WO2018095105A1 - 发电机励磁调节器的定子电流限制的方法及装置 - Google Patents

发电机励磁调节器的定子电流限制的方法及装置 Download PDF

Info

Publication number
WO2018095105A1
WO2018095105A1 PCT/CN2017/100258 CN2017100258W WO2018095105A1 WO 2018095105 A1 WO2018095105 A1 WO 2018095105A1 CN 2017100258 W CN2017100258 W CN 2017100258W WO 2018095105 A1 WO2018095105 A1 WO 2018095105A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
power
generator
reactive power
external power
Prior art date
Application number
PCT/CN2017/100258
Other languages
English (en)
French (fr)
Inventor
谢欢
苏为民
吴涛
梁浩
史扬
赵焱
付宏伟
曹天值
李善颖
李长宇
王非
罗婧
郝婧
赵峰
夏雪
陈瑞
徐鹏
Original Assignee
华北电力科学研究院有限责任公司
国网冀北电力有限公司电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北电力科学研究院有限责任公司, 国网冀北电力有限公司电力科学研究院, 国家电网公司 filed Critical 华北电力科学研究院有限责任公司
Publication of WO2018095105A1 publication Critical patent/WO2018095105A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Definitions

  • the present disclosure relates to power technology, such as a method and apparatus for stator current limiting of a generator excitation regulator.
  • Modern generator excitation control has evolved from a single isolated generator voltage control to a comprehensive coordinated control of multiple control and protection throughout the system and throughout the process.
  • the analysis of many large power outage accidents in foreign countries shows that the coordination and cooperation between the network protection and restrictions of the unit and the power grid is a factor to ensure the safe and stable operation of the system.
  • SCL Stator Current Limit
  • AVR Automatic Voltage Regulator
  • the excitation assist limit ensures the coordination of the stator current limit, the rotor overcurrent limit, the stator overload protection from the perspective of the network source coordinated control, and the system disturbance is caused by the overcurrent limit of the rotor of the end grid after the UHV DC is put into operation. After the voltage stability effect, but the coordinated control characteristics of the excitation regulator overcurrent limit has been rarely studied.
  • the present disclosure provides a stator current limiting method for a generator excitation regulator that can improve the stator
  • the current limit is related to the network characteristics and improves the effectiveness of the stator current limit.
  • a stator current limiting method for a generator excitation regulator comprising:
  • the external power angle is determined according to the generator active power, the reactive power, the terminal voltage, and the system impedance, where the external power angle is an angle between the terminal voltage vector and the system voltage vector;
  • the stator current limit of the generator excitation regulator is converted to constant reactive power control.
  • the obtaining the generator power factor angle comprises: acquiring a generator power factor angle calculated by the generator excitation regulator in real time.
  • determining the external power angle according to the generator active power, the reactive power, the terminal voltage, and the system impedance includes:
  • the external power angle is determined according to the active power, the reactive power, the terminal voltage, the system impedance, and the following formula (1) obtained in real time;
  • ⁇ 2 is the external power angle
  • P is the active power
  • Q is the reactive power
  • U t is the terminal voltage
  • X s is the system impedance
  • the system impedance is obtained according to the measured results of the network-related test.
  • the system impedance is 1.5 times the measured value of the network-related test.
  • converting the stator current limit of the generator excitation regulator to constant reactive power control in the case that the external power angle is not less than a power factor angle includes:
  • the generator excitation regulator is constant Reactive power control.
  • the present disclosure also provides a stator current limiting device for a generator excitation regulator, comprising:
  • a power factor angle acquisition module configured to obtain a generator power factor angle
  • the external power angle determining module is configured to determine an external power angle according to the generator active power, the reactive power, the terminal voltage, and the system impedance, where the external power angle is an angle between the terminal voltage vector and the system voltage vector;
  • the control module is configured to convert the stator current limit of the generator excitation regulator to constant reactive power control when the external power angle is not less than the power factor angle.
  • the external power angle determining module includes:
  • the generator parameter acquisition unit is configured to acquire the active power, the reactive power, and the terminal voltage of the generator in real time;
  • the external power angle calculation unit is configured to determine the external power angle according to the active power, the reactive power, the terminal voltage, the system impedance, and the following formula (1) obtained in real time;
  • ⁇ 2 is the external power angle
  • P is the active power
  • Q is the reactive power
  • U t is the terminal voltage
  • X s is the system impedance
  • the system impedance is obtained according to the measured results of the network-related test.
  • the impedance of the system is 1.5 times the measured value of the network-related test.
  • control module includes:
  • a determining unit configured to determine whether the external power angle is not less than a power factor angle
  • the reactive power value obtaining unit is configured to acquire a current generator reactive power value when determining that the external power angle is not less than a power factor angle;
  • the control unit is configured to perform constant reactive power control on the generator excitation regulator by taking the current generator reactive power value as a target value.
  • the present disclosure also provides a computer readable storage medium storing computer executable instructions for performing a method of stator current limiting of a generator excitation regulator as described above.
  • the present disclosure also provides an electronic device including one or more processors, a memory, and one or more programs, the one or more programs being stored in a memory, when executed by one or more processors A method of performing stator current limiting of the above-described generator excitation regulator.
  • the present disclosure also provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, A method of causing the computer to perform stator current limiting of any of the generator excitation regulators described above.
  • the present disclosure proposes a method for identifying the stator current minimum using the generator power factor angle and the system external power angle, and improves the stator current limiting network-related characteristics.
  • FIG. 2 is a schematic diagram of a process of causing system oscillation and voltage collapse caused by SCL action in the related art
  • FIG. 3 is a block diagram of a model control of constant zero reactive power control in the related art
  • FIG. 6 is a flowchart of a stator current limiting method for a generator excitation regulator according to an embodiment of the present invention
  • FIG. 7 is a block diagram of constant reactive power control in the SCL module according to the embodiment.
  • Figure 8 is a phasor diagram of a generator provided by the embodiment.
  • FIG. 9 is a structural block diagram of a stator current limiting device of a generator excitation regulator according to an embodiment of the present invention.
  • FIG. 10 is a single-infinite system model provided by the embodiment.
  • Figure 11 is a control characteristic curve of the SCL control strategy using the method of the embodiment.
  • FIG. 12 is a schematic diagram showing the influence of the system impedance X s on the control characteristics in the embodiment.
  • FIG. 13 is a schematic structural diagram of hardware of an electronic device according to this embodiment.
  • the SCL link of the excitation regulator is divided into two parts, namely, limiting the inductive current when the generator is over reactive and limiting the capacitive current when the generator is in phase operation.
  • the over-power of the generator means that the reactive power of the generator exceeds the reactive power under the rated operating state of the generator; the phase-in operation is the operating state in which the generator delivers active power to the system and absorbs reactive power.
  • the mainstream AVR manufacturer program at home and abroad designs the over-current inverse time characteristic curve according to the allowable duration under different stator current overcurrent overrides, that is, the heavier the stator current overload, the shorter the time allowed for the stator to work.
  • the overcurrent ratio refers to a ratio of the generator current exceeding the rated current
  • the stator current overcurrent ratio can be expressed by a stator current value (per unit, p.u.), wherein
