WO2018093088A2 - 전극 및 이를 포함하는 리튬 이차 전지 - Google Patents

전극 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2018093088A2
WO2018093088A2 PCT/KR2017/012565 KR2017012565W WO2018093088A2 WO 2018093088 A2 WO2018093088 A2 WO 2018093088A2 KR 2017012565 W KR2017012565 W KR 2017012565W WO 2018093088 A2 WO2018093088 A2 WO 2018093088A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrode
layer
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2017/012565
Other languages
English (en)
French (fr)
Other versions
WO2018093088A3 (ko
Inventor
손병국
장민철
박은경
최정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170142400A external-priority patent/KR101984727B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019511419A priority Critical patent/JP6910428B2/ja
Priority to CN201780071850.2A priority patent/CN109997252B/zh
Priority to US16/329,076 priority patent/US11056725B2/en
Priority to EP17871180.0A priority patent/EP3503262B1/en
Publication of WO2018093088A2 publication Critical patent/WO2018093088A2/ko
Publication of WO2018093088A3 publication Critical patent/WO2018093088A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for irreversible capacity compensation and a lithium secondary battery including the same.
  • Lithium secondary batteries are used in various industries such as automotive batteries in small electronic devices such as smartphones and laptop tablet PCs. These developments are being made toward technology miniaturization, light weight, high performance, and high capacity.
  • the carbon-based negative electrode active material forms a solid electrolyte interface (SEI) layer on the surface of the negative electrode active material during an initial charge / discharge process (activation process), thereby causing an initial irreversible phenomenon.
  • SEI solid electrolyte interface
  • the electrolyte is depleted and the battery capacity is reduced.
  • the silicon-based material shows a high capacity, but as the cycle progresses, the volume expansion ratio may be 300% or more, which may lead to an increase in problems such as formation of an SEI layer, such as damage to the electrode structure, which may lead to increased resistance and increased electrolyte side reactions. have.
  • silicon oxide-based materials have a lower volume expansion ratio and superior durability life characteristics than silicon-based materials, so they may be considered for use, but this also has a problem that the initial irreversibility of Li 2 O due to the formation of SEI layer and oxygen in the active material during charging is large. Have.
  • a pre-lithiation reaction was performed by inserting a negative electrode into a solution containing a lithium source and applying a current to improve the cycle characteristics by completely lowering the initial irreversibility.
  • the lithium layer is formed on the negative electrode, lithium by-products are generated even in the non-coated portion of the negative electrode where the negative electrode active material is not coated, which makes it difficult to fabricate the cell. there was.
  • Patent Document 1 WO 2011/056847 (2011.05.12), HIGH CAPACITY ANODE MATERIALS FOR LITHIUM ION BATTERIES
  • the present inventors do not form a pre-lithiation reaction layer through a multi-faceted research, but a prevention layer that can prevent it, thereby compensating for the reduction of the capacity of a battery that is safe and irreversible from fire or explosion.
  • a multi-layered electrode and a lithium secondary battery having the same were manufactured.
  • an object of the present invention is to provide an electrode for a lithium secondary battery capable of compensating for irreversible capacity reduction without the risk of explosion and fire.
  • Another object of the present invention is to provide a lithium secondary battery having the electrode.
  • the present invention is an electrode layer; An anti-lithiation layer formed on the electrode layer; And it provides a lithium secondary battery electrode comprising a lithium layer formed on the anti-lithiation layer.
  • the lithium layer is characterized in that after the initial activation charge does not remain as lithium in the form of metal.
  • the present invention provides a lithium secondary battery comprising a negative electrode, a positive electrode and a separator and an electrolyte disposed therebetween, wherein at least one of the negative electrode and the positive electrode is the electrode described above.
  • the electrode according to the present invention serves to prevent the pre-lithiation reaction of the anti-lithiation layer to block the fire by the lithiation reaction by the contact of lithium and silicon before the cell assembly, the electrode, In particular, the irreversible capacity of the cathode is greatly improved.
  • FIG. 1 is a cross-sectional view showing a lithium secondary battery according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an electrode and an activation process thereof according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating the concept of irreversible capacity
  • (a) is a schematic diagram showing the irreversible capacity before the initial activation charge
  • (b) and (c) is a schematic diagram showing the change of the irreversible capacity after the initial activation charge.
  • the theoretical capacity of the battery is calculated according to the theoretical maximum value of Faraday's law, but due to various factors, the actual capacity of the battery does not significantly exceed the theoretical value.
  • the material of the silicon or carbon material as the electrode active material inevitably occurs in the capacity reduction of the battery due to the initial high irreversible characteristics.
  • a multi-layered electrode in which a lithium layer is stacked is proposed.
  • this method has a problem such that lithiation reaction occurs by contact between lithium and the active material before assembly of the battery, resulting in explosion or fire of the battery.
  • the present invention discloses a novel electrode structure capable of preventing direct contact between the electrode layer and the lithium layer, and a lithium secondary battery having the same, to solve the above problems.
  • FIG. 1 is a cross-sectional view of a lithium secondary battery 10 according to an embodiment of the present invention, in which a separator 5 and an electrolyte (not shown) exist between a negative electrode 1 and a positive electrode 3.
  • FIG. 2 is a cross-sectional view illustrating an electrode and an activation process thereof according to an embodiment of the present invention, in which the cathode 1 and / or anode 3 of FIG. 1 has a multilayer structure as shown in FIG. 2.
  • the electrodes 1 and 3 have a structure in which the electrode layer 11, the anti-lithiation layer 13 and the lithium layer 15 are sequentially stacked, wherein the lithium layer 15 is after the initial activation charge
  • the lithium in the form of metal does not remain on the surface of the anti-lithiation layer 13.
  • Figure 2 shows the structure of the electrode before and after activation.
  • a three-layered multilayer structure of an electrode layer 11, an anti-lithiation layer 13, and a lithium layer 15 is prepared as an electrode, and battery assembly is performed in this state.
  • the lithium secondary battery thus assembled maintains its shape before the initial activation (a).
  • the lithium metal existing in the lithium layer 15 is transferred to the electrode layer 11 through the anti-lithiation layer 13 in an ionized state.
  • the transferred lithium metal ions alloy with the electrode layer material present in the electrode layer 11.
  • the electrode has a structure in which the anti-lithiation layer 13 is formed on the electrode layer 11 ′ to which lithium is added.
  • the electrode layer (11 ') is a negative electrode material alloyed with lithium, there is a difference in the capacity of the first electrode layer 11 and the lithium, the increased lithium capacity of the irreversible lithium additional electrode layer (11'). Dose reduction can be compensated.
  • the anti-lithiation layer 13 is formed between the electrode layer 11 and the lithium layer 15.
  • the anti-lithiation layer 13 includes lithium metal ions in the lithium layer 15 after the initial activation charge. It must be able to carry out the lithium ion transfer function so that it can be transferred to. At this time, since the lithium in the lithium layer 15 should not remain after the activation charge, the anti-lithiation layer 13 should have a certain level of lithium ion conductivity and its thickness should also be limited to the anti-lithiation layer 13 Itself does not act as a resistive layer.
  • the anti-lithiation layer 13 is polyethylene oxide, polypropylene oxide, polydimethylsiloxane, polyacrylonitrile, polymethyl methacrylate, polyvinyl chloride, polyvinylidene fluoride, polyvinylidene fluoride- one selected from the group consisting of co-hexafluoropropylene, polyethyleneimine, polyphenylene terephthalamide, polymethoxy polyethyleneglycol methacrylate, poly2-methoxy ethylglycidyl ether, and combinations thereof, is preferred.
  • Polyvinylidene fluoride-co-hexafluoropropylene is used below.
  • the lithium ion conductivity of the anti-lithiation layer 13 should satisfy 10 ⁇ 3 S / cm or less, preferably 10 ⁇ 6 to 10 ⁇ 3 S / cm.
  • the thickness of the anti-lithiation layer 13 may be limited to a range in which lithium metal ions can be easily transported and do not act as a resistance layer. Specifically, the thickness may be 0.5 to 5 ⁇ m, preferably 1 to 3 ⁇ m. If the thickness is less than the above range, the negative electrode 1 and the battery 10 may be torn during the manufacturing process. On the contrary, if the thickness exceeds the above range, the assembly of the stable battery 10 may be possible, but the internal resistance may be increased to activate. After charging, the lithium layer 15 may not be completely transferred to the negative electrode side, and thus, a compensation effect due to a decrease in irreversible capacity of the lithium secondary battery 10 may not be secured.
  • the anti-lithiation layer 13 may be directly coated on the electrode layer 11 or after coating on a separate substrate to form a coating film and then laminating it with the electrode layer 11.
  • the coating may be formed by using the polymer material as described above or by preparing a solution such as a monomer or an initiator thereof and then polymerizing the same. More details will be described in the following description of the manufacturing method.
  • the electrode including the anti-lithiation layer 13 may be a negative electrode 1 or a positive electrode 3 of the lithium secondary battery 10, or both.
  • the electrode layer 11 is formed of a negative electrode mixture layer including a negative electrode active material on the negative electrode current collector, and in the case of the positive electrode 3, the electrode layer 11 is a positive electrode on the positive electrode current collector.
  • the positive electrode mixture layer containing the active material may be formed.
  • the negative electrode current collector is not particularly limited so long as it has conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, carbon on the surface of copper or stainless steel, Surface-treated with nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric having fine irregularities formed on the surface thereof.
  • copper foil is used as the negative electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, The surface-treated with titanium, silver, etc. can be used.
  • the positive electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric having fine irregularities formed on the surface thereof.
  • aluminum foil is used as the negative electrode current collector.
  • the negative electrode mixture layer and the positive electrode mixture layer presented above may vary depending on the type of the lithium secondary battery.
  • Lithium secondary battery 10 of the present invention can be used a variety of batteries, such as lithium-sulfur battery, lithium-air battery, lithium-oxide battery, lithium all-solid-state battery, and the negative electrode active material and positive electrode active material used in these batteries, respectively Can be used.
  • batteries such as lithium-sulfur battery, lithium-air battery, lithium-oxide battery, lithium all-solid-state battery, and the negative electrode active material and positive electrode active material used in these batteries, respectively Can be used.
  • the negative electrode active material preferably has a capacity of 1 to 8 mAh / cm 2 , preferably 3 to 7 mAh / cm 2 , and a material that is easily alloyed with lithium metal ions transferred from the lithium layer 15 may be used. have.
  • the negative electrode material has a large initial irreversible capacity loss, and can compensate for the initial irreversible capacity loss due to the supply of metallic lithium proposed in the present invention.
  • the initial irreversible capacity of the electrode layer 11 is preferably within 40% of the reversible capacity. If the irreversible capacity is too large, the additional initial lithium supply may be too large, leading to a decrease in manufacturing productivity.
  • the cathode active material may vary depending on the use of the lithium secondary battery 10, and a specific composition uses a known material.
  • any one lithium transition metal oxide selected from the group consisting of lithium cobalt oxide, lithium manganese oxide, lithium copper oxide, lithium nickel oxide and lithium manganese composite oxide, lithium-nickel-manganese-cobalt oxide.
  • the present invention is characterized by utilizing 100% of the ability of the positive electrode 3 to be reversibly stored, and fully utilizing the difference between this and the amount of lithium initially contained. Therefore, in the present invention, the larger the capacity of the active material of the positive electrode 3 is preferable. For example, it may be 100 mAh / g to 300 mAh / g, may be 300 mAh / g or more
  • the electrode layer 11 may further include a conductive material and a binder in order to serve as an electrode active material.
  • the said conductive material is used in order to improve the electroconductivity of an electrode active material further.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • a binder may be further included for bonding the electrode active material and the conductive material and bonding to the current collector.
  • the binder may include a thermoplastic resin or a thermosetting resin.
  • a thermoplastic resin for example, polyethylene, polypropylene, polytetrafluoro ethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, tetrafluoroethylene-perfluoro alkylvinylether copolymer, vinylidene fluoride- Hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-pentafluoro propylene copolymer, propylene-tetrafluoro Low ethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinyl
  • the lithium layer 15 proposed in the present invention is formed on the anti-lithiation prevention layer 13 and then activated to the electrode layer 11 after charge.
  • the thickness of the lithium metal ions may be transferred so that the lithium metal ions may be alloyed with the material of the electrode layer 11.
  • the lithium layer 15 is formed by introducing lithium foil to move lithium metal or by pre-doping lithium metal directly on the anti-lithiation layer 13.
  • the method of utilizing a metal foil As a method of pre-doping lithium metal, the method of utilizing a metal foil, the method of depositing metal lithium, or the method of disperse
  • the present invention particularly employs a method of applying metallic lithium by a continuous roll process such as spraying and rolling.
  • the lithium gas is continuously passed through the electrode surface coated with the active material while continuously supplying the lithium gas. To allow the layer to be deposited.
  • the thickness of the lithium layer 15 is 1 ⁇ m or more and less than 5 ⁇ m, preferably about 1 to 4 ⁇ m, when the total electrode thickness is about 100 ⁇ m, which is 0.2 to 1.0 mA / cm 2 , preferably 0.3 to 0.8. Corresponds to the amount resulting in an increase in dose of mA / cm 2 .
  • the weight of the lithium layer is preferably 0.05 to less than 0.3 mg / cm 2 , preferably 0.05 to 0.2 mg / cm 2 per unit area.
