WO2018093049A1 - 혈장 단백질 정제시 fxi의 제거방법 - Google Patents

혈장 단백질 정제시 fxi의 제거방법 Download PDF

Info

Publication number
WO2018093049A1
WO2018093049A1 PCT/KR2017/011439 KR2017011439W WO2018093049A1 WO 2018093049 A1 WO2018093049 A1 WO 2018093049A1 KR 2017011439 W KR2017011439 W KR 2017011439W WO 2018093049 A1 WO2018093049 A1 WO 2018093049A1
Authority
WO
WIPO (PCT)
Prior art keywords
fxi
plasma
cation exchange
exchange chromatography
fraction
Prior art date
Application number
PCT/KR2017/011439
Other languages
English (en)
French (fr)
Inventor
강대은
강길부
유설영
이지혜
김기용
김수광
Original Assignee
주식회사 녹십자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 녹십자 filed Critical 주식회사 녹십자
Priority to CA3043810A priority Critical patent/CA3043810C/en
Priority to EP17872682.4A priority patent/EP3543250B1/en
Priority to US16/461,840 priority patent/US20190367557A1/en
Publication of WO2018093049A1 publication Critical patent/WO2018093049A1/ko
Priority to US17/393,736 priority patent/US20210363179A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6443Coagulation factor XIa (3.4.21.27)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/12Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the preparation of the feed
    • B01D15/125Pre-filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1864Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns
    • B01D15/1871Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/203Equilibration or regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21027Coagulation factor XIa (3.4.21.27)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/18Details relating to membrane separation process operations and control pH control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes

Definitions

  • the present invention relates to a method for removing FXI (Factor XI, Factor 11) during purification of plasma-derived proteins, and more particularly, to concentrate and concentrate the plasma protein fraction II paste containing FXI and various plasma proteins.
  • the present invention relates to a method for removing FXI, which comprises removing FXI through a cation exchange resin purification method.
  • Plasma protein refers to a protein contained in the plasma (plasma), albumin, immunoglobulin and fibrinogen, thrombin, various blood coagulation-related factors such as factor 8, alpha 1 antitrypsin and the like are typical plasma proteins. These plasma proteins are separated and purified and used for various medical purposes.
  • FXIa is an activated form of FXI that induces coagulation cascades in the blood by activating the lower level, FIX. (Wolberg AS et al., AM. J. Hematol. 2000, Vol. 65 (1), pp 30-34). Therefore, if the plasma protein-derived drug is contained in the FXI as an impurity in the separation and purification process, it is known to cause various side effects by causing blood clot production.
  • the present inventors have endeavored to solve the above-described problems.
  • the present inventors have concentrated the dialysis concentrate of fraction II paste separated from plasma containing FXI and various plasma proteins, and then purified by cation exchange chromatography.
  • the present invention was completed by confirming that blood clots, such as FXI, present in plasma can be efficiently removed.
  • FXI Factor XI
  • FIG. 1 is a schematic diagram showing the manufacturing process of the intravenous immunoglobulin according to the present invention.
  • Figure 2 is the result of measuring the concentration of FXI (Human Coagulation Factor XI) contained in the filtrate or precipitate for each step by SDS-PAGE and Western Blotting.
  • FXI Human Coagulation Factor XI
  • plasma protein refers to cryo-depleted plasma (Cryo poor plasma) containing various plasma proteins such as FXI (Factor XI factor 11) and thrombin in human plasma or human placenta derived plasma, various Cohn Fractions and ammonium sulfate or PEG (Polson et al., Biochem Biophys Acta, 82: 463, 1964); Polson and Ruiz-Bravo, Vox Sang, 23: 107. Fractions obtained through precipitation by 1972).
  • the plasma protein fraction is corn fraction II, but corn fractions I, II and III or corn fraction II + III can likewise be used.
  • a fraction II paste obtained from human plasma was used, and prepared according to a conventional corn plasma fractionation method. Subsequent purification processes were performed to remove various lipoproteins, fibrinogen, ⁇ -globulin, ⁇ -globulin and various coagulation factors (Factor XI, etc.) contained in the Fraction II paste.
  • the present invention relates to a method for removing FXI (Factor XII) in plasma protein separation and purification.
  • human plasma is tested for human immunodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV) and parvovirus B19 (NAT; Nucleic Acid Amplification Test).
  • HCV human immunodeficiency virus
  • HCV hepatitis C virus
  • HBV hepatitis B virus
  • NAT parvovirus B19
  • Plasma stored at -20 ° C or lower was stored in a jacketed vessel at 1 to 6 ° C. Reaction was dissolved for 72 hours.
  • the plasma is dissolved, thereby producing cryoprecipitate containing fibrinogen, coagulation factors, and FXI.
  • the cryoprecipitate is removed by centrifugation, and the cryopreserved plasma is removed.
  • the cryo poor plasma was recovered. Thereafter, the precipitation and filtration processes were repeated to obtain a fraction II paste.
  • Filtration to separate plasma containing FXI and plasma proteins was performed by adding a filter aid, followed by mixing using a filter press to separate the supernatant and sediment.
  • the filter aids were Celite (STD) and Harbolite (Expanded perlite product). ) And the like.
  • the plasma protein solution of step (a) can be used without limitation as long as it is a solution containing plasma protein.
  • the fraction is a fraction II solution obtained by dissolving the plasma protein fraction II paste. It may be characterized by.
  • dissolution of the plasma protein fraction II paste may be performed by adding a sodium chloride solution to be 2 to 10 times the volume of the plasma protein fraction.
  • the plasma protein fraction is preferably suspended (dissolved) in water and / or buffer at substantially non-denaturing temperatures and pH.
  • substantially invariant means that the above-mentioned conditions do not cause a substantially irreversible loss of functional activity of plasma proteins such as immunoglobulin molecules, such as loss of antigen binding activity and / or biological Fc-action. .
  • the plasma protein to be isolated and purified in the present invention is preferably immunoglobulin, but is not limited thereto.
  • the plasma protein fraction is dissolved in water acidified with one or more undenatured buffers at a volume of 2 to 5, preferably 3 to 4 times the volume of the plasma protein fraction, and the pH of the immunoglobulin-containing suspension is optimal solubility of the immunoglobulin. It is preferably maintained at pH 6.0 or below, more preferably at 4.0 to 6.0, and most preferably at 4.1 to 4.3. Any acid known in the art may be used as the acid buffer, but preferably sodium phosphate, sodium acetate, sodium chloride, acetic acid, hydrochloric acid, water (distilled water), and the like, and sodium chloride solution is used in the present invention.
  • Immunoglobulin suspensions are maintained at low temperatures to prevent protein denaturation and minimize protease activity, and the immunoglobulin suspensions and water or buffers added are preferably 0-12 ° C., more preferably 0-7 ° C., most preferred. Preferably in the range of 1 to 4 ° C.
  • the filtration is a step for obtaining a fraction II solution, characterized in that the filtration (clarifying filtration), characterized in that the pH is adjusted to 4.5 to 5.5.
  • the pH is 4.9 to 5.1.
  • the fraction II paste is transferred to a jacketed vessel of 10 ° C. or lower, and dissolved by adding 0.6% sodium chloride solution of 4 times the volume of fraction II paste, and then dissolving the pH in the dissolved solution. 1 M acetic acid was added to 5.0 ⁇ 1. The solution was then clarified filtration using a deep filtration cartridge to yield a fraction II solution.
  • the dialysis and / or concentration of step (b) is characterized in that using the ultrafiltration / diafiltration (Ultrafiltration / Diafiltration; UF / DF) system, the osmotic pressure of the dialysis concentrate up to 10 mOsmol / kg or less It is then characterized in that the pH is adjusted to 5.5 to 6.5, preferably adjusted to 5.9 to 6.1.
  • Diafiltration is a method of dialysis and ultrafiltration that removes some solutes from a fluid containing two or more solutes of different solvents and molecular sizes. And, compared to the general dialysis method has the advantage of saving time and money.
  • step (c) inactivates a virus such as a lipid enveloped virus in a solution containing an immunoglobulin, and after inactivation, the substance used for inactivation and the remaining FXI
  • Solvent & Detergent Treatment can be used with a virus-inactivating agent, preferably a solvent and / or detergent, most preferably a solvent-detergent mixture.
  • step (c) potential lipid enveloped viruses such as HIV1 and HIV2, hepatitis type C and non ABC, HTLV1 and 2, herpes virus group, CMV and Epstein Barr virus can be inactivated, thereby enhancing the safety of the final product.
  • HIV1 and HIV2 hepatitis type C and non ABC, HTLV1 and 2, herpes virus group, CMV and Epstein Barr virus
  • CMV and Epstein Barr virus can be inactivated, thereby enhancing the safety of the final product. have.
  • Solvents and cleaning agents that can be used in step (c) can be used without limitation as long as they have properties that can inactivate viruses, particularly lipid enveloped viruses.
  • the detergent may be selected from the group consisting of nonionic and ionic detergents, preferably substantially unmodified.
  • a nonionic detergent is preferred, and the solvent is most preferably tri-n-butyl phosphate (TNBP) as disclosed in US Pat. No. 4,764,369, but It is not limited.
  • TNBP tri-n-butyl phosphate
  • virus-inactivating agents for carrying out the present invention are, but are not limited to, mixtures of one or more selected from TNBP and polysorbate 80 (Tween 80), Triton X-100 and Triton X-45. .
  • Preferred solvent / detergent mixtures are added such that the concentration of TNBP in the immunoglobulin containing solution is within 0.2 to 0.6% by weight, preferably 0.24 to 0.36% by weight, and the concentration of Tween 80 is within the range of 0.8 to 1.5% by weight, preferably Add to the concentration of 0.8 to 1.2% by weight.
  • the virus-inactivation step is performed under conditions that inactivate the lipid envelope virus, resulting in an immunoglobulin containing solution that is substantially free of virus risk.
  • the reaction temperature in the above conditions is preferably 4 to 30 °C, more preferably 19 to 28 °C, most preferably 24 to 26 °C, the reaction time is preferably 1 to 24 hours, more preferably 4 to 12 hours, most preferably about 8 hours, sufficient to ensure virus inactivation.
  • the cation exchange chromatography of step (c) is characterized in that the pH is carried out under conditions of 4.5 to 5.5, flow rate 30 to 90 cm / hr, preferably the pH is adjusted to 4.9 to 5.1 do.
  • the immunoglobulins loaded into the cation exchange resin are 90 to 130 mg per ml cation exchange resin, more preferably 95 to 105 mg per ml resin, most preferably 84 mg. Immunoglobulins are adsorbed and then washed with equilibration buffer.
  • the equilibration buffer used for washing in the above conditions can be washed using a volume of at least 3 times, preferably at least 5 times the volume of the column, and after washing the immunoglobulin with at least 8 times the elution buffer of the column volume. Elution.
  • the cation exchange resin may be Sephadex, Sepharose, HyperCell, or Source, but is not limited thereto, and cation exchange resins known in the art may be used. .
  • the present invention may preferably use a ceramic-based cation exchange resin.
  • a ceramic-based CM hyper D gel was used as the cation exchange resin, and as a column buffer, an equilibration buffer and a washing buffer known in the art such as sodium phosphate buffer, citric acid buffer, and acetic acid buffer. (wash buffer) and elution buffer were used.
  • Elution of immunoglobulins from the cation exchange resin according to step (d) is carried out with a substantially non-modified buffer having a pH and ionic strength sufficient to cause efficient elution of the immunoglobulin to recover the immunoglobulin containing eluate.
  • Efficient elution means that at least 75%, at least 80%, and the like, such as at least 85%, of the immunoglobulin solution loaded on the cation exchange resin are eluted from the cation exchange resin.
  • the eluting of the immunoglobulin of step (d) may be carried out at a salt concentration of the elution buffer high enough to replace the immunoglobulin in the cation exchange resin, salt concentration of 400 to 600 mM, preferably May be performed at a salt concentration of 500 mM.