  • Stator current standard value stator current / stator rated current.
  • FIG. 1 shows the action model of SCL in the related art.
  • the operation process of SCL is as follows: When the stator current exceeds the rated current, the running time of the generator overload exceeds the allowable working time under the current overcurrent rate, and the input reference value of the action model Switch to the 1.1 pu rated stator current.
  • the output of the motion model adopts the superposition method or the competition gate method, the model adopts the proportional integrator or the lead lag link, etc., but the overall control mode and the stator current closed-loop control mode of FIG. Close.
  • S SCL1 is the inverse time limit flag.
  • the S SCL1 flag is 1; S SCL2 is the constant reactive switching flag.
  • the generator reactive power Q reaches the dead zone Q ZONE1
  • the S SCL2 flag is 0, the stator current limit is exited;
  • I tmax is the maximum allowable stator current;
  • I tth is the stator current limit return setting, ie the input reference value of the SCL action model;
  • I t is the stator current current measurement Value;
  • T 1 ⁇ T 4 are the time constants of the stator current limit;
  • K s1 is the gain of the stator current limit, and T R is the measurement time constant.
  • the SCL design ensures the safety of the generator by using the excitation capability of the generator excitation to the reactive power when the generator is running beyond the rated active power.
  • the AVR network performance test results show that the SCL action behavior may exceed the design expectations.
  • the performance is: when the generator is over-powered (ie, exceeds the rated active power) or the terminal voltage drops.
  • SCL continuously demagnetizes to reduce the voltage of the terminal, causing the system voltage to be unstable after the static voltage stability limit corresponding to the delivered active power, as shown in Figure 2, for SCL action.
  • the system oscillation and voltage collapse process the oscillation occurs when the SCL action is observed from the stator current and the terminal voltage.
  • the AVR device can design and develop a constant zero reactive power control function.
  • the model control block diagram is shown in Figure 3. After the stator current limiting action, the reactive power enters the late phase dead zone (usually set to 0.02 pu), S SCL2 flag to 0, AVR is converted from stator current limit to constant reactive power control, where Q REF is the dead phase side dead zone Q ZONE1 , Q is the reactive power measurement value, U A is the voltage control master The loop output, K Q is the constant reactive power control gain. T 1 to T 4 are time constants of constant reactive power control.
  • Figure 4 shows the SCL module using the constant reactive power control characteristic curve.
  • the test results for adding a constant zero reactive power control module show that under the same conditions as in Figure 2, the system avoids the previous controller switching. Oscillation or voltage collapse, but the final state of the system is that the unit reactive power is close to Zero, while the generator stator current (rated current 10190A) reaches 1.25p.u., which is greater than the allowable operating value of 1.1p.u. From the perspective of network source coordinated control, it is unfavorable for both the generator set and the system voltage stability.
  • FIG. 5 shows the system side V-shaped curve corresponding to different loads of the generator.
  • the minimum stator current appears in the system voltage power factor. Equal to 1 place.
  • the imaginary horizontal line corresponds to the stator current limit return value I tth
  • the curve 1 represents the V-shaped curve of the generator at a system voltage of 1.0 pu
  • the system impedance is zero
  • the power is 1.0 pu
  • the curve 2 indicates power generation.
  • the machine has a system voltage of 0.9 pu
  • the system impedance is zero
  • the power is a V-shaped curve under 1.0 pu.
  • the curve 3 indicates that the generator has a system voltage of 1.0 pu, a system impedance of 0.3 pu, and a power of 1.0 pu.
  • the V-shaped curve, curve 4 represents the V-shaped curve of the generator with a system voltage of 0.9 pu, the system impedance is zero, the power is 1.0 pu, the V-shaped curve under the virtual horizontal line and the system one working condition (such as the curve) 1) There may be two intersections of a and b.
  • stator current control point b is in the system phase region with stable operating balance point, stator current decreases with decreasing generator terminal voltage; point a is in system phase-in region where there is no stable operating equilibrium point, stator current The generator terminal voltage is reduced and increased.
  • the virtual horizontal line may not intersect the current system's V-shaped curve (such as curve 2 and curve 4). If SCL only designs the current control link, the system will cross the V-shaped curve. After a point equal to 1, it eventually slips to the static stability limit. Therefore, the typical SCL prevents the system from statically destabilizing by switching to a constant zero reactive control mode, but at this time the corresponding infinity system has been running on the depth ingress phase.
  • the stator current limiting method of the generator excitation regulator proposed in this embodiment can identify the stator of the excitation regulator after identifying the system passing the V-curve extreme point.
  • the current limit is switched to a constant reactive power control with reference to the reactive power at the extreme point of the V-curve. Since the actual AVR cannot measure the voltage and current at infinity of the system, improving the stator current limit is related to how the V-curve extreme point is reliably identified based on the generator terminal voltage and current information.
  • FIG. 6 is a flowchart of a stator current limiting method for a generator excitation regulator according to the embodiment, and the method includes the following steps.
  • step 610 a generator power factor angle is obtained.
  • the external power angle is determined according to the generator active power, the reactive power, the terminal voltage, and the system impedance, and the external power angle is an angle between the terminal voltage vector and the system voltage vector.
  • step 630 the stator current limit of the generator excitation regulator is converted to constant reactive power control with the external power angle not less than the power factor angle.
  • Step 610 and step 620 are respectively used to obtain the generator power factor angle and the external power angle, and are used to make a determination in step 630. Therefore, the technical solution of the embodiment can determine after obtaining the power factor angle and the external power angle of the generator.
  • the order of implementation of steps 701 and 702 may be performed sequentially, or may be performed synchronously.
  • the constant reactive power control in the SCL module takes into consideration that the V-shaped curve active power P is constant and the power factor of the system infinity is constant. Equal to 1, for the system shown in Fig. 7, the following equations can be combined.
  • Ie generator power factor angle It is equal to the angle between the terminal voltage U t and the system voltage U, that is, when the external power angle ⁇ 2 , the stator current reaches the minimum value corresponding to the V-shaped curve.
  • AVR calculates power factor angle in real time
  • the external power angle ⁇ 2 is calculated by the following formula.
  • ⁇ 2 is the external power angle
  • P is the active power
  • Q is the reactive power
  • U t is the terminal voltage
  • X s is the system impedance
  • the system impedance is measured by the network test.
  • the network-related test is a way to evaluate the generator set indicators, and the generator is incorporated into the power grid for testing.
  • the system impedance X s can be obtained according to the measured value during the network-related test, which is 1.5 times of the measured value of the network-related test, usually in the range of 0.2-0.4 pu, but according to the position of the generator access system and the change of the system operation mode.
  • the system impedance is also time-varying during operation. In the actual system application, you can consider how the X s is set.
  • the X s setting is 50% larger than the field measured value, which may be based on the following three points.
  • V-shaped curve on the slow side is more advantageous for both the system and the unit.
  • the system is close to the minimum value of the stator current of the V-shaped curve, and the sensitivity of the stator current varies with the rotor current of the generator.
  • the external power angle ⁇ 2 is greater than or equal to the power factor angle.
  • the AVR is converted from the stator current limit to constant reactive power control, and the reactive power is given as Q SCL2 , indicating the generator reactive power at the S SCL2 displacement moment. .