  • the deposition process conditions, lithium layer 15 thickness, weight and the amount of increase in the current density is only one embodiment and the present invention is not limited thereto. In particular, the thickness of the lithium layer 15 of the present invention can be further lowered due to the formation of the anti-lithiation layer 13.
  • the lithium layer 15 is formed with a thin thickness of less than 5 ⁇ m as suggested by the present invention, a large amount of the battery may be compensated for the irreversibility of 1 mAh / cm 2 or less, which may occur when designing a high capacity positive electrode and a silicon negative electrode. It is possible to prevent the initial capacity reduction occurring in a battery using a silicon negative electrode and to manufacture a battery having a long cycle.
  • a method in which particles containing excessive lithium are dispersed in a predetermined binder solution, continuously applied to the electrode surface, and then passed through a continuous roll press to form a lithium coating film it is possible to use a lithium metal powder having a stabilization layer applied to the surface as particles containing excess lithium.
  • the binder solution the binder as mentioned in the electrode active material may be used, and the coating method is also as described above.
  • the preparation of the electrode proposed in the present invention is not particularly limited, and a method known in the art may be used as it is or may be applied.
  • the electrode may be formed by sequentially stacking the anti-lithiation layer 13 and the lithium layer 15 on the electrode layer 11 or by forming a lithium layer on the anti-lithiation layer, and then laminating it with the electrode layer. Can be used.
  • the electrode layer 11 may be formed by applying and drying a slurry prepared by mixing an electrode active material, a conductive material, and a binder on an organic solvent onto an electrode current collector, and optionally compressing the electrode current collector to improve electrode density. Can be.
  • the organic solvent may uniformly disperse the positive electrode active material, the binder, and the conductive material, and it is preferable to use one that easily evaporates. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
  • the anti-lithiation layer 13 may be directly coated or laminated after preparing the coating solution.
  • the coating solution is a polymer, or prepolymer, or a monomer and an initiator constituting the anti-lithiation layer 13 is dissolved in a solvent, and the coating solution is coated on the electrode layer 11 or a separate substrate and dried.
  • the coating solution when the coating solution is prepared in the form of monomer, it undergoes UV polymerization or thermal polymerization.
  • the photoinitiator is benzoin, benzoin ethyl ether, benzoin isobutyl ether, alpha methyl benzoin ethyl ether, benzoin phenyl ether, acetophenone, dimethoxyphenyl acetophenone, 2,2- diethoxy acetophenone , 1,1-dichloroacetophenone, trichloroacetophenone, benzophenone, p-chloro benzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy- 2-methyl propiophenone, benzyl benzoate, benzoyl benzoate, anthraquinone, 2-ethylanthraquinone, 2-chloroanthraquinone, 2-methyl-1- (4-methylthiopheny
  • the solvent it is possible to sufficiently dissolve a monomer or a polymer and an initiator, and preferably a non-aqueous organic solvent is used.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move, and a known carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent can be used.
  • the non-aqueous organic solvent may be N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2 Dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, Diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxolane derivatives, sulfolane, methylsulforane, 1,3- Aprotic organic solvents such as dimethyl-2-imidazolidinone, propylene carbonate derivative
  • the content of the solvent may be contained at a level having a concentration to facilitate the coating, the specific content depends on the coating method and apparatus.
  • the separate substrate used for the lamination may be a glass substrate or a plastic substrate.
  • the coating process for forming a coating film is not specifically limited, Any known wet coating method is possible. For example, a method of uniformly dispersing using a doctor blade or the like, a method such as die casting, comma coating, screen printing, or the like can be given.
  • a drying process for removing the solvent after coating is performed.
  • the drying process is carried out at a temperature and time of a level capable of sufficiently removing the solvent, the conditions are not particularly mentioned in the present invention because the conditions may vary depending on the type of solvent.
  • the drying may be performed in a vacuum oven at 30 to 200 ° C., and a drying method such as warm air, hot air, low humidity wind drying, or vacuum drying may be used. Although it does not specifically limit about drying time, Usually, it carries out in 30 second-24 hours.
  • the thickness of the anti-lithiation layer 13 which is finally coated may be adjusted by adjusting the concentration of the coating liquid or the number of coatings for forming the anti-lithiation layer 13 according to the present invention.
  • the lithium layer 15 is formed on the anti-lithiation layer 13. At this time, the lithium layer 15 is formed as described above.
  • the electrode in which the electrode layer 11, the anti-lithiation layer 13, and the lithium layer 15 are sequentially stacked may be used as a cathode and / or an anode of the lithium secondary battery 10. At this time, the lithium of the lithium layer 15 is completely consumed during the initial activation charging process of the battery, so that the lithium in the metal form does not remain on the surface of the anti-lithiation layer 13.
  • the lithium layer 15 has both the amount of lithium corresponding to the initial irreversible consumption capacity of the negative electrode 1 as well as the total reversible lithium storage capacity of the positive electrode 3. Satisfy Equation 1:
  • lithium storage capacity of the S anode the lithium capacity contained in the initial cathode
  • L is the amount of lithium in the lithium layer
  • I is the initial irreversible consumption at the cathode.
  • S represents the difference between the lithium storage capacity of the positive electrode 3 and the lithium capacity contained in the initial positive electrode 3, and is used in the lithium secondary battery 10 including the lithium layer 15 of the present invention.
  • (3) shows that the total reversible lithium storage capacity is greater than the lithium capacity that can initially be released from the anode. Therefore, the amount of lithium (L) of the lithium layer 15 is included in the amount of lithium (S) minus the amount of lithium initially contained in the positive electrode (3) at least in the lithium storage capacity of the minimum positive electrode (3) by the positive electrode (3)
  • the capacity of the lithium secondary battery 10 can be significantly increased by utilizing the lithium storage capacity of the battery.
  • I denotes an initial irreversible consumption capacity at the negative electrode 1
  • the negative electrode 1 used in the lithium secondary battery 10 including the lithium layer 15 of the present invention has an initial irreversible consumption capacity. It can be seen that it is present and consumes lithium ions initially released from the anode 3. Therefore, in the present invention, the lithium amount (L) of the lithium layer (15) is the maximum, in the amount (S) and the negative electrode except the lithium capacity initially contained in the positive electrode 3 in the lithium storage capacity of the positive electrode 3 By including as much as the irreversible capacity (I) consumed initially, the lithium storage capacity of the positive electrode 3 is maximized, and the lithium metal ions consumed by the irreversible capacity at the negative electrode 1 are supplemented to further increase the battery capacity.
  • the lithium layer 15 is formed on the negative electrode 1, and the active material of the positive electrode 3 is a lithium secondary battery including a lithium-free transition metal oxide and a lithium-containing transition metal oxide ( The case of 10) will be described using an example.
  • FIG. 3 is a schematic diagram illustrating the concept of irreversible capacity
  • (a) is a schematic diagram showing the irreversible capacity before the initial activation charge
  • (b) and (c) is a schematic diagram showing the change of the irreversible capacity after the initial activation charge.
  • the lithium secondary battery 10 includes a positive electrode 1, a negative electrode 3, a separator 5 interposed therebetween, and an electrolyte (not shown), and a type of battery.
  • the separator 5 may be excluded.
  • the separator 5 may be made of a porous substrate, and the porous substrate may be used as long as it is a porous substrate that is typically used in an electrochemical device.
  • a porous substrate that is typically used in an electrochemical device.
  • a polyolefin-based porous membrane or a nonwoven fabric may be used. It is not specifically limited.
  • the separator 5 is polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyether ether ketone, poly It may be a porous substrate composed of any one selected from the group consisting of ether sulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalate or a mixture of two or more thereof.
  • the electrolyte of the lithium secondary battery 10 is a non-aqueous electrolyte consisting of a non-aqueous organic solvent electrolyte and a lithium salt as a lithium salt-containing electrolyte, and may include, but are not limited to, an organic solid electrolyte or an inorganic solid electrolyte.
  • the non-aqueous organic solvent is, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2 Dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, Diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxolane derivatives, sulfolane, methylsulforane, 1,3- Aprotic organic solvents such as dimethyl-2-imidazolidinone, propylene carbonate
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, Li (FSO 2 ) 2 N LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC At least one lithium salt selected from the group consisting of (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, 4-phenyl lithium borate imide, and combinations thereof Can be used.
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, etc.
  • halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • the shape of the lithium secondary battery 10 as described above is not particularly limited, and may be, for example, jelly-roll type, stack type, stack-fold type (including stack-Z-fold type), or lamination-stack type. It may preferably be stack-foldable.
  • the electrode assembly After preparing an electrode assembly in which the positive electrode, the separator, and the negative electrode are sequentially stacked, the electrode assembly is placed in a battery case, and then the electrolyte is injected into the upper part of the case and sealed by a cap plate and a gasket to prepare a lithium secondary battery. .
  • the lithium secondary battery can be classified into various batteries such as lithium-sulfur battery, lithium-air battery, lithium-oxide battery, lithium all-solid battery according to the type of cathode material and separator used. It can be classified into coin type, pouch type, etc., and can be classified into bulk type and thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the lithium secondary battery according to the present invention can be used as a power source for devices requiring high capacity and high rate characteristics.
  • the device include a power tool moving by being driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters; Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • the positive electrode and the negative electrode of the lithium secondary battery were manufactured by the following method, and then a lithium secondary battery was produced.
  • Slurry was prepared by mixing 80 wt% SiO (KSC1064 from Shin-Etsu Co., Ltd.), 10 wt% graphite, 10 wt% carboxymethylcellulose, and 30% in water. The slurry was applied onto a copper collector plate having a thickness of 10 ⁇ m, and then dried at 120 ° C. for 12 hours to form an electrode layer (loading amount: 5.4 mAh / cm 2 ).
  • PVdF-HFP Polyvinylidene fluoride-hexafluoroflopylene
  • An anti-lithiation layer was disposed on the first electrode layer, and a lithium foil (5 ⁇ m thick) was laminated to the second electrode layer and then rolled to prepare a cathode having a multilayer structure.
  • a slurry composition was prepared by mixing LCO: Super-P: Binder (PVdF) with 500 ml of acetonitrile for 5 minutes with a paste face mixer at a weight ratio of 95: 2.5: 2.5.
  • the prepared positive electrode slurry composition was coated on a current collector (Al Foil) and dried at 50 ° C. for 12 hours to prepare a positive electrode.
  • the loading amount of LCO was 4.2 mAh / cm 2 .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the thickness of the lithium foil was 3.4 ⁇ m.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the thickness of the lithium foil was 20 ⁇ m.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the thickness of the anti-lithiation layer was formed to 0.5 ⁇ m.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the anti-lithiation layer was formed at a thickness of 5 ⁇ m.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that polyethylene oxide (MW: 20,000,000 g / mol) was used as the anti-lithiation layer.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that only the electrode layer was used as the negative electrode.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a lithium foil was rolled on a copper current collector as a negative electrode.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the lithium metal layer was formed on the electrode layer as a cathode based on the method shown in the example of Korean Patent No. 10-1156608.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that an anti-lithiation layer was formed on the electrode layer to prepare a negative electrode having a laminated structure of an electrode layer, a lithium layer, and an anti-lithiation layer.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that an anti-lithiation layer was formed below the electrode layer to prepare a negative electrode having a laminated structure of an anti-lithiation layer / electrode layer / lithium layer.
  • Example 1 Number of cycles (capacity below 90%) Example 1 569
  • Example 2 440
  • Example 4 465
  • Example 5 85
  • Example 6 235 Comparative Example 1 13 Comparative Example 2 173 Comparative Example 3
  • Comparative Example 4 256 Comparative Example 5 X
  • Example 1 the negative electrode irreversibility was completely compensated, and in Example 2, it was slightly lowered. In addition, in the case of Example 3, it was found that compensating too much, resulting in a decrease in capacity due to the generation of lithium dendrites during charging.
  • Comparative Example 1 was found to bring a capacity reduction of 90% or less compared to the initial stage within 20 cycles due to high initial irreversibility.
  • Example 4 the thickness of the anti-lithiation layer was thin, and the performance was reduced by the side reaction between the silicon electrode and lithium before assembly of the battery, compared to Example 1, and in Example 5, the thickness was thick, which acted as a resistance to the battery. Performance decreases.
  • the PEO material of Example 6 was inferior in stability with the lithium metal electrode and showed a decrease in irreversible compensation amount.
  • Comparative Example 2 showed the performance of the lithium metal electrode without a silicon electrode
  • Comparative Example 3 was found to decrease the performance due to the reaction of the silicon electrode and the lithium electrode immediately after the deposition process. This was similar to the result of the comparative example 4.
  • Comparative Example 5 it was found that the battery is not driven because it is located between the Cu current collector and the silicon electrode to interfere with electron transfer to the silicon electrode.
  • cathode 3 anode
  • electrode layer 11 ' lithium addition electrode layer

