JP2019124255A - Control device of transmission for vehicle - Google Patents

Control device of transmission for vehicle Download PDF

Info

Publication number
JP2019124255A
JP2019124255A JP2018003742A JP2018003742A JP2019124255A JP 2019124255 A JP2019124255 A JP 2019124255A JP 2018003742 A JP2018003742 A JP 2018003742A JP 2018003742 A JP2018003742 A JP 2018003742A JP 2019124255 A JP2019124255 A JP 2019124255A
Authority
JP
Japan
Prior art keywords
transmission unit
gear
continuously variable
switching
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003742A
Other languages
Japanese (ja)
Other versions
JP6891820B2 (en
Inventor
祐樹 村上
Yuki Murakami
祐樹 村上
正和 尾渡
Masakazu Owatari
正和 尾渡
典弘 塚本
Norihiro Tsukamoto
典弘 塚本
健吾 永井
Kengo Nagai
健吾 永井
諭 加藤
Satoshi Kato
諭 加藤
進 守友
Susumu Moritomo
進 守友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018003742A priority Critical patent/JP6891820B2/en
Publication of JP2019124255A publication Critical patent/JP2019124255A/en
Application granted granted Critical
Publication of JP6891820B2 publication Critical patent/JP6891820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

To provide a control device of a transmission for a vehicle which can reduce an incongruity imparted to a driver when switching a power transmission path to a stepped transmission part from a belt-type stepless transmission part.SOLUTION: In an electronic control device 80 of a transmission 78 for a vehicle in which a stepped transmission part 20 and a belt-type stepless transmission part 60 are arranged in parallel with each other, the electronic control device controls changeover responsiveness so that the responsiveness is lowered more than the case that a return time Trtn is shorter than a prescribed determination time Tjdg when the return time Trtn up until a gear change ratio γ2 of the stepless transmission part 60 reaches a determination gear change ratio γjdg at which the gear change ratio of the stepless transmission becomes switchable elapses the prescribed detection time Tjdg when a power transmission path is switched to the stepped transmission part 20 from the stepless transmission part 60. By this constitution, when the changeover of the power transmission path to the stepped transmission part 20 from the stepless transmission part 60 is delayed, the changeover of the power transmission path is mildly performed, and an incongruity imparted to a driver can be thereby be reduced.SELECTED DRAWING: Figure 5

Description

本発明は、車両用変速機の制御装置に関し、特に、有段変速機部とベルト式の無段変速機部とが並列に配設された車両用変速機の制御装置に関する。   The present invention relates to a control device for a vehicle transmission, and more particularly to a control device for a vehicle transmission in which a stepped transmission unit and a belt type continuously variable transmission unit are disposed in parallel.

有段変速機部とベルト式の無段変速機部とが並列に配設された車両用変速機が知られている。例えば、特許文献1に記載の車両用変速機がそれである。特許文献1に記載の車両用変速機では、車両の車速等に応じて車両用変速機内の動力伝達経路が有段変速機部とされたり無段変速機部とされたりする切替制御が行われる。   There is known a vehicle transmission in which a stepped transmission unit and a belt-type continuously variable transmission unit are disposed in parallel. For example, the vehicle transmission described in Patent Document 1 is that. In the transmission for a vehicle described in Patent Document 1, switching control is performed such that the power transmission path in the transmission for the vehicle is a stepped transmission unit or a continuously variable transmission unit according to the vehicle speed of the vehicle and the like. .

特開2015−105708号公報JP, 2015-105708, A

上記車両用変速機において、無段変速機部から有段変速機部への動力伝達経路の切替制御が行われる際に、無段変速機部の変速比と有段変速機部の変速比との差が大きすぎると変速ショックが大きくなる。そのため、無段変速機部の変速比が所定の範囲内となって有段変速機部の変速比に近づくまで動力伝達経路の切替を行わないように切替を遅延させることが考えられる。この場合、無段変速機部および有段変速機部の変速比の不整合に基づく変速ショックは抑制されるが、動力伝達経路の切替が遅くなるとドライバの意図と異なるタイミングで動力伝達経路の切替に伴う変速が発生しドライバに違和感を与えてしまうおそれがある。   In the above-described vehicle transmission, when switching control of the power transmission path from the continuously variable transmission unit to the stepped transmission unit is performed, the transmission ratio of the continuously variable transmission unit and the transmission ratio of the stepped transmission unit If the difference between the two is too large, the shift shock becomes large. Therefore, it is conceivable to delay the switching so that the switching of the power transmission path is not performed until the transmission ratio of the continuously variable transmission unit falls within a predetermined range and approaches the transmission ratio of the stepped transmission unit. In this case, although the shift shock based on the mismatch of the transmission ratio of the continuously variable transmission unit and the stepped transmission unit is suppressed, the switching of the power transmission path is performed at a timing different from the driver's intention when the switching of the power transmission path is delayed. There is a possibility that a gear change may occur to cause the driver to feel uncomfortable.

本発明は、以上の事情を背景としてなされたものであり、その目的とするところは、ベルト式の無段変速機部から有段変速機部への動力伝達経路の切替が行われる際、ドライバへ与える違和感を低減できる車両用変速機の制御装置を提供することにある。   The present invention has been made against the background described above, and an object of the present invention is to switch the power transmission path from the belt-type continuously variable transmission unit to the stepped transmission unit. An object of the present invention is to provide a control device of a transmission for a vehicle which can reduce an uncomfortable feeling given to the vehicle.

本発明の要旨とするところは、有段変速機部とベルト式の無段変速機部とが並列に配設された車両用変速機の制御装置であって、前記無段変速機部から前記有段変速機部へ動力伝達経路の切替をするときにおいて、前記無段変速機部の変速比が前記切替可能となる許可変速比範囲内に戻るまでの戻り時間が所定の判定時間を超過する場合は、前記戻り時間が前記所定の判定時間以下の場合よりも前記切替の応答性が低くなるように制御することにある。   The subject matter of the present invention is a control device for a vehicle transmission in which a stepped transmission unit and a belt-type continuously variable transmission unit are disposed in parallel, and from the continuously variable transmission unit When switching the power transmission path to the stepped transmission unit, the return time until the transmission ratio of the continuously variable transmission unit returns to the allowable transmission ratio range where the switching is possible exceeds the predetermined determination time. In this case, control is performed so that the responsiveness of the switching is lower than in the case where the return time is less than or equal to the predetermined determination time.

本発明の車両用変速機の制御装置によれば、前記無段変速機部から前記有段変速機部へ動力伝達経路の切替をするときにおいて、前記無段変速機部の変速比が前記切替可能となる許可変速比範囲内に戻るまでの戻り時間が所定の判定時間を超過する場合は、前記戻り時間が前記所定の判定時間以下の場合よりも前記切替の応答性が低くなるように制御される。これにより、無段変速機部から有段変速機部への動力伝達経路の切替が遅い場合は、その動力伝達経路の切替が緩やかに行われるのでドライバへ与える違和感が低減される。   According to the control device for a vehicle transmission of the present invention, when switching the power transmission path from the continuously variable transmission unit to the stepped transmission unit, the transmission ratio of the continuously variable transmission unit is switched If the return time to return to within the allowable gear ratio range to be possible exceeds the predetermined determination time, control is performed such that the response of the switching becomes lower than in the case where the return time is equal to or less than the predetermined determination time. Be done. Thus, when the switching of the power transmission path from the continuously variable transmission unit to the stepped transmission portion is slow, the switching of the power transmission path is performed gently, so that the sense of discomfort given to the driver is reduced.

