WO2018096095A1 - Fluidheizer - Google Patents

Fluidheizer Download PDF

Info

Publication number
WO2018096095A1
WO2018096095A1 PCT/EP2017/080331 EP2017080331W WO2018096095A1 WO 2018096095 A1 WO2018096095 A1 WO 2018096095A1 EP 2017080331 W EP2017080331 W EP 2017080331W WO 2018096095 A1 WO2018096095 A1 WO 2018096095A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat
fluid heater
heater according
heat distribution
Prior art date
Application number
PCT/EP2017/080331
Other languages
English (en)
French (fr)
Inventor
Frederik SAMENFINK
Axel Wartenberg
Original Assignee
Dbk David + Baader Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dbk David + Baader Gmbh filed Critical Dbk David + Baader Gmbh
Publication of WO2018096095A1 publication Critical patent/WO2018096095A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/062Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators using electric energy supply; the heating medium being the resistive element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/081Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/024Heaters using beehive flow through structures

Definitions

  • the invention relates to a fluid heater according to the preamble of patent claim 1.
  • Heat exchangers are known from the prior art which serve as heat exchangers which transfer the heat of a warmer fluid in one process direction to another colder fluid. For this purpose, two different fluid areas or - flow channels are needed, which must be separated from a heat-conducting wall. To improve the heat transfer measures for increasing the surface of the wall are known, which is in contact with one of the fluids or with both fluids.
  • the publication DE 10 2010 048 593 A1 shows a modular heating device, wherein heating elements generate heat which is introduced into extruded profiles.
  • the extruded profiles are flowed through by a medium, is discharged to the heat.
  • the patent EP 1 430 530 B1 shows a heat exchanger, wherein an open-pore metal foam is provided as a body to increase the surface area. The heat is transferred from a fluid to be cooled to the metal foam and then released from the metal foam to a heat spreader. Thus, the metal foam is in direct contact with the warmer of the two fluids.
  • the document DE 103 24 190 B4 discloses a heat exchanger which is used for cooling electronic components.
  • the heat is transferred via a metal foil to a heat sink, which consists of an open-pored metal foam structure. This is flowed through by a coolant, which is thus heated.
  • a coolant which is thus heated.
  • the metal foam with the colder of the two fluids in direct contact.
  • electrical fluid heaters are known from the prior art, in which a fluid to be heated (eg air) is heated, wherein the heat is generated in an electrical resistance heating element. If the fluid to be heated is electrically conductive, for example when heating water, the electrical components, such as the resistive electrical wire of the heating element, must be electrically isolated from the fluid.
  • the heat conduction of the electrical insulation must be correspondingly high.
  • bodies or devices for enlarging the surface in contact with the fluid can then be formed or applied.
  • a tubular heater with helically wound stainless steel strip is known, the heat is conductively attached to the outer circumference of the electric tubular heater.
  • the invention is based on the object to provide a fluid heater, which allows maximum heat transfer of an electric heater to a fluid to be heated with minimal pressure loss.
  • the claimed fluid heater has at least one electrically operated and electrically insulated heating element, on which at least one heat-distributing element bears heat-conducting, so that the heat of the heating element can be delivered to the fluid.
  • the heat distribution element is formed by a space-filling three-dimensional body with a metal structure whose pores or channels can be traversed by the fluid.
  • the metal of the heat spreader element is Al, Cu, Fe, Mg, Ni, Pb, Sn, Ti or Zn, or the heat dissipating element has at least one of these elements.
  • the mounting technical effort is minimized according to the invention at the same time maximum contact surfaces between the heating element and the at least one heat distribution element, since the heating element between the two
  • Heat distribution elements is embedded.
  • two of the heat distribution elements are embedded.
  • Heat distribution elements abut the heating element.
  • the fluid heater according to the invention is used in the automotive sector and there preferably in high-voltage technology, e.g. with voltages of over 60 volts.
  • the metal structure of a cakesvermaschinelements is formed by a one-piece metal sponge.
  • the heat distribution element has a plurality of randomly shaped and tortuous channels.
  • the metal sponge can also be referred to as an open-pored metal foam, whose pores or bubbles serve as through cash flow channels.
  • the metal structure is formed by a wire mesh or wire mesh.
  • the heat-conducting system between the heating element and the at least one heat-distributing element can be produced by clamping or pressing or by material bonding-in particular by soldering or gluing.
  • the heating element is a tubular heater in wire heating.
  • the tubular heater is bent and / or wound several times and is arranged substantially in a plane.
  • the at least one heat-dissipating element is then designed substantially parallelepiped-shaped or plate-shaped.
  • the heating element abuts against a large area of the heat dissipating element which extends parallel to the plane. If a tubular heating element is accommodated between two such heat distribution elements, its complete embedding or enclosure with the two heat distribution elements can be achieved so that the heat removal from the tubular heating element and the transfer to the fluid are optimal. For this purpose, in each case a groove-like depression can be introduced into the two affected large areas, whose
  • Shape of the shape of the tubular heater corresponds. More precisely, one half of the multiply bent and / or wound tubular heating element can be inserted into the respective groove-like depression. Thus, the plane of the tubular heater coincides with the two affected large areas of politiciansverteilimplantation.
  • the recess can be introduced by pressing or milling in the large area.
  • a plurality of heat distribution elements and a plurality of heating elements may be provided.
  • two heat distribution elements are always arranged between two tubular heating elements, so that a total of twice as many heat distribution elements as tubular heating elements are provided.
  • Each pair of heat-distributing elements encloses a tubular heating element. Only one large area of each heat distribution element needs to be equipped with the depression.
  • a heat distribution element is always arranged between two tubular heating elements, so that the number of heat distribution elements is one greater than the number of tubular heating elements.
  • the two outermost heat distribution elements in each case only one inner large area must be provided with a depression.
  • both large areas must be equipped with recesses. If the levels of the tubular heaters and the large areas of the plurality of heat distribution elements are arranged approximately perpendicular to a flow direction of the fluid, a stepwise heating of the fluid over the entire flow can be optimized become. For this purpose, the supplied heating power of the various tubular heating elements and / or the structural density of the different heat distribution elements can be varied.
  • the planes of the tubular heating elements and the large surfaces of the heat distribution elements can also be arranged approximately parallel to a flow direction of the fluid.
  • a central tubular heater and two lateral heat distribution elements may be provided.
  • the fluid may be a gas, in particular air.
  • a frame which comprises the heat distribution elements in each case on all four end faces, and which leaves open the outer large surfaces of the two outer heat distribution elements, thus defining the flow direction for the gas.
  • the frame may have a lid, on whose side remote from the heat distribution elements side an electronics housing is formed or attached.
  • the lid may form a fourth side of the frame and be substantially flat.
  • At least one switching element is accommodated in high voltage technology in the electronics housing, it can be a heat sink in heat conductive connection, which is arranged between the cover and the heat distribution elements, so that the heat sink also flows through the gas or gas and thus cooled ,
  • the fluid may also be a liquid, in particular water or a water-glycol mixture.
  • a manifold and, on the other hand, a manifold for the liquid are preferred.
  • the manifold and the manifold and the tubular heater and the choirverteiletti are arranged substantially in a liquid-tight main housing.