Abstract

본 발명은 전극 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 더욱 상세하게는 전극층; 상기 전극층 상에 형성된 전리튬화 방지층; 및 상기 전리튬화 방지층 상에 형성되는 리튬층을 포함하여 셀 조립 전 리튬과 실리콘의 접촉에 의한 리튬화 반응에 의한 화재를 차단함과 동시에, 음극의 비가역 용량 저하 문제를 크게 개선할 수 있는 전극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.

Description

전극 및 이를 포함하는 리튬 이차 전지
본 출원은 2016년 11월 21일자 한국 특허 출원 제10-2016-0155234호 및 2017년 10월 30일자 한국 특허 출원 제10-2017-0142400호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 비가역 용량 보상을 위한 전극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 스마트폰이나 노트북 타블렛 PC를 비롯한 소형 전자기기에서 자동차 배터리 등 다양한 산업에서 사용되고 있다. 이들은 소형화, 경량화, 고성능화, 및 고용량화의 기술 방향으로 발전이 이루어지고 있다.
현재는 내구 수명이 우수한 리튬 이차 전지를 중심으로 개발을 진행하고 있으나, 에너지당 가격 및 무게당 에너지의 획기적인 개선이 요구되고 있다. 이를 위해 단위 무게당 많은 양의 리튬과 합금을 형성할 수 있는 원소를 함유하는 리튬 합금 소재가 고용량의 음극을 형성하기 위해 집중적으로 개발되고 있다.
예를 들어, 탄소계 음극 활물질은 초기 충방전 과정(활성화 과정)에서 음극 활물질의 표면에 고체 전해질 계면(solid electrolyte interface: SEI) 층(layer)이 형성되는바, 그로 인해 초기 비가역 현상이 유발되고 계속적인 충방전 과정에서 전해액이 고갈되어 전지 용량이 감소하는 문제점을 가지고 있다.
또한, 규소계 물질은 고용량을 나타내지만, 사이클이 진행됨에 따라 부피 팽창률이 300% 이상이 되어 저항 증가 및 전해액 부반응 증가로 이어질 수 있는 바 전극 구조 손상 등 SEI 층의 형성에 따른 문제점이 심화될 수 있다.
그리고 규소 산화계 물질은 규소계 물질에 비해 부피 팽창률이 낮고 내구수명 특성도 우수해서 사용을 고려할 수 있지만, 이 역시 충전 시에 SEI 층 형성과 활물질 내의 산소로 인한 Li2O으로 초기 비가역이 크다는 문제점을 가지고 있다.
초기 비가역과 관련된 문제점을 해결하기 위한 방법 중 하나로, 리튬 소스가 있는 용액에 음극 전극을 넣고 전류를 인가하여 전리튬화(pre-lithiation) 반응을 시킴으로써 초기 비가역을 완전히 낮추어 사이클 특성을 향상시키고자 하였다. 그러나 이 방법은 음극에 리튬층을 형성할 경우 음극 활물질이 코팅되지 않는 음극의 무지부에도 리튬 부산물이 생성되는 문제로 인하여 음극의 무지부와 음극 리드간의 용접이 어려지는바 셀 제작이 불가능한 문제점이 있었다.
또 다른 시도로서 전극층 상에 리튬층을 형성한 다음 활성화를 통해 상기 리튬층 내 리튬을 전극으로 이동시켜 전극 내 리튬 함량을 높임으로써 비가역적인 용량 저하 문제를 해소하고자 하였다. 이러한 방법은 어느 정도 용량 저하 문제를 해소할 수 있었으나, 전극층의 재질과 리튬층이 직접적으로 접촉함에 따라 리튬화가 발생하여 화재 또는 폭발이라는 또 다른 문제를 야기하였다.
따라서, 이러한 문제점을 해결하면서도 비가역 용량 저하를 보상 또는 개선할 수 있는 리튬 이차 전지를 제작할 수 있는 기술에 대한 필요성이 높은 실정이다.
[특허문헌]
(특허문헌 1) WO 2011/056847 (2011.05.12), HIGH CAPACITY ANODE MATERIALS FOR LITHIUM ION BATTERIES
상기 문제를 해결하기 위해, 본 발명자들은 다각적인 연구를 통해 전리튬화 반응층을 형성하는 것이 아니라 이를 방지할 수 있는 방지층을 형성하여, 화재 또는 폭발로부터 안전하고 비가역적인 전지의 용량 감소에 대한 보상이 가능한 다층 구조의 전극 및 이를 구비한 리튬 이차 전지를 제조하였다.
따라서, 본 발명의 목적은 폭발 및 화재 위험이 없으면서도 비가역적 용량 저하를 보상할 수 있는 리튬 이차 전지용 전극을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 상기 전극을 구비한 리튬 이차 전지를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 전극층; 상기 전극층 상에 형성된 전리튬화 방지층; 및 상기 전리튬화 방지층 상에 형성되는 리튬층을 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극을 제공한다.
이때 상기 리튬층은 초기 활성화 충전 이후에는 금속 형태의 리튬으로 남아 있지 않은 것을 특징으로 한다.
또한, 본 발명은 음극, 양극 및 이들 사이에 위치한 분리막 및 전해질을 포함하는 리튬 이차 전지에 있어서, 상기 음극 및 양극 중 어느 하나 이상은 상기 제시한 전극인 것을 특징으로 하는 리튬 이차 전지를 제공한다.
본 발명에 따른 전극은 전리튬화 방지층이 전리튬화(pre-lithiation) 반응을 방지하는 역할을 하여 셀 조립 전 리튬과 실리콘의 접촉에 의한 리튬화 반응에 의한 화재를 차단함과 동시에, 전극, 특히 음극의 비가역 용량을 크게 개선한다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지를 보여주는 단면도이다.
도 2는 본 발명의 일 구현예에 따른 전극 및 이의 활성화 과정을 보여주는 단면도이다.
도 3은 비가역 용량의 개념을 설명하기 위한 모식도로, (a)는 초기 활성화 충전 전 비가역 용량을 보여주는 모식도, (b) 및 (c)는 초기 활성화 충전 이후 비가역 용량 변화를 보여주는 모식도이다.
이하 본 발명을 더욱 상세히 설명한다.
전지의 이론 용량은 패러데이의 법칙의 이론적인 최대 값에 따라 계산된 수지이나, 여러 가지 요인에 의해 전지의 실제 용량은 이론 값에 크게 미치지 못한다. 특히, 전극 활물질로서 실리콘 또는 탄소재의 재질은 초기의 높은 비가역 특성으로 인해 전지의 용량 감소가 필연적으로 발생한다. 이를 해결하기 위해 방법 중 하나로 리튬층을 적층한 다층 구조의 전극을 제시하였다. 그러나 이러한 방법은 전지 조립 전 리튬과 상기 활물질의 접촉에 의해 리튬화(lithiation) 반응이 일어나고, 이로 인해 전지의 폭발 또는 화재가 발생하는 등의 문제가 있었다.
이에 본 발명에서는 상기 제시한 문제를 해결하도록 전극층과 리튬층 간 직접적인 접촉을 방지할 수 있는 새로운 전극 구조 및 이를 구비한 리튬 이차 전지를 개시한다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지(10)의 단면도로, 음극(1), 및 양극(3) 사이에 분리막(5) 및 전해질(미도시)이 존재한다.
도 2는 본 발명의 일 구현예에 따른 전극 및 이의 활성화 과정을 보여주는 단면도로, 도 1의 음극(1) 및/또는 양극(3)은 도 2에 나타낸 바의 다층 구조를 갖는다.
구체적으로, 상기 전극(1,3)은 전극층(11), 전리튬화 방지층(13) 및 리튬층(15)이 순차적으로 적층된 구조를 가지며, 이때 상기 리튬층(15)은 초기 활성화 충전 이후 전리튬화 방지층(13) 표면에 금속 형태의 리튬이 잔존하지 않는 것을 특징으로 한다.
구체적으로, 도 2는 활성화 이전 및 이후의 전극의 구조를 보여준다. 먼저, 전극으로서 전극층(11), 전리튬화 방지층(13) 및 리튬층(15)의 3층의 다층 구조로 제작하고, 이 상태로 전지 조립을 수행한다. 이렇게 조립된 리튬 이차 전지는 초기 활성 전(a)에는 그 형태를 유지한다.
그러나 초기 활성화 충전 중(b)에는 리튬층(15) 내에 존재하는 리튬 금속이 이온화된 상태로 전리튬화 방지층(13)을 통과하여 전극층(11)으로 이송한다. 상기 이송된 리튬 금속 이온은 전극층(11) 내 존재하는 전극층 재질과 합금화를 이룬다.
초기 활성화 충전을 1~2회 수행한다.
다음으로, 초기 활성화 이후(c) 전극은 리튬이 부가된 전극층(11') 상에 전리튬화 방지층(13)이 형성된 구조를 갖는다. 이때 상기 전극층(11')은 음극 재질이 리튬과 합금화된 것으로, 최초 제조된 전극층(11)과 리튬의 용량에 차이가 있으며, 이 증가된 리튬 용량에 의해 리튬 부가 전극층(11')의 비가역적인 용량 감소를 보상할 수 있다.
전극층(11)을 구성하는 전극 재질은 전지 조립 전 리튬과 접촉할 경우 리튬화가 일어나 폭발 등의 위험성이 발생할 우려가 있다. 이에 셀을 조립하고 초기 활성화 충전 이전까지 전극층(11)과 리튬층(15)의 직접적인 접촉을 피하여야만 이러한 문제를 회피할 수 있다.
이에 본 발명에서는 전극층(11)과 리튬층(15) 사이에 전리튬화 방지층(13)을 형성한다.
전리튬화 방지층(13)은 전극층(11)의 전극 재질과 리튬층(15)의 리튬과의 직접적인 접촉을 방지하는 것 이외에, 초기 활성화 충전 이후 리튬층(15) 내 리튬 금속 이온이 전극층(11)으로 이송될 수 있도록 리튬 이온 전달 기능을 수행할 수 있어야 한다. 이때 활성화 충전 이후 리튬층(15) 내 리튬이 잔존하지 않아야 하므로, 상기 전리튬화 방지층(13)은 어느 정도 수준의 리튬 이온 전도도를 가짐과 동시에 그 두께 또한 제한되어야 상기 전리튬화 방지층(13) 자체가 저항층으로 작용하지 않는다.
