmission mechanism 30 whose transmission gear ratio is changed according to the engagement state of the friction element (High clutch 33) and the second friction element (Low brake 32) to transmit the driving force of the driving force source to the driving wheels. And a controller 12 for controlling the operation of the engine 1, the mechanical oil pump 10m, and the transmission 4 are used in a vehicle.
 コントローラ12は、車両の走行状態においてエンジンを停止させるコーストストップを行うコーストストップ制御部として構成される。 The controller 12 is configured as a coast stop control unit that performs a coast stop to stop the engine in the traveling state of the vehicle.
 コントローラ12は、コーストストップ中に、Highクラッチ33が締結状態かつLowブレーキ32が解放状態のとき、Lowブレーキを締結状態へと制御する摩擦要素制御部として構成される。 The controller 12 is configured as a friction element control unit that controls the Low brake to the engaged state when the High clutch 33 is in the engaged state and the Low brake 32 is in the released state during the coast stop.
 コントローラ12は、エンジン1の停止が指令されてから、エンジン1の駆動が停止するまでの間に、Lowブレーキ32を締結準備状態とするために、油圧を供給するプリチャージを開始する。 The controller 12 starts precharging to supply the hydraulic pressure in order to put the Low brake 32 in the engagement preparation state after the stop of the engine 1 is instructed until the drive of the engine 1 is stopped.
 本発明の実施形態は、エンジン1の停止が指令されてからエンジン1の駆動が停止するまでの間、すなわち、エンジン1が慣性力により未だ回転しメカオイルポンプ10mが駆動している状態で、第2の摩擦要素であるLowブレーキ32のプリチャージを開始する。これにより、プリチャージの開始により油圧が取られたとしても、比較的吐出圧が大きいメカオイルポンプ10mにより十分な油圧が供給される。第1の摩擦要素であるHighクラッチ33は締結状態でありトルクを伝達している状態であり、第1の摩擦要素のスリップが発生することが抑制される。従って、摩擦要素のスリップに伴うトルク抜けやスリップした摩擦要素の再締結に伴う締結ショックが車両の前後加速度変化となることを抑制して、運転者に与える違和感を低減できる。駆動源の回転が停止、すなわち、エンジン1の回転が停止すると、油圧源であるメカオイルポンプ10mの回転が停止し、油圧源の吐出圧がゼロとなる。従って、本発明の実施形態では、「油圧源の回転停止」を、「エンジン1の回転停止」にて判断している。 According to the embodiment of the present invention, the engine 1 is still rotated by the inertial force and the mechanical oil pump 10m is driven during the period from when the engine 1 is instructed to stop until the driving of the engine 1 is stopped. Precharge of the low brake 32, which is the second friction element, is started. As a result, even if the hydraulic pressure is taken at the start of the precharging, a sufficient hydraulic pressure is supplied by the mechanical oil pump 10m having a relatively large discharge pressure. The High clutch 33, which is the first friction element, is in the engaged state and transmitting torque, and the occurrence of the slip of the first friction element is suppressed. Therefore, it is possible to suppress the change in longitudinal acceleration of the vehicle from being caused by the torque loss due to the slip of the friction element and the fastening shock accompanying the re-engagement of the slipped friction element, thereby reducing the discomfort given to the driver. When the rotation of the drive source is stopped, that is, when the rotation of the engine 1 is stopped, the rotation of the mechanical oil pump 10m which is the hydraulic pressure source is stopped, and the discharge pressure of the hydraulic pressure source becomes zero. Therefore, in the embodiment of the present invention, the "rotation stop of the hydraulic pressure source" is determined by "the rotation stop of the engine 1".
 コントローラ12は、エンジン1の停止が指令されたときに(されたと略同時に)、プリチャージを開始する。これにより、エンジン1の回転がまだ十分大きく、メカオイルポンプ10mが発生する油圧が十分に大きい状態でプリチャージを開始することで、メカオイルポンプ10mが発生する油圧で(エンジン回転速度Neがゼロとなる前に)プリチャージを完了させることができると共に、油圧の低下が抑えられ第1の摩擦要素であるHighクラッチ33のスリップが発生することが抑制される。従って、摩擦要素のスリップに伴うトルク抜けやスリップした摩擦要素の再締結に伴う締結ショックが車両の前後加速度変化となることを抑制して、運転者に与える違和感を低減できる。 The controller 12 starts precharging when a stop of the engine 1 is commanded (substantially simultaneously). Thus, by starting the precharging in a state where the rotation of the engine 1 is still sufficiently large and the hydraulic pressure generated by the mechanical oil pump 10m is sufficiently large, the hydraulic pressure generated by the mechanical oil pump 10m (the engine rotation speed Ne is zero While the precharging can be completed), the decrease in oil pressure is suppressed, and the occurrence of the slip of the high clutch 33 which is the first friction element is suppressed. Therefore, it is possible to suppress the change in longitudinal acceleration of the vehicle from being caused by the torque loss due to the slip of the friction element and the fastening shock accompanying the re-engagement of the slipped friction element, thereby reducing the discomfort given to the driver.