  • the distributor tube and the sump tube have respective radial openings for the liquid, which are provided on a respective common side of the corresponding tube in the interior of the main housing.
  • the manifold and the manifold are arranged in the plane of the tubular heater and also embedded between the two heat distribution elements.
  • an electronics housing can be formed or attached.
  • two end portions of each tubular heater may be received or fixed for electrical contacting, and / or at least one switching element (e.g., IGBT or MosFet) is disposed in the electronics housing.
  • FIG. 1 shows a perspective view of a fluid heater according to the invention according to the first embodiment, which is designed as an air heater,
  • FIG. 2 shows in a further perspective view a part of the air heater from FIG. 1,
  • FIG. 4 shows a sectional illustration of the air heater from FIG. 1,
  • FIG. 5 shows a perspective view of a fluid heater according to the invention according to the second embodiment, which is designed as a water heater,
  • FIG. 6 shows in a further perspective view a part of the water heater from FIG. 5, FIG.
  • FIG. 7 shows in a further perspective view a part of the water heater from FIG. 5
  • FIG. 8 shows in a further perspective view a part of the water heater from FIG. 5
  • FIG. 9 shows in a further perspective view a part of the water heater from FIG. 5, FIG.
  • Figure 1 an embodiment of a flow-through metal structure
  • FIG. 12 shows an exemplary embodiment of a flow-through wire mesh.
  • Figure 1 shows a perspective view of an air heater 1, which is traversed by air in a flow direction 2.
  • the flow direction 2 is flanked by a frame which is composed of a 3-sided main section 4 and a cover 6.
  • the frame 4, 6 defines a parallelepiped-shaped interior in which three tubular heaters 8 are accommodated, wherein in FIG. 1 only two short sections of the last tubular heating element 8 in the direction of flow 2 can be seen.
  • a dashed line only shown electronics housing 10 is provided, in which the two end portions 12 extend each tubular heater through the lid 6 therethrough.
  • the end portions 12 of the tubular heater 8 in the interior of the electronics housing 10 can be electrically contacted and connected via a switching element 14, which may be IGBT or a MosFet.
  • the switching element 14 is connected to a heat sink 16 conductively.
  • the heat sink 16 has a planar basic shape and is arranged on an inner side of the lid 6 facing the interior of the frame 4, 6.
  • a (not shown)
  • Control electronics be provided for the heater according to the invention.
  • FIG. 2 shows the air heater 1 from FIG. 1 in a further perspective view
  • each tubular heater 8 is each bent several times and wound into each other, whereby each tubular heater 8 defines a (not shown in Figure 2) plane, which is aligned perpendicular to the flow direction 2.
  • each tubular heater 8 can form its own heat level and be optimized accordingly for heating the air in the flow through the entire frame 4, 6.
  • the heat sink 16 likewise has channels aligned in the flow direction 2.
  • the heat sink 16 along the flow direction 2 has a constant cross-section and can be produced by continuous casting.
  • FIG. 3 shows by way of example one of the three tubular heaters 8 with the two heat distribution elements 18 assigned to it, which-as described above-each consist of a metal sponge 19.
  • One of the two heat distribution elements 18 is shown in heat-conducting system with the tubular heater 8, whereby the (with reference to Figure 2 mentioned) level 24 of the tubular heater 8 can be seen.
  • the other heat distribution element 18 is shown spaced from the tubular heater 8, so that in its the tubular heater 8 facing large area 26, a groove-like depression 28 can be seen.
  • the shape of the recess 28 corresponds to that of the tubular heater.
  • 18 recesses 30 are provided at both the lid 6 facing corners of each réellevermaschinelements, thus free space for the folded edge portions 6a of the lid 6 is created.
  • Figure 4 shows the air heater 1 in a sectional view, wherein the electronics housing 10 has been omitted. It can be seen that the tubular heating elements 8 each have a wire 32 in the interior, which is designed as a heat-generating electrical resistance wire.
  • each tubular heater 8 is received and embedded centrally between the two respectively associated heat distribution elements 18.
  • each of the six heat distribution elements 18 has, on the one hand, a large area 26 with a recess 28 (shown in FIG. 3) and, on the other hand, a substantially planar large area 26.
  • FIG. 5 shows a second embodiment of the fluid heater according to the invention, which is designed as a water heater 101. He has a flat cuboid waterproof main body 104, at its (in Figure 5 upper) large area an electronics housing 1 10 is attached. In the main housing 104 are a manifold 1 12 and a manifold 1 14 in
  • Adjacent to the mentioned end face of the main housing 104 are also on a front side of the electronics housing 1 10 a ground pin 120 and two plugs 122 provided on the one hand for a high-voltage connection and on the other hand for a signal line.
  • the electronics housing 1 10 can be made of metal or plastic with EMC protection.
  • FIG. 6 essentially shows the view according to FIG. 5, wherein the interior of the electronics housing 110 can be seen, in which a printed circuit board 126 is shown whose electronic components have been omitted. There are through holes for mounting the circuit board 126 and contacts 128 can be seen, which are designed to power the one (shown in Figure 9) tubular heater 108.
  • FIG. 7 shows the main housing 104 of the water heater 101 with its large area 130, which are penetrated by the two end sections 12 of the tubular heater 108 (shown in FIG. 9). Furthermore, a switching element 14 shown by way of example is applied to the large area 130.
  • FIG. 8 shows the water heater according to FIGS. 5 to 7, the main housing 4 having been left out from FIG. 7.
  • the two adjoining Ragverteiletti 1 18 can be seen, which also each consist in one piece from the metal sponge 19 shown in Figure 1.
  • each boss 132 On two opposite narrow sides of each funnelverteilele- ment 1 18 two recesses 132 are provided in each case, in the respective (not shown) brackets are used. About these brackets, the two heat distribution elements 1 18 are clamped against each other.
  • the upper heat-distributing element 18 has been left out so that the embedding of the tubular heating element 108 and, moreover, also of the distributor tube 12 and of the collecting tube 14 in the lower heat-distributing element 18 can be seen.
  • the tubular heater 108 and the manifold 1 12 and the manifold 1 14 centered between the two heat spreader elements 1 18 embedded in this.
  • the water to be heated flows through the inlet 1 16 in the manifold 1 12 and from there via (not shown) one-sided radial passage recesses, which are evenly distributed along the length of the manifold 1 12, out of the manifold 1 12 on one side. According to the arrow for the flow direction 102, the water flows through the two bathverteilium 1 18. In this case, the water flows in contrast to the air heater 1 along the plane 24 in which the tubular heater 108 extends, and in the other hand, the two large areas 26 of the two Heat distribution elements 1 18 lie.
  • the heated water flows through one-sided radial passage recesses of the manifold 1 14 on one side into this and is guided via the manifold 1 14 to the outlet 1 19.
  • the two end sections 12 of the tubular heater 108 are bent out of its plane 24 in the direction of the electronics housing 110 (see FIG.
  • Figures 10, 1 1, 12 show respective sections of further embodiments of metal structures, which deviates from the above-described metal sponge 19, and can also serve as heat dissipating elements according to the invention for the fluid.
  • angled channels 134 are formed, through which the fluid can flow through the entire affected heat distribution element with little pressure loss.
  • Figure 10 shows a metal structure of metallic webs, which have approximately square cross-sectional area and are composed of squares and cubes.
  • Figure 1 1 shows a metal structure of approximately circular cross-section metal rods, which are assembled into triangles and tetrahedrons.
  • FIG. 12 shows a wire mesh 136 in which continuously or continuously curved wires, which are circular in cross-section, are intertwined with one another.
  • Deviating from the metal foam 19 shown in FIG. 1, its webs 20 can be narrower and have a more constant thickness along their length, with which the pores 22 are less bubble-shaped.
  • the heating element is preferably an electric tubular heater, and its jacketverteiletti of an open-pore
  • Metal structure for example, metal foam, are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