  • the salt is preferably sodium chloride (NaCl), but is not limited thereto.
  • step (d) in-situ cleaning to wash the cation exchange resin using sodium hydroxide having a salt concentration of 200 to 1000 mM, preferably a salt concentration of 500 mM , CIP) may be further included.
  • the cation exchange chromatography of step (c) and the elution in step (d) are preferably in the range of 18 to 25 ° C, more preferably 19 to 23 ° C, and most preferably 19.5 to 22.5 ° C. It may be characterized by performing.
  • the step (b) and (c) may further comprise the step of performing anion exchange chromatography to obtain a fraction that is not attached to the anion exchange chromatography column.
  • the anion exchange chromatography is carried out under the conditions of pH 5.5 to 6.5, flow rate 95 to 145cm / hr, fractions not attached to the anion exchange chromatography to 1.5 to 2.0 Loading Volume (LV) It is characterized by obtaining.
  • LV Loading Volume
  • the anion exchange resin used in the anion exchange chromatography step may be substituted with diethylaminoethyl (DEAE) or quaternary ammonium groups, but is not limited thereto.
  • DEAE diethylaminoethyl
  • quaternary ammonium groups but is not limited thereto.
  • either one of a group having a strong basic quaternary ammonium group or an anion exchange resin having a weakly basic diethylaminoethyl (DEAE) group is used.
  • strong basic anion exchange groups include Q Sepharose Fast Flow, Q Sepharose High Performance, Resource Q, Source 15Q, Source 30Q, Mono Q, Mini Q, Capto Q, Capto Q ImpRes, Q HyperCel, Q Cermic HyperD F , Nuvia Q, UNOsphere Q, Macro-Prep High Q, Macro-Prep 25 Q, Fractogel EMD TMAE (S), Fractogel EMD TMAE Hicap (M), Fractogel EMD TMAE (M), Eshmono Q, Toyopearl QAE-550C, Toyopearl SuperQ-650C, Toyopearl GigaCap Q-650M, Toyopearl Q-600C AR, Toyopearl SuperQ-650M, Toyopearl SuperQ-650S, TSKgel SuperQ-5PW 30, TSKgel SuperQ-5PW 20, TSKgel SuperQ-5PW etc.
  • the present invention is not limited thereto, and an anion exchange
  • the appropriate volume of resin used in anion exchange chromatography is reflected by the column dimensions, ie the diameter of the column and the height of the resin, and depends, for example, on the amount of immunoglobulin solution in the solution applied and the binding performance of the resin used.
  • the ion exchange resin Prior to ion exchange chromatography, the ion exchange resin is preferably equilibrated with a buffer so that the resin can bind to its counter ions.
  • DEAE Sepharose gel was used as the anion exchange resin, and as the column buffer, equilibration buffer, wash buffer, and elution known in the art such as sodium phosphate buffer, citric acid buffer, and acetic acid buffer. You can use an elution buffer.
  • Biotest Biotest is made, including the use of FDA approved plasma.
  • red cross-derived plasma (Batch No. 600A9008) was used, and the plasma was stored at ⁇ 20 ° C. or lower until use.
  • the bottle containing plasma was opened with a bottle cutting machine and reacted for 12 to 72 hours in a jacketed vessel at 1 to 6 ° C. to dissolve the plasma.
  • the plasma is melted to produce cryoprecipitate containing fibrinogen and coagulation factors.
  • the cryoprecipitated plasma is removed by centrifugation (condition description), and the cryoprecipitated plasma is formed. The removed cryo poor plasma was recovered.
  • Precipitation II + III was performed to precipitate the immunoglobulin (Immunoglbulin) contained in the supernatant recovered in Example 1-2.
  • the supernatant was named supernatant I + II + III (or II + III) and the precipitate was named fraction I + II + IIIw (or II + IIIw) (w; wash).
  • Fraction I + II + IIIw (or II + IIIw) is used immediately or stored below ⁇ 20 ° C.
  • Precipitation III to remove additional albumin, lipoprotein, thrombin and other unwanted proteins from fraction I + II + IIIw (or II + IIIw) containing immunoglobulins Steps were performed.
  • the fraction I + II + IIIw (or II + IIIw) recovered in Example 1-3 was dissolved in cold distilled water and then sampled and stored for later total viable count. . 96% ethanol was added to the fraction I + II + IIIw (or II + IIIw) dissolved in distilled water such that the final ethanol concentration was 18 ⁇ 1.8% at ⁇ 5 ⁇ 1.0 ° C., and acetate buffer (prepared at ⁇ 6 ° C.). acetate buffer) was used to adjust the pH to 5.2 ⁇ 0.1.
  • the mixture was separated from the supernatant and precipitate using a filter press (DG800K).
  • the supernatant was named filtrate I + III (or III) and the precipitate was named fraction I + III (or III).
  • Fraction I + III (or III) was discarded and the filtrate I + III (or III) was sampled and stored for later total viable count.
  • Precipitation II was performed to precipitate immunoglobulins in the filtrate I + III (or III) of Examples 1-4.
  • the mixture was separated from the supernatant and precipitate using a filter press (DG800K).
  • the precipitate was named fraction II paste, and some samples were stored for later determination of bacterial endotoxin, protein content and composition.
  • fraction II paste containing the immunoglobulin isolated in Example 1-5 was dissolved and adjusted to have conditions suitable for the dialysis process. Fraction II paste was transferred to a jacketed vessel at 10 ° C. or lower, dissolved by addition of 0.6% sodium chloride solution with 4 times fraction II paste volume, and some sampling to determine protein content and composition. was stored.
  • Ethanol and low molecular ions were removed from the fraction II solution containing the immunoglobulin obtained in Examples 1-6, and the pH was adjusted to have suitable conditions for anion exchange chromatography.
  • Fraction II solution containing immunoglobulin was subjected to diafiltration using ultrafiltration / Diafiltration (Millipore Pellicon 2 (50K)) system at 10mOsmol / kg or less. And some samples were stored to measure live bacteria.
  • Anion exchange chromatography was performed to remove polymer and other plasma proteins contained in the dialysis and / or concentrated immunoglobulin solutions obtained in Examples 1-7.
  • the anion exchange resin was filled with a DEAE Sepharose gel (GE Healthcare, Catalog No. 17-0709) to the column and equilibrated to pH 6.0 ⁇ 0.1 using an equalization buffer. Thereafter, the dialysis and / or concentrated immunoglobulin solution obtained in Example 1-7 was loaded on the column at a flow rate of 120 ⁇ 25 cm / hr, and the fractions not attached to anion exchange chromatography were loaded with 1.5 to 2.0 loading volumes. Volume; LV).
  • DEAE Sepharose gel GE Healthcare, Catalog No. 17-0709
  • a step of treating the solvent and detergent was performed to inactivate the potential envelope envelope virus of the solution containing the immunoglobulin.
  • the pH was adjusted to 5.0 ⁇ 0.1 by adding acetic acid to the fraction which was not attached to the anion exchange chromatography recovered in Example 1-8, and tri (n-butyl) -phosphate (Tri (n-butyl)- phosphate (TNBP) and Polysorbate 80 (Polysorbate 80; Tween 80) were added at a concentration of 0.3 ⁇ 0.06% and 1 ⁇ 0.2%, respectively, and then stirred at 200 ⁇ 50 RPM for 20-30 minutes. A portion of the TNBP and Tween 80 in the solution was homogeneously mixed and sampled, and then stirred continuously at 200 ⁇ 50 RPM for 8 hours at 25 ⁇ 1.0 ° C. After stirring was complete, the solution containing the immunoglobulin was transferred via hard pipe line to another tank, which is a virtual secure area (VSA).
  • VSA virtual secure area
  • Cation exchange chromatography was performed at 21 ⁇ 1.5 ° C. to remove TNBP, Tween 80 and other coagulation factors in the solvent / detergent immunoglobulin solution.
  • the cation exchange resin was filled with CM Hyper D gel (Pall Corporation; Catalog No. 20050), a ceramic material, and equilibrated to pH 5.0 ⁇ 0.1 using an equalization buffer.
  • the solvent / detergent treated immunoglobulin solution of Examples 1-9 was then loaded onto the column at a flow rate of 60 cm / hr. Thereafter, the cells were washed with a washing buffer having a volume of 7 times the volume of the column, and then recovered by eluting immunoglobulins using an elution buffer (elution buffer composition: 20 mM NaOAc pH 4.5 w / 0.5 M NaCl). (Adsorption rate: 84 mg of immunoglobulin per 1 ml of cation exchange resin)
  • Example 1-10 The column used in Example 1-10 was poured with 2 M NaCl in a column volume of 2 times (CIP1), and then 0.5 M NaOH was flowed in 2 column volumes (CIP2). Then, to confirm the process step to remove FXI (FXIa) in Cation exchange chromatography, CIP 1, CIP 2 was collected, FXI (FXIa) content was measured.
  • FXIa 2.9% FXI (FXIa) of the load sample was measured in 2M NaCl, the first step of CIP, and below the detection limit (0.31 ng / mL) in 0.5M NaOH, the second step of CIP (Table 1).
  • FXI (FXIa) content in the process sample was measured using the FXI content test, and after detection of FXI (FXIa) 418.7 ng / mL in the load sample, the detection limit (0.31 ng / mL) in the elution sample was performed. It was measured below. After the CIP process with 0.5 NaOH, in order to confirm that the FXI (FXIa) was completely removed, the CIP process was further performed with 6M guanidine HCl.
  • the concentration of Human Coagulation Factor XI (FXI) included in the filtrate or the precipitate of the preparation step of Example 1 was measured using a Human Factor XI ELISA kit: Alternative, Cat No. IHFXIKT-TOT. ), SDS-PAGE and western blotting were measured, and the content of FXIa was measured by TGA test (CBER ver. 3).
  • the concentration of FXI in the plasma is known to be 4-6 ⁇ g / mL. Based on this, the spiking test was performed by preparing the FXIa concentration of 4 ⁇ g / mL in the CM load sample. This is 10 times the concentration of about 400 ng / mL concentration measured in CM load sample 656B14012.
  • FXI (FXIa) content in the process sample was measured using the FXI content test.
  • 4020.1 ng / mL of FXI (FXIa) in the load sample was detected in the elution sample after performing the Cation exchange chromatography process (0.31 ng / mL).
  • the detection limit (0.156 mU / mL) in the elution sample after 72837.4 mU / mL in the load sample was performed after the Cation exchange chromatograph process. Measured below, it was confirmed that excess FXI could be removed via a cation exchange chromatography process (Table 4).
  • FXI (FXIa) content in the process sample was measured using the FXI content test, and the total FXI (FXIa) in the load sample was about 4.7 mg.
  • the total FXI (FXIa) was about 1.3 in the elution sample after the Cation exchange chromatograph process. Measured in ⁇ g. A small amount of FXI (FXIa) was measured in the elution, but the residual ratio was 0.0%, confirming that more than 99.9% of the load sample was removed (Table 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Water Supply & Treatment (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 혈장 단백질 정제시 FXI(Factor XI)의 제거방법에 관한 것으로, 더욱 자세하게는 FXI 및 혈장 단백질을 함유하는 혈장단백질 분획 II 페이스트(fraction II paste)를 투석 농축시킨 다음, 세라믹 재질의 양이온 교환수지를 이용하여 FXI를 제거하는 방법에 관한 것이다. 본 발명에 따른 FXI 제거방법을 이용하면, 불순물 및 혈전 생성물질을 제거효율을 높으므로, 안정적이고 향상된 품질의 혈장 단백질의 생산이 가능하다.