 変速機4の副変速機構30は、Highクラッチ33が締結状態の第1の状態である高速モードと、Lowブレーキ32が締結状態の第2の状態である低速モードとを有し、低速モードは高速モードよりもLow側の変速比に設定されている。 The auxiliary transmission mechanism 30 of the transmission 4 has a high speed mode in which the high clutch 33 is in the first state of engagement, and a low speed mode in which the low brake 32 is in the second state of engagement. It is set to the transmission gear ratio on the Low side of the high speed mode.
 すなわち、Highクラッチ33が締結状態の第2の状態である高速モードにおいてコーストストップ制御がなされた場合に、Lowブレーキ32を締結状態に制御して第2の状態である低速モードに変更することにより、よりLow側の変速比で車両の再加速、再発進を行えて、駆動力を確保することができる。 That is, when the coast stop control is performed in the high speed mode in which the High clutch 33 is in the second state of the engaged state, the Low brake 32 is controlled to be in the engaged state to change to the low speed mode which is the second state. The driving force can be secured because the vehicle can be re-accelerated and re-started at a lower gear ratio.
 変速機4には、ロックアプクラッチを有するトルクコンバータ2が備えられており、コーストストップを行うときに、エンジン1を停止すると共にロックアップクラッチを解放する。このような構成により、ロックアップクラッチやHighクラッチ33のスリップを生じさせることがないため、エンジン1を停止する車速域を、ロックアップクラッチを解放する車速まで拡大することができるので、エンジン1を停止する領域が拡大して燃費を向上することができる。 The transmission 4 is provided with a torque converter 2 having a lockup clutch, and when performing a coast stop, the engine 1 is stopped and the lockup clutch is released. With such a configuration, since the lockup clutch and the high clutch 33 do not slip, the vehicle speed range in which the engine 1 is stopped can be expanded to the vehicle speed at which the lockup clutch is released. The area to be stopped can be expanded to improve the fuel consumption.
 変速機4は、プーリに供給される油圧により挟持される動力伝達ベルトの巻掛け径を変更して変速比を変更可能な無段変速機構であるバリエータ20有する。そして、コントローラ12は、前述のようにコーストストップ制御の開始からエンジン1の停止までの間に、プリチャージを開始するが、車両が急減速であることを検出した場合には、プリチャージを停止するように構成されている。 The transmission 4 has a variator 20 which is a continuously variable transmission mechanism capable of changing the transmission gear ratio by changing the winding diameter of the power transmission belt held by the hydraulic pressure supplied to the pulley. Then, the controller 12 starts precharging between the start of coast stop control and the stop of the engine 1 as described above, but stops precharging when detecting that the vehicle is rapidly decelerating. It is configured to
 車両の急減速時には停車後の再発進に備えて変速機4のスルー変速比をLow側に制御する必要がある。このとき、副変速機構30において摩擦要素の締結解放は車両停車時に可能であるが、バリエータ20の変速比の変更は各プーリが回転状態である必要がある。そのため、急減速時にはプリチャージを停止して、バリエータの変速比をLow側に戻すことのみに油圧を用いることで、急停車後の再発進を確保することができる。 At the time of rapid deceleration of the vehicle, it is necessary to control the through transmission ratio of the transmission 4 to the low side in preparation for restarting after the vehicle is stopped. At this time, in the auxiliary transmission mechanism 30, engagement and release of the friction element can be performed when the vehicle is stopped, but the change of the transmission ratio of the variator 20 requires that each pulley be in a rotating state. Therefore, by stopping the precharging at the time of rapid deceleration and using the hydraulic pressure only to return the gear ratio of the variator to the Low side, it is possible to secure the restart after the sudden stop.
 変速機4は、油圧源として、エンジン1により駆動される第1の油圧源としてのメカオイルポンプ10mと、エンジン1の駆動状態と無関係に油圧を供給可能な第2の油圧源としての電動オイルポンプ10eを有する。コントローラ12は、コーストストップ制御時に、電動オイルポンプ10eの駆動を指令するように構成されている。これにより、エンジン1の停止時にも変速機4に油圧を供給することができて、摩擦要素を、締結準備状態に維持することができる。さらに、バリエータ20のベルト挟持力も確保することができる。 The transmission 4 is a mechanical oil pump 10m as a first hydraulic pressure source driven by the engine 1 as a hydraulic pressure source, and an electric oil as a second hydraulic pressure source capable of supplying hydraulic pressure regardless of the driving state of the engine 1 It has a pump 10e. The controller 12 is configured to command the drive of the electric oil pump 10 e during coast stop control. Thus, the hydraulic pressure can be supplied to the transmission 4 even when the engine 1 is stopped, and the friction element can be maintained in the fastening preparation state. Furthermore, the belt gripping force of the variator 20 can be secured.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although embodiment of this invention was described, the said embodiment is only what showed one of the application examples of this invention, and the meaning which limits the technical scope of this invention to the specific structure of the said embodiment is not.