本発明の一実施例である車両用変速機を搭載した車両の骨子図である。FIG. 1 is a skeleton view of a vehicle equipped with a vehicle transmission according to an embodiment of the present invention. 図1の動力伝達装置の走行パターンの切り替りを説明するための図である。It is a figure for demonstrating switching of the driving | running | working pattern of the power transmission device of FIG. 図1の車両用変速機において、無段変速機部から有段変速機部へ動力伝達経路の切替が行われるタイミングチャートの一例である。In the transmission for vehicles of FIG. 1, it is an example of the timing chart by which switching of a power transmission path is performed from a continuously variable transmission part to a geared transmission part. 車両における各種制御の為の電子制御装置の制御機能及び制御系統の要部を例示する機能ブロック線図である。It is a functional block diagram which illustrates the control function of the electronic control device for various control in vehicles, and the important section of the control system. 図4の電子制御装置の制御作動の要部を説明するフローチャートの一例である。It is an example of the flowchart explaining the principal part of the control action | operation of the electronic control apparatus of FIG.

以下、本発明の実施例について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例である車両用変速機78を搭載した車両10の骨子図である。   FIG. 1 is a skeleton view of a vehicle 10 equipped with a vehicle transmission 78 according to an embodiment of the present invention.

車両10は、走行用駆動力源としてのエンジン12およびトランスアクスル(T/A)としての動力伝達装置14を備える。   The vehicle 10 includes an engine 12 as a driving power source and a power transmission 14 as a transaxle (T / A).

動力伝達装置14は、エンジン12から出力されるトルク(駆動力)がトルクコンバータ16を経由して入力軸26に入力される。動力伝達装置14は、入力軸26に入力されたトルクが前後進切換装置18等を経由して出力軸28に伝達される第1動力伝達経路と、入力軸26に入力されたトルクが無段変速機部60を経由して出力軸28に伝達される第2動力伝達経路と、を並列に備えており、車両10の走行状態に応じて動力伝達経路が切り替えられるように構成されている。なお、第1動力伝達経路上にある前後進切換装置18や後述のギヤ機構22、カウンタ軸38、第1ギヤ50、噛合クラッチD1、第2ギヤ52、アイドラギヤ42、および入力ギヤ54等が、本発明における「有段変速機部20」に相当する。第2動力伝達経路上には無段変速機部60があり、この有段変速機部20とベルト式の無段変速機部60とが並列に配設されて車両用変速機78が構成される。出力軸28を介して出力されるエンジン12からの動力は、出力軸28およびカウンタ軸44に各々相対回転不能に設けられて噛み合う出力ギヤ24およびドライブギヤ46、カウンタ軸44および差動歯車装置74に各々相対回転不能に設けられて噛み合うドリブンギヤ48およびデフリングギヤ72、および一対の車軸70を介して一対の駆動輪76に伝えられる。   In the power transmission device 14, torque (driving force) output from the engine 12 is input to the input shaft 26 via the torque converter 16. The power transmission device 14 has a first power transmission path through which the torque input to the input shaft 26 is transmitted to the output shaft 28 via the forward / reverse switching device 18 and the like, and the torque input to the input shaft 26 is continuously variable. A second power transmission path transmitted to the output shaft 28 via the transmission unit 60 is provided in parallel, and the power transmission path is switched according to the traveling state of the vehicle 10. The forward / reverse switching device 18 on the first power transmission path, the gear mechanism 22 described later, the counter shaft 38, the first gear 50, the meshing clutch D1, the second gear 52, the idler gear 42, the input gear 54, etc. This corresponds to the "stepped transmission unit 20" in the present invention. A continuously variable transmission unit 60 is provided on the second power transmission path, and the stepless transmission unit 20 and a belt type continuously variable transmission unit 60 are disposed in parallel to constitute a transmission 78 for a vehicle. Ru. The power from the engine 12 output via the output shaft 28 is output gear 24 and drive gear 46, counter shaft 44 and differential gear device 74 provided non-rotatably relative to output shaft 28 and counter shaft 44 respectively. , And are transmitted to the pair of drive wheels 76 via the driven gear 48 and the differential ring gear 72, which are provided so as to be relatively non-rotatable relative to each other, and the pair of axles 70.

エンジン12は、例えばガソリンエンジンやディーゼルエンジン等の内燃機関にて構成されている。トルクコンバータ16は、エンジン12のクランク軸に連結されたポンプ翼車16p、およびトルクコンバータ16の出力側部材に相当する入力軸26を介して前後進切換装置18に連結されたタービン翼車16tを備えており、流体を介して動力伝達を行う。ポンプ翼車16pおよびタービン翼車16tの間にはロックアップクラッチ56が設けられており、ロックアップクラッチ56が完全係合させられることでポンプ翼車16pおよびタービン翼車16tは一体回転させられる。   The engine 12 is configured by an internal combustion engine such as, for example, a gasoline engine or a diesel engine. The torque converter 16 includes a pump impeller 16p coupled to a crankshaft of the engine 12 and a turbine impeller 16t coupled to the forward-reverse switching device 18 via an input shaft 26 corresponding to an output side member of the torque converter 16. It is equipped and performs power transmission via fluid. A lockup clutch 56 is provided between the pump impeller 16p and the turbine impeller 16t, and when the lockup clutch 56 is completely engaged, the pump impeller 16p and the turbine impeller 16t are integrally rotated.

前後進切換装置18は、前進用クラッチC1、後進用ブレーキB1、およびダブルピニオン型の遊星歯車装置30を主体として構成されており、キャリア30cが入力軸26および無段変速機部60の入力側回転軸32に一体的に連結され、リングギヤ30rが後進用ブレーキB1を介して非回転部材としてのハウジング58に選択的に連結され、サンギヤ30sがギヤ機構22を構成する小径ギヤ36に連結されている。サンギヤ30sとキャリア30cとが、前進用クラッチC1を介して選択的に連結される。前進用クラッチC1および後進用ブレーキB1は断接装置に相当するもので、何れも油圧アクチュエータによって摩擦係合させられる油圧式摩擦係合装置である。   The forward / reverse switching device 18 is mainly composed of a forward clutch C1, a reverse brake B1, and a double pinion type planetary gear device 30, and the carrier 30c is an input side of the input shaft 26 and the continuously variable transmission unit 60. The ring gear 30r is integrally connected to the rotating shaft 32, the ring gear 30r is selectively connected to the housing 58 as a non-rotation member via the reverse brake B1, and the sun gear 30s is connected to the small diameter gear 36 constituting the gear mechanism 22. There is. The sun gear 30s and the carrier 30c are selectively connected via the forward clutch C1. The forward clutch C <b> 1 and the reverse brake B <b> 1 correspond to connecting and disconnecting devices, and both are hydraulic friction engagement devices frictionally engaged by a hydraulic actuator.

ギヤ機構22は、小径ギヤ36とカウンタ軸38に相対回転不能に設けられている大径ギヤ40とを含んで構成されている。また、アイドラギヤ42が、カウンタ軸38と同じ回転中心線を中心にしてカウンタ軸38に対して相対回転可能に設けられている。カウンタ軸38とアイドラギヤ42との間には、これらを選択的に断接する噛合クラッチD1が設けられている。噛合クラッチD1は、カウンタ軸38に形成されている第1ギヤ50と、アイドラギヤ42に形成されている第2ギヤ52と、これら第1ギヤ50および第2ギヤ52と嵌合可能(係合可能、噛合可能)な図示されていないスプライン歯が形成されている図示されていないハブスリーブと、を含んで構成されており、ハブスリーブがこれら第1ギヤ50および第2ギヤ52と嵌合することで、カウンタ軸38とアイドラギヤ42とが接続される。また、噛合クラッチD1は、第1ギヤ50と第2ギヤ52とを嵌合する際に回転を同期させる同期機構としてのシンクロメッシュ機構S1をさらに備えている。   The gear mechanism 22 is configured to include a small diameter gear 36 and a large diameter gear 40 provided non-rotatably on the counter shaft 38. In addition, an idler gear 42 is provided so as to be rotatable relative to the counter shaft 38 about the same rotation center line as the counter shaft 38. Between the counter shaft 38 and the idler gear 42, a meshing clutch D1 is provided which selectively connects and disconnects these. The meshing clutch D1 is engageable with the first gear 50 formed on the counter shaft 38, the second gear 52 formed on the idler gear 42, and the first gear 50 and the second gear 52 And a non-illustrated hub sleeve on which non-illustrated spline teeth are formed, and the hub sleeve is engaged with the first gear 50 and the second gear 52. The counter shaft 38 and the idler gear 42 are connected. The meshing clutch D1 further includes a synchromesh mechanism S1 as a synchronization mechanism that synchronizes the rotation when the first gear 50 and the second gear 52 are fitted.