Offenbart ist ein Fluidheizer, dessen Heizelement vorzugsweise ein elektrischer Rohrheizkörper ist, und dessen Wärmeverteilelemente aus einer offenporigen Metallstruktur, zum Beispiel Metallschaum, gebildet sind.

Description

Fluidheizer
Beschreibung Die Erfindung betrifft einen Fluidheizer gemäß dem Oberbegriff des Patentanspruchs 1 .
Aus dem Stand der Technik sind Wärmetauscher bekannt, die als Wärmeübertrager dienen, die die Wärme eines wärmeren Fluids in einer Prozessrichtung an ein anderes kälteres Fluid übertragen. Dazu sind zwei verschiedene Fluid-Bereiche oder - Strömungskanäle nötig, die von einer Wärme leitenden Wandung getrennt werden müssen. Zur Verbesserung der Wärmeübertragung sind Maßnahmen zur Vergrößerung der Oberfläche der Wandung bekannt, die mit einem der Fluide oder mit beiden Fluiden in Kontakt ist.
Die Druckschrift DE 10 2010 048 593 A1 zeigt eine modulare Heizvorrichtung, wobei Heizelemente Wärme erzeugen, die in Strangpressprofile eingeleitet wird. Die Strangpressprofile werden von einem Medium durchströmt, an das Wärme abgegeben wird.
Die Patentschrift EP 1 430 530 B1 zeigt einen Wärmetauscher, wobei als Körper zur Vergrößerung der Oberfläche ein offenporiger Metallschaum vorgesehen ist. Die Wärme wird von einem zu kühlenden Fluid an den Metallschaum übertragen und dann von dem Metallschaum an einen Wärmeverteiler abgegeben. Damit ist der Metall- schäum mit dem wärmeren der beiden Fluide in direktem Kontakt.
In der Druckschrift DE 103 24 190 B4 ist ein Wärmetauscher offenbart, der zur Kühlung von elektronischen Bauelementen verwendet wird. Die Wärme wird über eine Metallfolie an einen Kühlkörper übertragen, der aus einer offenporigen Metallschaum- struktur besteht. Diese wir von einem Kühlmittel durchströmt, das somit erwärmt wird. Damit ist der Metallschaum mit dem kälteren der beiden Fluide in direktem Kontakt. Weiterhin sind aus dem Stand der Technik elektrische Fluidheizer bekannt, bei denen ein zu erwärmendes Fluid (z.B. Luft) erwärmt wird, wobei die Wärme in einem elektrischen Widerstand-Heizelement erzeugt wird. Wenn das zu erwärmende Fluid elektrisch leitend ist, z.B. bei der Erwärmung von Wasser, müssen die elektrischen Komponenten, z.B. der widerstandsbehaftete elektrische Draht des Heizelements, von dem Fluid elektrische isoliert werden. Zur Optimierung des Wärmeübergangs an das Fluid muss dabei die Wärmeleitung der elektrischen Isolation entsprechend hoch sein. An der Außenseite der elektrischen Isolation können dann Körper oder Vorrichtungen zur Vergrößerung der mit dem Fluid in Kontakt stehenden Oberfläche ausgebildet oder angesetzt werden. So ist z.B. von der Anmelderin ein Rohrheizkörper mit schraubenartig gewickeltem Edelstahlband bekannt, das Wärme leitend am Außenumfang des elektrischen Rohrheizkörpers befestigt ist.
Dem gegenüber liegt der Erfindung die Aufgabe zu Grunde, einen Fluidheizer zu schaffen, der einen maximalen Wärmeübergang eines elektrischen Heizers an ein zu erwärmendes Fluid mit minimalem Druckverlust ermöglicht.
Diese Aufgabe wird gelöst durch einen Fluidheizer mit den Merkmalen des Patent anspruchs 1 .
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.
Der beanspruchte Fluidheizer hat zumindest ein elektrisch betriebenes und elektrisch isoliertes Heizelement, an dem zumindest ein Wärmeverteilelement Wärme leitend anliegt, so dass die Wärme des Heizelements an das Fluid abgebbar ist. Erfindungsgemäß ist das Wärmeverteilelement von einem raumfüllenden dreidimensionalen Körper mit einer Metall struktur gebildet, deren Poren oder Kanäle von dem Fluid durchströmbar sind. Damit durchdringt das Fluid den Körper des Wärmeverteilelements und wird dabei mit geringem Druckverlust und mit optimalem Wärmeübergang erhitzt.
Vorzugsweise ist das Metall des Wärmeverteilelements AI, Cu, Fe, Mg, Ni, Pb, Sn, Ti oder Zn oder das Wärmeverteilelement weist zumindest eines dieser Elemente auf. Der montagetechnische Aufwand ist erfindungsgemäß minimiert bei gleichzeitig maximalen Berührflächen zwischen dem Heizelement und dem zumindest einen Wärmeverteilelement, da das Heizelement zwischen den beiden
Wärmeverteilelementen eingebettet ist. Dazu können insbesondere zwei
Wärmeverteilelemente am Heizelement anliegen.
Insbesondere wird der erfindungsgemäße Fluidheizer im Automotive-Bereich und dort vorzugsweise in der Hochvolt-Technologie eingesetzt, z.B. mit Spannungen von über 60 Volt.
Bei einem Ausführungsbeispiel ist die Metall struktur eines Wärmeverteilelements von einem einstückigen Metall schwamm gebildet. Damit hat das Wärmeverteilelement eine Vielzahl zufällig geformter und gewundener Kanäle. Der Metallschwamm kann auch als offenporiger Metallschaum bezeichnet werden, dessen Poren oder Blasen als durch ström bare Kanäle dienen.
Bei einem anderen Ausführungsbeispiel ist die Metallstruktur von einem Drahtgewebe oder Drahtgeflecht gebildet.
Die Wärme leitende Anlage zwischen dem Heizelement und dem zumindest einen Wärmeverteilelement kann über Klemmung oder Verpressung oder stoffschlüssig - insbesondere über Löten oder auch Kleben - hergestellt sein. Bei besonders bevorzugten Ausführungsformen ist das Heizelement ein Rohrheizkörper in Drahtheiztechnik.
