WO2018092762A1 - Conductive paste, conductive film, method for producing conductive film, conductive thin wiring line and method for producing conductive thin wiring line - Google Patents

Conductive paste, conductive film, method for producing conductive film, conductive thin wiring line and method for producing conductive thin wiring line Download PDF

Info

Publication number
WO2018092762A1
WO2018092762A1 PCT/JP2017/040909 JP2017040909W WO2018092762A1 WO 2018092762 A1 WO2018092762 A1 WO 2018092762A1 JP 2017040909 W JP2017040909 W JP 2017040909W WO 2018092762 A1 WO2018092762 A1 WO 2018092762A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
less
line width
conductive paste
film
Prior art date
Application number
PCT/JP2017/040909
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 江口
康博 坂本
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2018551636A priority Critical patent/JP7024724B2/en
Publication of WO2018092762A1 publication Critical patent/WO2018092762A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • An object of the present invention is to provide a conductive paste that is suitably used for forming fine wiring formed close to a transparent conductive thin film used in a touch panel or the like.
  • An object of the present invention is to provide a conductive paste capable of producing an electrode circuit wiring having high surface smoothness without problems when forming a TFT base electrode.
  • the L / S requirement is about 100/100 ⁇ m or less, and there are cases where the L / S is required to be 50/50 ⁇ m or less. The situation is becoming difficult to deal with.
  • a photolithography method As an example of a candidate electrode circuit wiring forming technique that replaces screen printing, a photolithography method can be cited. If a photolithography method is used, it is possible to form a thin line having an L / S of 50/50 ⁇ m or less. However, there are also problems with photolithography.
  • the most typical example of photolithography is a method using a photosensitive resist. Generally, a photosensitive resist is applied to a copper foil portion of a surface substrate on which a copper foil layer is formed, and a photomask or a laser beam is used.
  • a desired pattern is exposed by a method such as direct drawing, the photosensitive resist is developed, and then a copper foil portion other than the desired pattern is dissolved and removed with a chemical to form a fine line pattern of the copper foil. For this reason, the environmental load by waste liquid processing is large, and also the process is complicated, and it has many problems including the viewpoint of production efficiency and the viewpoint of cost.
  • Patent Document 1 discloses an application step of applying a paste made of inorganic powder, a carboxyl group-containing resin, glass frit, and a solvent on a substrate, and drying the applied paste to dry the applied paste.
  • a pattern forming method including a process, a laser irradiation process for drawing a pattern on the dry coating film by laser irradiation, and a development process for developing the pattern using an alkaline solution.
  • This proposal is different from general photolithography in that patterning is performed by removing the resin component in the paste resin component using a laser, but the disadvantage of the conventional photolithography method is that it requires cleaning with an alkaline solution. It cannot be said that it has been resolved.
  • Patent Document 2 discloses a coating process in which a paste containing AlN powder, glass frit, and a solvent is coated on a substrate, a drying process in which the paste coated is dried to form a dry coating film, and a kite laser light irradiation.
  • a conductive film comprising: a laser drawing process for drawing a conductive pattern on the dried coating film; and a developing process for removing an unirradiated portion of the laser beam in the dried coating film using a developer.
  • a pattern forming method is disclosed. This invention is also similar to the above technique in that a laser is used for patterning, and cannot be said to have solved the disadvantages of the conventional photolithography method in that cleaning is essential.
  • the present applicants have proposed the technique shown in Patent Document 3 with the aim of eliminating such a situation. That is, an acid value of 50 to 300 eq. / 10 6 g of polyester resin and an acid value of 50 to 300 eq.
  • the binder resin (A) contains a binder resin (A), a metal powder (B), and an organic solvent (C) made of one or a mixture of two or more selected from the group consisting of polyurethane resins that are / 10 6 g. ) Is a thermoplastic paste having a number average molecular weight of 5,000 to 60,000 and a glass transition temperature of 60 to 100 ° C.
  • An object of the present invention is to provide a conductive paste suitably used for forming fine wiring formed close to a transparent conductive thin film used for a touch panel or the like, and also to form a TFT base electrode. It is an object of the present invention to provide a conductive paste that can produce electrode circuit wiring having high surface smoothness without problems.
  • this invention consists of the following structures.
  • a conductive paste containing at least a binder resin composed of a thermoplastic and / or thermosetting resin, silver powder, and an organic solvent
  • the center diameter D50 of the silver powder is 0.5 ⁇ m or more and 5 ⁇ m or less
  • the binder resin has a number average molecular weight of 3,000 to 100,000 and an acid value of 20 to 500 eq.
  • a conductive paste characterized by containing 60% by weight or more of / 10 6 phenoxy resin.
  • Conductive fine wiring comprising a cured phenoxy resin of 10 6 and conductive particles, and having a line width of 100 ⁇ m or less and a line width of 100 ⁇ m or less.
  • [6] The method for producing a conductive fine wiring according to any one of [3] to [5], wherein unnecessary portions of the conductive film according to [2] are removed with a laser beam.
  • the present invention further has the following configuration.
  • a conductive paste containing at least a binder resin composed of a thermoplastic and / or thermosetting resin, silver powder, and an organic solvent
  • the center diameter D50 of the silver powder is 0.5 ⁇ m or more and 5 ⁇ m or less
  • the silver powder tap density is 2.0 g / cm3 or more
  • the binder resin contains 60% by weight or more of a phenoxy resin having a number average molecular weight of 3,000 to 100,000, and has a dispersion obtained by Grind Gage defined in ISO 1524: 2013 of 10 ⁇ m or less.