Description

혈장 단백질 정제시 FXI의 제거방법
본 발명은 혈장 유래 단백질 정제시 FXI(Factor XI, 11 인자)의 제거방법에 관한 것으로, 더욱 자세하게는 FXI 및 다양한 혈장 단백질을 포함하는 혈장단백질 분획 Ⅱ 페이스트(fraction Ⅱ paste)를 투석 농축시킨 다음, 양이온 교환수지 정제 방법을 통해 FXI를 제거하는 것을 특징으로 하는 FXI의 제거방법에 관한 것이다.
혈장 단백질은 혈장(plasma) 내에 포함되어 있는 단백질을 의미하며, 알부민, 면역 글로블린과 피브리노겐, 트롬빈, 8 인자 등의 다양한 혈액 응고 관련 인자, 알파1안티트립신 등이 대표적인 혈장단백질이다. 이러한 혈장 단백질 들은 분리 정제되어 다양한 의약 용도 등으로 사용되고 있다.
FXIa는 FXI의 활성화된 형태로서, 하위 단계인 FIX을 활성화 시킴으로써 혈액 내 응고 반응(coagulation cascade)을 유발한다. (Wolberg AS et al., AM. J. Hematol. 2000, Vol. 65(1), pp30-34). 따라서 혈장단백질 유래 의약품이 분리 정제 과정에서 이러한 FXI이 불순물로 포함되어 있을 경우, 혈전 생성 등을 유발하여 여러가지 부작용을 발생시키는 것으로 알려져 있다.
예를 들어 혈장 유래 면역글로블린(IVIG)을 의약 용도로 이용하는 경우, FXI가 포함되지 않도록 FXI를 제거하는 것이 필수적인데, 개정된 European pharmacopoeia ver. 7.0의 “Human Normal Immunoglobulin for Intravenous Administration Monograph에 따르면, 정맥주사용 면역글로불린의 제조공정에서 혈전 생성물질(coagulation factors 및 그들의 zymogens)을 제거하는 공정을 포함하거나, 상기 공정에서 zymogen activation이 일어나지 않는다는 자료를 요구하고 있는 등, (human normal immunoglobulin for intravenous administration, European Pharmacopeia 7.0, PA/PH/Exp. 6B/T(11) 14PUB, 2012 Jan. Report No. 01/2012:0918), 혈장 단백질을 분리 정제를 통해 의약 용도로 사용하기 위해서는 FXI를 제거하는 것이 필수적이다. 하지만, 현재까지 알려진 방법들로는 FXI의 효율적이고 완전한 제거가 어려운 상황이다.
이에 따라, 본 발명자들은 상기와 같은 기존의 문제를 해결하기 위하여 노력한 결과, FXI 및 다양한 혈장 단백질을 함유하는 혈장에서 분리한 분획 II 페이스트를 투석 농축시킨 다음, 양이온교환 크로마토그래피를 사용하여 정제할 경우, 혈장 내 존재하는 FXI 등의 혈전생성물질을 효율적으로 제거할 수 있는 것을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 혈장 단백질의 분리 정제시 FXI를 제거하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위해서, 본 발명은
(a) FXI 및 혈장 단백질을 함유하는 혈장단백질 용액을 수득하는 단계;
(b) 상기 수득된 용액을 투석 및/또는 농축시키는 단계; 및
(c) 상기 농축된 용액에 용매 및 세정제를 처리한 후, 양이온교환 크로마토그래피를 수행하여 컬럼에 FXI 및 혈장 단백질을 결합시키는 단계; 및
(d) 혈장 단백질만 선택적으로 용출시키는 단계;
를 포함하는 혈장 단백질 분리 정제에 있어 FXI(Factor XI)의 제거방법을 제공한다.
도 1은 본 발명에 따른 정맥주사용 면역글로불린의 제조과정을 나타낸 모식도이다.
도 2는 제조 단계별 여과액 또는 침전물에 포함된 FXI(Human Coagulation Factor XI)의 농도를 SDS-PAGE 및 Western Blotting으로 측정한 결과이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명의 "혈장 단백질"이라 함은 인간 혈장 또는 인간 태반 유래 혈장에서 FXI(Factor XI 인자 11) 및 트롬빈과 같은 다양한 혈장 단백질이 포함된 크라이오 제거 혈장(Cryo poor plasma), 다양한 콘(Cohn) 분획 및 암모늄 설페이트 또는 PEG(Polson et al., Biochem Biophys Acta, 82:463, 1964); Polson and Ruiz-Bravo, Vox Sang, 23:107. 1972)에 의한 침전법을 통해 얻어지는 분획들을 포함한다. 바람직하게 혈장 단백질 분획은 콘 분획 II 이나, 콘 분획 Ⅰ, II 및 III 또는 콘 분획 II+III도 마찬가지로 사용될 수 있다.
본 발명의 일 실시예에서는 인간 혈장으로부터 얻어진 분획 II 페이스트(fraction II paste)를 사용하였으며, 통상적인 콘 혈장 분획법에 따라서 제조하였다. 분획 II 페이스트에 포함된 다양한 리포프로테인류, 피브리노겐, α-글로불린, β-글로불린 및 다양한 응고인자들(Factor XI 등)을 제거하기 위한 후속 정제공정을 수행하였다.
따라서, 본 발명은 일관점에서,
(a) FXI 및 혈장 단백질을 함유하는 혈장단백질 용액을 수득하는 단계;
(b) 상기 수득된 용액을 투석 및/또는 농축시키는 단계; 및
(c) 상기 농축된 용액에 용매 및 세정제를 처리한 후, 양이온교환 크로마토그래피를 수행하여 컬럼에 FXI 및 혈장 단백질을 결합시키는 단계; 및
(d) 혈장 단백질만 선택적으로 용출시키는 단계;
를 포함하는 혈장 단백질 분리 정제에 있어 FXI(Factor XII) 제거방법에 관한 것이다.
본 발명에서, 인간 혈장은 인간 면역 결핍 바이러스(HIV), C형 간염바이러스(HCV), B형 간염바이러스(HBV) 및 파보바이러스 B19(parvovirus B19)에 대한 핵산증폭검사(NAT; Nucleic Acid Amplification Test) 및 혈청학적 검사를 포함하는 바이오테스트(Biotest)를 거쳐 FDA에서 승인된 적십자 유래 혈장을 사용하였으며, -20℃ 이하에서 보관되어 있던 혈장을 1 내지 6℃의 자켓식 반응기(jacketed vessel)에서 12 내지 72시간 동안 반응시켜 녹였다.
상기 조건에서 혈장이 녹으면서 피브리노겐(fibrinogen), 응고인자(coagulation factors) 및 FXI이 포함된 크라이오 침전물(cryoprecipitate)이 생성되는데, 원심분리를 통해 동결침강혈장을 제거시키고, 동결침강혈장이 제거된 크라이오 제거 혈장(cryo poor plasma)을 회수하였다. 그 후 침전과 여과 과정을 반복하여 최종적으로 분획 Ⅱ 페이스트(fraction II paste)를 수득하였다.
FXI 및 혈장단백질이 포함된 혈장을 분리하기 위한 여과과정은 필터 보조제를 첨가하여 혼합시킨 다음 필터 프레스를 사용하여 상층액과 침전물을 분리하였으며, 상기 필터 보조제는 Celite(STD), Harbolite(Expanded perlite product) 등을 사용하였다.
본 발명에 있어서, 상기 (a) 단계의 혈장 단백질 용액은 혈장단백질이 포함된 용액이면 제한 없이 이용가능하나, 바람직하게는, 혈장단백질 분획 II 페이스트를 용해시킨 다음, 여과하여 수득한 분획 II 용액인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 혈장단백질 분획 II 페이스트의 용해는 혈장단백질분획 부피의 2 내지 10배가 되도록 염화나트륨(sodium chloride) 용액을 첨가하여 수행하는 것을 특징으로 할 수 있다.
혈장 단백질 분획은 실질적으로 비-변성 온도 및 pH에서 물 및/또는 완충액에 현탁액화(용해)되는 것이 바람직하다. "실질적으로 비변성"은 상기 언급된 조건이 면역글로불린분자 등의 혈장 단백질들의 기능성 활성의 실질적으로 비가역적인 손실, 예컨대, 항원결합 활성 및/또는 생물학적 Fc-작용의 손실을 야기시키지 않는 것을 의미한다.
본 발명에서의 분리 정제하고자 하는 혈장 단백질은 면역글로블린이 바람직하지만, 이에 제한되는 것은 아니다.
본 발명의 일 예로서, 면역글로불린을 분리 정제하는 과정에서의 FXI 제거방법을 구체적으로 설명한다.
혈장 단백질 분획은 플라즈마 단백질 분획 부피의 2 내지 5, 바람직하게는 3 내지 4배의 부피로 하나 이상의 비변성 완충제로 산성화된 물에 용해시키며, 면역글로불린-함유 현탁액의 pH는 면역글로불린의 최적의 용해도를 보장할 수 있도록, 바람직하게는 pH 6.0 이하로, 더 바람직하게는 4.0 내지 6.0으로, 가장 바람직하게는 4.1 내지 4.3이 되도록 유지한다. 산성 완충액으로 당업계에 공지된 어떠한 것도 사용될 수 있으나, 바람직하게는 인산나트륨, 아세트산나트륨, 염화나트륨, 아세트산, 염산, 물(증류수) 등을 사용할 수 있으며, 본 발명에서는 염화나트륨 용액을 사용하였다.
면역글로불린 현탁액은 단백질 변성을 방지하고 프로테아제 활성을 최소화 할 수 있도록 낮은 온도에서 유지시키며, 면역글로불린 현탁액과 물 또는 첨가되는 완충액은 바람직하게 0 내지 12℃, 더 바람직하게는 0 내지 7℃, 가장 바람직하게는 1 내지 4℃ 범위를 유지하도록 한다.
본 발명에 있어서, 상기 여과는 분획 Ⅱ 용액을 수득하기 위한 단계로서, 청정여과(clarifying filtration)인 것을 특징으로 하며, pH가 4.5 내지 5.5가 되도록 조절하여 수행되는 것을 특징으로 한다. 바람직하게는 pH가 4.9 내지 5.1이 되도록 한다.
본 발명에서는, 분획 Ⅱ 페이스트를 10℃ 이하의 자켓식 반응기(jacketed vessel)로 옮기고, 분획 Ⅱ 페이스트 볼륨 4배의 0.6% 염화나트륨(sodium chloride) 용액을 첨가하여 용해시킨 다음, 용해된 용액에 pH가 5.0±1이 되도록 1 M의 아세트산(acetic acid)을 첨가하였다. 그 다음, 용액을 심층여과 카트리지를 사용해 청정여과(clarifying filtration)하여 분획 II 용액(fraction II solution)을 수득하였다.
본 발명에 있어서, 상기 (b) 단계의 투석 및/또는 농축은 한외여과/투석여과(Ultrafiltration/Diafiltration; UF/DF) 시스템을 이용하는 것을 특징으로 하며, 투석농축액의 삼투압이 10 mOsmol/kg 이하까지 수행한 다음, pH를 5.5 내지 6.5로 조절하는 것을 특징으로 하며, 바람직하게는 5.9 내지 6.1이 되도록 조절한다.
투석여과(diafiltration)는 투석(dialysis)과 한외여과(ultrafiltration)를 같이 수행하는 것으로, 용매와 분자크기가 다른 2가지 이상의 용질이 함유된 유체로부터 일부 용질만 제거하는 방법으로서 고분자 물질의 정제에 효과적이며, 일반 투석법에 비하여 시간과 경비가 절감되는 장점이 있다.
본 발명의 일 실시예에서는 한외여과/투석여과(Ultrafiltration/ Diafiltration; UF/DF) 시스템을 사용하여 10 mOsmol/kg 이하로 분획 Ⅱ 용액을 여과하였으며, 여과액에 1M 아세트산나트륨(sodium acetate)을 5.0±1.0 mM이 되도록 첨가하고 pH를 6.0±0.1로 조절하여 투석 및/또는 농축된 면역글로불린이 포함된 수용액을 수득하였다.
본 발명에 있어서, 상기 (c) 단계는 면역글로불린이 포함된 용액의 잠재적 지질외피바이러스(lipid enveloped virus) 등의 바이러스를 불활성시키고, 불활성화 이후, 불활성화를 위해 사용된 물질 및 남아있는 FXI를 제거하기 위한 단계로서, 바이러스-비활성화제, 바람직하게는 용매 및/또는 세정제, 가장 바람직하게는 용매-세정제 혼합물을 이용한 용매 및 세정제 처리(Solvent & Detergent Treatment)가 이용될 수 있다.
상기 (c) 단계를 통해 HIV1 및 HIV2, 간염 타입 C 및 non A-B-C, HTLV1 및 2, 헤르페스 바이러스군, CMV 및 엡스타인 바 바이러스 등의 잠재적 지질외피바이러스들이 불활성화되어, 최종 제품의 안전성이 제고될 수 있다.
상기 (c) 단계에서 사용될 수 있는 용매 및 세정제는 바이러스, 특히 지질외피바이러스를 불활성화시킬 수 있는 특성을 가진 것이라면 어느 것이나 제한 없이 사용가능하다. 세정제는 비이온성 및 이온성 세정제로 이루어진 군 중에서 선택될 수 있으며, 실질적으로 비변성인 것이 바람직하다. 특히, 제거의 용이성 측면에서, 비이온성 세정제가 바람직하며, 용매는 미국등록특허 제4,764,369 호에 개시된 바와 같이 트리(n-부틸)포스페이트(TNBP : Tri-n-butyl phosphate)이 가장 바람직하지만, 이에 한정되는 것은 아니다.
본 발명을 수행하는 데 특히 바람직한 바이러스-비활성화제는 TNBP 및 폴리소르베이트 80(트윈(Tween) 80), 트리톤 X-100 및 트리톤 X-45 중에서 선택되는 하나 이상인 것의 혼합물이지만, 이에 한정되는 것은 아니다.