 例えば、上記実施形態では、バリエータ20としてベルト式無段変速機構を備えているが、バリエータ20は、ベルト23の代わりにチェーンがプーリ21、22の間に掛け回される無段変速機構であってもよい。あるいは、バリエータ20は、入力ディスクと出力ディスクの間に傾転可能なパワーローラを配置するトロイダル式無段変速機構であってもよい。 For example, in the above embodiment, the belt-type continuously variable transmission mechanism is provided as the variator 20. However, the variator 20 is a continuously variable transmission mechanism in which a chain is wound between pulleys 21 and 22 instead of the belt 23. May be Alternatively, the variator 20 may be a toroidal continuously variable transmission mechanism in which a tiltable power roller is disposed between an input disc and an output disc.
 上記実施形態では駆動力源の例として内燃機関であるエンジン1を例に説明したが、これに限定されるものではなく、モータや他の駆動力源を用いてもよい。 Although the engine 1 which is an internal combustion engine was demonstrated to the example as an example of a driving force source in the said embodiment, it is not limited to this, You may use a motor and another driving force source.
 上記実施形態では、副変速機構30は前進用の変速段として1速と2速の2段を有する変速機構としたが、副変速機構30を前進用の変速段として3段以上の変速段を有する変速機構としても構わない。この場合には、さらに別の摩擦要素が介在する可能性があるが、コーストストップ制御時に再発進に備えてよりLow側の変速比を実現するための摩擦要素について、前述したLowブレーキ32と同様の動作を行わせることができる。 In the above embodiment, the auxiliary transmission mechanism 30 is a transmission mechanism having two gears, first and second, as forward gear positions, but three or more gear stages are used as the auxiliary gear mechanism 30 as forward gear positions. It does not matter as a transmission mechanism which it has. In this case, there is a possibility that another friction element may intervene, but the friction element for achieving the gear ratio on the Low side in preparation for restart upon coast stop control is the same as the low brake 32 described above. Can be performed.
 副変速機構30はラビニョウ型遊星歯車機構を用いて構成したが、このような構成に限定されない。例えば、副変速機構30は、通常の遊星歯車機構と摩擦要素を組み合わせて構成してもよいし、あるいは、ギヤ比の異なる複数の歯車列で構成される複数の動力伝達経路と、これら動力伝達経路を切り換える摩擦要素とによって構成してもよい。 The auxiliary transmission mechanism 30 is configured using a Ravigneaux type planetary gear mechanism, but is not limited to such a configuration. For example, the auxiliary transmission mechanism 30 may be configured by combining a normal planetary gear mechanism and a friction element, or a plurality of power transmission paths configured by a plurality of gear trains having different gear ratios, and these power transmissions You may comprise by the friction element which switches a path | route.
 本発明の実施形態では、プリチャージの実施領域を、コーストストップ制御の開始から、エンジン1の回転の停止までとしているが、プリチャージの実施領域の終わりのタイミングは、必ずしもエンジン1の回転の停止でなくてもよい。例えば、エンジン回転速度Ne>所定閾値(吐出圧が確実に確保できる閾値)としてもよいし、ライン圧PL>所定の閾値(吐出圧が確実に確保できる閾値)としてもよい。コーストストップ制御開始から所定時間の経過>所定の閾値(吐出圧が確実に確保できる閾値)としてもよい。 In the embodiment of the present invention, although the implementation area of the precharging is from the start of coast stop control to the stop of the rotation of the engine 1, the timing of the end of the implementation area of the precharging is necessarily the stop of the rotation of the engine 1. It does not have to be. For example, engine rotation speed Ne> predetermined threshold (threshold by which discharge pressure can be reliably ensured) may be adopted, or line pressure PL> predetermined threshold (threshold by which discharge pressure can be surely ensured). It is good also as a predetermined threshold (threshold by which discharge pressure can be secured reliably)> lapse of predetermined time from the start of coast stop control.
 プリチャージ制御開始タイミングのベストモードは、コーストストップ制御の開始であるが、これに限られず、コーストストップ制御の開始時点から遅れを持ってプリチャージ制御を開始してもよい。この遅れ(プリチャージ制御開始タイミング)は、例えば、エンジン回転速度Ne≦所定の閾値(吐出圧が確実に確保できる閾値)、ライン圧PL>所定の閾値(吐出圧が確実に確保できる閾値)としてもよい。コーストストップ制御開始から所定時間の経過>所定の閾値(吐出圧が確実に確保できる閾値)によって判断してもよい。 The best mode of the precharge control start timing is the start of the coast stop control. However, the present invention is not limited to this. The precharge control may be started with a delay from the start of the coast stop control. This delay (precharge control start timing) is, for example, as engine rotation speed Ne ≦ predetermined threshold value (threshold value for ensuring discharge pressure), line pressure PL> predetermined threshold value (threshold value for ensuring discharge pressure) It is also good. It may be determined by the elapse of a predetermined time from the start of the coast stop control> a predetermined threshold (a threshold at which the discharge pressure can be reliably ensured).
 本願は、2012年7月27日に日本国特許庁に出願された特願2012-167320に基づく優先権を主張する。これらの出願のすべての内容は参照により本明細書に組み込まれる。
 