  • the current generator reactive power value is obtained; and the current generator reactive power value obtained is the target value. Constant reactive power control of the generator excitation regulator.
  • the embodiment further provides a stator current limiting device for the generator excitation regulator
  • FIG. 9 is a structural block diagram of the stator current limiting device of the generator excitation regulator of the embodiment, and the device includes the following modules.
  • the power factor angle acquisition module 910 is configured to obtain a generator power factor angle.
  • the external power angle determining module 920 is configured to determine an external power angle according to the generator active power, the reactive power, the terminal voltage, and the system impedance, where the external power angle is an angle between the terminal voltage vector and the system voltage vector. as well as,
  • the control module 930 is configured to convert the stator current limit of the generator excitation regulator to constant reactive power control if the external power angle is not less than the power factor angle.
  • the external power angle determining module 920 includes the following units.
  • the generator parameter acquisition unit 921 is configured to acquire the active power, the reactive power, the terminal voltage, and the system impedance of the generator in real time. as well as,
  • the external power angle calculation unit 922 is configured to determine the external power angle according to the active power, the reactive power, the terminal voltage, the system impedance, and the following equation (1) acquired in real time.
  • Control module 930 includes the following units.
  • the determining unit 931 is configured to determine whether the external power angle is not less than the power factor angle.
  • the reactive power value obtaining unit 932 is configured to acquire the current generator reactive power value in a case where the external power angle is determined to be not less than the power factor angle. as well as,
  • the control unit 933 is configured to perform constant reactive power control on the generator excitation regulator with the current generator reactive power value obtained as a target value.
  • the single-infinite system model shown in FIG. 10 is used.
  • the equivalent initial system impedance X s is 0.315 pu.
  • the performance of the stator current limiting link optimized by a manufacturer's AVR device is tested. The test result is shown in Fig. 11.
  • the generator is forced under the action of the AVR constant voltage control main loop.
  • the stator current Ig reaches 13.45kA (1.32pu) for about 60 seconds, the SCL action continues to demagnetize.
  • the terminal voltage drops, when the external power angle ⁇ 2 of the system is greater than or equal to the power factor angle of the generator terminal
  • the stator current is finally stabilized at 11.45kA (1.12pu), and the terminal voltage is 0.84pu.
  • the control effect is significantly improved.
  • the constant reactive power control is a complementary method of the stator current limitation.
  • stator current is too high in this case, which is not conducive to system voltage stability.
  • the stator current limiting action if the external power angle is not less than the power factor angle condition, Then, through constant reactive power control, the system is stabilized in the current reactive condition, and the stator current can be achieved at the lowest under this condition.
  • the power factor of the terminal The influence of generator reactive power variation is much greater than the external power angle ⁇ 2 of the system. This characteristic is beneficial for X s on-site tuning.
  • the results of the test comparison by expanding the AVR regulator X s setting range are shown in Figure 12.
  • the excitation regulator X s setting value (0.4 pu) is larger than the actual system value (0.315 pu)
  • the generator stator current is finally stabilized at 11.56 kA (1.134 pu)
  • the system voltage is stable at 0.875 pu
  • the excitation regulator X When s is set to 0.2 pu, the stator current of the generator is finally stabilized at 11.45 kA (1.12 pu), and the system voltage is stable at 0.78 pu.
  • the field excitation regulator X s tuning selection is larger than the actual system impedance, which is more beneficial for system stability and unit safety.
  • the method of identifying the stator current minimum by using the generator power factor angle and the system external power angle is proposed.
  • the optimization method and system impedance tuning for improving the stator current limiting network characteristics are proposed. It is suggested that the effectiveness of the proposed stator current limiter optimization method is verified based on the measured results of a manufacturer's device, and the following conclusions are drawn.
  • Excitation Regulator SCL Auxiliary Limitation Conventional design scheme may not protect the safety of the main equipment and increase the system voltage collapse after the system experiences continuous low voltage operation.
  • the constant sub-current control mode has no stable running balance on the left side of the V-shaped curve, and the SCL should be configured with constant reactive power control function.
  • stator current has less sensitivity with the reactive voltage, and the system impedance Xs can be set to be larger than the actual value.
  • Stator current limit modeling simulation and network performance test of mainstream excitation regulator at home and abroad Based on the analysis, the effects of the stator current limiter on the voltage stability of the generator and the system and its invisible defects are analyzed in detail.
  • the optimization method of the stator current limiting network characteristics is designed and proposed.
  • the test results of the actual AVR device are presented. The validity and application value of the proposed method are verified.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions for performing the method of stator current limiting of the generator excitation regulator described above.
  • FIG. 13 is a schematic diagram showing the hardware structure of an electronic device according to the present embodiment. As shown in FIG. 13, the electronic device includes: one or more processors 410 and a memory 420. One processor 410 is taken as an example in FIG.
  • the electronic device may further include an input device 430 and an output device 440.
  • the processor 410, the memory 420, the input device 430, and the output device 440 in the electronic device may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the input device 430 can receive input numeric or character information
  • the output device 440 can include a display device such as a display screen.
  • the memory 420 is a computer readable storage medium that can be used to store software programs, computer executable programs, and modules.
  • the processor 410 performs various functional applications and data processing by executing software programs, instructions, and modules stored in the memory 420 to implement the method of stator current limiting of any of the generator excitation regulators of the above embodiments.
  • the memory 420 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the electronic device, and the like.
  • the memory may include volatile memory such as random access memory (RAM), and may also include non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • Memory 420 can be a non-transitory computer storage medium or a transitory computer storage medium.
  • Non-temporary State computer storage medium such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 420 can optionally include memory remotely located relative to processor 410, which can be connected to the electronic device over a network. Examples of the above networks may include the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Input device 430 can be used to receive input digital or character information and to generate key signal inputs related to user settings and function control of the electronic device.
  • Output device 440 can include a display device such as a display screen.
  • a person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by executing related hardware by a computer program, and the program can be stored in a non-transitory computer readable storage medium.
  • the program when executed, may include the flow of an embodiment of the method as described above, wherein the non-transitory computer readable storage medium may be a magnetic disk, an optical disk, a read only memory (ROM), or a random access memory (RAM). Wait.
  • the present disclosure proposes a method for identifying the stator current minimum using the generator power factor angle and the system external power angle, and improves the network-related characteristics of the stator current limit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种发电机励磁调节器的定子电流限制方法及装置,其中,所述方法包括:获取发电机功率因数角(610);根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角(620),所述外功角为机端电压向量相对于系统电压向量的夹角;在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制(630)。提高了定子电流限制的有效性。