본 발명에 따른 전리튬화 방지층(13)을 이루는 재료는 쉽게 도막을 형성하면서 리튬 이온 전도도를 갖는 것이 사용될 수 있다. 구체적으로, 상기 전리튬화 방지층(13)은 폴리에틸렌옥사이드, 폴리프로필렌 옥사이드, 폴리디메틸실록산, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐클로라이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-co-헥사플로로프로필렌, 폴리에틸렌이민, 폴리페닐렌 테레프탈아마이드, 폴리메톡시 폴리에틸렌글리콜메타크릴레이트, 폴리2-메톡시 에틸글리시딜에테르 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하고, 바람직하기로는 폴리비닐리덴 플루오라이드-co-헥사플로로프로필렌을 사용한다.
상기 전리튬화 방지층(13)의 리튬 이온 전도도는 10-3 S/cm 이하, 바람직하기로 10-6 내지 10-3S/cm를 만족하여야 한다.
이러한 전리튬화 방지층(13)의 두께는 쉽게 리튬 금속 이온이 이송될 수 있으며 저항층으로 작용하지 않는 범위로 한정될 수 있다. 구체적으로, 그 두께는 0.5 내지 5㎛, 바람직하기로 1 내지 3㎛일 수 있다. 만약 그 두께가 상기 범위 미만이면 음극(1) 및 전지(10) 제작 과정 중 찢어질 우려가 있고, 이와 반대로 상기 범위를 초과하면 안정적인 전지(10) 조립은 가능하나 내부 저항의 증가를 초래하여 활성화 충전 이후 리튬층(15)이 완전히 음극 측으로 이송될 수 없어, 리튬 이차 전지(10)의 비가역 용량 저하에 따른 보상 효과를 확보할 수 없다.
상기 전리튬화 방지층(13)은 직접 전극층(11) 상에 직접 코팅하거나 별도의 기판 상에 코팅 후 도막을 형성한 후 이를 전극층(11)과 합지하는 방식이 사용될 수 있다. 상기 코팅은 상기 제시한 고분자 재질을 그대로 사용하거나 이의 단량체, 개시제 등의 용액을 제조한 후 중합을 통해 형성할 수 있다. 보다 자세한 사항은 하기 제조방법에 대한 내용에서 설명한다.
상기 전리튬화 방지층(13)을 포함하는 전극은 리튬 이차 전지(10)의 음극(1) 또는 양극(3), 또는 이들 모두일 수 있다.
이때 전극이 음극(1)일 경우 전극층(11)은 음극 집전체 상에 음극 활물질을 포함하는 음극 합제층이 형성되고, 양극(3)일 경우에 상기 전극층(11)은 양극 집전체 상에 양극 활물질을 포함하는 양극 합제층이 형성된 것일 수 있다.
음극 집전체로는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
또한, 상기 음극 집전체는 표면에 미세한 요철이 형성된/미형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다. 가장 바람직하기로 음극 집전체로 구리 호일을 사용한다.
양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
또한, 상기 양극 집전체는 표면에 미세한 요철이 형성된/미형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다. 가장 바람직하기로 음극 집전체로 알루미늄 호일을 사용한다.
상기 제시한 음극 합제층과 양극 합제층은 리튬 이차 전지의 종류에 따라 달라질 수 있다.
본 발명의 리튬 이차 전지(10)는 사용하는 리튬-황 전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지가 가능하며, 이들 전지에 사용되는 음극 활물질 및 양극 활물질이 각각 사용될 수 있다.
음극 활물질로는 1 내지 8 mAh/cm2, 바람직하기로 3 내지 7 mAh/cm2의 용량을 갖는 것이 바람직하며, 리튬층(15)으로부터 이송된 리튬 금속 이온과 합금화가 용이한 재질이 사용될 수 있다.
예를 들면, Si, Sn, 및 Al로 이루어진 군에서 선택된 1종 이상의 원소, 이들의 합금, 또는 이들의 산화물; 또는 천연 흑연, 합성 흑연, 카본블랙, 탄소 섬유, 탄소나노튜브 및 그래핀 중에서 선택되는 1종 이상의 탄소재;를 각각, 혼합 또는 복합화의 형태를 가질 수 있다. 상기와 같은 음극 재료는 초기 비가역 용량 손실이 큰 것으로서, 본 발명에서 제안하는 금속 리튬의 공급에 의한 상기 초기 비가역 용량 손실을 보상할 수 있다.
특히, 본 발명에서 제시한 전극이 음극(1)일 경우 전극층(11)의 초기 비가역 용량이 가역 용량의 40% 이내인 것이 바람직하다. 만약, 비가역 용량이 너무 크면, 추가적인 초기 리튬 공급량이 너무 많아져서 제조상 생산성의 저하를 유발할 수 있다.
또한, 양극 활물질은 리튬 이차 전지(10)의 용도에 따라 달라질 수 있으며, 구체적인 조성은 공지된 물질을 사용한다. 일례로, 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 구리 산화물, 리튬 니켈계 산화물 및 리튬 망간 복합 산화물, 리튬-니켈-망간-코발트계 산화물로 이루어진 군으로부터 선택된 어느 하나의 리튬 전이금속 산화물을 들 수 있고, 보다 구체적으로는 Li1 + xMn2 - xO4(여기서, x는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1 - xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 내지 0.3임)으로 표현되는 리튬 니켈 산화물; LiMn2 - xMxO2(여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 내지 0.1임) 또는 Li2Mn3MO8(여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합산화물, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)으로 표현되는 리튬-니켈-망간-코발트계 산화물, Fe2(MoO4)3; 황 원소, 디설파이드 화합물, 유기황 화합물(Organosulfur compound) 및 탄소-황 폴리머((C2Sx)n: x= 2.5 내지 50, n≥2 ); 흑연계 물질; 슈퍼-P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 써멀 블랙, 카본 블랙과 같은 카본 블랙계 물질; 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 및 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자; 다공성 탄소 지지체에 Pt 또는 Ru 등 촉매가 담지된 형태 등이 가능하며 이들만으로 한정되는 것은 아니다.
특히, 본 발명은 양극(3)이 가역적으로 저장할 수 있는 능력을 100% 활용하고, 이것과 초기 함유된 리튬량의 차이를 충분히 활용하는 것에 특징이 있다. 따라서, 본 발명에서 양극(3)의 활물질로는 그 용량이 클수록 바람직하다. 예컨대, 100 mAh/g 내지 300 mAh/g일 수 있으며, 300 mAh/g 이상이어도 좋다
추가로, 상기 전극층(11)은 전극 활물질로서의 역할을 위해, 도전재 및 바인더를 더욱 포함할 수 있다.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 써멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.
상기 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위하여 바인더를 더 포함할 수 있다. 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로 알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비닐리덴-펜타플루오로 프로필렌 공중합체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합제 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
상기 제시한 조성을 포함하는 전극층(11)의 비가역적인 용량 감소를 돕기 위해, 본 발명에서 제시하는 리튬층(15)은 전리튬화 방지층(13) 상에 형성한 이후 활성화 충전 후 전극층(11)으로 리튬 금속 이온이 이송되어 상기 전극층(11)의 재질과 합금화를 이룰 수 있도록 그 두께가 한정되어야 한다.
리튬층(15)은 리튬 금속의 이동을 위해 리튬 호일을 도입하거나 전리튬화 방지층(13) 상에 직접 리튬 금속을 프리 도핑하는 방식으로 형성한다.
리튬 금속을 프리 도핑하는 방법으로는 금속박을 활용하는 방법, 금속 리튬을 증착시키는 방법, 또는 과량의 금속 리튬을 함유한 입자를 소정의 바인더 고분자와 분산하여 도포하는 방법 등이 가능하다. 본 발명은 특히 금속 리튬을 분사 및 압연과 같은 연속 롤 공정에 의해 도포하는 방법을 사용한다.
일 실시예로서, 10torr 정도의 진공 상태에서 600℃로 금속 리튬에 열을 가하여 리튬을 끓이면 리튬 가스가 발생하고 이 리튬 가스를 지속적으로 공급하는 가운데 활물질이 코팅된 전극 표면을 통과시킴으로써 전극 표면에 리튬층이 증착되게 하는 것이다.