アイドラギヤ42は、アイドラギヤ42よりも大径の入力ギヤ54と噛み合っている。入力ギヤ54は、無段変速機部60の後述するセカンダリプーリ64の回転中心線と同じ回転中心線に配置されている出力軸28に対して相対回転不能に設けられている。出力軸28は、回転可能に配置されており、入力ギヤ54および出力ギヤ24が相対回転不能に設けられている。これにより、エンジン12のトルクが入力軸26からギヤ機構22を経由して出力軸28に伝達される第1動力伝達経路上には、前進用クラッチC1、後進用ブレーキB1、および噛合クラッチD1が介挿されている。   The idler gear 42 meshes with an input gear 54 larger in diameter than the idler gear 42. The input gear 54 is provided so as to be incapable of relative rotation with respect to the output shaft 28 disposed on the same rotation center line as the rotation center line of the secondary pulley 64 of the continuously variable transmission unit 60 described later. The output shaft 28 is rotatably disposed, and the input gear 54 and the output gear 24 are provided so as not to be relatively rotatable. Thus, on the first power transmission path where the torque of the engine 12 is transmitted from the input shaft 26 to the output shaft 28 via the gear mechanism 22, there are a forward clutch C1, a reverse brake B1 and a meshing clutch D1. It is inserted.

無段変速機部60と出力軸28との間には、これらの間を選択的に断接するベルト走行用クラッチC2が介挿されている。ベルト走行用クラッチC2が係合されると、エンジン12のトルクが入力軸26および無段変速機部60を経由して出力軸28に伝達される。ベルト走行用クラッチC2が解放されると、無段変速機部60から出力軸28にトルクが伝達されない。   A belt travel clutch C2 is interposed between the continuously variable transmission unit 60 and the output shaft 28 for selectively connecting and disconnecting these. When the belt travel clutch C2 is engaged, the torque of the engine 12 is transmitted to the output shaft 28 via the input shaft 26 and the continuously variable transmission unit 60. When the belt travel clutch C2 is released, no torque is transmitted from the continuously variable transmission unit 60 to the output shaft 28.

無段変速機部60は、入力軸26に連結された入力側回転軸32と出力軸28との間の動力伝達経路上に設けられている。無段変速機部60は、入力側回転軸32に設けられた有効径が可変の可変プーリであるプライマリプーリ62と、入力側回転軸32に並行な出力側回転軸34に設けられた有効径が可変の可変プーリであるセカンダリプーリ64と、その一対のプライマリプーリ62およびセカンダリプーリ64の間に巻き掛けられた伝動ベルト66と、を備え、一対のプライマリプーリ62およびセカンダリプーリ64と伝動ベルト66との間の摩擦力を介して動力伝達が行われる。   The continuously variable transmission unit 60 is provided on a power transmission path between the input side rotation shaft 32 connected to the input shaft 26 and the output shaft 28. The continuously variable transmission unit 60 has a primary pulley 62, which is a variable pulley having a variable effective diameter, provided on the input side rotation shaft 32, and an effective diameter provided on the output side rotation shaft 34 parallel to the input side rotation shaft 32. Is a variable pulley having a variable speed, and a transmission belt 66 wound around the pair of primary pulley 62 and secondary pulley 64, and the pair of primary pulley 62, secondary pulley 64 and transmission belt 66. Power transmission is performed via the friction between them.

プライマリプーリ62は、入力側回転軸32に固定された固定シーブ62aと、入力側回転軸32に対してその回転中心線まわりに相対回転不能かつその回転中心線方向に移動可能に設けられた可動シーブ62bと、固定シーブ62aと可動シーブ62bとの間のV溝幅を変更する為に可動シーブ62bを移動させるための推力を発生させる入力側油圧アクチュエータ62cと、を備える。セカンダリプーリ64は、出力側回転軸34に固定された固定シーブ64aと、出力側回転軸34に対してその回転中心線に相対回転不能かつその回転中心線方向に移動可能に設けられた可動シーブ64bと、固定シーブ64aと可動シーブ64bとの間のV溝幅を変更する為に可動シーブ64bを移動させるための推力を発生させる出力側油圧アクチュエータ64cと、を備える。   Primary pulley 62 is fixed sheave 62a fixed to input side rotation shaft 32, and movable with respect to input side rotation shaft 32 so as not to be relatively rotatable around the rotation center line and movable in the rotation center line direction. A sheave 62b and an input-side hydraulic actuator 62c that generates a thrust for moving the movable sheave 62b to change the V-groove width between the fixed sheave 62a and the movable sheave 62b. The secondary pulley 64 has a fixed sheave 64a fixed to the output side rotation shaft 34, and a movable sheave provided so as to be non-rotatable relative to the rotation center line with respect to the output side rotation shaft 34 and movable in the rotation center line direction. And an output-side hydraulic actuator 64c that generates a thrust for moving the movable sheave 64b to change the V-groove width between the fixed sheave 64a and the movable sheave 64b.

一対のプライマリプーリ62、セカンダリプーリ64のV溝幅が変化して伝動ベルト66の掛かり径、すなわち有効径が変更されることで、無段変速機部60の変速比γ2(=入力側回転軸32の回転速度ωin(rpm)/出力側回転軸34の回転速度ωout(rpm))が連続的に変更させられる。無段変速機部60の変速比γ2は、変更範囲である最小変速比γminと最大変速比γmaxとの間の任意の値とされる。なおωは、角速度(rad/sec)ではなく、回転速度(rpm)を表す記号として用いており、これ以降に用いる記号についても同様である。例えば、プライマリプーリ62のV溝幅が狭くされると、変速比γ2が小さくされて無段変速機部60がアップシフトされる。プライマリプーリ62のV溝幅が広くされると、変速比γ2が大きくされて無段変速機部60がダウンシフトされる。   The V-groove width of the pair of primary pulleys 62 and secondary pulleys 64 is changed to change the engagement diameter of the transmission belt 66, that is, the effective diameter, so that the gear ratio γ2 of the continuously variable transmission unit 60 (= input side rotation shaft The rotational speed ωin (rpm) of 32 / the rotational speed ωout (rpm) of the output side rotary shaft 34 is continuously changed. The gear ratio γ2 of the continuously variable transmission unit 60 is an arbitrary value between the minimum gear ratio γmin which is the change range and the maximum gear ratio γmax. Note that ω is not a angular velocity (rad / sec), but is used as a symbol representing a rotational velocity (rpm), and the same applies to symbols used thereafter. For example, when the V groove width of the primary pulley 62 is narrowed, the speed ratio γ2 is decreased, and the continuously variable transmission unit 60 is upshifted. When the V-groove width of the primary pulley 62 is increased, the transmission ratio γ2 is increased and the continuously variable transmission unit 60 is downshifted.

図2は、図1の動力伝達装置14の走行パターンの切り替りを説明するための図である。図2において、C1が前進用クラッチC1の作動状態に対応し、C2がベルト走行用クラッチC2の作動状態に対応し、B1が後進用ブレーキB1の作動状態に対応し、D1が噛合クラッチD1の作動状態に対応し、「○」が係合、すなわち接続を示し、「×」が解放、すなわち遮断を示している。なお、噛合クラッチD1は、シンクロメッシュ機構S1を備えており、噛合クラッチD1が係合する際にはシンクロメッシュ機構S1が作動する。   FIG. 2 is a diagram for explaining switching of a traveling pattern of the power transmission device 14 of FIG. In FIG. 2, C1 corresponds to the operating state of the forward clutch C1, C2 corresponds to the operating state of the belt traveling clutch C2, B1 corresponds to the operating state of the reverse brake B1, and D1 corresponds to the meshing clutch D1. Corresponding to the operating state, "o" represents engagement, i.e. connection, and "x" represents release, i.e. cutoff. The meshing clutch D1 includes a synchromesh mechanism S1, and when the meshing clutch D1 is engaged, the synchromesh mechanism S1 operates.