Dabei wird es bevorzugt, wenn der Rohrheizkörper mehrfach gebogen und/oder gewunden ist und im Wesentlichen in einer Ebene angeordnet ist. Das zumindest eine Wärmeverteilelement ist dann im Wesentlichen quaderförmig oder plattenförmig ausgeführt. Das Heizelement liegt an einer Großfläche des Wärmeverteilelements an, die sich parallel zu der Ebene erstreckt. Wenn zwischen zwei derartigen Wärmeverteilelementen ein Rohrheizkörper aufgenommen ist, kann dessen komplette Einbettung oder Umschließung mit den beiden Wärmeverteilelementen erreicht werden, so dass die Wärmeabfuhr vom Rohrheizkörper und die Weiterleitung zum Fluid optimal ist. Dazu kann in die beiden be- troffenen Großflächen jeweils eine rinnenartige Vertiefung eingebracht sein, deren
Formgebung der Formgebung des Rohrheizkörpers entspricht. Genauer gesagt kann in die jeweilige rinnenartige Vertiefung eine Hälfte des mehrfach gebogenen und/oder gewundenen Rohrheizkörpers eingesetzt werden. Damit fällt die Ebene des Rohrheizkörpers mit den beiden betroffenen Großflächen der Wärmeverteilelemente zusammen.
Die Vertiefung kann durch Pressen oder Fräsen in die Großfläche eingebracht sein.
Um die Heizleistung des erfindungsgemäßen Fluidheizers zu maximieren, können mehrere Wärmeverteilelemente und mehrere Heizelemente vorgesehen sein.
Bei einer ersten Variante sind zwischen zwei Rohrheizkörpern stets zwei Wärmeverteilelemente angeordnet, so dass insgesamt doppelt so viele Wärmeverteilelemente wie Rohrheizkörper vorgesehen sind. Es umschließ jeweils ein Paar von Wärmeverteil- elementen einen Rohrheizkörper. Es muss nur eine Großfläche jedes Wärmeverteilelements mit der Vertiefung ausgestattet sein.
Bei einer zweiten Variante ist zwischen zwei Rohrheizkörpern stets ein Wärmeverteilelement angeordnet, so dass die Anzahl der Wärmeverteilelemente um eins größer ist als die Anzahl der Rohrheizkörper. Bei den beiden äußersten Wärmeverteilelementen muss jeweils nur eine innere Großfläche mit einer Vertiefung ausgestattet sein. Bei den anderen Wärmeverteilelementen müssen beide Großflächen mit Vertiefungen ausgestattet sein. Wenn die Ebenen der Rohrheizkörper und die Großflächen der mehreren Wärmeverteilelemente etwa senkrecht zu einer Strömungsrichtung des Fluids angeordnet sind, kann eine stufenweise Erhitzung des Fluids über die gesamte Durchströmung optimiert werden. Dazu kann die zugeführte Heizleistung der verschiedenen Rohrheizkörper und /oder die Strukturdichte der verschiedenen Wärmeverteilelennente variiert werden.
Die Ebenen der Rohrheizkörper und die Großflächen der Wärmeverteilelennente können auch etwa parallel zu einer Strömungsrichtung des Fluids angeordnet sein. Insbesondere können ein mittlerer Rohrheizkörper und zwei seitliche Wärmeverteilelemente vorgesehen sein.
Das Fluid kann ein Gas, insbesondere Luft sein.
Dann wird ein Rahmen bevorzugt, der die Wärmeverteilelemente jeweils an allen vier Stirnseiten umfasst, und der die äußeren Großflächen der beiden äußeren Wärmeverteilelemente frei lässt, womit er die Strömungsrichtung für das Gas definiert. Der Rahmen kann einen Deckel aufweisen, an dessen von den Wärmeverteilelementen abgewandten Seite ein Elektronikgehäuse gebildet oder befestigt ist. Der Deckel kann eine vierte Seite des Rahmens bilden und im Wesentlichen flächig sein.
Insbesondere wenn im Elektronikgehäuse mindestens ein Schaltelement in Hoch- volttechnik aufgenommen ist, kann damit ein Kühlkörper in Wärme leitender Verbindung sein, der zwischen dem Deckel und den Wärmeverteilelementen angeordnet ist, so dass der Kühlkörper auch von dem Gas durch- oder umströmt und somit gekühlt wird.
Das Fluid kann auch eine Flüssigkeit, insbesondere Wasser oder eine Wasser- Glycol-Mischung sein.
Dann werden an einander gegenüber liegenden Stirnseiten der Wärmeverteilelemente einerseits ein Verteilrohr und andererseits ein Sammelrohr für die Flüssigkeit bevorzugt.
Vorzugsweise sind das Verteilrohr und das Sammelrohr und der Rohrheizkörper und die Wärmeverteilelemente im Wesentlichen in einem flüssigkeitsdichten Hauptgehäuse angeordnet. Bei einem Ausführungsbeispiel haben das Verteilrohr und das Sannnnelrohr jeweilige radiale Öffnungen für die Flüssigkeit, die an einer jeweiligen gemeinsamen Seite des entsprechenden Rohres im Innern des Hauptgehäuses vorgesehen sind.
Bei einer besonders bevorzugten Ausgestaltung sind das Verteilrohr und das Sammelrohr in der Ebene des Rohrheizkörpers angeordnet und ebenfalls zwischen den beiden Wärmeverteilelementen eingebettet. An einer Wand, insbesondere Großfläche, des Hauptgehäuses kann ein Elektronikgehäuse gebildet oder befestigt sein. In dem Elektronikgehäuse können zwei Endabschnitte jedes Rohrheizkörpers zur elektrischen Kontaktierung aufgenommen oder befestigt sein, und/oder in dem Elektronikgehäuse ist zumindest ein Schaltelement (z.B. IGBT oder MosFet) angeordnet.
Zwei Ausführungsformen des erfindungsgemäßen Fluidheizers und mehrere Ausführungsbeispiele der erfindungsgemäßen Metallstruktur sind in den Zeichnungen dargestellt. Anhand der Figuren dieser Zeichnungen wird die Erfindung nun näher erläutert.
Es zeigen
Figur 1 in einer perspektivischen Ansicht einen erfindungsgemäßen Fluidheizer gemäß der ersten Ausführungsform, der als Luftheizer ausgebildet ist,
Figur 2 in einer weiteren perspektivischen Ansicht einen Teil des Luftheizers aus Figur 1 ,
Figur 3 in einer weiteren perspektivischen Ansicht einen Teil des Luftheizers aus Figur 1 ,
Figur 4 in einer geschnitten Darstellung den Luftheizer aus Figur 1 ,
Figur 5 in einer perspektivischen Ansicht einen erfindungsgemäßen Fluidheizer gemäß der zweiten Ausführungsform, der als Wasserheizer ausgebildet ist,
Figur 6 in einer weiteren perspektivischen Ansicht einen Teil des Wasserheizers aus Figur 5,
Figur 7 in einer weiteren perspektivischen Ansicht einen Teil des Wasserheizers aus Figur 5, Figur 8 in einer weiteren perspektivischen Ansicht einen Teil des Wasserheizers aus Figur 5,