상기 리튬층(15)의 두께는 총 전극 두께를 100㎛ 전후로 할 때 1㎛ 이상 5㎛ 미만, 바람직하기로 1 내지 4㎛ 정도이며, 이는 0.2 내지 1.0 mA/cm2, 바람직하기로 0.3 내지 0.8 mA/cm2의 용량의 증가를 가져오는 양에 해당된다. 또한, 리튬층의 무게는 단위 면적당 0.05 이상 0.3 mg/cm2 미만, 바람직하기로 0.05 내지 0.2 mg/cm2인 것이 바람직하다. 단, 상기 증착 공정 조건, 리튬층(15) 두께, 무게 및 전류 밀도의 증가량은 일 실시예일뿐이며 본 발명이 이에 한정되는 것은 아니다. 특히, 본 발명의 리튬층(15)은 전리튬화 방지층(13)의 형성으로 인해 그 두께를 더욱 낮출 수 있다.
특히, 본 발명에서 제시하는 바와 같이 5㎛ 미만의 얇은 두께로 리튬층(15)을 형성함에 따라 고용량 양극과 실리콘 음극을 적용한 설계 시 발생할 수 있는 1 mAh/cm2 이하의 비가역을 보상하여 다량의 실리콘 음극을 사용한 전지에서 발생하는 초기 용량 감소를 방지하며 장기 사이클이 확보되는 전지 제조가 가능하다.
또 하나의 예로 리튬이 과량 함유되어 있는 입자를 소정의 바인더 용액에 분산하여, 전극 표면에 연속 도포하고 이를 연속 롤 프레스를 통과하여 리튬 도포막을 형성하는 방법이 가능하다. 이때 리튬이 과량 함유되어 있는 입자로는 표면에 안정화 층이 도포되어 있는 리튬 금속 파우더를 이용하는 것이 가능하다.
바인더 용액으로는 상기 전극 활물질에서 언급한 바의 바인더가 사용될 수 있으며, 이때 도포 방법 또한 상기에서 언급한 바를 따른다.
본 발명에서 제시하는 전극의 제조는 특별히 한정하지 않으며, 이 분야에서 공지된 방법을 그대로 사용하거나 이를 응용하여 사용할 수 있다.
일례로, 전극은 전극층(11) 상에 전리튬화 방지층(13) 및 리튬층(15)을 순차적으로 적층하거나, 전리튬화 방지층 상에 리튬층을 형성한 다음, 이를 전극층과 합지하는 방법이 사용될 수 있다.
전극층(11)의 형성은 전극 활물질, 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 슬러리를 전극 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 전극 집전체에 압축 성형하여 제조할 수 있다.
이때 유기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로푸란, 물, 이소프로필알코올 등을 들 수 있다.
전리튬화 방지층은(13) 코팅액 제조 후 직접 코팅 또는 합지 방식이 사용될 수 있다.
상기 코팅액은 전리튬화 방지층(13)을 구성하는 고분자, 또는 프리폴리머, 또는 단량체와 개시제가 용매에 용해된 것으로, 기재로 전극층(11) 또는 별도의 기판 상에 코팅 후 건조하는 과정을 거친다. 이때 코팅액을 단량체 형태로 제조한 경우 UV 중합 또는 열중합 공정을 거친다.
사용 가능한 개시제로는 가교화 반응에 따라 다르며, 공지의 광개시제 또는 열개시제 모두 사용할 수 있다. 일례로, 상기 광개시제로는 벤조인, 벤조인에틸에테르, 벤조인이소부틸에테르, 알파메틸벤조인에틸에테르, 벤조인페닐에테르, 아세토페논, 디메톡시페닐아세토페논, 2,2-디에톡시아세토페논, 1,1-디클로로아세토페논, 트리클로로아세토페논, 벤조페논, p-클로로 벤조페논, 2,4-디히드록시벤조페논, 2-히드록시-4-메톡시벤조페논, 2-히드록시-2-메틸 프로피오페논, 벤질 벤조에이트, 벤조일 벤조에이트, 안트라퀴논, 2-에틸안트라퀴논, 2-클로로안트라퀴논, 2-메틸-1-(4-메틸티오페닐)-모르폴리노프로판온-1, 2-히드록시-2-메틸-1-페닐프로판-1-온(시바가이기(CIba Geigy)사의 Darocure 1173), Darocure 1116, Irgacure 907, 2-벤질-2-디메틸아미노-1-(4-모르폴리노페닐)-부탄온-1, 1-히드록시시클로헥실페닐케톤(시바가이기(CIba Geigy)사의 Irgacure 184), 미클러 케톤, 벤질디메틸케탈, 티옥산톤, 이소프로필티옥산톤, 클로로티옥산톤, 벤질, 벤질디설파이드, 부탄디온, 카르바졸, 플루오레논, 및 알파아실옥심 에스테르 등이 사용될 수 있으며, 상기 열개시제로는 과산화물(-O-O-) 계열의 벤조일 퍼옥사이드, 아세틸 퍼옥사이드, 디라우릴 퍼옥사이드, 디-터트-부틸퍼옥사이드, 쿠밀 히드로퍼옥사이드 등이 사용될 수 있으며, 아조계 화합물(-N=N-) 계열의 아조비스이소부티로니트릴, 아조비스이소발레로니트릴 등이 사용될 수 있다.
상기 용매로는 모노머 또는 고분자와 개시제를 충분히 용해할 수 있는 것이 가능하며, 바람직하기로는 비수계 유기용매를 사용한다. 비수계 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 하며, 공지의 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 일례로, 상기 비수계 유기용매로는 N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아마이드, 디메틸포름아마이드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 코팅 방법 및 장치에 따라 달라진다.
합지를 위해 사용하는 별도의 기판은, 유리 기판 또는 플라스틱 기판일 수 있다.
도막 형성을 위한 코팅 공정은 특별히 한정하지 않으며, 공지의 습식 코팅 방식이면 어느 것이든 가능하다. 일례로, 닥터 블레이드(Doctor blade) 등을 사용하여 균일하게 분산시키는 방법, 다이 캐스팅(Die casting), 콤마 코팅(Comma coating), 스크린 프린팅(Screen printing) 등의 방법 등을 들 수 있다.
이어, 코팅 후 용매 제거를 위한 건조 공정을 수행한다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에서 특별히 언급하지는 않는다. 일례로, 건조는 30 내지 200℃의 진공 오븐에서 수행할 수 있고, 건조 방법으로는 온풍, 열풍, 저습풍에 의한 건조, 진공 건조 등의 건조법을 사용할 수 있다. 건조 시간에 대해서는 특별히 한정되지 않지만, 통상적으로 30초 내지 24시간의 범위에서 행해진다.
본 발명에 따른 전리튬화 방지층(13) 형성을 위한 코팅액의 농도, 또는 코팅 횟수 등을 조절하여 최종적으로 코팅되는 전리튬화 방지층(13)의 두께를 조절할 수 있다.
리튬층(15)은 상기 전리튬화 방지층(13) 상에 형성한다. 이때 리튬층(15)의 형성은 전술한 바를 따른다.
전술한 바의 전극층(11), 전리튬화 방지층(13) 및 리튬층(15)이 순차적으로 적층된 전극을 리튬 이차 전지(10)의 음극 및/또는 양극으로 적용할 수 있다. 이때 리튬층(15)의 리튬은 전지의 초기 활성화 충전 과정에서 완전히 소모됨으로써 이후 금속 형태의 리튬은 전리튬화 방지층(13)의 표면에 남아 있지 않게 된다.
또한, 본 발명의 리튬 이차 전지(10)에서 리튬층(15)은 음극(1)의 초기 비가역 소비 용량에 해당하는 만큼의 리튬의 양 뿐만 아니라 양극(3)의 전체 가역적인 리튬 저장능력을 모두 활용할 수 있도록 하기 수학식 1을 만족한다:
[수학식 1]
S < L ≤ S + I
(여기서, S 양극의 리튬 저장능력 - 초기 양극에 함유된 리튬 용량;
L은 리튬층의 리튬량이며; I는 음극에서의 초기 비가역 소비용량임.)
상기 식에서 S는 양극(3)의 리튬 저장능력 및 초기 양극(3)에 함유된 리튬 용량을 차이를 나타내는 것으로, 본 발명의 리튬층(15)을 포함하는 리튬 이차 전지(10)에 사용되는 양극(3)은 전체 가역적인 리튬 저장능력이 초기에 양극에서 방출될 수 있는 리튬 용량 보다 크다. 이로 인해 리튬층(15)의 리튬량(L)을 최소 양극(3)의 리튬 저장능력에서 초기에 양극(3)에 함유된 리튬 용량만큼을 제외한 양(S) 이상으로 포함함으로써 양극(3)의 리튬 저장 능력을 최대한 활용하여 리튬 이차 전지(10)의 용량을 획기적으로 증대시킬 수 있다.
또한, 상기 식에서 I 는 음극(1)에서의 초기 비가역 소비용량을 나타내는 것으로, 본 발명의 리튬층(15)을 포함하는 리튬 이차 전지(10)에 사용되는 음극(1)은 초기 비가역 소비용량이 존재하여, 초기에 양극(3)에서 방출되는 리튬 이온을 소비함을 알 수 있다. 따라서, 본 발명은 상기 리튬층(15)의 리튬량(L)을 최대, 양극(3)의 리튬 저장 능력에서 초기에 양극(3)에 함유된 리튬 용량만큼을 제외한 양(S) 및 음극에서 초기에 소비하는 비가역 용량(I)만큼 포함함으로써 양극(3)의 리튬 저장 능력을 최대한 활용하며, 음극(1)에서 비가역 용량으로 소비된 리튬 금속 이온을 보충하여 전지의 용량을 더욱 증대시킨다.
본 발명에 따른 수학식 1의 이해를 돕기 위하여 리튬층(15)이 음극(1)에 형성되고 양극(3)의 활물질이 리튬 비함유 전이금속산화물과 리튬 함유 전이금속 산화물로 된 리튬 이차 전지(10)의 경우를 예를 들어 설명한다.
도 3은 비가역 용량의 개념을 설명하기 위한 모식도로, (a)는 초기 활성화 충전 전 비가역 용량을 보여주는 모식도, (b) 및 (c)는 초기 활성화 충전 이후 비가역 용량 변화를 보여주는 모식도이다.
도 3을 보면, 양극(3)의 리튬 저장 능력을 A라 하고, 양극(3)에 초기에 포함된 리튬 용량을 B라 하면 A = B + S가 된다. B는 리튬 함유 전이금속 화합물에 의존하며 S는 리튱 비함유 전이금속 화합물에 의존한다. 본 발명의 리튬 이차 전지(10)를 초기 활성화 충전하기 전에는 리튬층(15)의 리튬이 이동하지 않은 도 3(a)와 같은 상태가 되고, 리튬 이차 전지(10)의 초기 활성화 충전 과정에서 리튬층(15)의 리튬이 이동하기 시작하여 초기 활성화 충전이 완료된 후에는 도 3(b)의 L=S+I 또는 도 3(c)의 L < S+I와 같이 된다.