まず、ギヤ機構22を経由してエンジン12のトルクが出力軸28に伝達されるギヤ走行、すなわち有段変速機部20によりトルクが伝達される走行について説明する。ギヤ走行では、前進用クラッチC1および噛合クラッチD1が係合される一方、ベルト走行用クラッチC2および後進用ブレーキB1が解放される。   First, gear travel in which the torque of the engine 12 is transmitted to the output shaft 28 via the gear mechanism 22, that is, travel in which torque is transmitted by the stepped transmission unit 20 will be described. In gear travel, the forward clutch C1 and the meshing clutch D1 are engaged, while the belt travel clutch C2 and the reverse brake B1 are released.

前進用クラッチC1が係合されることで、遊星歯車装置30のキャリア30cとサンギヤ30sとが一体回転させられるので、小径ギヤ36が入力軸26と同じ回転速度で回転させられる。小径ギヤ36は、カウンタ軸38に設けられている大径ギヤ40と噛み合わされているので、カウンタ軸38も同様に回転させられる。また、噛合クラッチD1が係合されているので、カウンタ軸38とアイドラギヤ42とが接続され、アイドラギヤ42が入力ギヤ54と噛み合わされているので、入力ギヤ54と一体的に設けられている出力軸28が回転させられる。このように、前進用クラッチC1および噛合クラッチD1が係合されると、エンジン12のトルクが、トルクコンバータ16、入力軸26、および有段変速機部20を経由して出力軸28に伝達される。   As the forward clutch C1 is engaged, the carrier 30c of the planetary gear device 30 and the sun gear 30s are integrally rotated, so the small diameter gear 36 is rotated at the same rotational speed as the input shaft 26. Since the small diameter gear 36 is engaged with the large diameter gear 40 provided on the counter shaft 38, the counter shaft 38 is similarly rotated. Further, since the meshing clutch D1 is engaged, the counter shaft 38 and the idler gear 42 are connected, and since the idler gear 42 is engaged with the input gear 54, an output shaft provided integrally with the input gear 54 28 is rotated. Thus, when the forward clutch C1 and the meshing clutch D1 are engaged, the torque of the engine 12 is transmitted to the output shaft 28 via the torque converter 16, the input shaft 26, and the stepped transmission unit 20. Ru.

次いで、無段変速機部60を経由してエンジン12のトルクが出力軸28に伝達されるベルト走行(高車速)について説明する。ベルト走行(高車速)では、ベルト走行用クラッチC2が接続される一方、前進用クラッチC1、後進用ブレーキB1、および噛合クラッチD1が遮断される。   Next, belt travel (high vehicle speed) in which the torque of the engine 12 is transmitted to the output shaft 28 via the continuously variable transmission unit 60 will be described. During belt travel (high vehicle speed), the belt travel clutch C2 is connected, while the forward clutch C1, the reverse brake B1, and the meshing clutch D1 are disconnected.

ベルト走行用クラッチC2が接続されることで、セカンダリプーリ64と出力軸28とが接続されるので、セカンダリプーリ64と出力軸28とが一体回転させられる。このとき、噛合クラッチD1が解放されるのは、ベルト走行中におけるギヤ機構22等の引き摺りをなくすとともに、高車速においてギヤ機構22等が高回転化するのを防止するためである。このように、ベルト走行用クラッチC2が係合されると、エンジン12のトルクが、トルクコンバータ16、入力軸26、および無段変速機部60を経由して出力軸28に伝達される。   Since the secondary pulley 64 and the output shaft 28 are connected by connecting the belt travel clutch C2, the secondary pulley 64 and the output shaft 28 are integrally rotated. At this time, the meshing clutch D1 is released in order to prevent the gear mechanism 22 and the like from rotating at high speeds while eliminating the drag of the gear mechanism 22 and the like while the belt is traveling. Thus, when the belt travel clutch C 2 is engaged, the torque of the engine 12 is transmitted to the output shaft 28 via the torque converter 16, the input shaft 26, and the continuously variable transmission unit 60.

ギヤ走行は、低車速領域において選択される。有段変速機部20の変速比γ1(変速比γ1は、第1動力伝達経路上にある歯車の歯数によって決定される)は、無段変速機部60の最大変速比γmaxよりも大きな値に設定されている。すなわち、有段変速機部20の変速比γ1は、無段変速機部60では設定されていない値に設定されている。例えば、車速Vが上昇するなどしてベルト走行に切り替える決定がなされると、ベルト走行に切り替えられる。ここで、ギヤ走行からベルト走行(高車速)、ないしはベルト走行(高車速)からギヤ走行へ切り替えられる際には、ベルト走行(中車速)を過渡的に経由して切り替えられる。   Gear travel is selected in the low vehicle speed region. The gear ratio γ1 of the stepped transmission unit 20 (the gear ratio γ1 is determined by the number of gear teeth on the first power transmission path) is larger than the maximum gear ratio γmax of the continuously variable transmission unit 60. It is set to. That is, the transmission gear ratio γ1 of the stepped transmission unit 20 is set to a value not set in the continuously variable transmission unit 60. For example, when it is determined that the vehicle travels to the belt traveling as the vehicle speed V increases, the belt traveling is switched to the belt traveling. Here, when switching from gear travel to belt travel (high vehicle speed) or from belt travel (high vehicle speed) to gear travel, it is switched via belt travel (medium vehicle speed) transiently.

例えば、ベルト走行(高車速)からギヤ走行に切り替えられる場合、ベルト走行用クラッチC2が係合された状態から、ギヤ走行への切替準備として噛合クラッチD1が係合される状態に過渡的に切り替えられる。このとき、ギヤ機構22を経由して遊星歯車装置30のサンギヤ30sにも回転が伝達された状態となり、この状態から前進用クラッチC1およびベルト走行用クラッチC2の掛け替え、すなわち前進用クラッチC1の係合、ベルト走行用クラッチC2の遮断が実行されることで、動力伝達経路が無段変速機部60から有段変速機部20に切り替えられる。このとき、車両用変速機78においては実質的にダウンシフトさせられる。   For example, when switching from belt travel (high vehicle speed) to gear travel, transition from a state in which the belt travel clutch C2 is engaged to a state in which the meshing clutch D1 is engaged as preparation for switching to gear travel Be At this time, the rotation is also transmitted to the sun gear 30s of the planetary gear device 30 via the gear mechanism 22. From this state, the forward clutch C1 and the belt travel clutch C2 are switched, that is, the forward clutch C1 is engaged. When the belt travel clutch C2 is disconnected, the power transmission path is switched from the continuously variable transmission unit 60 to the stepped transmission unit 20. At this time, the vehicle transmission 78 is substantially downshifted.

例えば、ギヤ走行からベルト走行(高車速)に切り替えられる場合、ギヤ走行に対応する前進用クラッチC1および噛合クラッチD1が係合された状態から、ベルト走行用クラッチC2および噛合クラッチD1が係合された状態に過渡的に切り替えられる。すなわち、前進用クラッチC1およびベルト走行用クラッチC2の掛け替えが実行される。このとき、動力伝達経路が有段変速機部20から無段変速機部60に切り替えられ、車両用変速機78においては実質的にアップシフトさせられる。そして、動力力伝達経路が切り替えられた後、不要な引き摺りやギヤ機構22等の高回転化を防止するために噛合クラッチD1が解放される。   For example, when switching from gear travel to belt travel (high vehicle speed), the belt travel clutch C2 and the engagement clutch D1 are engaged from the state where the forward movement clutch C1 and the engagement clutch D1 corresponding to the gear travel are engaged. Transition to the normal state. That is, switching of the forward movement clutch C1 and the belt travel clutch C2 is performed. At this time, the power transmission path is switched from the stepped transmission unit 20 to the continuously variable transmission unit 60, and the vehicle transmission 78 is substantially upshifted. Then, after the power transmission path is switched, the meshing clutch D1 is released in order to prevent unnecessary drag and high rotation of the gear mechanism 22 and the like.