Figur 9 in einer weiteren perspektivischen Ansicht einen Teil des Wasserheizers aus Figur 5,
Figur 10 ein Ausführungsbeispiel einer durchströmbaren Metall struktur,
Figur 1 1 ein Ausführungsbeispiel einer durchströmbaren Metall struktur; und Figur 12 ein Ausführungsbeispiel eines durchströmbaren Drahtgeflechts.
Figur 1 zeigt in einer perspektivischen Ansicht einen Luftheizer 1 , der von Luft in einer Strömungsrichtung 2 durchströmt wird. Die Strömungsrichtung 2 wird von einem Rahmen flankiert, der aus einem 3-seitigen Hauptabschnitt 4 und einem Deckel 6 zusammengesetzt ist. Der Rahmen 4, 6 definiert einen quaderförmigen Innenraum, in dem drei Rohrheizkörper 8 aufgenommen sind, wobei in Figur 1 nur zwei kurze Abschnitte des in Strömungsrichtung 2 letzten Rohrheizkörpers 8 zu erkennen sind.
An einer vom Innenraum des Rahmens 4, 6 abgewandten Seite des Deckel 6 ist ein nur gestrichelt dargestelltes Elektronikgehäuse 10 vorgesehen, in das sich die beiden Endabschnitte 12 jedes Rohrheizkörpers durch den Deckel 6 hindurch erstrecken. Damit können die Endabschnitte 12 der Rohrheizkörper 8 im Inneren des Elektronikge- häuses 10 elektrisch kontaktiert werden und über ein Schaltelement 14, das IGBT oder ein MosFet sein kann, geschaltet. Das Schaltelement 14 ist mit einem Kühlkörper 16 Wärme leitend verbunden. Der Kühlkörper 16 hat eine flächige Grundform und ist an einer dem Innenraum des Rahmens 4, 6 zugewandten Innenseite des Deckels 6 angeordnet. Des Weiteren kann im Elektronikgehäuse 10 eine (nicht dargestellte)
Regelungselektronik für den erfindungsgemäßen Heizer vorgesehen sein.
Im Innenraum des Rahmens 4, 6 sind insgesamt sechs etwa plattenförmige Wärmeverteilelemente 18 angeordnet, von denen in Figur 1 nur das in Strömungsrichtung 2 betrachtet letzte Wärmeverteilelement 18 dargestellt ist. Die insgesamt sechs Wärmeverteilelemente 18 sind jeweils einstückig aus einem Metallschwamm 19 bzw. offenporigen Metallschaum gefertigt, wobei das Metall insbesondere Kupfer ist. Damit haben die Metallschwämme 19 jeweils eine Vielzahl von unterschiedlich geformten metallischen Abschnitten bzw. Stegen 20, zwischen denen jeweils eine Vielzahl von unterschiedlich geformten Blasen bzw. Poren 22 freigelassen sind. Die Poren 22 sind derart miteinander verbunden, dass stets eine vergleichsweise widerstandsarme Durchströmung der Luft in Strömungsrichtung 2 möglich ist. Figur 2 zeigt den Luftheizer 1 aus Figur 1 in einer weiteren perspektivischen
Ansicht, wobei das Elektronikgehäuse 10 und die Wärmeverteilelemente 18 weggelassen wurden. Damit sind im Innenraum des Rahmens 4, 6 abgekantete Randabschnitte 6a des metallischen Deckels 6 zu erkennen, über die der Deckel 6 am beispielsweise aus Kunststoff gefertigten Hauptabschnitt 4 des Rahmens befestigt ist. Die Formgebung des Deckels 6 ermöglicht ihm als Klemmbrücke für die Wärmeverteilelemente 18 zu dienen. Weiterhin sind die drei verschiedenen Rohrheizkörper 8 und der Kühlkörper 16 deutlich zu erkennen.
Die Rohrheizkörper 8 sind jeweils mehrfach gebogen und ineinander gewunden, womit jeder Rohrheizkörper 8 eine (in Figur 2 nicht gezeigte) Ebene definiert, die senkrecht zur Strömungsrichtung 2 ausgerichtet ist. Damit kann jeder Rohrheizkörper 8 eine eigene Wärmestufe bilden und dem entsprechend für eine Erhitzung der Luft bei deren Durchströmung des gesamten Rahmens 4, 6 optimiert sein. Weiterhin ist in Figur 2 zu erkennen, dass der Kühlkörper 16 ebenfalls in Strömungsrichtung 2 ausgerichtete Kanäle hat. Damit hat der Kühlkörper 16 entlang der Strömungsrichtung 2 einen konstanten Querschnitt und kann im Stranggussverfahren hergestellt sein. Figur 3 zeigt beispielhaft einen der drei Rohrheizkörper 8 mit den beiden ihm zugeordneten Wärmeverteilelementen 18, die - wie zuvor beschrieben - jeweils aus einem Metall schwamm 19 bestehen. Eines der beiden Wärmeverteilelemente 18 ist in Wärme leitender Anlage mit dem Rohrheizkörper 8 gezeigt, womit auch die (mit Bezug zur Figur 2 genannte) Ebene 24 des Rohrheizkörpers 8 ersichtlich ist. Das andere Wärme- Verteilelement 18 ist beabstandet zum Rohrheizkörper 8 gezeigt, so dass in dessen dem Rohrheizkörper 8 zugewandten Großfläche 26 eine nutartige Vertiefung 28 zu erkennen ist. Die Form der Vertiefung 28 entspricht derjenigen des Rohrheizkörpers 8. Weiterhin sind an den beiden dem Deckel 6 zugewandten Ecken jedes Wärmeverteilelements 18 Ausnehmungen 30 vorgesehen, womit Freiraum für die abgekanteten Randabschnitte 6a des Deckels 6 geschaffen ist. Figur 4 zeigt den Luftheizer 1 in einer geschnittenen Darstellung, wobei das Elektronikgehäuse 10 weggelassen wurde. Es ist zu erkennen, dass die Rohrheizkörper 8 im Innern jeweils einen Draht 32 aufweisen, der als Wärme erzeugender elektrischer Widerstandsdraht ausgebildet ist.
Weiterhin ist zu erkennen, dass jeder Rohrheizkörper 8 mittig zwischen den beiden jeweils zugeordneten Wärmeverteilelementen 18 aufgenommen und eingebettet ist. Damit hat jedes der sechs Wärmeverteilelemente 18 einerseits eine Großfläche 26 mit einer (in Figur 3 gezeigten) Vertiefung 28, und andererseits eine im Wesentlichen ebene Großfläche 26.
Die Vertiefungen 28 sind mittels Fräsen oder Pressen hergestellt. Die Rohrheizkörper 18 sind mit Lötpaste bestrichen und dann in die Vertiefungen 28 eingesetzt worden. Figur 5 zeigt eine zweite Ausführungsform des erfindungsgemäßen Fluidheizers, der als Wasserheizer 101 ausgebildet ist. Er hat ein flaches quaderförmiges wasserdichtes Hauptgehäuse 104, an dessen (in Figur 5 oberen) Großfläche ein Elektronikgehäuse 1 10 angesetzt ist. Im Hauptgehäuse 104 sind ein Verteilerrohr 1 12 und ein Sammelrohr 1 14 im