Description

发电机励磁调节器的定子电流限制的方法及装置 技术领域
本公开涉及电力技术,例如涉及一种发电机励磁调节器的定子电流限制的方法及装置。
背景技术
现代发电机励磁控制已从单个孤立的发电机电压控制上升到全系统、全过程的多种控制及保护的综合协调控制。国外发生的多次大停电事故分析表明,机组涉网保护和限制与电网之间的协调配合是保证系统安全稳定运行的因素。
励磁调节器(Automatic Voltage Regulator,AVR)中的定子电流限制(Stator Current Limit,SCL)在电力系统中已获得广泛应用,SCL设计初衷只是针对发电机运行到超出额定有功功率的情况,但若系统发生故障,只要定子电流超过启动值而励磁电流不超过,SCL将成为主控制,在过励运行状态下减少励磁及无功功率输出,使定子电流回到限制定值边界以内。
相关技术中,励磁辅助限制从网源协调控制角度保障定子电流限制、转子过流限制、定子过负荷保护间的协调配合以及特高压直流投运后受端电网机组转子过流限制对系统大扰动后的电压稳定影响,而对于励磁调节器过流限制的协调控制特性却鲜有研究。
发明内容
本公开提供了一种发电机励磁调节器的定子电流限制方法,可以改善定子 电流限制涉网特性,提高定子电流限制的有效性。
一种发电机励磁调节器的定子电流限制方法,包括:
获取发电机功率因数角;
根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角,所述外功角为机端电压向量相对于系统电压向量的夹角;
在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制。
可选地,所述的获取发电机功率因数角包括:获取由发电机励磁调节器实时计算的发电机功率因数角。
可选地,所述的根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角包括:
实时获取发电机的有功功率、无功功率、机端电压;
根据实时获取的有功功率、无功功率、机端电压、系统阻抗以及下式(1)确定外功角;
Figure PCTCN2017100258-appb-000001
其中,δ2为外功角,P为有功功率,Q为无功功率,Ut为机端电压,Xs为系统阻抗,所述系统阻抗根据涉网试验实测结果所得。
可选地,所述的系统阻抗取值为涉网试验实测值的1.5倍。
可选地,所述在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制包括:
在所述外功角不小于功率因数角的情况下,获取当前的发电机无功功率值;
以获取的当前的发电机无功功率值为目标值,对发电机励磁调节器进行恒 无功控制。
本公开还提供一种发电机励磁调节器的定子电流限制装置,包括:
功率因数角获取模块,设置为获取发电机功率因数角;
外功角确定模块,设置为根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角,所述外功角为机端电压向量相对于系统电压向量的夹角;
控制模块,设置为在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制。
可选地,所述的外功角确定模块包括:
发电机参数获取单元,设置为实时获取发电机的有功功率、无功功率、机端电压;
外功角计算单元,设置为根据实时获取的有功功率、无功功率、机端电压、系统阻抗以及下式(1)确定外功角;
Figure PCTCN2017100258-appb-000002
其中,δ2为外功角,P为有功功率,Q为无功功率,Ut为机端电压,Xs为系统阻抗,所述系统阻抗根据涉网试验实测结果所得。
可选地,所述系统阻抗取值为涉网试验实测值的1.5倍。
可选地,所述的控制模块包括:
判断单元,设置为判断所述外功角是否不小于功率因数角;
无功功率值获取单元,设置为在确定所述外功角不小于功率因数角的情况下,获取当前的发电机无功功率值;
控制单元,设置为以获取的当前的发电机无功功率值为目标值,对发电机励磁调节器进行恒无功控制。
本公开还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述发电机励磁调节器的定子电流限制的方法。
本公开还提供一种电子设备,该电子设备包括一个或多个处理器、存储器以及一个或多个程序,所述一个或多个程序存储在存储器中,当被一个或多个处理器执行时,执行上述发电机励磁调节器的定子电流限制的方法。
本公开还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意一种发电机励磁调节器的定子电流限制的方法。
本公开基于单机无穷大系统V型曲线特性分析提出了利用发电机机端功率因数角和系统外功角识别定子电流最小值的方法,改善了定子电流限制涉网特性。
附图说明
为了说明本公开的技术方案,下面将对实施例或相关技术描述中使用的附图进行介绍。
图1为相关技术中SCL的动作模型;
图2为相关技术中SCL动作导致系统振荡和电压崩溃过程的示意图;
图3为相关技术中恒定零无功控制的模型控制框图;
图4为相关技术中SCL模块采用恒无功控制的特性曲线;
图5为相关技术中系统电压恒定时发电机不同负载对应的系统侧V型曲线;
图6为本实施例提供的一种发电机励磁调节器的定子电流限制方法的流程图;
图7为本实施例提供的SCL模块中的恒无功控制框图;
图8为本实施例提供的发电机相量图;
图9为本实施例提供的发电机励磁调节器的定子电流限制装置的结构框图;
图10为本实施例提供的单机-无穷大系统模型;
图11为采用本实施例的方法进行SCL控制策略的控制特性曲线;
图12为本实施例中的系统阻抗Xs对控制特性影响的示意图;以及,
图13是本实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
下面将结合本实施例中的附图,对本实施例中的技术方案进行描述。
励磁调节器的SCL环节分为两部分,即用于发电机过无功时限制感性电流和用于发电机进相运行时限制容性电流。其中,发电机过无功是指发电机的无功功率超过发电机额定运行状态下的无功功率;进相运行是发电机向系统输送有功功率,吸收无功功率的运行状态。相关技术中,实现定子电流限制有不同的方案。国内外主流AVR厂家方案是根据不同定子电流过流倍率下允许的持续时间,设计过流反时限特性曲线,即定子电流过载越重,允许定子工作的时间越短。其中,过流倍率是指发电机电流超过额定电流的倍率,定子电流过流倍率可以用定子电流标幺值(per unit,p.u.)表示,其中,
定子电流标幺值=定子电流/定子额定电流。
图1给出了相关技术中SCL的动作模型,SCL的动作过程如下:当定子电流超过额定电流,发电机过负荷的运行时间超过当前过流倍率下允许的工作时间,动作模型的输入参考值切换至1.1p.u.额定定子电流。不同厂家SCL的动作模型在实现上存在差异,比如动作模型的输出采用叠加方式或者竞比门方式、模型 采用比例积分器或超前滞后环节等,但总体控制方式与图1的定子电流闭环控制方式接近。图1中,SSCL1为反时限计时标志位,当到达反时限时间时,SSCL1标志位为1;SSCL2为恒无功切换标志位,当发电机无功功率Q达到死区QZONE1内时,SSCL2标志位为0,并退出定子电流限制;Itmax为允许的最大定子电流;Itth为定子电流限制返回定值,即SCL动作模型的输入参考值;It为定子电流当前测量值;T1~T4为定子电流限制的时间常数;Ks1为定子电流限制的增益,TR为测量时间常数。