図3は、図1の車両用変速機78において、無段変速機部60から有段変速機部20へ動力伝達経路の切替が行われるタイミングチャートの一例である。   FIG. 3 is an example of a timing chart in which switching of a power transmission path is performed from the continuously variable transmission unit 60 to the stepped transmission unit 20 in the vehicle transmission 78 of FIG. 1.

時刻t0において、ドライバによる操作、例えばアクセルペダルの戻し操作に基づいて動力伝達経路の無段変速機部60から有段変速機部20への切替を行うことが決定されると、無段変速機部60の変速比γ2は、有段変速機部20の変速比γ1に近づけられるべく、最小変速比γmin側から最大変速比γmax側に戻される。すなわち、動力伝達経路の切替に伴う変速ショックを低減するために無段変速機部60の変速比γ2が上昇させられる。図3の一点鎖線で示すように、通常、時刻t0から所定の判定時間Tjdgが経過した目標タイミングt−tagよりも早い時刻t1において、無段変速機部60の変速比γ2は判定変速比γjdg以上とされる。なお、判定変速比γjdgは、無段変速機部60の変速比γ2が判定変速比γjdg以上であれば、無段変速機部60から有段変速機部20への変速が行われても変速ショックが比較的小さくなるような値に予め実験的に或いは設計的に設定される。つまり、動力伝達経路の切替が許可される許可変速比範囲γpmtとは、変速ショックが小さくなるように予め設定される無段変速機60の変速比の変更範囲のうちの有段変速機部20の変速比γ1側の所定の範囲であって、本実施例においては無段変速機部60の変速比γ2が判定変速比γjdg以上且つγmax以下の範囲である。また、所定の判定時間Tjdgは、後述するように無段変速機部60から有段変速機部20へ動力伝達経路の切替の応答性が高くてもその動力伝達経路の切替がドライバへ与える違和感が比較的低くなるような時間に予め実験的に或いは設計的に設定される。これにより、目標タイミングt−tagにおいて動力伝達経路が切り替えられても、その変速ショックはドライバの意図するタイミングからそれほど外れておらず、ドライバは違和感をあまり受けない。   If it is determined at time t0 that switching from continuously variable transmission unit 60 to stepped transmission unit 20 of the power transmission path is to be performed based on the operation by the driver, for example, the return operation of the accelerator pedal, continuously variable transmission The gear ratio γ2 of the unit 60 is returned from the minimum gear ratio γmin to the maximum gear ratio γmax so as to be close to the gear ratio γ1 of the stepped transmission unit 20. That is, in order to reduce the shift shock accompanying the switching of the power transmission path, the gear ratio γ2 of the continuously variable transmission unit 60 is increased. As shown by the alternate long and short dash line in FIG. 3, the gear ratio γ2 of the continuously variable transmission unit 60 is normally determined gear ratio γjdg at time t1 earlier than the target timing t-tag when a predetermined determination time Tjdg has elapsed from time t0 It is considered above. If the determination gear ratio γjdg is equal to or greater than the determination gear ratio γjdg of the continuously variable transmission unit 60, the gear change from the continuously variable transmission unit 60 to the stepless transmission unit 20 is performed The value is set in advance experimentally or by design to a value that makes the shock relatively small. That is, the permitted transmission ratio range γpmt in which the switching of the power transmission path is permitted is the stepped transmission unit 20 within the change range of the transmission ratio of the continuously variable transmission 60 preset so as to reduce the shift shock. In the present embodiment, the gear ratio γ2 of the continuously variable transmission unit 60 is in the range not less than the determination gear ratio γjdg and not more than γmax. Also, as described later, even if the response of the switching of the power transmission path from the continuously variable transmission unit 60 to the stepped transmission unit 20 is high, the predetermined judgment time Tjdg is an uncomfortable feeling that the switching of the power transmission path gives the driver Is set in advance experimentally or by design at such a time as to be relatively low. As a result, even if the power transmission path is switched at the target timing t-tag, the shift shock does not deviate so much from the driver's intended timing, and the driver does not receive much discomfort.

ところで、ベルト式の無段変速機部60においては、入力側油圧アクチュエータ62cや出力側油圧アクチュエータ64cに必要な作動油の流量が確保されず、目標とする巻き掛け位置まで伝動ベルト66が移動しない、所謂ベルト戻り遅れが発生することがある。例えば、図3の実線で示すように、無段変速機部60の変速比γ2が判定変速比γjdgになるのが時刻t2であり、無段変速機部60の変速比γ2が切替可能となる判定変速比γjdg以上になるまでの時間である伝動ベルト66の戻り時間Trtnは時刻t0から時刻t2までかかっている。このとき、無段変速機部60の変速比γ2が判定変速比γjdgになるのに、目標タイミングt−tagに対して遅延時間Tdlyが発生している。このような場合、時刻t2において動力伝達経路が切り替えられると、無段変速機部60の変速比γ2と有段変速機部20の変速比γ1との不整合に基づく変速ショックは比較的小さくされているが、この動力伝達経路が切り替えられる時刻t2は、ドライバによって操作がなされた時刻t0からの経過時間が比較的短い目標タイミングt−tagに対して遅延時間Tdlyが経過している。そのため、上記の変速比γ1、γ2の不整合に基づく変速ショックは比較的小さいとしても、動力伝達経路の切替に伴う変速ショックがドライバの意図しないタイミングで発生し、ドライバが違和感を受けてしまうおそれがある。そこで、後述するように、伝動ベルト66の戻り時間Trtnが所定の判定時間Tjdgを超過している場合には、戻り時間Trtnが所定の判定時間Tjdg以下の場合よりも動力伝達経路の切替が緩やかに、すなわち低い応答性で切替が実行されることで、ドライバに与える違和感が低減される。なお、前述のように、有段変速機部20の変速比γ1は無段変速機部60の最大変速比γmaxよりも大きな値に設定されているため、無段変速機部60の変速比γ2が許可変速比範囲γpmt内であってもある程度の変速ショックは発生し、切替の応答性の高低によって変速ショックの大きさは変わる。   By the way, in the belt type continuously variable transmission unit 60, the flow rate of the hydraulic oil necessary for the input hydraulic actuator 62c and the output hydraulic actuator 64c is not secured, and the transmission belt 66 does not move to the target winding position That is, so-called belt return delay may occur. For example, as shown by the solid line in FIG. 3, it is at time t2 that the gear ratio γ2 of the continuously variable transmission unit 60 becomes the determination gear ratio γjdg, and the gear ratio γ2 of the continuously variable transmission unit 60 becomes switchable. The return time Trtn of the transmission belt 66, which is the time taken to reach the determination gear ratio γjdg or more, takes from time t0 to time t2. At this time, although the gear ratio γ2 of the continuously variable transmission unit 60 becomes the determination gear ratio γjdg, a delay time Tdly occurs with respect to the target timing t-tag. In such a case, when the power transmission path is switched at time t2, the shift shock based on the mismatch between gear ratio γ2 of continuously variable transmission unit 60 and gear ratio γ1 of stepped transmission unit 20 is made relatively small. However, at time t2 when the power transmission path is switched, the delay time Tdly has elapsed with respect to the target timing t-tag which has a relatively short elapsed time from the time t0 when the operation is performed by the driver. Therefore, even if the shift shock based on the mismatch of the gear ratios γ1 and γ2 is relatively small, the shift shock accompanying the switching of the power transmission path may occur at an unintended timing of the driver and the driver may feel discomfort. There is. Therefore, as described later, when the return time Trtn of the transmission belt 66 exceeds the predetermined determination time Tjdg, the switching of the power transmission path is more gradual than in the case where the return time Trtn is the predetermined determination time Tjdg or less. In other words, by performing switching with low responsiveness, the sense of discomfort given to the driver is reduced. As described above, since gear ratio γ1 of stepped transmission unit 20 is set to a value larger than maximum gear ratio γmax of continuously variable transmission unit 60, gear ratio γ2 of continuously variable transmission unit 60 Even if it is within the permitted gear ratio range γpmt, a certain degree of shift shock occurs, and the magnitude of the shift shock changes according to the level of response of switching.