The present application claims priority based on Japanese Patent Application No. 2012-167320 filed on Jul. 27, 2012 in the Japanese Patent Office. The contents of all of these applications are incorporated herein by reference.

Claims (8)

  1.  車両を駆動する駆動力源と、
     前記駆動力源により駆動されて油圧を発生する油圧源と、
     第1の摩擦要素及び第2の摩擦要素の締結状態によって変速比が変更され、前記駆動力源の駆動力を駆動輪へと伝達する自動変速機と、
     前記駆動力源、前記油圧源及び前記自動変速機の動作を制御する制御部と、
     を備える車両における自動変速機の制御装置であって、
     前記制御部は、
     車両が走行状態であって、前記第1の摩擦要素が締結状態かつ前記第2の摩擦要素が解放状態のとき、前記駆動力源に停止指令を出力して前記駆動力源を停止させるコーストストップを行うコーストストップ制御部と、
     前記第1の摩擦要素及び前記第2の摩擦要素の締結状態を制御する摩擦要素制御部と、を備え、
     前記摩擦要素制御部は、前記コーストストップ制御部により前記駆動力源の停止指令が出力されてから、前記油圧源の回転が停止するまでの間に、前記第2の摩擦要素に油圧の供給を開始する
    自動変速機の制御装置。
    A driving power source for driving the vehicle,
    An oil pressure source driven by the driving power source to generate an oil pressure;
    An automatic transmission whose transmission gear ratio is changed according to the engagement state of the first friction element and the second friction element to transmit the driving force of the driving force source to the driving wheels;
    A control unit that controls operations of the driving power source, the hydraulic pressure source, and the automatic transmission;
    Control device for an automatic transmission in a vehicle comprising
    The control unit
    A coast stop that outputs a stop command to the driving power source to stop the driving power source when the vehicle is in a traveling state, the first friction element is in the engaged state, and the second friction element is in the released state. Coast stop control unit, which
    A friction element control unit configured to control an engagement state of the first friction element and the second friction element;
    The friction element control unit is configured to supply hydraulic pressure to the second friction element after the coast stop control unit outputs a stop command of the driving power source and the rotation of the hydraulic pressure source is stopped. Automatic transmission control device to start.
  2.  請求項1に記載の自動変速機の制御装置であって、
     前記第2の摩擦要素に油圧の供給を開始することは、前記第2の摩擦要素が動力伝達を開始する直前の状態となるように前記第2の摩擦要素に油圧を供給するプリチャージ制御である
    自動変速機の制御装置。
    The control device for an automatic transmission according to claim 1,
    Starting supply of oil pressure to the second friction element is a precharge control that supplies oil pressure to the second friction element such that the second friction element is in a state just before starting power transmission. Control device of an automatic transmission.
  3.  請求項1又は2に記載の自動変速機の制御装置であって、
     前記摩擦要素制御部は、前記コーストストップ制御部により前記駆動力源の停止指令が出力された時に、前記第2の摩擦要素に油圧の供給を開始する
    自動変速機の制御装置。
    The control device for an automatic transmission according to claim 1 or 2, wherein
    The control device for an automatic transmission, wherein the friction element control unit starts supply of hydraulic pressure to the second friction element when the coast stop control unit outputs a stop command of the driving power source.
  4.  請求項1から3のいずれか一つに記載の自動変速機の制御装置であって、
     前記自動変速機は、
     前記第1の摩擦要素が締結状態の第1の状態と、
     前記第2の摩擦要素が締結状態の第2の状態と、
     を有し、
     前記第2の状態は、前記第1の状態よりもLow側の変速比で前記駆動力源の駆動力を前記駆動輪へと伝達する