바람직한 용매/세정제 혼합물은 면역글로불린 함유 용액 중 TNBP 농도가 0.2 내지 0.6 중량% 이내, 바람직하게는 0.24 내지 0.36 중량%가 되도록 첨가되며, 트윈 80의 농도는 0.8 내지 1.5중량% 범위 이내, 바람직하게는 0.8 내지 1.2중량%의 농도가 되도록 첨가한다.
바이러스-비활성화 단계는 지질외피바이러스를 비활성화시켜, 실질적으로 바이러스 위험성이 없는 면역글로불린 함유 용액을 생성시키는 조건 하에서 수행된다. 상기 조건에서 반응온도는 바람직하게는 4 내지 30℃, 더 바람직하게는 19 내지 28℃, 가장 바람직하게는 24 내지 26℃이며, 반응시간은 바람직하게는 1 내지 24시간, 더 바람직하게는 4 내지 12시간, 가장 바람직하게는 약 8시간이며, 바이러스 비활성화를 보장하기에 충분하다.
본 발명에 있어서, 상기 (c) 단계의 양이온교환 크로마토그래피는 pH 4.5 내지 5.5, 유속 30 내지 90cm/hr의 조건에서 수행하는 것을 특징으로 하며, 바람직하게 상기 pH는 4.9 내지 5.1이 되도록 조절하여 수행된다. 양이온교환 수지에 로딩되는 면역글로불린은 양이온교환 수지 ㎖당 90 내지 130㎎, 더 바람직하게는 수지 ㎖당 95 내지 105 ㎎이며, 가장 바람직하게는 84 mg 이다. 면역글로불린을 흡착시킨 후 평형 버퍼(equilibration buffer)로 세척한다. 상기 조건에서 세척에 이용되는 평형 버퍼는 컬럼 볼륨의 3배 이상, 바람직하게는 5배 이상의 부피를 사용하여 세척할 수 있으며, 세척 후 컬럼부피의 8배 이상의 용출버퍼(elution buffer)로 면역글로불린을 용출한다.
양이온교환 수지는 세파덱스(Sephardex), 세파로즈(Sepharose), 하이퍼셀(HyperCell) 또는 소스(Source) 등을 사용할 수 있지만, 이에 한정되는 것은 아니며 다른 당업계에 공지된 양이온교환 수지를 사용할 수 있다. 특히 본 발명에서는 바람직하게 세라믹 계열의 양이온교환 수지를 사용할 수 있다. 본 발명의 일 실시예에서는 양이온교환수지로 세라믹 계열인 CM 하이퍼 D겔을 사용하였으며, 컬럼 완충액으로는 인산나트륨 완충액, 구연산 완충액, 아세트산 완충액 등 당업계에 공지된 평형 버퍼(equilibration buffer), 세척버퍼(wash buffer) 및 용출버퍼(elution buffer)를 사용하였다.
상기 (d) 단계에 따른 양이온교환 수지로부터 면역글로불린의 용출은 면역글로불린의 효율적인 용리를 야기시키기에 충분한 pH 및 이온 세기를 갖는 실질적으로 비-변성 완충액으로 수행하여 면역글로불린 함유 용출액을 회수한다. '효율적인 용리'는 양이온교환 수지에 로딩된 면역글로불린 용액의 75% 이상, 80% 이상 등, 예컨대, 85% 이상 등이 양이온 교환수지로부터 용출되는 것을 의미한다.
본 발명에 있어서, 상기 (d) 단계의 면역글로불린의 용출은 양이온교환 수지에서 면역글로불린을 치환하기에 충분할 정도로 높은 용출 완충액의 염 농도에서 수행될 수 있으며, 400 내지 600 mM의 염 농도, 바람직하게는 500mM의 염 농도에서 수행될 수 있다. 상기 염은 염화나트륨(NaCl)을 이용하는 것이 바람직하지만 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 (d) 단계의 혈장 단백질 용출이 완료된 후, 200 내지 1000 mM의 염농도, 바람직하게는 500mM의 염농도를 가지는 수산화나트륨을 이용하여 양이온교환 수지를 세척하는 제자리 세정(Clean in place, CIP) 단계를 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (c) 단계의 양이온교환 크로마토그래피 및 (d) 단계에서의 용출은 바람직하게 18 내지 25℃, 더 바람직하게는 19 내지 23℃, 가장 바람직하게는 19.5 내지 22.5℃ 범위에서 수행하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (b) 단계와 (c) 단계 사이에, 음이온교환 크로마토그래피를 수행하여 음이온교환 크로마토그래피 컬럼에 부착되지 않은 분획을 수득하는 단계를 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 음이온교환 크로마토그래피는 pH 5.5 내지 6.5, 유속 95 내지 145cm/hr의 조건에서 수행하며, 음이온교환 크로마토그래피에 부착되지 않은 분획을 1.5 내지 2.0 로딩볼륨(Loading Volume; LV)으로 수득하는 것을 특징으로 한다.
음이온교환 크로마토그래피 단계에서 사용하는 음이온교환수지는 디에틸아미노에틸(DEAE) 또는 사차 암모니움(Quaternary ammonium)기들로 치환된 것들을 사용할 수 있지만, 이에 제한되는 것은 아니다. 바람직하게는 강염기성의 사차 암모니움기를 가지는 그룹이나 또는 약염기성의 디에틸아미노에틸(DEAE) 그룹을 가지는 음이온 교환수지 중에서 어느 하나를 선택하여 사용한다.
예를 들면, 강염기성의 음이온교환 그룹으로는 Q Sepharose Fast Flow, Q Sepharose High Performance, Resource Q, Source 15Q, Source 30Q, Mono Q, Mini Q, Capto Q, Capto Q ImpRes, Q HyperCel, Q Cermic HyperD F, Nuvia Q, UNOsphere Q, Macro-Prep High Q, Macro-Prep 25 Q, Fractogel EMD TMAE(S), Fractogel EMD TMAE Hicap (M), Fractogel EMD TMAE (M), Eshmono Q, Toyopearl QAE-550C, Toyopearl SuperQ-650C, Toyopearl GigaCap Q-650M, Toyopearl Q-600C AR, Toyopearl SuperQ-650M, Toyopearl SuperQ-650S, TSKgel SuperQ-5PW (30), TSKgel SuperQ-5PW (20), TSKgel SuperQ-5PW 등을 사용할 수 있으나, 이에 한정되는 것은 아니며 당업계에 공지된 음이온교환수지를 사용할 수 있다.
음이온 교환 크로마토그래피에 사용되는 수지의 적절한 부피는 컬럼 치수, 즉, 컬럼의 직경과 수지의 높이에 의해 반영되고, 예컨대, 적용되는 용액의 면역글로불린 용액양과 사용되는 수지의 결합 성능에 따라 달라진다. 이온 교환 크로마토그래피를 수행하기 전에, 이온 교화 수지는 바람직하게는 완충액으로 평형화시켜, 수지가 그의 짝 이온과 결합할 수 있도록 한다.
본 발명에서는, 음이온교환 수지로 DEAE 세파로스 젤을 사용하였으며, 컬럼 완충액으로는 인산나트륨 완충액, 구연산 완충액, 아세트산 완충액 등 당업계에 공지된 평형 버퍼(equilibration buffer), 세척버퍼(wash buffer) 및 용출버퍼(elution buffer)를 사용할 수 있다.
음이온교환 크로마토그래피에서 컬럼은 5±1.0mM 아세트산 나트륨 완충액(sodium acetate buffer)으로 pH가 6.0±0.1이 되도록 평형화시켰으며, 이동상의 유속은 95 내지 145cm/hr으로 조절하였다. 음이온교환 크로마토그래피에 부착되지 않은 분획을 1.5 내지 2.0 로딩볼륨(Loading Volume; LV)으로 회수하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
<실시예 1> 정맥주사용 면역글로불린 제조시 Factor XI 제거
1-1 : 혈장(plasma)준비
혈장은 인간 면역 결핍 바이러스(HIV), C형 간염바이러스(HCV), B형 간염바이러스(HBV) 및 파보바이러스 B19(parvovirus B19)에 대한 핵산증폭검사(NAT; Nucleic Acid Amplification Test) 및 혈청학적 검사를 포함하는 바이오테스트(Biotest)가 이루어지고 FDA에서 승인된 혈장을 사용한다.
본 발명에서는 적십자 유래 혈장(Batch No. 600A9008)를 사용하였으며 혈장은 사용하기 전까지 -20℃ 이하에서 보관하였다. 혈장이 담겨져 있는 병은 커틀 기기(bottle cutting machine)로 오픈하고, 1 내지 6℃의 자켓식 반응기(jacketed vessel)에서 12 내지 72시간 동안 반응시켜 혈장을 녹였다.
상기 조건에서 혈장이 녹으면서 피브리노겐(fibrinogen) 및 응고인자(coagulation factors)이 포함된 크라이오 침전물(cryoprecipitate)이 생성되는데, 원심분리(조건 설명)를 통해 동결침강혈장을 제거시키고, 동결침강혈장이 제거된 크라이오 제거 혈장(cryo poor plasma)을 회수하였다.
1-2 : 침전(precipitation) Ⅰ 단계
상기 냉동 결핍성 혈장에서 응고인자를 추가로 제거하기 위해, 침전(precipitation) Ⅰ 단계를 수행하였다.
최종 에탄올 농도가 -3±1℃에서 8 ± 0.8%가 되도록 실시예 1-1에서 회수한 냉동 결핍성 혈장에 96% 에탄올(ethanol)을 첨가한 후, 아세테이트 버퍼(acetate buffer)를 사용하여 pH가 7.2±0.2가 되도록 조절하였다. 원심분리(조건)를 통해 침전물을 제거하고, 상층액(Addition Ⅰ supernatant)을 회수하였으며, 추후 총 생균측정(total viable count)을 하기 위해 일부를 샘플링하여 보관하였다.
1-3 : 침전 II+III 단계 및 여과(filtration)
실시예 1-2에서 회수한 상층액에 포함된 면역글로불린(Immunoglbulin)을 침전시키기 위해 침전 II+III 단계를 수행하였다.
최종 에탄올 농도가 -5±1.0℃에서 20±2%가 되도록 실시예 1-2에서 회수한 상층액에 96% 에탄올(ethanol)을 첨가한 후, 아세테이트 버퍼(acetate buffer)를 사용하여 pH가 6.9±0.1이 되도록 조절하였다.
그 후, 혈장 ㎏ 당 필터 보조제(Celite(STD), Harbolite(Expanded perlite product)) 0.0284㎏씩 첨가하고 30±10분 동안 혼합시켰다. 혼합물을 2 내지 8℃로 유지시킨 콜드룸(cold room)안에서 필터 프레스(filter press, DG800K)를 사용하여 상측액과 침전물을 분리시켰다.
상층액은 상층액(supernatant) I+II+III (또는 Ⅱ+Ⅲ)으로 명명하고, 침전물은 분획(fraction) I+II+IIIw (또는 II+IIIw)로 명명하였다 (w; wash). 분획 I+II+IIIw (또는 II+IIIw)는 즉시 사용하거나 -20℃ 이하에서 보관한다.
1-4 : 침전 Ⅲ 단계 및 여과(filtration)
면역글로불린이 포함된 분획 I+II+IIIw (또는 II+IIIw)에서 추가로 알부민(albumin), 지단백(lipoprotein), 트롬빈(thrombin) 및 다른 원하지 않는 단백질(other unwanted proteins)을 제거하기 위해 침전 III 단계를 수행하였다.
실시예 1-3에서 회수한 분획 I+II+IIIw (또는 II+IIIw)를 차가운 증류수(cold distilled water)에 녹인 후, 추후 총 생균측정(total viable count)을 하기 위해 일부를 샘플링하여 보관하였다. 상기 증류수에 녹인 분획 I+II+IIIw (또는 II+IIIw)에 최종 에탄올 농도가 -5±1.0℃에서 18±1.8%이 되도록 96% 에탄올을 첨가하였으며, -6℃로 미리 준비해둔 아세테이트 버퍼(acetate buffer)를 사용하여 pH가 5.2±0.1이 되도록 조절하였다.
혼합물을 필터 프레스(filter press, DG800K)를 사용하여 상측액과 침전물을 분리시켰다. 상층액은 여과액(filtrate) I+III (또는 III)로 명명하고, 침전물은 분획 I+III (또는 III)로 명명하였다. 분획 I+III (또는 III)는 폐기하고, 여과액 I+III (또는 III)는 추후 총 생균측정(total viable count)을 하기 위해 일부를 샘플링하여 보관하였다.
1-5 : 침전 Ⅱ 단계 및 여과(filtration)
실시예 1-4의 여과액 I+III (또는 III)에서 면역글로불린을 침전시키기 위해 침전 Ⅱ단계를 수행하였다.
최종 에탄올 농도가 -10±2.0℃에서 25±2.5%가 되도록 여과액 I+III (또는 III)에 96% 에탄올(ethanol)을 첨가하고, 1M 소듐 바이카보네이트(중탄산나트륨; sodium bicarbonate)를 사용하여 pH가 7.4±0.2가 되도록 조절하였다.
혼합물을 필터 프레스(filter press, DG800K)를 사용하여 상측액과 침전물을 분리시켰다. 침전물을 분획 II 페이스트(fraction II paste)로 명명하였으며, 추후 박테리아 엔도톡신, 단백질 함량 및 구성을 측정하기 위해 일부를 샘플링하여 보관하였다.