Wesentlichen aufgenommen, wobei jeweilige Endabschnitte der Rohre 1 12, 1 14 an einer Stirnseite des Hauptgehäuses 104 aus diesem herausragen. Damit ist am Endabschnitt des Verteilerrohrs 1 12 ein Einlass 1 16 für das zu erwärmende Wasser gebildet, während am Endabschnitt des Sammelrohrs 1 14 ein Auslass 1 19 für das er- wärmte Wasser gebildet ist.
Benachbart zur genannten Stirnseite des Hauptgehäuses 104 sind ebenfalls an einer Stirnseite des Elektronikgehäuses 1 10 ein Massebolzen 120 und zwei Stecker 122 einerseits für einen Hochvolt-Anschluss und andererseits für eine Signalleitung vorgesehen.
Am Umfang des Hauptgehäuses 104 sind gleichmäßig verteilte Crimplaschen 124 vorgesehen, über die das Elektronikgehäuse 1 10 fixiert ist. Das Elektronikgehäuse 1 10 kann aus Metall oder aus Kunststoff mit EMV-Schutz gefertigt sein.
Figur 6 zeigt im Wesentlichen die Ansicht gemäß Figur 5, wobei das Innere des Elektronikgehäuses 1 10 ersichtlich ist, in dem eine Leiterplatte 126 gezeigt ist, deren elektronische Bauelemente weggelassen wurden. Es sind Durchgangsausnehmungen zur Befestigung der Leiterplatte 126 und Kontakte 128 zu erkennen, die zur Versorgung des einen (in Figur 9 gezeigten) Rohrheizkörpers 108 ausgebildet sind.
Figur 7 zeigt das Hauptgehäuse 104 des Wasserheizers 101 mit seiner Groß- fläche 130, die von den beiden Endabschnitten 12, des (in Figur 9 gezeigten) Rohrheizkörpers 108 durchdrungen werden. Weiterhin liegt an der Großfläche 130 ein beispielhaft gezeigtes Schaltelement 14 an.
Figur 8 zeigt den Wasserheizer gemäß der Figuren 5 bis 7, wobei gegenüber Figur 7 das Hauptgehäuse 4 weg gelassen wurde. Damit sind die beiden aneinander anliegenden Wärmeverteilelemente 1 18 ersichtlich, die ebenfalls jeweils einstückig aus dem in Figur 1 gezeigten Metallschwamm 19 bestehen.
An zwei aneinander gegenüberliegenden Schmalseiten jedes Wärmeverteilele- ments 1 18 sind jeweils zwei Vertiefungen 132 vorgesehen, in die jeweilige (nicht gezeigte) Klammern eingesetzt werden. Über diese Klammern werden die beiden Wärmeverteilelemente 1 18 gegeneinander gespannt.
Bei der Ansicht gemäß Figur 9 wurde das obere Wärmeverteilelement 1 18 weg gelassen, so dass die Einbettung einerseits des Rohrheizkörpers 108 und darüber hinaus auch des Verteilerrohres 1 12 und des Sammelrohres 1 14 in dem unteren Wärmeverteilelement 1 18 ersichtlich ist. Im montierten Zustand des Wasserheizers 101 sind der Rohrheizkörper 108 und das Verteilerrohr 1 12 und das Sammelrohr 1 14 mittig zwischen den beiden Wärmeverteilelementen 1 18 in diese eingebettet.
Das zur erwärmende Wasser strömt über den Einlass 1 16 in das Verteilerrohr 1 12 und von dort über (nicht gezeigte) einseitige radiale Durchgangsausnehmungen, die entlang der Länge des Verteilerrohr 1 12 gleichmäßig verteilt sind, aus dem Verteilerrohr 1 12 einseitig heraus. Gemäß dem Pfeil für die Strömungsrichtung 102 strömt das Wasser durch die beiden Wärmeverteilelemente 1 18. Dabei strömt das Wasser im Gegensatz zum Luftheizer 1 entlang der Ebene 24, in der sich der Rohrheizkörper 108 erstreckt, und in der andererseits auch die beiden Großflächen 26 der beiden Wärmeverteilelemente 1 18 liegen.
Das erwärmte Wasser strömt über einseitige radiale Durchgangsausnehmungen des Sammelrohres 1 14 einseitig in dieses hinein und wird über das Sammelrohr 1 14 zum Auslass 1 19 geführt.
Abweichend vom Luftheizer 1 sind die beiden Endabschnitte 12 des Rohrheizers 108 aus dessen Ebene 24 heraus in Richtung zum Elektronikgehäuse 1 10 (vgl. Figur 6) gebogen.
Die Figuren 10, 1 1 , 12 zeigen jeweilige Ausschnitte von weitern Ausführungsbeispielen von Metallstrukturen, die von dem vorbeschriebenen Metall schwamm 19 abweicht, und ebenfalls als erfindungsgemäße Wärmeverteilelemente für das Fluid dienen können. Mit allen Ausführungsbeispielen von Metallstrukturen entstehen verwinkelte Kanäle 134, über die das Fluid das gesamte betroffene Wärmeverteilelement mit geringem Druckverlust durchströmen kann.
Figur 10 zeigt eine Metall struktur aus metallischen Stegen, die etwa quadratische Querschnittsfläche haben und zu Quadraten und Würfeln zusammengesetzt sind.
Figur 1 1 zeigt eine Metall struktur aus im Querschnitt etwa kreisförmigen Metallstäben, die zu Dreiecken und zu Tetraedern zusammengesetzt sind. Figur 12 zeigt ein Drahtgewebe 136, in dem kontinuierlich oder stetig gebogene im Querschnitt kreisförmige Drähte miteinander verflochten sind.
Abweichend von den in Figur 1 gezeigten Metallschaum 19 können dessen Stege 20 schmaler sein und dabei über ihre Länge konstantere Dicke haben, womit die Poren 22 weniger blasenförmig sind.
Offenbart ist ein Fluidheizer, dessen Heizelement vorzugsweise ein elektrischer Rohrheizkörper ist, und dessen Wärmeverteilelemente aus einer offenporigen
Metall struktur, zum Beispiel Metallschaum, gebildet sind.
Bezuqszeichenliste
1 Luftheizer
2; 102 Strömungshchtung
4 Hauptabschnitt
6 Deckel
6a Randabschnitt
8; 108 Rohrheizkörper
10 Elektronikgehäuse
12 Endabschnitt
14 Schaltelement
16 Kühlkörper
18; 1 18 Wärmeverteilelement
19 Metallschwamm
20 Steg
22 Pore
24 Ebene
26 Großfläche
28 Vertiefung
30 Ausnehmung
32 Draht
101 Wasserheizer
104 Hauptgehäuse
1 10 Elektronikgehäuse
1 12 Verteilerrohr
1 14 Sammelrohr
1 16 Einlass
1 19 Auslass
120 Massebolzen
22 Stecker
124 Crimplaschen
126 Leiterplatte
128 Kontakt Großfläche Vertiefung Kanal Drahtgewebe