SCL设计是在发电机运行到超出额定有功功率的情况下,利用发电机励磁对无功功率的调节能力保证发电机的安全。然而,实际系统运行工况更为复杂,AVR涉网性能测试结果表明SCL动作行为可能超出设计预期,表现为:当发电机因有功功率超发(即超过额定有功功率)或者机端电压下降引起定子电流被动超发(即超过额定定子电流)时,SCL持续减磁降低机端电压,导致系统电压低于输送有功功率对应的静态电压稳定极限后失稳,如图2所示,为SCL动作导致系统振荡和电压崩溃过程,SCL动作后从定子电流和机端电压可以看出振荡发生。
为了克服前述SCL动作存在的问题,AVR装置可以设计开发恒定零无功控制功能,模型控制框图如图3所示,即当定子电流限制动作后,无功功率进入迟相死区(通常整定为0.02p.u.)时,SSCL2标志位至0,AVR由定子电流限制转换成恒无功控制,其中QREF为迟相侧死区QZONE1,Q为无功功率测量值,UA为电压控制主环输出,KQ为恒无功控制增益。T1~T4为恒无功控制的时间常数。
图4为SCL模块采用恒无功控制特性曲线,如图4所示,针对增加恒定零无功控制模块的测试结果表明:在与图2相同工况下,系统避免了之前控制器切换导致的振荡或电压崩溃,但最终系统所处的状态却是机组无功功率接近于 零,而发电机定子电流(额定电流为10190A)达到1.25p.u.,大于1.1p.u.的长期允许运行值。从网源协调控制的角度而言,无论是对于发电机组还是系统电压稳定均是不利的。
图2和图4曲线显示定子电流随发电机励磁电流变化近似为V型曲线。图5给出了发电机不同负载对应的系统侧V型曲线,定子电流最小值出现在系统电压功率因数
Figure PCTCN2017100258-appb-000003
等于1处。图5中,虚横线对应定子电流限制返回定值Itth,曲线①表示发电机在系统电压为1.0p.u.,系统阻抗为零,功率为1.0p.u.工况下的V型曲线,曲线②表示发电机在系统电压为0.9p.u.,系统阻抗为零,功率为1.0p.u.工况下的V型曲线,曲线③表示发电机在系统电压为1.0p.u.,系统阻抗为0.3p.u.,功率为1.0p.u.工况下的V型曲线,曲线④表示发电机在系统电压为0.9p.u.,系统阻抗为零,功率为1.0p.u.工况下的V型曲线,虚横线与系统一工况下的V形曲线(例如曲线①)可能存在a和b两个交点。
对于系统电压而言,以
Figure PCTCN2017100258-appb-000004
等于1为界,左边区域是系统进相区域,右边区域是系统迟相区域。对于定子电流控制而言,b点位于具有稳定运行平衡点的系统迟相区域,定子电流随发电机机端电压降低而减少;a点位于没有稳定运行平衡点的系统进相区域,定子电流随发电机机端电压降低而增加。
当系统阻抗和系统电压U发生变化时,如图5中曲线①-④所示,可能导致虚横线与当前系统的V形曲线(例如曲线②和曲线④)没有交点。若SCL仅设计定电流控制环节,系统将跨过V形曲线中
Figure PCTCN2017100258-appb-000005
等于1的点后,最终滑向静态稳定极限。因此,典型SCL通过切换成恒定零无功控制方式以防止系统静态失稳,但此时对应无穷大系统已运行于深度进相侧。
为了克服SCL控制所存在的问题,本实施例提出的发电机励磁调节器的定子电流限制方法可在识别出系统经过V型曲线极值点后,将励磁调节器的定子 电流限制切换成以系统经过V型曲线极值点时的无功功率为参考值的恒无功控制。由于实际AVR无法测量系统无穷大处电压和电流,改善定子电流限制涉网特性在于如何基于发电机机端电压和电流信息可靠识别V型曲线极值点。
如图6所示为本实施例提供的一种发电机励磁调节器的定子电流限制方法的流程图,该方法包括以下步骤。
在步骤610中,获取发电机功率因数角。
在步骤620中,根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角,所述外功角为机端电压向量相对于系统电压向量的夹角。
在步骤630中,在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制。
步骤610和步骤620分别用于得到发电机功率因数角和外功角,并用于在步骤630中做出判断,因此,本实施例的技术方案可以在得到发电机功率因数角和外功角后进行判断,而对步骤701和步骤702的实现顺序可以先后执行,或者可以同步执行。
如图7所示,为本实施例提供的SCL模块中的恒无功控制,考虑到V型曲线有功功率P恒定和系统无穷大处功率因数
Figure PCTCN2017100258-appb-000006
等于1,对于图7所示系统,可联立如下等式。
Figure PCTCN2017100258-appb-000007
结合图8所示的发电机相量图,外功角
Figure PCTCN2017100258-appb-000008
发电机功率因数角-
Figure PCTCN2017100258-appb-000009
外功率因数角,当
Figure PCTCN2017100258-appb-000010
即外功率因数角
Figure PCTCN2017100258-appb-000011
时,系统运行在B点,此时向量ΔU与U角度垂直,可联立如下等式。
ΔU=tan(δ2)*U=It*Xs        (3)
综上等式(2)和等式(3),可得如下等式。
Figure PCTCN2017100258-appb-000012
即当发电机功率因数角
Figure PCTCN2017100258-appb-000013
等于机端电压Ut相对于系统电压U的夹角,即外功角δ2时,定子电流达到V型曲线对应最小值。无穷大系统处于迟相侧时,
Figure PCTCN2017100258-appb-000014
而当无穷大系统处于进相侧时,
Figure PCTCN2017100258-appb-000015
AVR实时计算功率因数角
Figure PCTCN2017100258-appb-000016
本实施例中外功角δ2则采用如下公式计算。
Figure PCTCN2017100258-appb-000017
其中,δ2为外功角,P为有功功率,Q为无功功率,Ut为机端电压,Xs为系统阻抗,所述系统阻抗由涉网试验测得。其中,涉网试验是考核发电机组指标的一种方式,将发电机并入电网进行试验。
系统阻抗Xs可在涉网试验时根据实测值获得,为涉网试验实测值的1.5倍,通常取值在0.2-0.4p.u.,但根据发电机接入系统位置的不同以及系统运行方式的变化,系统阻抗在运行中也是时变的。在实际系统应用时,可以考虑Xs如何整定的问题。
本实施例中,Xs整定在现场实测值基础上选择偏大50%,可以是基于如下三点考虑。
a.发电机运行在系统侧V型曲线迟相侧对于系统和机组均更为有利。
b.系统在接近V型曲线定子电流最小值附近,定子电流随发电机转子电流变化的灵敏度较小。
c.假定有功功率恒定,系统电压的变化影响无功功率,因此系统电压对功率因数角的影响比对发电机功角的影响更大。
综上,SCL切换成恒无功控制的判据为:
Figure PCTCN2017100258-appb-000018
如图7所示,当定子电流限制动作后,在外功角δ2大于等于功率因数角
Figure PCTCN2017100258-appb-000019
的情况下,SSCL2标志位从1变位至0,AVR由定子电流限制转换成恒无功控制,无功功率的给定值为QSCL2,表示SSCL2变位时刻下发电机无功功率。