1-6 : 분획 II 페이스트 용해(dissolution) 및 청정여과(clarifying filtration)
혈장에서 분리한 면역글로불린의 함량을 높이고 혈전생성 물질을 제거하기 위한 분리 정제 과정을 수행하였다.
먼저, 실시예 1-5에서 분리한 면역글로불린이 포함된 분획 II 페이스트를 용해시켜 투석과정에 적합한 조건을 가지도록 조절하였다. 분획 II 페이스트는 10℃ 이하의 자켓식 반응기(jacketed vessel)로 옮기고, 분획 II 페이스트 볼륨 4배의 0.6% 염화나트륨(sodium chloride) 용액을 첨가하여 용해시켰으며, 단백질 함량 및 구성을 측정하기 위해 일부 샘플링하여 보관하였다.
그 다음, 1 M의 아세트산(acetic acid)을 사용하여 용해된 용액의 pH가 5.0±1이 되도록 조절한 후, 용액을 심층여과 카트리지(depth filter cartridges; BecodiskBP01)를 사용해 청정여과(clarifying filtration)하여 분획 II 용액(fraction II solution)을 수득하였다.
1-7 : 투석여과(diafiltration)
실시예 1-6에서 수득한 면역글로불린이 포함된 분획 II 용액에서 에탄올과 저분자 이온을 제거하고, 음이온교환 크로마토그래피 과정에 적합한 조건을 가지도록 pH를 조절하였다.
면역글로불린이 포함된 분획 II 용액은 한외여과/투석여과(Ultrafiltration/Diafiltration; Millipore Pellicon2(50K)) 시스템을 사용하여 10mOsmol/kg 이하로 투석여과를 수행하였으며, 수득된 여과액은 추후 단백질 함량, 구성 및 생균을 측정하기 위해 일부를 샘플링하여 보관하였다.
상기 여과액에 1M 아세트산나트륨(sodium acetate)을 5.0±1.0 mM이 되도록 첨가하고 pH를 6.0±0.1로 조절하여 투석 및/또는 농축된 면역글로불린 용액을 수득하였다.
1-8 :음이온교환 크로마토그래피(anion exchange chromatography)
실시예 1-7에서 수득한 투석 및/또는 농축된 면역글로불린 용액 속에 포함된 폴리머(polymer) 및 다른 혈장 단백질을 제거하기 위해 음이온교환 크로마토그래피를 수행하였다.
음이온교환수지는 DEAE 세파로스 젤(DEAE Sepharose gel; GE Healthcare, Catalog No. 17-0709)을 컬럼에 충진한 후 이퀄리브레이션 버퍼(equilibration buffer)를 사용하여 pH가 6.0±0.1이 되도록 평형화시켰다. 이후 실시예 1-7에서 수득한 투석 및/또는 농축된 면역글로불린 용액을 유속 120±25 cm/hr이 되도록 컬럼에 로딩하였으며, 음이온교환 크로마토그래피에 부착되지 않은 분획을 1.5 내지 2.0 로딩볼륨(Loading Volume; LV)으로 회수하였다.
1-9 : 바이러스 불활성화를 위한 용매 및 세정제 처리(solvent/detergent Treatment)
면역글로불린이 포함된 용액의 잠재적 지질외피바이러스(lipid enveloped virus)를 불활성시키기 위해 용매 및 세제를 처리하는 단계를 수행하였다.
먼저, 실시예 1-8에서 회수한 음이온교환 크로마토그래피에 부착되지 않은 분획에 아세트산을 첨가하여 pH가 5.0±0.1이 되도록 조절하였으며, 트리(엔-부틸)-포스페이트(Tri(n-butyl)-phosphate; TNBP) 및 폴리소르베이트 80(Polysorbate 80 ; Tween 80)을 각각 0.3±0.06% 및 1±0.2%의 농도가 되도록 첨가한 후, 20분 내지 30분 동안 200±50 RPM으로 교반하였다. 용액 안의 TNBP 및 Tween 80가 균일하게 혼합되었는지 일부를 샘플링하여 확인하였으며, 그 후로 25±1.0℃에서 8시간 동안 200±50 RPM으로 지속적으로 교반하였다. 교반이 완료된 다음 면역글로불린이 포함된 용액은 하드파이프 라인을 통해 바이러스 안전영역(viral secure area ; VSA)인 다른 탱크로 옮겼다.
1-10 :양이온교환 크로마토그래피(cation exchange chromatography)
용매/세제 처리된 면역글로불린 용액에서 TNBP, Tween 80 및 응고인자 등이 다른 혈전생성물질을 제거하기 위해 양이온교환 크로마토그래피를 21±1.5 ℃에서 수행하였다.
양이온교환수지는 세라믹 재질인 CM 하이퍼 D겔(Pall Corporation ; Catalog No. 20050)을 컬럼에 충진한 후 이퀄리브레이션 버퍼(equilibration buffer)를 사용하여 pH가 5.0±0.1이 되도록 평형화시켰다. 이후 실시예 1-9의 용매/세제 처리된 면역글로불린 용액을 유속 60cm/hr이 되도록 컬럼에 로딩하였다. 그 후, 컬럼볼륨의 7배 볼륨의 세척버퍼로 세척한 다음 용출 버퍼 (용출버퍼 조성 : 20mM NaOAc pH 4.5 w/ 0.5M NaCl)를 사용하여 면역글로불린을 용출시켜 회수하였다. (흡착율 : 양이온교환수지 1㎖당 84㎎의 면역글로불린)
<실시예 2> 양이온교환 크로마토그래피(cation exchange chromatography)후, CIP를 통한 FXI 제거
실시예 1-10에서 사용한 컬럼에 컬럼 2배 부피의 2M NaCl을 흘려준 다음(CIP1), 0.5M NaOH를 2 컬럼 부피만큼 흘려주었다(CIP2). 그 뒤, Cation exchange chromatography 에서 FXI(FXIa)이 제거되는 공정 단계를 확인하기 위하여, CIP 1, CIP 2 수집하여, FXI(FXIa) content를 측정하였다.
그 결과, CIP 첫번째 단계인 2M NaCl 에서는 load 시료 대비 2.9% 의 FXI(FXIa) 이 측정되었으며, CIP 두번째 단계인 0.5M NaOH 에서는 detection limit (0.31 ng/mL) 미만으로 측정되었다(표 1).
CM Ceramic HyperD F resin의 CIP 방법으로 NaOH 사용을 권장하고 있으며, NaOH 의 경우 일반적으로 resin CIP 과정에 널리 사용되고 있다. 따라서, FXI(FXIa)이 CIP 두번째 단계인 0.5M NaOH에서 제거 될 것이라 추측하나, harsh condition으로 인하여 ELISA 시험법 상에서는 FXI(FXIa) 측정되지 않았다. 실제로, NaOH의 경우 peptide bond를 hydrolysis 시켜 protein degradation 유발한다는 보고가 있다.
Figure PCTKR2017011439-appb-T000001
표 1의 결과를 토대로, FXI(FXIa)이 공정 중(Flow through, Elution)에는 binding 되어 있다가 CIP에서 용출된다는 것을 확인하기 위해서, 0.5M NaOH 대신 6M guanidine HCl을 사용하여 CIP를 진행하였다. 6M guanidine HCl의 경우, 널리 알려진 protein denaturant로써 protein purification시에 많이 사용되고 있다. 6M guanidine HCl을 사용하여 CIP를 진행한 결과, 59.3%의 FXI(FXIa)이 용출 되는 것을 확인하였다.
따라서, FXI(FXIa)이 CM chromatography 공정 중에는 용출되지 않고 binding 되어있다는 것을 확인하였다(표 2).
Figure PCTKR2017011439-appb-T000002
FXI 함량 시험을 이용하여 공정시료내 FXI(FXIa)함량을 측정한 결과, load 시료내 FXI(FXIa) 418.7 ng/mL 이 Cation exchange chromatograph 공정 수행 후, elution 시료내에서는 detection limit (0.31 ng/mL) 미만으로 측정되었다. 0.5 NaOH로 CIP공정을 진행 후, FXI(FXIa) 가 완전히 제거 되었음을 확인하기 위해 추가로 6M guanidine HCl로 CIP 공정을 실시하였다.
그 결과, 6M guanidine HCl에서는 detection limit (0.31 ng/mL) 미만으로 측정되어, 0.5M NaOH에서 완전히 제거됨을 확인하였다.
각 단계별로, FXI의 농도는 ELISA로 측정하였다.
Figure PCTKR2017011439-appb-T000003
<실시예 3> 제조 단계별 여과액 또는 침전물에 포함된 FXI(Human Coagulation Factor XI)의 농도 측정
혈전응고제의 제거 정도를 확인하기 위해, 상기 실시예 1의 제조 단계별 여과액 또는 침전물에 포함된 FXI(Human Coagulation Factor XI)의 농도를 ELISA(Human Factor XI ELISA kit: Innovative, Cat No. IHFXIKT-TOT), SDS-PAGE 및 western blotting으로 측정하였으며, FXIa의 함량은 TGA 시험(CBER ver.3)으로 측정하였다.
본 발명의 정제 공정의 산물들의 FXI 함량을 측정한 결과, 도 2에서 보는 바와 같이, 음이온 교환수지 크로마토그래피에서는 변화가 없었으나, 양이온 교환수지 크로마토그래피 공정의 용출액에서 측정 한계 이하로 검출되지 않으며, 해당 공정에서 FXI가 모두 제거되는 것을 확인할 수 있었다.
<실시예 4> FXI(Human Coagulation Factor XI) 제거 효율 측정
일반적으로 Plasma 내에 존재하는 FXI 의 농도는 4-6 μg/mL 으로 알려져 있으며, 이를 근거로 하여 CM load 시료의 FXIa 농도를 4 μg/mL 되도록 조제하여 spiking test를 진행하였다. 이는 CM load 시료(656B14012)에서 측정되는 약 400 ng/mL 농도의 10 배에 해당하는 농도이다.
FXI 함량 시험을 이용하여 공정시료내 FXI(FXIa)함량을 측정한 결과, load 시료내 FXI(FXIa) 4020.1 ng/mL이 Cation exchange chromatography 공정 수행 후, elution 시료내에서는 detection limit (0.31 ng/mL) 미만으로 측정되는 것을 확인하였으며, TGA 시험을 이용하여 공정 시료내 FXIa activity를 측정한 결과, load 시료내 72837.4 mU/mL이 Cation exchange chromatograph 공정 수행 후, elution 시료내에서는 detection limit (0.156 mU/mL) 미만으로 측정되어, 양이온교환크로마토그래피 공정을 통해 과량의 FXI를 제거할 수 있음을 확인하였다(표 4).
Figure PCTKR2017011439-appb-T000004
추가로, 분획 공정의 start material인 크라이오 제거 혈장(Cryo SUP) 내에 존재하는 FXI 의 total amount 약 8 g 이다. 분획 공정에서 FXI의 제거가 이루어지지 않고, 온전히 정제공정으로 유입된다고 가정하였을 경우, 총 16 g FXI이 공정산물에 남아있게 된다(8 g × 2 batch = 16 g) 이를 Cation exchange chromatography 공정의 scale down factor인 3162로 나누면, 5 mg이 된다. CM load 시료의 FXIa 총량이 5 mg 되도록 조제하여 spiking test를 진행하였다(16 g ÷ 3162 ≒ 0.005 g = 5 mg)
이는 실제 CM load 시료(656B14012)에서 측정되는 총량인 95000ng의 약 53배에 해당하는 양이다. FXI 함량 시험을 이용하여 공정 시료내 FXI(FXIa)함량을 측정한 결과, load 시료내 total FXI(FXIa)는 약 4.7 mg이 Cation exchange chromatograph 공정 수행 후, elution 시료내에서는 total FXI(FXIa) 약 1.3 ㎍으로 측정되었다. Elution에서 미량의 FXI(FXIa)가 측정되었지만 residual ratio는 0.0% 로 load 시료 대비 99.9% 이상이 제거 되었음을 확인하였다(표 5).
Figure PCTKR2017011439-appb-T000005
<실시예 5> 과량의 FXI가 포함된 시료에서의 FXI 제거 효율 측정
실시예 3과 같은 방법으로, 정제 공정을 거치지 않은 분획 단계의 크라이오 제거 혈장(Cryo sup) 시료와 분획 I+II+III paste 시료를 CM hyper D chromatography를 수행하였을 경우 FXI의 제거 효율을 측정하였다. 이 두단계의 시료는 FXI이 과량 포함되어 있다.
그 결과, 표 6 및 표 7에 개시된 바와 같이, 약 99%의 FXI가 제거되는 것을 확인하였다.
Figure PCTKR2017011439-appb-T000006
Figure PCTKR2017011439-appb-T000007
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 FXI 제거방법을 이용하면, 불순물 및 혈전 생성물질을 제거효율을 높이고, 중합체 함량을 유지할 수 있으므로, 안정적이고 향상된 품질의 혈장 단백질, 특히 면역글로불린의 생산이 가능하다.