Claims

Patentansprüche
Fluidheizer mit zumindest einem elektrisch betriebenen und isolierten Heizelement (8; 108), an dem zumindest ein Wärmeverteilelement (18; 1 18) Wärme leitend anliegt, von dem die Wärme an das Fluid abgebbar ist, wobei das
Wärmeverteilelement (18; 1 18) von einer Metallstruktur gebildet ist, deren Poren (22) oder Kanäle (134) von dem Fluid durchströmbar sind, dadurch
gekennzeichnet, dass das Heizelement (8; 108) zwischen zwei
Wärmeverteilelementen (18; 1 18) eingebettet ist.
Fluidheizer nach Anspruch 1 , wobei die Metallstruktur von einem Metallschwamm (19) gebildet ist.
Fluidheizer nach Anspruch 1 , wobei die Metallstruktur von einem Drahtgewebe (136) oder Drahtgeflecht gebildet ist.
Fluidheizer nach einem der vorhergehenden Ansprüche, wobei die Wärme leitende Anlage zwischen dem Heizelement (8; 108) und dem Wärmeverteilelement (18; 1 18) über Klemmung oder Verpressung oder stoffschlüssig hergestellt ist.
Fluidheizer nach einem der vorhergehenden Ansprüche, wobei das Heizelement ein Rohrheizkörper (8; 108) in Drahtheiztechnik ist.
Fluidheizer nach Anspruch 5, wobei der Rohrheizkörper (8; 108) mehrfach gebogen und/oder gewunden ist und sich im Wesentlichen in einer Ebene (24) erstreckt, und wobei das Wärmeverteilelement (18; 1 18) im Wesentlichen quaderförmig oder plattenformig ausgeführt ist, und wobei der Rohrheizkörper (8; 108) an einer Großfläche (26) des Wärmeverteilelements (18; 1 18) anliegt, die sich parallel zu der Ebene (24) erstreckt.
Fluidheizer nach Anspruch 6 mit mehreren Wärmeverteilelementen (18) und mit mehreren Heizelementen (8).
8. Fluidheizer nach Anspruch 6 oder 7, wobei die Ebene (24) und die Großfläche (26) etwa senkrecht zu einer Strömungsrichtung (2) des Fluids angeordnet sind. 9. Fluidheizer nach Anspruch 6 oder 7, wobei die Ebene (24) und die Großfläche (26) etwa parallel zu einer Strömungsrichtung (102) des Fluids angeordnet sind.
10. Fluidheizer nach einem der vorhergehenden Ansprüche, wobei das Fluid ein Gas ist.
1 1 . Fluidheizer nach den Ansprüchen 7, 8 und 10 mit einem Rahmen, (4, 6) der die Wärmeverteilelemente (18) jeweils an ihren vier Stirnseiten umfasst, und der die äußeren Großflächen (26) der beiden äußeren Wärmeverteilelemente (18) offen lässt, womit er die Strömungsrichtung (2) für das Gas definiert.
12. Fluidheizer nach den Anspruch 1 1 , wobei der Rahmen (4, 6) einen Deckel (6) aufweist, an dem ein Elektronikgehäuse (10) gebildet oder befestigt ist, in dessen Innern zwei Endabschnitte (12) des Rohrheizkörpers (8) aufgenommen oder befestigt sind, und/oder in dem zumindest ein Schaltelement (14) angeordnet ist.
13. Fluidheizer nach einem der Ansprüche 1 bis 9, wobei das Fluid eine Flüssigkeit ist.
Fluidheizer nach Anspruch 13, wobei das Heizelement (108) und das Wärmeverteilelement (1 18) und ein Verteilrohr (1 12) und ein Sammelrohr (1 14) für die Flüssigkeit im Wesentlichen in einem flüssigkeitsdichten Hauptgehäuse (104) angeordnet sind.
Fluidheizer nach den Ansprüchen 9 und 14, wobei in Bereichen von einander gegenüber liegenden Stirnseiten der Wärmeverteilelemente (1 18) einerseits das Verteilrohr (1 12) und andererseits das Sammelrohr (1 14) angeordnet sind, und wobei das Verteilrohr (1 12) und das Sammelrohr (1 14) in der Ebene (24) angeordnet sind.
16. Fluidheizer nach Anspruch 15, wobei an einer Wand (126) des Hauptgehäuses (104) ein Elektronikgehäuse (1 10) angeordnet ist, in dessen Innern zwei Endabschnitte (12) des Rohrheizkörpers (108) aufgenonnnnen oder befestigt sind, und / oder in dem zumindest ein Schaltelement (14) angeordnet ist.
PCT/EP2017/080331 2016-11-25 2017-11-24 Fluidheizer WO2018096095A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016122767.6 2016-11-25
DE102016122767.6A DE102016122767A1 (de) 2016-11-25 2016-11-25 Fluidheizer