本实施例中,进行SCL控制过程中,在所述外功角不小于功率因数角的情况下,获取当前的发电机无功功率值;以获取的当前的发电机无功功率值为目标值,对发电机励磁调节器进行恒无功控制。
本实施例还提供一种发电机励磁调节器的定子电流限制装置,如图9所示为本实施例的发电机励磁调节器的定子电流限制装置的结构框图,该装置包括以下模块。
功率因数角获取模块910,设置为获取发电机功率因数角。
外功角确定模块920,设置为根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角,所述外功角为机端电压向量相对于系统电压向量的夹角。以及,
控制模块930,设置为在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制。
其中,外功角确定模块920包括以下单元。
发电机参数获取单元921,设置为实时获取发电机的有功功率、无功功率、机端电压以及系统阻抗。以及,
外功角计算单元922,设置为根据实时获取的有功功率、无功功率、机端电压、系统阻抗以及下式(1)确定外功角。
Figure PCTCN2017100258-appb-000020
控制模块930包括以下单元。
判断单元931,设置为判断外功角是否不小于功率因数角。
无功功率值获取单元932,设置为在确定外功角不小于功率因数角的情况下,获取当前的发电机无功功率值。以及,
控制单元933,设置为以获取的当前的发电机无功功率值为目标值,对发电机励磁调节器进行恒无功控制。
本实施例一测试试验采用图10所示单机-无穷大系统模型,本实施例中等效的初始系统阻抗Xs为0.315p.u.。
发电机初始运行在额定工况,有功出力P0=300Mw,无功出力Q0=186Mvar,无穷大系统电压U初始为513kV。采用无穷大系统处电压U突降的方法,在与图4相同工况下,对某厂家AVR装置优化后的定子电流限制环节进行性能测试,测试结果如图11所示。
系统电压跌落初期,发电机在AVR恒电压控制主环作用下强励,定子电流Ig达到13.45kA(1.32p.u.)约60秒后,SCL动作持续减磁。随着机端电压下降,当系统外功角δ2大于等于发电机机端功率因数角
Figure PCTCN2017100258-appb-000021
时,励磁调节器转换成恒无功控制,定子电流最终稳定在11.45kA(1.12p.u.),机端电压为0.84p.u.。相比图4所示的恒定零无功控制策略,控制效果明显改善。
本实施例中,恒无功控制是定子电流限制的一种补充方式,可以在相关技术的定子电流限制中定子电流控制无法限制定子电流时,将恒无功控制作为补充以更好地限制定子电流。例如,在电力系统出现问题后,如果满足定子电流限制器动作条件,则定子电流限制器动作,降低定子电流,使定子电流返回到1.1倍额定值。但是在一些情况下,定子电流限制器动作后会使系统发生失稳,或者定子电流限制器在无功功率Q=0时,转成恒零无功控制,使系统稳定在当前Q=0左右的工况,但是这种情况下定子电流过高,不利于系统电压稳定。本实施例中,在定子电流限制动作后,如果满足外功角不小于功率因数角条件, 则通过恒无功控制,将系统稳定在当前无功时的工况,该工况下可以实现定子电流最低。
由图11可见,机端功率因数
Figure PCTCN2017100258-appb-000022
受发电机无功变化的影响远大于系统外功角δ2,该特性对于Xs现场整定却是有益的。采用与图11一致的测试环境,通过扩大AVR调节器Xs整定范围开展测试对比的结果如图12所示。当励磁调节器Xs整定值(0.4p.u.)比系统实际值(0.315p.u.)大时,发电机定子电流最终稳定在11.56kA(1.134p.u.),系统电压稳定在0.875p.u.;而当励磁调节器Xs整定为0.2p.u.时,发电机定子电流最终稳定在11.45kA(1.12p.u.),系统电压稳定在0.78p.u.。现场励磁调节器Xs整定选择比实际系统阻抗更大一些,对于系统稳定和机组安全均会更有利。
本实施例基于单机无穷大系统V型曲线特性分析提出了利用发电机机端功率因数角和系统外功角识别定子电流最小值的方法,提出了改善定子电流限制涉网特性的优化方法及系统阻抗整定建议,基于某厂家装置的实测结果验证了所提定子电流限制器优化方法的有效性,形成如下结论。
1)励磁调节器SCL辅助限制常规设计方案在系统发生持续低电压动作后,可能既无法保护主设备安全,同时还加剧系统电压崩溃。
2)发电机机端功率因数角等于系统外功角时,发电机定子电流达到V型曲线对应的最小值。
3)恒定子电流控制方式在V型曲线左侧没有稳定运行的平衡点,SCL应配置恒无功控制功能。
4)V型曲线底部区域,定子电流随无功电压的灵敏度较小,系统阻抗Xs整定可以选择比实际值大一些。
本实施例在国内外主流励磁调节器定子电流限制建模仿真及涉网性能测试 基础上,详细分析了相关定子电流限制器动作后对发变组和系统电压稳定的影响及其存在的隐形缺陷,并设计和提出了定子电流限制涉网特性优化方法,实际AVR装置的测试结果验证了所提方法的有效性和应用价值。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述发电机励磁调节器的定子电流限制的方法。
图13是根据本实施例的一种电子设备的硬件结构示意图,如图13所示,该电子设备包括:一个或多个处理器410和存储器420。图13中以一个处理器410为例。
所述电子设备还可以包括:输入装置430和输出装置440。
所述电子设备中的处理器410、存储器420、输入装置430和输出装置440可以通过总线或者其他方式连接,图13中以通过总线连接为例。
输入装置430可以接收输入的数字或字符信息,输出装置440可以包括显示屏等显示设备。
存储器420作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行多种功能应用以及数据处理,以实现上述实施例中的任意一种发电机励磁调节器的定子电流限制的方法。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器可以包括随机存取存储器(Random Access Memory,RAM)等易失性存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或者其他非暂态固态存储器件。
存储器420可以是非暂态计算机存储介质或暂态计算机存储介质。该非暂 态计算机存储介质,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器420可选包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例可以包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
本领域普通技术人员可理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来执行相关的硬件来完成的,该程序可存储于一个非暂态计算机可读存储介质中,该程序在执行时,可包括如上述方法的实施例的流程,其中,该非暂态计算机可读存储介质可以为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。
工业实用性
本公开基于单机无穷大系统V型曲线特性分析提出了利用发电机机端功率因数角和系统外功角识别定子电流最小值的方法,改善了定子电流限制的涉网特性。