    自動変速機の制御装置。
    A control device for an automatic transmission according to any one of claims 1 to 3, wherein
    The automatic transmission
    The first state in which the first friction element is in the engaged state;
    A second state in which the second friction element is in the engaged state;
    Have
    The control device of the automatic transmission which transmits the driving force of the said driving force source to the said driving wheel in the said 2nd state by the gear ratio by the side of Low rather than the said 1st state.
  5.  請求項1から4のいずれか一つに記載の自動変速機の制御装置であって、
     前記自動変速機は、ロックアプクラッチを有するトルクコンバータを備え、
     前記コーストストップ制御部は、前記駆動力源の停止指令を出力するとともに、前記ロックアップクラッチを解放する
    自動変速機の制御装置。
    A control device for an automatic transmission according to any one of claims 1 to 4, wherein
    The automatic transmission comprises a torque converter having a lockup clutch,
    The control device for an automatic transmission, wherein the coast stop control unit outputs a stop command of the driving power source and releases the lockup clutch.
  6.  請求項1から5のいずれか一つに記載の自動変速機の制御装置であって、
     前記自動変速機は、プーリに供給される油圧により挟持される動力伝達ベルトの巻掛け径を変更して変速比を変更可能な無段変速機構を有し、
     前記摩擦要素制御部は、
     前記コーストストップ制御部により前記駆動力源の停止指令が出力されてから、前記駆動力源の駆動が停止するまでの間に、前記第2の摩擦要素に油圧の供給を開始し、
     前記車両が急減速であることを検出した場合に、前記第2の摩擦要素への油圧の供給を停止する
    自動変速機の制御装置。
    A control device for an automatic transmission according to any one of claims 1 to 5, wherein
    The automatic transmission has a continuously variable transmission mechanism capable of changing a gear ratio by changing a winding diameter of a power transmission belt held by hydraulic pressure supplied to a pulley.
    The friction element control unit
    After the coast stop control unit outputs a stop command of the drive power source, the supply of hydraulic pressure to the second friction element is started before the drive of the drive power source is stopped.
    A control device of an automatic transmission which stops supply of oil pressure to the 2nd above-mentioned friction element, when it detects that the above-mentioned vehicles are sudden deceleration.
  7.  請求項1から6のいずれか一つに記載の自動変速機の制御装置であって、
     前記油圧源は、前記駆動力源により駆動される第1の油圧源と、前記駆動力源の駆動状態と無関係に油圧を供給可能な第2の油圧源と、を有し、
     前記コーストストップ制御部は、前記駆動力源の停止指令を出力するときに、前記第2の油圧源の駆動を指令する
    自動変速機の制御装置。
    A control device for an automatic transmission according to any one of claims 1 to 6, wherein
    The hydraulic pressure source includes a first hydraulic pressure source driven by the driving power source, and a second hydraulic pressure source capable of supplying hydraulic pressure regardless of the driving state of the driving power source.
    The control device for an automatic transmission which commands the drive of the second hydraulic pressure source when the coast stop control unit outputs a stop command of the driving power source.
  8.  車両を駆動する駆動力源と、
     前記駆動力源により駆動されて油圧を発生する油圧源と、
     第1の摩擦要素及び第2の摩擦要素の締結状態によって変速比が変更され、前記駆動力源の駆動力を駆動輪へと伝達する自動変速機と、
     前記駆動力源、前記油圧源及び前記伝達機構の動作を制御する制御部と、
     を備える車両における自動変速機の制御方法であって、
     車両が走行状態であって、前記第1の摩擦要素が締結状態かつ前記第2の摩擦要素が解放状態のとき、前記駆動力源の停止指令を出力し、
     前記駆動力源の停止が指令されてから、前記油圧源の回転が停止するまでの間に、前記第2の摩擦要素に油圧の供給を開始する
    自動変速機の制御方法。
     