Claims (16)

  1. 다음 단계를 포함하는 혈장 단백질 분리 정제에 있어, FXI(factor XI)의 제거 방법:
    (a) FXI 및 혈장 단백질을 함유하는 혈장 단백질 용액을 수득하는 단계;
    (b) 상기 수득된 용액을 투석 및/또는 농축시키는 단계; 및
    (c) 상기 농축된 용액에 용매 및 세정제를 처리한 후, 양이온교환 크로마토그래피를 수행하여 컬럼에 FXI 및 혈장 단백질을 결합시키는 단계; 및
    (d) 혈장 단백질만 선택적으로 용출시키는 단계.
  2. 제1항에 있어서, 상기 (b) 단계와 (c) 단계 사이에, 음이온교환 크로마토그래피를 수행하여 음이온교환 크로마토그래피 컬럼에 부착되지 않은 분획을 수득하는 단계를 추가로 포함하는 것을 특징으로 하는 FXI의 제거방법.
  3. 제1항에 있어서, 상기 (a) 단계의 용액은 혈장단백질 분획 II 페이스트(fraction II paste)를 용해시킨 다음, 여과하여 수득된 것을 특징으로 하는 FXI의 제거방법.
  4. 제3항에 있어서, 상기 분획 II 페이스트(fraction II paste)의 용해는 혈장 단백질 분획 부피의 2 내지 10배가 되도록 염화나트륨(sodium chloride) 용액을 첨가하여 수행하는 것을 특징으로 하는 FXI의 제거방법.
  5. 제3항에 있어서, 상기 여과는 청정여과(clarifying filtration)인 것을 특징으로 하며, pH가 4.5 내지 5.5가 되도록 조절하여 수행되는 것을 특징으로 하는 FXI의 제거방법.
  6. 제1항에 있어서, 상기 (b) 단계의 투석 및/또는 농축은 한외여과/투석여과(ultrafiltration/diafiltration; UF/DF) 시스템을 이용하는 것을 특징으로 하며, 삼투압 10 mOsmol/kg 이하에서 수행한 다음, pH를 5.5 내지 6.5로 조절하는 것을 특징으로 하는 FXI의 제거방법.
  7. 제1항에 있어서, 상기 (c) 단계의 용매는 트리(n-부틸)-포스페이트 (Tri(n-butyl)-phosphate; TNBP)인 것을 특징으로 하며, 세정제는 폴리소르베이트 80, 트리톤 X-100 및 트리톤 X-45 중에서 선택되는 하나 이상인 것을 특징으로 하는 FXI의 제거방법.
  8. 제1항에 있어서, 상기 (c) 단계의 양이온교환 크로마토그래피는 400 내지 600 mM의 염 농도 조건에서 수행하는 것을 특징으로 하는 FXI의 제거방법.
  9. 제1항에 있어서, 상기 (c) 단계의 양이온교환 크로마토그래피는 pH 4.5 내지 5.5, 유속 30 내지 90cm/hr의 조건에서 수행하는 것을 특징으로 하는 FXI의 제거방법.
  10. 제1항에 있어서, 상기 (c) 단계의 양이온교환 크로마토그래피에 흡착되는 혈장 단백질의 흡착량은 양이온교환 수지 ㎖당 90 내지 130㎎/㎖인 것을 특징으로 하는 FXI의 제거방법.
  11. 제1항에 있어서, 상기 (c) 단계의 양이온교환 크로마토그래피는 세라믹 계열의 양이온교환 수지를 이용하는 것을 특징으로 하는 FXI의 제거방법.
  12. 제1항에 있어서, 상기 (c) 단계 및 (d) 단계는 18 내지 25℃의 온도범위에서 수행하는 것을 특징으로 하는 FXI의 제거방법.
  13. 제1항에 있어서, 상기 (d) 단계는 400 내지 600mM의 염화나트륨(NaCl)을 이용하여 혈장단백질만 선택적으로 용출하는 것을 특징으로 하는 FXI의 제거방법.
  14. 제1항에 있어서, 상기 (d) 단계의 혈장 단백질 용출이 완료된 후, 수산화나트륨(NaOH)을 이용하여 양이온교환 수지를 세척하는 제자리 세정(Clean in place, CIP) 단계를 추가로 포함하는 것을 특징으로 하는 FXI의 제거방법.
  15. 제14항에 있어서, 상기 제자리 세정(Clean in place, CIP) 단계는 200 내지 1000mM의 수산화나트륨 농도 조건에서 수행하는 것을 특징으로 하는 FXI의 제거방법.
  16. 제2항에 있어서, 상기 음이온교환 크로마토그래피는 pH 5.5 내지 6.5, 유속 95 내지 145cm/hr의 조건에서 수행하며, 음이온교환 크로마토그래피에 부착되지 않은 분획을 1.5 내지 2.0 로딩볼륨(Loading Volume; LV)으로 수득하는 것을 특징으로 하는 FXI의 제거방법.
PCT/KR2017/011439 2016-11-18 2017-10-17 혈장 단백질 정제시 fxi의 제거방법 WO2018093049A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3043810A CA3043810C (en) 2016-11-18 2017-10-17 Method for removing fxi when purifying plasma proteins
EP17872682.4A EP3543250B1 (en) 2016-11-18 2017-10-17 Method for removing fxi when purifying plasma proteins
US16/461,840 US20190367557A1 (en) 2016-11-18 2017-10-17 Method for removing fxi when purifying plasma proteins
US17/393,736 US20210363179A1 (en) 2016-11-18 2021-08-04 Method for removing fxi when purifying plasma proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160153716A KR101941974B1 (ko) 2016-11-18 2016-11-18 혈장 단백질 정제시 fxi의 제거방법
KR10-2016-0153716 2016-11-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/461,840 A-371-Of-International US20190367557A1 (en) 2016-11-18 2017-10-17 Method for removing fxi when purifying plasma proteins
US17/393,736 Continuation US20210363179A1 (en) 2016-11-18 2021-08-04 Method for removing fxi when purifying plasma proteins