Claims (11)

  1. 一种发电机励磁调节器的定子电流限制的方法,包括:
    获取发电机功率因数角;
    根据发电机有功功率、无功功率、机端电压以及系统阻抗确定发电机的外功角,所述外功角为机端电压向量相对于系统电压向量的夹角;以及,
    在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制的方式转换为恒无功控制的方式。
  2. 如权利要求1所述的方法,其中,所述获取发电机功率因数角包括:获取由发电机励磁调节器实时计算的发电机功率因数角。
  3. 如权利要求1所述的方法,其中,所述根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角包括:
    实时获取发电机的有功功率、无功功率、机端电压;
    根据实时获取的有功功率、无功功率、机端电压、系统阻抗以及下式(1)确定外功角;
    Figure PCTCN2017100258-appb-100001
    其中,δ2为外功角,P为有功功率,Q为无功功率,Ut为机端电压,Xs为系统阻抗,所述系统阻抗根据涉网试验实测结果所得。
  4. 如权利要求3所述的方法,其中,所述系统阻抗取值为涉网试验实测值的1.5倍。
  5. 如权利要求1所述的方法,其中,所述在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制包括:
    在所述外功角不小于功率因数角的情况下,获取当前的发电机无功功率值;以及,
    以获取的当前的发电机无功功率值为目标值,对发电机励磁调节器进行恒无功控制。
  6. 一种发电机励磁调节器的定子电流限制装置,包括:
    功率因数角获取模块,设置为获取发电机功率因数角;
    外功角确定模块,设置为根据发电机有功功率、无功功率、机端电压以及系统阻抗确定外功角,所述外功角为机端电压向量相对于系统电压向量的夹角;以及,
    控制模块,设置为在所述外功角不小于功率因数角的情况下,将发电机励磁调节器的定子电流限制转换为恒无功控制。
  7. 如权利要求6所述的装置,其中,所述功率因数角获取模块是设置为:获取由发电机励磁调节器实时计算的发电机功率因数角。
  8. 如权利要求6所述的装置,其中,所述外功角确定模块包括:
    发电机参数获取单元,设置为实时获取发电机的有功功率、无功功率、机端电压;
    外功角计算单元,设置为根据实时获取的有功功率、无功功率、机端电压、系统阻抗以及下式(1)确定外功角;
    Figure PCTCN2017100258-appb-100002
    其中,δ2为外功角,P为有功功率,Q为无功功率,Ut为机端电压,Xs为系统阻抗,所述系统阻抗根据涉网试验实测结果所得。
  9. 如权利要求8所述的装置,其中,所述系统阻抗取值为涉网试验实测值的1.5倍。
  10. 如权利要求6所述的装置,其中,所述控制模块包括:
    判断单元,设置为判断所述外功角是否不小于功率因数角;
    无功功率值获取单元,设置为在确定所述外功角不小于功率因数角的情况下,获取当前的发电机无功功率值;以及,
    控制单元,设置为以获取的当前的发电机无功功率值为目标值,对发电机励磁调节器进行恒无功控制。
  11. 一种存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-5任一项的方法。
PCT/CN2017/100258 2016-11-24 2017-09-01 发电机励磁调节器的定子电流限制的方法及装置 WO2018095105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611050051.0A CN106533290B (zh) 2016-11-24 2016-11-24 一种发电机励磁调节器的定子电流限制方法及装置
CN201611050051.0 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018095105A1 true WO2018095105A1 (zh) 2018-05-31

Family

ID=58357799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100258 WO2018095105A1 (zh) 2016-11-24 2017-09-01 发电机励磁调节器的定子电流限制的方法及装置

Country Status (2)