상기 수학식 1을 만족하는 본 발명의 리튬 이차 전지(10)는 음극(1)의 초기 비가역 소비용량(I)에 해당하는 만큼의 리튬의 양 뿐만 아니라 양극(3)의 전체 가역적인 리튬 저장 능력(A=S+B)을 모두 활용할 수 있기 때문에 활성화 이후의 가역적인 용량을 획기적으로 증대시킬 수 있고, 활성화 도중 금속 리튬이 완전히 소모하는 것이 보장되어 금속 리튬이 갖는 위험성을 회피할 수 있는 효과를 제공한다.
한편, 도 1의 구조에서 보여주는 바와 같이, 리튬 이차 전지(10)는 양극(1), 음극(3) 및 이들 사이에 개재된 분리막(5) 및 전해질(미도시)을 포함하고, 전지의 종류에 따라 상기 분리막(5)은 제외될 수 있다.
이때 분리막(5)은 다공성 기재로 이루어질 수 있는데, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.
상기 분리막(5)은, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아마이드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌 옥사이드, 폴리페닐렌 설파이드, 및 폴리에틸렌 나프탈레이트로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 이루어진 다공성 기재일 수 있다.
상기 리튬 이차 전지(10)의 전해액은 리튬염 함유 전해액으로 비수계 유기용매 전해액과 리튬염으로 이루어진 비수계 전해질이며, 이외에 유기 고체 전해질 또는 무기 고체 전해질 등이 포함될 수 있지만 이들만으로 한정되는 것은 아니다.
비수계 유기용매는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아마이드, 디메틸포름아마이드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, Li(FSO2)2N LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 이미드 및 이들의 조합으로 이루어진 군에서 선택된 1종의 리튬염 등이 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다.  경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
전술한 바의 리튬 이차 전지(10)의 형태는 특별히 제한되지 않으며, 예를 들어 젤리-롤형, 스택형, 스택-폴딩형(스택-Z-폴딩형 포함), 또는 라미네이션-스택 형일 수 있으며, 바람직하기로 스택-폴딩형일 수 있다.
이러한 상기 양극, 분리막, 및 음극이 순차적으로 적층된 전극 조립체를 제조한 후, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고 캡 플레이트 및 가스켓으로 밀봉하여 조립하여 리튬 이차 전지를 제조한다.
이때 리튬 이차 전지는 사용하는 양극 재질 및 분리막의 종류에 따라 리튬-황 전지, 리튬-공기 전지, 리튬-산화물 전지, 리튬 전고체 전지 등 다양한 전지로 분류가 가능하고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
본 발명에 따른 리튬 이차 전지는 고용량 및 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있다. 상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차 (Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기 자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
하기 방법으로 리튬이차 전지의 양극 및 음극을 제조한 다음, 리튬 이차 전지를 제작하였다.
(1) 음극의 제조
SiO (신에츠사 KSC1064) 80 중량%, 그라파이트 10 중량%, 카르복시메틸셀룰로오스 10 중량%, 물에 30%의 농도로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 10㎛ 두께의 구리 집전판 상에 도포한 후, 120℃에서 12시간 동안 건조하여 전극층을 형성하였다(로딩량: 5.4mAh/cm2).
아세토니트릴 용매에 폴리비닐리덴 플루오라이드-헥사플루오로플로필렌(PVdF-HFP)를 첨가하여 코팅 용액을 제조하였다. 상기 코팅 용액을 기판(PTFE) 위에 용액 캐스팅(solution casting 방법으로) free-standing 필름(1μm)을 제조하였다. 이 필름을 80℃에서 24시간 동안 진공 오븐에서 건조하여 전리튬화 방지층을 제조하였다.
상기 제1전극층 상에 전리튬화 방지층을 배치하고, 그 위해 제2전극층으로 리튬 호일(5 ㎛ 두께)을 적층한 후 압연하여 다층 구조의 음극을 제조하였다.
(2) 양극의 제조
아세토니트릴 500 ml에 LCO : 수퍼-P: 바인더(PVdF)를 95:2.5:2.5의 중량비로 페이스트 페이스 믹서로 5분간 혼합하여 슬러리 조성물을 제조하였다.
이어서 상기 제조된 양극 슬러리 조성물을 집전체(Al Foil) 상에 코팅하고 50℃에서 12시간 동안 건조하여 양극을 제조하였다. 이때 LCO의 로딩량은 4.2 mAh/cm2이었다.
(3) 전지의 조립
상기 (1) 및 (2)에서 제조한 음극 및 양극 사이에 폴리에틸렌 다공성막을 개재시킨 후 3bar의 압력으로 압연한 전극 조립체를 파우치형의 전지 케이스에 삽입한 후, 상기 전지 케이스에 비수전해액(1M LiPF6, FEC:DEC=3:7(부피비))을 주입하였으며, 이후 완전히 밀봉함으로써 리튬 이차 전지를 제조하였다.
실시예 2
리튬 호일의 두께를 3.4㎛인 것을 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
실시예 3
리튬 호일의 두께를 20㎛인 것을 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
실시예 4
전리튬화 방지층의 두께를 0.5㎛으로 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
실시예 5
전리튬화 방지층의 두께를 5㎛으로 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
실시예 6
전리튬화 방지층으로 폴리에틸렌옥사이드(MW: 20,000,000 g/mol)를 사용한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
비교예 1
음극으로 전극층만을 사용한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
비교예 2
음극으로 구리 집전체에 리튬 호일을 압연하여 사용한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
비교예 3
대한민국 등록특허 제10-1156608호의 실시예에서 제시한 방법에 의거하여 음극으로, 전극층 상에 리튬 금속층을 형성한 것을 사용한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
비교예 4
전리튬화 방지층을 전극층 상부에 형성하여 전극층/리튬층/전리튬화 방지층의 적층 구조를 갖는 음극을 제조한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
비교예 5
전리튬화 방지층을 전극층 하부에 형성하여 전리튬화 방지층/전극층/리튬층의 적층 구조를 갖는 음극을 제조한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 리튬 이차 전지를 제조하였다.
실험예 1
실시예 및 비교예에서 제조한 리튬 이차 전지를 0.1C SOC 100% 조건에서 활성화한 다음 3.0 내지 4.2V의 범위에서 충방전을 수행하여 90%의 비가역 용량을 유지하는 사이클 수를 확인하였고, 그 결과를 하기 표 1에 나타내었다.
사이클 수(90% 이하 용량 유지)
실시예 1 569
실시예 2 440
실시예 3 38
실시예 4 465
실시예 5 85
실시예 6 235
비교예 1 13
비교예 2 173
비교예 3 210
비교예 4 256
비교예 5 X
상기 표 1을 통하여, 다음과 같은 사실을 알 수 있었다.
실시예 1의 경우 음극 비가역을 완전히 보상하였으며, 실시예 2에서는 약간 저하되었다. 또한, 실시예 3의 경우 지나치게 많은 양을 보상하여 충전 시에 리튬 덴드라이트 발생에 의한 용량 감소를 가져오는 것을 알 수 있었다.
비교예 1은 높은 초기 비가역에 의해 20 사이클 이내에 초기 대비 90% 이하의 용량 감소를 가져오는 것을 알 수 있었다.
실시예 4의 경우는 전리튬화 방치층의 두께가 얇아 실시예 1에 비해 전지 조립 전에 실리콘 전극과 리튬의 부반응에 의해 성능이 감소하였으며, 실시예 5의 경우는 두께가 두꺼워 저항으로 작용하여 전지 성능이 감소한다. 실시예 6의 PEO소재는 리튬금속전극과 안정성이 떨어져 비가역 보상량이 감소하여 성능 감소를 보였다.
비교예 2는 실리콘 전극이 없는 리튬금속전극의 성능을 나타냈으며, 비교예 3은 증착공정 직후 실리콘 전극과 리튬전극의 반응에 의해 성능이 감소하는 것을 알 수 있었다. 이는 비교예 4의 결과와도 유사하였다. 비교예 5의 구조에서는 Cu 집전체와 실리콘 전극 사이에 위치하여 실리콘 전극에 전자전달을 방해하기 때문에 전지는 구동되지 않는 것을 알 수 있었다.
[부호의 설명]
1: 음극 3: 양극
5: 분리막 10: 리튬 이차 전지
11: 전극층 11': 리튬 부가 전극층
13: 전리튬화 방지층 15: 리튬층