図4は、車両10における各種制御の為の電子制御装置80の制御機能及び制御系統の要部を例示する機能ブロック線図である。電子制御装置80は、Electronic control unitとも呼ばれ、CPU、RAM、ROM、および入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUがRAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、車両10の各種装置を制御する。なお、電子制御装置80は、本発明における「制御装置」に相当する。   FIG. 4 is a functional block diagram illustrating the control function of the electronic control unit 80 for various controls in the vehicle 10 and the main part of the control system. The electronic control unit 80 is also called an electronic control unit, and is configured to include a so-called microcomputer provided with a CPU, a RAM, a ROM, an input / output interface, etc. The various devices of the vehicle 10 are controlled by performing signal processing according to a program stored in advance. The electronic control unit 80 corresponds to the "control unit" in the present invention.

電子制御装置80には、車両10に設けられた車速センサ90、プライマリプーリ回転速度センサ92、セカンダリプーリ回転速度センサ94、およびアクセル開度センサ96によってそれぞれ検出された、車速V(km/h)、入力側回転軸32の回転速度ωin(rpm)、出力側回転軸34の回転速度ωout(rpm)、およびアクセルペダルの踏込操作量に対応したアクセル開度(%)の各種信号が入力される。   In the electronic control unit 80, a vehicle speed V (km / h) detected by a vehicle speed sensor 90, a primary pulley rotational speed sensor 92, a secondary pulley rotational speed sensor 94, and an accelerator opening degree sensor 96 provided in the vehicle 10. , Various signals of the accelerator opening degree (%) corresponding to the rotation speed .omega.in (rpm) of the input side rotation shaft 32, the rotation speed .omega.out (rpm) of the output side rotation shaft 34, and the depression operation amount of the accelerator pedal .

電子制御装置80からは、エンジン12の出力制御のためのエンジン出力制御信号Se、無段変速機部60の変速に関する油圧制御のための変速用油圧制御信号Scvt、動力伝達装置14の走行モードの切替えに関連する前進用クラッチC1、後進用ブレーキB1、ベルト走行用クラッチC2、および噛合クラッチD1を制御するための走行モード切替用油圧制御信号Sswt、トルクコンバータ16の油圧制御のためのトルクコンバータ用油圧制御信号Slu等が、それぞれ出力される。例えば、走行モード切替用油圧制御信号Sswtとして、前進用クラッチC1、後進用ブレーキB1、ベルト走行用クラッチC2、噛合クラッチD1の各々の油圧アクチュエータへ供給される各油圧を調圧する各ソレノイド弁を駆動するための指令信号(油圧指令)が油圧制御回路100へ出力される。   From the electronic control unit 80, an engine output control signal Se for output control of the engine 12, a shift hydraulic control signal Scvt for hydraulic control for the shift of the continuously variable transmission 60, a travel mode of the power transmission device 14 A traveling mode switching hydraulic control signal Sswt for controlling the forward clutch C1, the reverse brake B1, the belt travel clutch C2 and the meshing clutch D1 related to the switching, and a torque converter for hydraulic control of the torque converter 16 The hydraulic control signals Slu and the like are respectively output. For example, as solenoid control signals Sswt for traveling mode switching, drive respective solenoid valves for adjusting the respective hydraulic pressures supplied to the respective hydraulic actuators of the forward clutch C1, reverse brake B1, belt travel clutch C2 and meshing clutch D1. A command signal (hydraulic command) to output the command is output to the hydraulic control circuit 100.

電子制御装置80は、変速比判定部80a、戻り時間判定部80b、および応答性設定部80cを備える。   The electronic control unit 80 includes a gear ratio determination unit 80a, a return time determination unit 80b, and a responsiveness setting unit 80c.

変速比判定部80aは、ドライバによって操作がなされた時刻t0から所定の判定時間Tjdgが経過した目標タイミングt−tagになると、例えば無段変速機部60の入力側回転軸32の回転速度ωinおよび出力側回転軸34の回転速度ωoutに基づいて無段変速機部60の変速比γ2(=ωin/ωout)が許可変速比範囲γpmt内に戻ったか否か、すなわち無段変速機部60の変速比γ2が判定変速比γjdg以上となったか否かを判定する。変速比γ2が判定変速比γjdg以上であると判定された場合、動力伝達経路の無段変速機部60から有段変速機部20への切替の制限が解除されるように、変速比判定部80aは指令信号を戻り時間判定部80bに出力する。変速比γ2が判定変速比γjdg未満であると判定された場合、変速比判定部80aは変速比γ2が判定変速比γjdg以上となるまで判定を繰り返し、判定変速比γjdg以上となった後に、変速比判定部80aは指令信号を戻り時間判定部80bに出力する。   When a target timing t-tag at which a predetermined determination time Tjdg has elapsed from time t0 at which the operation is performed by the driver, the gear ratio determination unit 80a determines, for example, the rotational speed ωin of the input-side rotary shaft 32 of the continuously variable transmission unit 60 Whether the gear ratio γ2 (= ωin / ωout) of the continuously variable transmission unit 60 has returned to within the permitted gear ratio range γpmt based on the rotation speed ωout of the output side rotation shaft 34, ie, the gear change of the continuously variable transmission unit 60 It is determined whether the ratio γ2 has become equal to or greater than the determination gear ratio γjdg. When it is determined that the gear ratio γ2 is equal to or greater than the determination gear ratio γjdg, the gear ratio determination unit is such that the restriction on switching from the continuously variable transmission unit 60 to the stepped transmission unit 20 of the power transmission path is released. 80a returns a command signal to the time determination unit 80b. If it is determined that the gear ratio γ2 is less than the determination gear ratio γjdg, the gear ratio determination unit 80a repeats the determination until the gear ratio γ2 becomes greater than or equal to the determination gear ratio γjdg, and after becoming greater than or equal to the determination gear ratio γjdg The ratio determination unit 80a returns a command signal to the time determination unit 80b.

戻り時間判定部80bは、戻り時間Trtnが所定の判定時間Tjdgよりも長いか否かを判定する。例えば、時刻t0から所定の判定時間Tjdgが経過した目標タイミングt−tagにおいて、変速比判定部80aが無段変速機部60の変速比γ2が判定変速比γjdg以上であると判定した場合には、戻り時間Trtnは所定の判定時間Tjdg以下であると判定され、変速比判定部80aが無段変速機部60の変速比γ2が判定変速比γjdg未満であると判定した場合には、戻り時間Trtnは所定の判定時間Tjdgを超過していると判定される。そして戻り時間判定部80bは、指令信号を応答性設定部80cに出力する。   The return time determination unit 80b determines whether the return time Trtn is longer than a predetermined determination time Tjdg. For example, at target timing t-tag at which predetermined determination time Tjdg has elapsed from time t0, when gear ratio determination unit 80a determines that gear ratio γ2 of continuously variable transmission unit 60 is greater than or equal to determination gear ratio γjdg The return time Trtn is determined to be equal to or less than the predetermined determination time Tjdg, and the return time is determined if the gear ratio determination unit 80a determines that the gear ratio γ2 of the continuously variable transmission unit 60 is less than the determination gear ratio γjdg. It is determined that Trtn exceeds a predetermined determination time Tjdg. Then, the return time determination unit 80b outputs a command signal to the responsiveness setting unit 80c.