Country Link
CN (1) CN106533290B (zh)
WO (1) WO2018095105A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514892A (zh) * 2019-07-18 2019-11-29 中国电力科学研究院有限公司 一种基于电压阶跃法对无功电流补偿率进行测量的方法及系统
CN112748667A (zh) * 2020-12-22 2021-05-04 国网山东省电力公司电力科学研究院 一种利用机端电压响应曲线在线校核自动电压调节器模型参数的方法
CN114070141A (zh) * 2020-07-31 2022-02-18 上海梅山钢铁股份有限公司 一种避免无功扰动冲击小型发电机的控制装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533290B (zh) * 2016-11-24 2019-04-23 华北电力科学研究院有限责任公司 一种发电机励磁调节器的定子电流限制方法及装置
CN108879709B (zh) * 2018-05-30 2021-07-23 中国电力科学研究院有限公司 一种发电机励磁系统无功电流补偿率的现场实测方法
CN109088443B (zh) * 2018-08-13 2020-06-05 华北电力科学研究院有限责任公司 励磁调节器的过励限制优化方法及系统
CN110109011B (zh) * 2019-03-20 2021-06-18 广西电网有限责任公司电力科学研究院 一种确定发电机组励磁调差系数最佳范围的方法
CN112260596B (zh) * 2020-10-29 2022-05-06 广东电网有限责任公司电力科学研究院 一种发电机定子电流过流控制方法及相关装置
CN113922331B (zh) * 2021-12-14 2022-04-12 建投遵化热电有限责任公司 一种发电机逆功率保护动作方法、保护终端以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917358A (zh) * 2006-09-08 2007-02-21 四川东风电机厂有限公司 Trt同步发电机无刷励磁控制系统
CN101034855A (zh) * 2006-03-10 2007-09-12 株式会社日立制作所 二次励磁发电系统用电力变换装置
CN103187915A (zh) * 2012-11-07 2013-07-03 东北大学 基于组态的励磁发电储能控制装置及方法
CN103529388A (zh) * 2013-10-25 2014-01-22 国家电网公司 一种测量发电机组调差率的方法及装置
CN106533290A (zh) * 2016-11-24 2017-03-22 华北电力科学研究院有限责任公司 一种发电机励磁调节器的定子电流限制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018036B (zh) * 2006-12-29 2010-11-10 山东齐鲁电机制造有限公司 带保护装置的发电机无刷励磁调节器
CN103516274B (zh) * 2013-09-26 2016-08-17 国家电网公司 一种包含有多类型限制单元的发电机励磁系统
CN103580569B (zh) * 2013-11-13 2016-04-20 国家电网公司 一种灵活可扩展的励磁控制系统
CN204517715U (zh) * 2015-04-08 2015-07-29 陕西蓝海电气有限公司 航空发电机控制器
CN106160607B (zh) * 2016-05-20 2018-11-06 中国大唐集团科学技术研究院有限公司华东分公司 一种励磁调节器定子过电流限制的实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034855A (zh) * 2006-03-10 2007-09-12 株式会社日立制作所 二次励磁发电系统用电力变换装置
CN1917358A (zh) * 2006-09-08 2007-02-21 四川东风电机厂有限公司 Trt同步发电机无刷励磁控制系统
CN103187915A (zh) * 2012-11-07 2013-07-03 东北大学 基于组态的励磁发电储能控制装置及方法
CN103529388A (zh) * 2013-10-25 2014-01-22 国家电网公司 一种测量发电机组调差率的方法及装置
CN106533290A (zh) * 2016-11-24 2017-03-22 华北电力科学研究院有限责任公司 一种发电机励磁调节器的定子电流限制方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514892A (zh) * 2019-07-18 2019-11-29 中国电力科学研究院有限公司 一种基于电压阶跃法对无功电流补偿率进行测量的方法及系统
CN110514892B (zh) * 2019-07-18 2022-09-23 中国电力科学研究院有限公司 一种基于电压阶跃法对无功电流补偿率进行测量的方法及系统
CN114070141A (zh) * 2020-07-31 2022-02-18 上海梅山钢铁股份有限公司 一种避免无功扰动冲击小型发电机的控制装置
CN112748667A (zh) * 2020-12-22 2021-05-04 国网山东省电力公司电力科学研究院 一种利用机端电压响应曲线在线校核自动电压调节器模型参数的方法

Also Published As

Publication number Publication date
CN106533290A (zh) 2017-03-22
CN106533290B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2018095105A1 (zh) 发电机励磁调节器的定子电流限制的方法及装置
CN108830456B (zh) 敏感设备与电网电压暂降兼容性分析方法及装置
CN109802444B (zh) 一种过励限制和过流保护动态配合评估方法
CN104614616A (zh) 发变组保护定值与励磁限制器定值的匹配检测方法及装置
CN107834922B (zh) 一种励磁调节器定子电流限制的状态控制方法及装置
CN114151373A (zh) 服务器风扇转速调控方法、系统、终端及存储介质
JP6203449B2 (ja) 系統安定度推定装置および系統安定度推定方法
WO2020034491A1 (zh) 励磁调节器的过励限制方法及系统
CN116780659B (zh) 考虑系统惯量需求的分布式资源同步化控制方法
JP6067289B2 (ja) 電力系統の縮約モデル作成装置、作成方法及び作成プログラム
CN111864744A (zh) 高比例水电系统调速器控制模式在线切换方法及系统
CN106099908B (zh) 一种受端电网中长期电压稳定性评估方法
CN112968447A (zh) 一种衡量电压测量时间常数对机组动态稳定影响的方法
CN109274098B (zh) 考虑阻尼的简单电力系统紧急控制方法
KR101493511B1 (ko) 계통 전압 이상에 따른 계통 연계 인버터의 과전류 억제장치 및 방법
CN113241727A (zh) 一种移相变压器安匝平衡差动保护方法及系统
CN107968384B (zh) 一种同杆多回路零序电流保护方法及装置
Aree An analytical approach for calculating critical voltage-sag removal time of induction motors using manufacturer technical data
JP2017051068A (ja) 電力系統の電圧安定性評価方法およびプログラム
de Oliveira et al. A fast methodology for stability margin evaluation of power systems due to Hopf bifurcation
KR100728828B1 (ko) 전력 계통 안정화 방법 및 상기 방법을 실행시키기 위한컴퓨터 판독 가능한 프로그램을 기록한 매체
CN114421439B (zh) 基于可视化与专家系统的电网保护定值数据变更方法
CN116526560A (zh) 构网型逆变器的暂态稳定分析方法、设备及存储介质
CN113221310A (zh) 一种衡量电压测量时间常数对机组同步转矩影响的方法
CN117526306A (zh) 考虑电网耦合效应的水电机组调节系统稳定性判断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874841

Country of ref document: EP

Kind code of ref document: A1