Publications (1)

Publication Number Publication Date
WO2018096095A1 true WO2018096095A1 (de) 2018-05-31

Family

ID=60582572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/080331 WO2018096095A1 (de) 2016-11-25 2017-11-24 Fluidheizer

Country Status (2)

Country Link
DE (1) DE102016122767A1 (de)
WO (1) WO2018096095A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017109710A1 (de) 2017-05-05 2018-11-08 Dbk David + Baader Gmbh Elektrische Heizvorrichtung und Verfahren zum Erkennen einer Überhitzung einer solchen elektrischen Heizvorrichtung
DE102019133039A1 (de) 2019-09-19 2021-03-25 Dbk David + Baader Gmbh Fluidheizer
DE102020131023A1 (de) 2020-11-24 2022-05-25 Dbk David + Baader Gmbh Fluidführungselement und Fluidheizer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962488A1 (de) * 1968-12-13 1970-11-26 Dunlop Co Ltd Waermetauscher-Element
JPH0293295A (ja) * 1988-09-29 1990-04-04 Mitsubishi Electric Corp 熱交換装置
FR2738625A3 (fr) * 1995-09-07 1997-03-14 Valeo Climatisation Echangeur de chaleur, en particulier pour vehicule automobile
EP1370117A2 (de) * 2002-06-05 2003-12-10 CEBI S.p.A. Elektrischer Heizkörper mit PTC-Elemente, insbesondere für Ventilationssysteme der Kraftfahrzeugkabine
DE10324190B4 (de) 2003-05-28 2009-07-23 M.Pore Gmbh Wärmetauscher
EP1430530B1 (de) 2001-05-14 2009-09-02 M.Pore Gmbh Wärmetauscher
DE102010048593A1 (de) 2010-10-18 2012-04-19 Eichenauer Heizelemente Gmbh & Co. Kg Modulare Heizvorrichtung
DE202015001148U1 (de) * 2015-02-16 2016-05-19 Eichenauer Heizelemente Gmbh & Co. Kg Heizvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3804704A1 (de) * 1987-02-17 1988-08-25 Senju Metal Industry Co Infrarot-heizvorrichtung
DE102007062302A1 (de) * 2007-12-21 2009-06-25 Beru Ag Heizvorrichtung
EP2428746B8 (de) * 2010-09-13 2021-12-29 MAHLE Behr GmbH & Co. KG Wärmeübertrager

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1962488A1 (de) * 1968-12-13 1970-11-26 Dunlop Co Ltd Waermetauscher-Element
JPH0293295A (ja) * 1988-09-29 1990-04-04 Mitsubishi Electric Corp 熱交換装置
FR2738625A3 (fr) * 1995-09-07 1997-03-14 Valeo Climatisation Echangeur de chaleur, en particulier pour vehicule automobile
EP1430530B1 (de) 2001-05-14 2009-09-02 M.Pore Gmbh Wärmetauscher
EP1370117A2 (de) * 2002-06-05 2003-12-10 CEBI S.p.A. Elektrischer Heizkörper mit PTC-Elemente, insbesondere für Ventilationssysteme der Kraftfahrzeugkabine
DE10324190B4 (de) 2003-05-28 2009-07-23 M.Pore Gmbh Wärmetauscher
DE102010048593A1 (de) 2010-10-18 2012-04-19 Eichenauer Heizelemente Gmbh & Co. Kg Modulare Heizvorrichtung
DE202015001148U1 (de) * 2015-02-16 2016-05-19 Eichenauer Heizelemente Gmbh & Co. Kg Heizvorrichtung

Also Published As

Publication number Publication date
DE102016122767A1 (de) 2018-05-30

Similar Documents

Publication Publication Date Title
EP1835251B1 (de) Vorrichtung zur Kühlung elektrischer Elemente
EP1318694B1 (de) Elektrische Heizvorrichtung
WO2014086991A1 (de) Batterie
DE202010006739U1 (de) Durchlauferhitzer
WO2018096095A1 (de) Fluidheizer
EP3273177A1 (de) Elektrische heizvorrichtung
DE102019208130A1 (de) PTC-Heizelement und eine elektrische Heizvorrichtung
DE102016113177A1 (de) Batterieanordnung
EP0604481B1 (de) Flüssigkeitsgekühlter hochlastwiderstand
DE202011110749U1 (de) Elektrisches Bauteil mit wenigstens einer in einer Vergussmasse angeordneten elektrischen Verlustleistungsquelle und einer Kühleinrichtung und Kühlkanal
EP1839920A1 (de) Elektrischer Heizer für eine Heizungs- oder Klimaanlage eines Kraftfahrzeugs
DE4116960A1 (de) Kuehlvorrichtung fuer mindestens einen kondensator und verfahren zu ihrer herstellung
DE10324190B4 (de) Wärmetauscher
DE102010014005A1 (de) Schienenkasten und Schienenverteilersystem mit einem Schienenkasten
DE102007062302A1 (de) Heizvorrichtung
DE202014105179U1 (de) Elektrischer Widerstand
EP0585611A2 (de) Leistungswiderstand für Flüssigkeitskühlung
DE2845894A1 (de) Elektrische widerstandsheizeinrichtung
DE102019202543A1 (de) PTC-Heizelement und elektrische Heizvorrichtung mit einem solchen PTC-Heizelement
DE102007008884A1 (de) Heizkörper
DE102016214495A1 (de) Elektrisch beheizbarer Wabenkörper zur Abgasbehandlung mit einer Mehrzahl von Heizelementen
DE102013105686B4 (de) Fahrzeugheizung
DE10143852A1 (de) Heizkörper
EP2293648B1 (de) Wärmeübertrager
EP3459110B1 (de) Kühldoseneinheit und leistungselektronische einrichtung mit kühldoseneinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809246

Country of ref document: EP

Kind code of ref document: A1