応答性設定部80cは、戻り時間判定部80bから指令信号が入力されると、戻り時間判定部80bの判定結果に基づいて無段変速機部60から有段変速機部20への動力伝達経路の切替の応答性を設定する。具体的には、戻り時間Trtnが所定の判定時間Tjdg以下と判定された場合には、応答性設定部80cは動力伝達経路の切替の応答性を高く設定する。戻り時間Trtnが所定の判定時間Tjdgを超過したと判定された場合には、応答性設定部80cは動力伝達経路の切替の応答性を低く設定する。つまり、戻り時間Trtnが所定の判定時間Tjdgを超過したと判定された場合には、戻り時間Trtnが所定の判定時間Tjdg以下と判定された場合に比べて、動力伝達経路の切替の応答性は低く設定される。動力伝達経路の切替の応答性が高く設定された場合、前進用クラッチC1およびベルト走行用クラッチC2の掛け替え、すなわち前進用クラッチC1の係合、ベルト走行用クラッチC2の遮断の実行(係合開始から係合完了までの時間や遮断の開始から遮断の完了までの時間)は、比較的短い時間で行われる。一方、動力伝達経路の切替の応答性が低く設定された場合、前進用クラッチC1およびベルト走行用クラッチC2の掛け替えは、比較的長い時間で行われる。すなわち、切替の応答性が高く設定された場合は、前述のクラッチの掛け替えは速やかに行われ、切替の応答性が低く設定された場合は、前述のクラッチの掛け替えは緩やかに行われる。そして、動力伝達経路の切替に関して設定された応答性に応じて、電子制御装置80は走行モード切替用油圧制御信号Sswtを油圧制御回路100へ出力する。   When a command signal is input from return time determination unit 80b, responsiveness setting unit 80c transmits a power transmission path from continuously variable transmission unit 60 to stepped transmission unit 20 based on the determination result of return time determination unit 80b. Set the response of switching. Specifically, when it is determined that the return time Trtn is equal to or less than the predetermined determination time Tjdg, the responsiveness setting unit 80c sets the responsiveness of the switching of the power transmission path high. When it is determined that the return time Trtn exceeds the predetermined determination time Tjdg, the responsiveness setting unit 80c sets the responsiveness of switching of the power transmission path low. That is, when it is determined that the return time Trtn has exceeded the predetermined determination time Tjdg, the responsiveness of the switching of the power transmission path is greater than when the return time Trtn is determined to be less than the predetermined determination time Tjdg. It is set low. When the response of switching of the power transmission path is set high, switching of the forward clutch C1 and the belt travel clutch C2, that is, engagement of the forward clutch C1 and disconnection of the belt travel clutch C2 (engagement start The time from the start of engagement to the completion of engagement and the time from the start of shutoff to the completion of shutoff are performed in a relatively short time. On the other hand, when the response of switching of the power transmission path is set low, switching of the forward clutch C1 and the belt travel clutch C2 is performed in a relatively long time. That is, when the responsiveness of switching is set to be high, the above-described clutch replacement is performed promptly, and when the responsiveness of switching is set to be low, the above-described clutch switching is performed gently. Then, the electronic control unit 80 outputs the traveling mode switching hydraulic control signal Sswt to the hydraulic control circuit 100 in accordance with the responsiveness set regarding the switching of the power transmission path.

図5は、図4の電子制御装置80の制御作動の要部を説明するフローチャートの一例である。   FIG. 5 is an example of a flowchart explaining the main part of the control operation of the electronic control unit 80 of FIG.

図5のフローチャートは、例えばドライバの操作によってアクセル開度θaccが小さくなることなどにより動力伝達経路が無段変速機部60から有段変速機部20への切替を行うとの電子制御装置80による決定によりスタートされる。   The flowchart in FIG. 5 is based on the electronic control unit 80 switching the power transmission path from the continuously variable transmission unit 60 to the stepped transmission unit 20 by, for example, reducing the accelerator opening degree θacc by the operation of the driver. It is started by the decision.

まず、変速比判定部80aに対応するステップS10において、無段変速機部60の変速比γ2に基づいて動力伝達経路の切替、すなわち無段変速機部60から有段変速機部20への変速の制限を解除するか否かが判定される。具体的には、無段変速機部60の変速比γ2が許可変速比範囲γpmt内に戻ったと判定、すなわち無段変速機部60の変速比γ2が判定変速比γjdg以上になったと判定されると、動力伝達経路の切替の制限が解除される。ステップS10の判定が肯定される場合はステップS20が実行される。ステップS10の判定が否定される場合は、再度ステップS10が実行される。   First, in step S10 corresponding to the gear ratio determination unit 80a, switching of the power transmission path based on the gear ratio γ2 of the continuously variable transmission unit 60, that is, gear change from the continuously variable transmission unit 60 to the geared transmission unit 20 It is determined whether or not to release the restriction of. Specifically, it is determined that gear ratio γ2 of continuously variable transmission unit 60 has returned to within permitted gear ratio range γpmt, that is, it is determined that gear ratio γ2 of continuously variable transmission unit 60 has become equal to or greater than determination gear ratio γjdg And the restriction of switching of the power transmission path is released. If the determination in step S10 is affirmed, step S20 is executed. If the determination in step S10 is negative, step S10 is executed again.

戻り時間判定部80bに対応するステップS20において、戻り時間Trtnが所定の判定時間Tjdgを超過しているか否かが判定される。ステップS20の判定が肯定される場合はステップS30が実行される。ステップS20の判定が否定される場合はステップS40が実行される。   In step S20 corresponding to the return time determination unit 80b, it is determined whether the return time Trtn exceeds a predetermined determination time Tjdg. If the determination in step S20 is affirmative, step S30 is performed. If the determination in step S20 is negative, step S40 is performed.

応答性設定部80cに対応するステップS30において、動力伝達経路の切替の応答性が低く設定される。これにより、動力伝達経路の切替は比較的緩やかに行われ、すなわち前進用クラッチC1およびベルト走行用クラッチC2の掛け替えは比較的長い時間で行われ、無段変速機部60の変速比γ2から有段変速機部20の変速比γ1への変速が行われる。そして終了となる。   In step S30 corresponding to the responsiveness setting unit 80c, the responsiveness of switching of the power transmission path is set low. Thereby, the switching of the power transmission path is performed relatively gently, that is, the changeover of the forward clutch C1 and the belt traveling clutch C2 is performed for a relatively long time, and from the transmission gear ratio γ2 of the continuously variable transmission unit 60 A shift to the transmission gear ratio γ1 of the step transmission unit 20 is performed. And it ends.

応答性設定部80cに対応するステップS40において、動力伝達経路の切替の応答性が高く設定される。これにより、動力伝達経路の切替は比較的速やかに行われ、すなわち前進用クラッチC1およびベルト走行用クラッチC2の掛け替えは比較的短い時間で行われ、無段変速機部60の変速比γ2から有段変速機部20の変速比γ1への変速が行われる。そして終了となる。   In step S40 corresponding to the responsiveness setting unit 80c, the responsiveness of switching of the power transmission path is set high. Thereby, the switching of the power transmission path is performed relatively quickly, that is, the changeover of the forward clutch C1 and the belt traveling clutch C2 is performed in a relatively short time, and from the transmission gear ratio γ2 of the continuously variable transmission unit 60 A shift to the transmission gear ratio γ1 of the step transmission unit 20 is performed. And it ends.