Claims (16)

  1. 전극층;
    상기 전극층 상에 형성된 전리튬화 방지층; 및
    상기 전리튬화 방지층 상에 형성된 리튬층을 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.
  2. 제1항에 있어서,
    상기 전극층은 양극 또는 음극 활물질을 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.
  3. 제1항에 있어서,
    상기 전리튬화 방지층은 폴리에틸렌옥사이드, 폴리프로필렌 옥사이드, 폴리디메틸실록산, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리비닐클로라이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-co-헥사플로로프로필렌, 폴리에틸렌이민, 폴리페닐렌 테레프탈아마이드, 폴리메톡시 폴리에틸렌글리콜메타크릴레이트 및 폴리2-메톡시 에틸글리시딜에테르로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.
  4. 제1항에 있어서,
    상기 전리튬화 방지층은 두께가 0.5 내지 5㎛인 것을 특징으로 하는 리튬 이차 전지용 전극.
  5. 제1항에 있어서,
    상기 전리튬화 방지층은 리튬 이온 전도도가 10-3 S/cm 이하인 것을 특징으로 하는 리튬 이차 전지용 전극.
  6. 제1항에 있어서,
    상기 리튬층은 초기 활성화 충전 이후에는 금속 형태의 리튬으로 남아 있지 않은 것을 특징으로 하는 리튬 이차 전지용 전극.
  7. 제1항에 있어서,
    상기 리튬층은 두께가 0.5㎛ 이상 5㎛ 미만인 것을 특징으로 하는 리튬 이차 전지용 전극.
  8. 제1항에 있어서,
    상기 리튬층은 단위 면적당 무게가 0.05 mg/cm2 이상 0.3 mg/cm2 미만인 것을 특징으로 하는 리튬 이차 전지용 전극.
  9. 제1항에 있어서,
    상기 전극이 음극일 경우, 전극층은 Si, Sn 및 Al 중에서 선택되는 1종 이상의 활성 원소; 상기 활성 원소의 원자 분율(atomic fraction)이 50% 이상인 합금 또는 이들의 산화물; 천연 흑연, 합성 흑연, 카본블랙, 탄소 섬유, 탄소나노튜브 및 그래핀 중에서 선택되는 1종 이상의 탄소재; 및 이들의 혼합물 또는 복합체를 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.
  10. 제1항에 있어서,
    상기 전극이 음극일 경우, 전극층은 단위 무게당 이론적 용량이 1 내지 8 mAh/cm2인 것을 특징으로 하는 리튬 이차 전지용 전극.
  11. 제1항에 있어서,
    상기 전극이 음극인 경우, 음극의 초기 비가역 용량은 가역 용량의 40% 이내인 것을 특징으로 하는 리튬 이차 전지용 전극.
  12. 제1항에 있어서,
    상기 전극이 양극일 경우, 상기 전극층은 리튬 금속 산화물, 리튬 전이금속 산화물, 황 원소, 디설파이드 화합물, 유기황 화합물(Organosulfur compound), 탄소-황 폴리머((C2Sx)n: x= 2.5 내지 50, n≥2), 흑연계 물질, 카본 블랙계 물질, 탄소 유도체, 도전성 섬유, 금속 분말, 및 전도성 고분자로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차 전지용 전극.
  13. 음극, 양극 및 이들 사이에 위치한 분리막 및 전해질을 포함하는 리튬 이차 전지에 있어서,
    상기 음극 및 양극 중 어느 하나 이상은 제1항 내지 제12항 중 어느 한 항에 따른 전극층, 전리튬화 방지층 및 리튬층이 순차적으로 적층된 전극인 것을 특징으로 하는 리튬 이차 전지.
  14. 제13항에 있어서,
    상기 양극은 전체 가역적인 리튬 저장 능력이 초기 양극에서 방출될 수 있는 리튬 용량보다 큰 것을 특징으로 하는 리튬 이차 전지.
  15. 제13항에 있어서,
    상기 리튬층은 하기의 수학식 1을 만족하는 것을 특징으로 하는 리튬 이차 전지:
    [수학식 1]
    S < L ≤ S + I
    (여기서, S 양극의 리튬 저장능력 - 초기 양극에 함유된 리튬 용량;
    L은 리튬층의 리튬량이며; I는 음극에서의 초기 비가역 소비용량임.)
  16. 제13항에 있어서,
    상기 리튬 이차 전지는 리튬-황 전지, 리튬-공기 전지, 리튬-산화물 전지 또는 리튬 전고체 전지 중 어느 하나인 것을 특징으로 하는 리튬 이차 전지.
PCT/KR2017/012565 2016-11-21 2017-11-08 전극 및 이를 포함하는 리튬 이차 전지 WO2018093088A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019511419A JP6910428B2 (ja) 2016-11-21 2017-11-08 電極及びこれを含むリチウム二次電池
CN201780071850.2A CN109997252B (zh) 2016-11-21 2017-11-08 电极和包含其的锂二次电池
US16/329,076 US11056725B2 (en) 2016-11-21 2017-11-08 Electrode and lithium secondary battery comprising same
EP17871180.0A EP3503262B1 (en) 2016-11-21 2017-11-08 Electrode and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0155234 2016-11-21
KR20160155234 2016-11-21
KR1020170142400A KR101984727B1 (ko) 2016-11-21 2017-10-30 전극 및 이를 포함하는 리튬 이차 전지
KR10-2017-0142400 2017-10-30