Publications (1)

Publication Number Publication Date
WO2018093049A1 true WO2018093049A1 (ko) 2018-05-24

Family

ID=62145662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011439 WO2018093049A1 (ko) 2016-11-18 2017-10-17 혈장 단백질 정제시 fxi의 제거방법

Country Status (5)

Country Link
US (2) US20190367557A1 (ko)
EP (1) EP3543250B1 (ko)
KR (1) KR101941974B1 (ko)
CA (1) CA3043810C (ko)
WO (1) WO2018093049A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210012453A (ko) 2019-07-25 2021-02-03 주식회사 원화이에프티 인공지능 기반의 스마트 분전 시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764369A (en) 1983-07-14 1988-08-16 New York Blood Center Inc. Undenatured virus-free biologically active protein derivatives
US5252217A (en) * 1991-05-07 1993-10-12 Association Pour L'essor De La Transfusion Sanguine Dans La Region Du Nord Blood coagulation factor XI concentrate having high specific activity, suitable for therapeutic use, and process for preparing same
WO2000076534A1 (en) * 1999-06-15 2000-12-21 Alpha Therapeutic Corporation Manufacturing method for intravenous immune globulin and resultant product
JP2003511468A (ja) * 1999-10-08 2003-03-25 ブイ アイ テクノロジーズ インコーポレイテッド 同種凝集素枯渇血液組成物および同種凝集素枯渇血液組成物の作製方法
US20100056766A1 (en) * 2008-08-27 2010-03-04 Abbott Laboratories Purification of biological conjugates by size exclusion chromatography
US20130058961A1 (en) * 2011-08-26 2013-03-07 Baxter Healthcare S.A. Method for reducing the thromboembolic potential of a plasma-derived immunoglobulin composition
KR20160118298A (ko) * 2014-03-11 2016-10-11 주식회사 녹십자홀딩스 면역글로불린의 정제방법
KR20160118299A (ko) * 2014-03-11 2016-10-11 주식회사 녹십자홀딩스 면역글로불린의 정제방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657690B1 (ko) * 2015-06-05 2016-09-19 주식회사 녹십자홀딩스 혈장 유래 b형 간염 사람 면역글로불린 제제의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764369A (en) 1983-07-14 1988-08-16 New York Blood Center Inc. Undenatured virus-free biologically active protein derivatives
US5252217A (en) * 1991-05-07 1993-10-12 Association Pour L'essor De La Transfusion Sanguine Dans La Region Du Nord Blood coagulation factor XI concentrate having high specific activity, suitable for therapeutic use, and process for preparing same
WO2000076534A1 (en) * 1999-06-15 2000-12-21 Alpha Therapeutic Corporation Manufacturing method for intravenous immune globulin and resultant product
JP2003511468A (ja) * 1999-10-08 2003-03-25 ブイ アイ テクノロジーズ インコーポレイテッド 同種凝集素枯渇血液組成物および同種凝集素枯渇血液組成物の作製方法
US20100056766A1 (en) * 2008-08-27 2010-03-04 Abbott Laboratories Purification of biological conjugates by size exclusion chromatography
US20130058961A1 (en) * 2011-08-26 2013-03-07 Baxter Healthcare S.A. Method for reducing the thromboembolic potential of a plasma-derived immunoglobulin composition
KR20160118298A (ko) * 2014-03-11 2016-10-11 주식회사 녹십자홀딩스 면역글로불린의 정제방법
KR20160118299A (ko) * 2014-03-11 2016-10-11 주식회사 녹십자홀딩스 면역글로불린의 정제방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
POISON ET AL., BIOCHEM. BIOPHYS. ACTA, vol. 82, 1964, pages 463
POLSONRUIZ-BRAVO, VOX SANG, vol. 23, 1972, pages 107
See also references of EP3543250A4
WOLBERG AS ET AL., AM, J. HEMATOL., vol. 65, no. 1, 2000, pages 30 - 34

Also Published As

Publication number Publication date
CA3043810C (en) 2022-10-25
US20210363179A1 (en) 2021-11-25
EP3543250A4 (en) 2020-07-01
KR20180056028A (ko) 2018-05-28
EP3543250B1 (en) 2024-08-07
KR101941974B1 (ko) 2019-01-24
US20190367557A1 (en) 2019-12-05
EP3543250A1 (en) 2019-09-25
EP3543250C0 (en) 2024-08-07
CA3043810A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2015137531A1 (ko) 면역글로불린의 정제방법
WO2015137530A1 (ko) 면역글로불린의 정제방법
WO2019083318A2 (ko) 개선된 면역글로불린의 정제방법
KR100501263B1 (ko) 정맥 주사용 면역글로불린의 제조 방법 및 그 외의 면역글로불린 제품
JP3094167B2 (ja) 免疫血清グロブリンの精製方法
WO2016195387A1 (ko) 혈장 유래 b형 간염 사람 면역글로불린 제제의 제조방법
WO2017095062A1 (en) Method for producing botulinum toxin
JP7458980B2 (ja) アルキルグリコシドによるタンパク質精製およびウイルス不活化
WO2021167275A1 (ko) 아달리무맙의 non-protein a 정제방법
WO2017123012A1 (ko) 피브리노겐의 정제방법
WO2018093049A1 (ko) 혈장 단백질 정제시 fxi의 제거방법
CA2085953C (en) Human antithrombin-iii preparation
WO2013183948A1 (ko) 고당화된 지속형 인간 성장호르몬 단백질 및 이의 제조방법
WO2021006419A1 (en) Refining method of ophthalmic protein pharmaceutical
WO2021167276A1 (ko) 베바시주맙 정제의 최적화된 방법
WO2019083319A2 (ko) 본 빌리브란트 인자(vwf)의 함량 조절이 가능한 제8인자 및 본 빌리브란트 인자를 포함하는 조성물의 제조방법
WO2018212556A1 (en) A method for purifying an antibody or an antibody fragment thereof using affinity chromatography
WO2023204377A1 (ko) 면역글로불린 정제방법
CZ20014456A3 (cs) Způsob přípravy intravenózního immunoglobulinu a přípravku, který jej obsahuje
EP3676375A1 (en) Method for purifying a sulfatase protein
WO2023068740A1 (ko) Igg fc 도메인을 가지는 융합 단백질의 정제방법
WO2024096505A1 (ko) 친화성 크로마토그래피를 통해 불순물을 제거하는 방법
WO2024063469A1 (en) Novel process for purifying heparan-n-sulfatase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3043810

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872682

Country of ref document: EP

Effective date: 20190618