    A driving power source for driving the vehicle,
    An oil pressure source driven by the driving power source to generate an oil pressure;
    An automatic transmission whose transmission gear ratio is changed according to the engagement state of the first friction element and the second friction element to transmit the driving force of the driving force source to the driving wheels;
    A control unit that controls the operation of the driving force source, the hydraulic pressure source, and the transmission mechanism;
    A method of controlling an automatic transmission in a vehicle comprising:
    When the vehicle is in the traveling state, and the first friction element is in the engaged state and the second friction element is in the released state, a command to stop the driving force source is output.
    The control method of the automatic transmission which starts supply of oil pressure to said 2nd friction element after rotation of said hydraulic power source is stopped, after stop of said driving power source is commanded.
PCT/JP2013/069413 2012-07-27 2013-07-17 Control device and control method for automatic transmission WO2014017356A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014526874A JP5768188B2 (en) 2012-07-27 2013-07-17 Control device and control method for automatic transmission
KR1020157002284A KR20150036238A (en) 2012-07-27 2013-07-17 Control device and control method for automatic transmission
CN201380039960.2A CN104508331B (en) 2012-07-27 2013-07-17 The control device of automatic transmission and control method
KR1020167033094A KR101929107B1 (en) 2012-07-27 2013-07-17 Control device and control method for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012167320 2012-07-27
JP2012-167320 2012-07-27