本実施例の車両10の電子制御装置80によれば、有段変速機部20とベルト式の無段変速機部60とが並列に配設された車両用変速機78において、無段変速機部60から有段変速機部20へ動力伝達経路の切替がされるとき、無段変速機部60の変速比γ2が切替可能となる許可変速比範囲γpmt内に戻るまでの戻り時間Trtnが所定の判定時間Tjdgを超過する場合は、戻り時間Trtnが所定の判定時間Tjdg以下の場合よりも切替の応答性が低くなるように制御される。これにより、無段変速機部60から有段変速機部20への動力伝達経路の切替が遅い場合は、ドライバの意図と異なるタイミングではあるが動力伝達経路の切替が緩やかに行われるため、切替に伴う変速ショックが低減されてドライバが受ける違和感が低減される。   According to the electronic control unit 80 of the vehicle 10 of the present embodiment, in the vehicle transmission 78 in which the stepped transmission unit 20 and the belt type continuously variable transmission unit 60 are disposed in parallel, the continuously variable transmission When the power transmission path is switched from unit 60 to stepped transmission unit 20, return time Trtn until return to within permitted gear ratio range γpmt, in which gear ratio γ2 of continuously variable transmission unit 60 becomes switchable, is predetermined When the determination time Tjdg is exceeded, the response of switching is controlled to be lower than in the case where the return time Trtn is equal to or less than the predetermined determination time Tjdg. Thereby, when the switching of the power transmission path from the continuously variable transmission unit 60 to the stepped transmission unit 20 is slow, the switching of the power transmission path is performed gently but at a timing different from the driver's intention. As a result, the shift shock associated with the driver is reduced, and the driver's discomfort is reduced.

以上、本発明の実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。   Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is also applicable in other aspects.

前述の実施例では、所定の判定時間Tjdgは1つであったが、これに限らない。例えば、所定の判定時間Tjdgを複数設定し、戻り時間Trtnが長いほど無段変速機部60から有段変速機部20への動力伝達経路の切替の応答性が順次低くなるように制御されても良い。   Although the predetermined determination time Tjdg is one in the above embodiment, the present invention is not limited to this. For example, a plurality of predetermined determination times Tjdg are set, and the response of switching of the power transmission path from continuously variable transmission unit 60 to stepped transmission unit 20 is controlled to be sequentially lowered as return time Trtn is longer. Also good.

前述の実施例では、無段変速機部60の変速比γ2が許可変速比範囲γpmt内に戻ったか否かは、プライマリプーリ回転速度センサ92およびセカンダリプーリ回転速度センサ94によってそれぞれ検出された入力側回転軸32の回転速度ωinおよび出力側回転軸34の回転速度ωoutに基づいて判定されたが、これに限らない。例えば、プライマリプーリ62の可動シーブ62bの回転中心線方向の位置を図示しないセンサで検出し、可動シーブ62bの回転中心線方向の位置が許可変速比範囲γpmtに対応する位置まで戻ったか否かに基づいて判定されても良い。   In the above-described embodiment, whether the gear ratio γ2 of the continuously variable transmission unit 60 has returned to within the permitted gear ratio range γpmt is the input side detected by the primary pulley rotational speed sensor 92 and the secondary pulley rotational speed sensor 94, respectively. Although the determination is made based on the rotation speed ω in of the rotation shaft 32 and the rotation speed ω out of the output side rotation shaft 34, the invention is not limited thereto. For example, whether the position of the movable sheave 62b in the direction of the rotation center line is returned to a position corresponding to the permitted gear ratio range γpmt by detecting the position of the movable sheave 62b of the primary pulley 62 in the direction of the rotation center line. It may be determined based on.

なお、上述したのはあくまでも本発明の実施例であり、本発明はその趣旨を逸脱しない範囲において当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is merely an embodiment of the present invention, and the present invention can be implemented in variously modified and improved modes based on the knowledge of those skilled in the art without departing from the scope of the present invention.

10:車両
14:動力伝達装置
20:有段変速機部
60:無段変速機部
78:車両用変速機
80:電子制御装置(制御装置)
Tjdg:判定時間
Trtn:戻り時間
γ1:有段変速機部の変速比
γ2:無段変速機部の変速比
γjdg:判定変速比
γpmt:許可変速比範囲
10: vehicle 14: power transmission device 20: stepped transmission unit 60: continuously variable transmission unit 78: transmission 80 for vehicle: electronic control unit (control device)
Tjdg: Judgment time Trtn: Return time γ1: Transmission gear ratio γ2: Stepless transmission transmission ratio γjdg: Judgment transmission ratio γpmt: Permitted transmission ratio range

Claims (1)

有段変速機部とベルト式の無段変速機部とが並列に配設された車両用変速機の制御装置であって、
前記無段変速機部から前記有段変速機部へ動力伝達経路の切替をするときにおいて、前記無段変速機部の変速比が前記切替可能となる許可変速比範囲内に戻るまでの戻り時間が所定の判定時間を超過する場合は、前記戻り時間が前記所定の判定時間以下の場合よりも前記切替の応答性が低くなるように制御する
ことを特徴とする車両用変速機の制御装置。
A control device for a vehicle transmission in which a stepped transmission unit and a belt-type continuously variable transmission unit are disposed in parallel,
When switching the power transmission path from the continuously variable transmission unit to the stepped transmission unit, a return time until the transmission ratio of the continuously variable transmission unit returns to the allowable transmission ratio range where the switchable is possible When the predetermined time exceeds the predetermined determination time, control is performed such that the response of the switching becomes lower than that in the case where the return time is equal to or less than the predetermined determination time.
JP2018003742A 2018-01-12 2018-01-12 Vehicle transmission control device Active JP6891820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003742A JP6891820B2 (en) 2018-01-12 2018-01-12 Vehicle transmission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003742A JP6891820B2 (en) 2018-01-12 2018-01-12 Vehicle transmission control device

Publications (2)

Publication Number Publication Date
JP2019124255A true JP2019124255A (en) 2019-07-25
JP6891820B2 JP6891820B2 (en) 2021-06-18

Family

ID=67398440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003742A Active JP6891820B2 (en) 2018-01-12 2018-01-12 Vehicle transmission control device

Country Status (1)

Country Link
JP (1) JP6891820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940045B2 (en) 2022-06-18 2024-03-26 Toyota Jidosha Kabushiki Kaisha Power transmission apparatus for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104429A (en) * 1999-10-06 2001-04-17 Osaka Gas Co Ltd Support equipment for bathing movement
JP2001224650A (en) * 2000-02-18 2001-08-21 Wako Seisakusho:Kk Bathing accident preventive device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104429A (en) * 1999-10-06 2001-04-17 Osaka Gas Co Ltd Support equipment for bathing movement
JP2001224650A (en) * 2000-02-18 2001-08-21 Wako Seisakusho:Kk Bathing accident preventive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11940045B2 (en) 2022-06-18 2024-03-26 Toyota Jidosha Kabushiki Kaisha Power transmission apparatus for vehicle

Also Published As

Publication number Publication date
JP6891820B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6332196B2 (en) Power transmission control device
JP2017007369A (en) Vehicle control apparatus
CN109723784B (en) Control device for vehicle power transmission device
JP2015209915A (en) Control device of vehicle
JP2019184027A (en) Control device of power transmission device for vehicle
JP2019090456A (en) Control device of power transmission device for vehicle
CN110017368B (en) Control device for vehicle power transmission device
CN109838550B (en) Control device for vehicle power transmission device
CN110230693B (en) Control device for vehicle power transmission device
JP2017036783A (en) Control device of power transmission device
CN109780154B (en) Control device for vehicle power transmission device
JP6891820B2 (en) Vehicle transmission control device
JP6561979B2 (en) Control device for vehicle drive device
JP2004347066A (en) Control device and method for vehicle
JP7155725B2 (en) Control device for vehicle drive system
JP2017020622A (en) Control device of power transmission device
JP2017096404A (en) Control device of power transmission device for vehicle
JP6790750B2 (en) Control device for vehicle power transmission device
JP6947142B2 (en) Control device for vehicle power transmission device
JP7024404B2 (en) Control device for vehicle power transmission device
JP6881291B2 (en) Control device for vehicle power transmission device
JP2018021582A (en) Control device of power transmission device for vehicle
JP2023040934A (en) Automatic transmission control device
JP2015232380A (en) Vehicle drive controller
JP2019152300A (en) Control device of automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R151 Written notification of patent or utility model registration

Ref document number: 6891820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151