Publications (2)

Publication Number Publication Date
WO2018093088A2 true WO2018093088A2 (ko) 2018-05-24
WO2018093088A3 WO2018093088A3 (ko) 2018-08-09

Family

ID=62145688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012565 WO2018093088A2 (ko) 2016-11-21 2017-11-08 전극 및 이를 포함하는 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2018093088A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864181A (zh) * 2019-04-25 2020-10-30 中国科学院物理研究所 预锂化的硅负极及其制备方法和应用
CN114221045A (zh) * 2021-11-05 2022-03-22 东方电气集团科学技术研究院有限公司 一种多孔炭补锂负极极片锂离子电池的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155234B1 (ko) 1995-07-13 1998-12-01 최경돈 전광판 구동 시스템
WO2011056847A2 (en) 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
KR101156608B1 (ko) 2009-05-26 2012-06-15 주식회사 엘지화학 고에너지 밀도 리튬이차전지
KR20170142400A (ko) 2016-06-17 2017-12-28 엄재성 홍삼 단과자의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198061A (ja) * 2000-11-17 2002-07-12 Wilson Greatbatch Ltd 二重集電体カソード構造を用いた短絡安全特性を有するアルカリ金属電気化学セル
JP4196398B2 (ja) * 2002-08-26 2008-12-17 日本電気株式会社 非水電解液二次電池
JP6704622B2 (ja) * 2014-06-13 2020-06-03 エルジー・ケム・リミテッド リチウム電極およびこれを含むリチウム二次電池
US9837659B2 (en) * 2014-12-22 2017-12-05 GM Global Technology Operations LLC Process for lithiating negative electrodes for lithium ion electrochemical cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155234B1 (ko) 1995-07-13 1998-12-01 최경돈 전광판 구동 시스템
KR101156608B1 (ko) 2009-05-26 2012-06-15 주식회사 엘지화학 고에너지 밀도 리튬이차전지
WO2011056847A2 (en) 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
KR20170142400A (ko) 2016-06-17 2017-12-28 엄재성 홍삼 단과자의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503262A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864181A (zh) * 2019-04-25 2020-10-30 中国科学院物理研究所 预锂化的硅负极及其制备方法和应用
CN114221045A (zh) * 2021-11-05 2022-03-22 东方电气集团科学技术研究院有限公司 一种多孔炭补锂负极极片锂离子电池的制备方法
CN114221045B (zh) * 2021-11-05 2024-03-15 东方电气集团科学技术研究院有限公司 一种多孔炭补锂负极极片锂离子电池的制备方法

Also Published As

Publication number Publication date
WO2018093088A3 (ko) 2018-08-09

Similar Documents

Publication Publication Date Title
CN109997252B (zh) 电极和包含其的锂二次电池
WO2010053328A2 (ko) 고전압 특성이 향상된 양극 활물질
WO2018124635A1 (ko) 분리막 및 이를 포함하는 리튬-황 전지
WO2010137862A2 (ko) 고에너지 밀도 리튬이차전지
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2018169247A2 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017188537A1 (ko) 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지
WO2015016554A1 (ko) 상이한 전극재 층들을 포함하는 전극 및 리튬 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020105974A1 (ko) 이차 전지의 활성화 방법
WO2019168308A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
WO2018048126A1 (ko) 균일한 품질을 가지는 전극들의 제조 방법 및 이를 포함하는 전극조립체 제조 방법
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2019059637A2 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2018093088A2 (ko) 전극 및 이를 포함하는 리튬 이차 전지
WO2018182195A1 (ko) 고로딩 전극의 제조 방법
WO2021020853A1 (ko) 집전체의 양면에 서로 다른 조성의 활물질을 포함하는 음극 합제들이 형성되어 있는 음극을 포함하는 젤리-롤형 전극조립체, 이를 포함하는 이차전지, 및 이차전지를 포함하는 디바이스
WO2018190665A1 (ko) 고분자 고체 전해질 및 이를 포함하는 리튬 이차전지
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871180

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019511419

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017871180

Country of ref document: EP

Effective date: 20190320

NENP Non-entry into the national phase

Ref country code: DE