Publications (1)

Publication Number Publication Date
WO2014017356A1 true WO2014017356A1 (en) 2014-01-30

Family

ID=49997170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069413 WO2014017356A1 (en) 2012-07-27 2013-07-17 Control device and control method for automatic transmission

Country Status (4)

Country Link
JP (1) JP5768188B2 (en)
KR (2) KR20150036238A (en)
CN (1) CN104508331B (en)
WO (1) WO2014017356A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094996A (en) * 2014-11-14 2016-05-26 本田技研工業株式会社 Power transmission device for vehicle
CN113335261A (en) * 2020-03-02 2021-09-03 本田技研工业株式会社 Vehicle control device
WO2023276776A1 (en) * 2021-07-02 2023-01-05 ジヤトコ株式会社 Vehicle control device, vehicle control method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584892B2 (en) * 2015-09-24 2019-10-02 ジヤトコ株式会社 Vehicle sailing stop control method and control apparatus
KR102105888B1 (en) * 2016-07-01 2020-05-04 쟈트코 가부시키가이샤 Hybrid vehicle control unit
CN110997438B (en) * 2017-08-07 2023-02-28 加特可株式会社 Vehicle control device and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170295A (en) * 2004-12-14 2006-06-29 Mazda Motor Corp Engine starter of vehicle
JP2006335195A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Power output device and vehicle mounted with the same, and method for controlling power output device
US20070082784A1 (en) * 2005-10-11 2007-04-12 Ralph Walker Control of coasting downshifts in an automatic transmission for motor vehicles
JP2012112504A (en) * 2010-11-26 2012-06-14 Jatco Ltd Vehicle control system
JP2012112463A (en) * 2010-11-25 2012-06-14 Jatco Ltd Coast stop vehicle and control method for coast stop vehicle
JP2012112461A (en) * 2010-11-25 2012-06-14 Jatco Ltd Coast stop vehicle and control method of coast stop vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922549B2 (en) * 2002-07-10 2007-05-30 スズキ株式会社 Vehicle control device
JP3855966B2 (en) * 2003-05-28 2006-12-13 トヨタ自動車株式会社 Neutral control device for automatic transmission for vehicles
JP5039819B2 (en) * 2010-09-01 2012-10-03 ジヤトコ株式会社 Coast stop vehicle and coast stop method
JP5380402B2 (en) * 2010-09-10 2014-01-08 ジヤトコ株式会社 Automatic transmission and hydraulic control device
JP5380403B2 (en) * 2010-09-10 2014-01-08 ジヤトコ株式会社 Automatic transmission and hydraulic control device
JP2012215210A (en) * 2011-03-31 2012-11-08 Aisin Aw Co Ltd Automatic transmission gear and method of controlling transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170295A (en) * 2004-12-14 2006-06-29 Mazda Motor Corp Engine starter of vehicle
JP2006335195A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Power output device and vehicle mounted with the same, and method for controlling power output device
US20070082784A1 (en) * 2005-10-11 2007-04-12 Ralph Walker Control of coasting downshifts in an automatic transmission for motor vehicles
JP2012112463A (en) * 2010-11-25 2012-06-14 Jatco Ltd Coast stop vehicle and control method for coast stop vehicle
JP2012112461A (en) * 2010-11-25 2012-06-14 Jatco Ltd Coast stop vehicle and control method of coast stop vehicle
JP2012112504A (en) * 2010-11-26 2012-06-14 Jatco Ltd Vehicle control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094996A (en) * 2014-11-14 2016-05-26 本田技研工業株式会社 Power transmission device for vehicle
CN113335261A (en) * 2020-03-02 2021-09-03 本田技研工业株式会社 Vehicle control device
CN113335261B (en) * 2020-03-02 2023-07-28 本田技研工业株式会社 Control device for vehicle
WO2023276776A1 (en) * 2021-07-02 2023-01-05 ジヤトコ株式会社 Vehicle control device, vehicle control method, and program
JP7545586B2 (en) 2021-07-02 2024-09-04 ジヤトコ株式会社 Vehicle control device, vehicle control method, and program

Also Published As

Publication number Publication date
JP5768188B2 (en) 2015-08-26
CN104508331A (en) 2015-04-08
KR20150036238A (en) 2015-04-07
JPWO2014017356A1 (en) 2016-07-11
KR20160139055A (en) 2016-12-06
KR101929107B1 (en) 2018-12-13
CN104508331B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5728422B2 (en) Shift control device for belt type continuously variable transmission
EP2457791B1 (en) Control method for coast stop vehicle
US8696515B2 (en) Coast stop vehicle and control method thereof
US8585550B2 (en) Coast stop vehicle and control method for coast stop vehicle
US8771142B2 (en) Controller of vehicle and control method of vehicle
US8771141B2 (en) Coast stop vehicle and coast stop method
US8771147B2 (en) Coast stop vehicle and control method thereof
EP2436953B1 (en) Coast stop vehicle and control method thereof
JP5768188B2 (en) Control device and control method for automatic transmission
WO2017069071A1 (en) Method and system for controlling sailing stop in vehicle
WO2017130779A1 (en) Method and device for controlling sailing stop of vehicle
WO2017051678A1 (en) Vehicle sailing stop control method and control device
JP5718530B2 (en) Automatic transmission for vehicles
JP6518177B2 (en) Vehicle control apparatus and vehicle control method
KR102079465B1 (en) Control device of vehicle and control method of vehicle
JP6568754B2 (en) VEHICLE DRIVE DEVICE AND CONTROL METHOD FOR VEHICLE DRIVE DEVICE
WO2017135171A1 (en) Vehicle control device and vehicle control method
WO2014021118A1 (en) Automatic transmission for vehicle
JP6468110B2 (en) VEHICLE DRIVE DEVICE AND CONTROL METHOD FOR VEHICLE DRIVE DEVICE
JP6752506B2 (en) Control device for continuously variable transmission for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526874

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157002284

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822818

Country of ref document: EP

Kind code of ref document: A1