  • a conductive paste In a conductive paste containing at least a binder resin composed of a thermoplastic and / or thermosetting resin, silver powder, and an organic solvent,
  • the center diameter D50 of the silver powder is 0.5 ⁇ m or more and 5 ⁇ m or less
  • the silver powder tap density is 2.0 g / cm3 or more
  • the binder resin contains 60% by weight or more of a phen
  • the present invention preferably includes the following configuration.
  • [11] The conductive paste according to [1], wherein the dispersion obtained by Grind Gage specified in ISO 1524: 2013 is 10 ⁇ m or less.
  • [12] The method for producing a conductive paste according to [1] or [11], wherein the mixture is dispersed through a filter having an opening of 1 ⁇ m or more and 25 ⁇ m after the dispersion.
  • the present invention preferably includes the following configuration.
  • a conductive coating film for laser etching characterized by being 4 or less.
  • the conductive paste of the present invention has an acid value of 20 to 500 eq.
  • the surface roughness Ra of the coating film formed by screen printing is 0.4 ⁇ m or less by using a / 10 6 phenoxy resin as a binder, and a conductive film having excellent adhesion to the substrate after the wet heat test can be formed.
  • This is a conductive paste, and by adopting such a configuration, both line width and line width can be miniaturized. Fine wiring required for touch panels and TFT gate electrodes by printed electronics, base, collector, A conductive film suitable for an emitter electrode or the like can be formed.
  • the conductive paste of the present invention is a conductive paste containing an organic component containing a thermoplastic and / or thermosetting resin, silver powder and an organic solvent, and includes a binder resin in the organic component, and is formed by screen printing.
  • the coated film has a surface roughness Ra of 0.4 ⁇ m or less, and a conductive film suitable for a TFT base electrode can be formed by adopting such a configuration.
  • the paste is preferably mixed and dispersed by a specific blending method, and a predetermined degree of dispersion is obtained through a filtration step. As a result, a conductive film having a smooth surface and excellent laser etching suitability can be obtained. it can.
  • the conductive paste of the present invention contains an organic component containing thermoplastic and / or thermosetting resin, silver powder and an organic solvent, and contains a binder resin as an essential component in the organic component.
  • the organic component in the present invention refers to all parts excluding the inorganic component and the organic solvent in the conductive paste.
  • the number average molecular weight is 3,000 to 100,000, and the acid value is 20 to 500 eq.
  • a binder resin containing 60% by weight or more of / 10 6 phenoxy resin is essential.
  • the phenoxy resin in the present invention is a polyhydroxy polyether synthesized from bisphenols and epichlorohydrin.
  • Examples of the phenoxy resin used as the binder resin in the present invention include bisphenol A type, bisphenol A / F copolymer type, bisphenol S type, and bisphenol A / S copolymer type. Among these, from the viewpoint of adhesion to the substrate, a phenoxy resin obtained from bisphenol A type can be preferably used.
  • the acid value of the phenoxy resin in the present invention is 20 eq. / 10 6 g or more and 500 eq. / 10 6 g or less, preferably 30 eq. / 10 6 g or more and 200 eq. / 10 6 g or less is more preferable.
  • the acid value in the organic component improves the substrate adhesion, particularly the adhesion after the wet heat test, but if it is too high, the hydrolysis of the organic component is promoted and the conductivity and substrate adhesion may be impaired. In addition, there is a possibility of adversely affecting migration resistance.
  • the phenoxy resin is reacted with an acid anhydride.
  • an acid anhydride trimellitic anhydride, pyromellitic anhydride, hydrogenated trimellitic acid, phthalic anhydride, maleic anhydride and the like can be used as the acid anhydride.
  • the catalyst a pyridine catalyst, dimethylaminopyridine, diazabicycloundecene and the like can be used.
  • a method of adjusting a predetermined acid value by blending a high acid value phenoxy resin and a low acid value phenoxy resin is also effective.
  • a resin other than a phenoxy resin having a predetermined acid value can be blended.
  • the type of binder resin is not particularly limited as long as it is a thermoplastic resin, but polyester resin, epoxy resin, phenoxy resin, polyamide resin, polyamideimide resin, polycarbonate resin, polyurethane resin, phenol resin, acrylic resin, polystyrene, styrene-acrylic resin , Styrene-butadiene copolymer, phenol resin, polyethylene resin, polycarbonate resin, phenol resin, alkyd resin, styrene-acrylic resin, styrene-butadiene copolymer resin, polysulfone resin, polyethersulfone resin, vinyl chloride-vinyl acetate Examples thereof include copolymer resins, ethylene-vinyl acetate copolymer, polystyrene, silicone resins, and fluorine resins.
  • These resins can be used alone or as a mixture of two or more.
  • One or a mixture of two or more selected from the group consisting of a polyester resin, a polyurethane resin, an epoxy resin, a phenoxy resin, a vinyl chloride resin, and a fiber derivative resin is preferable. .
  • the number average molecular weight of the phenoxy resin in the present invention is not particularly limited, but the number average molecular weight is preferably 3,000 to 100,000, more preferably 8,000 to 50,000. If the number average molecular weight is too low, it is not preferable in terms of durability and heat and humidity resistance of the formed conductive film. On the other hand, when the number average molecular weight is too high, the cohesive force of the resin increases and the durability as a conductive film is improved, but the surface smoothness is significantly deteriorated.
  • the glass transition temperature of the phenoxy resin in the present invention is preferably 60 ° C. or higher, and more preferably 65 ° C. or higher. If the glass transition temperature is low, the reliability after wet heat as a conductive film may be reduced, and the surface hardness may be reduced, and the tack content may cause transfer of paste-containing components to the contact partner during use. There is a possibility that the reliability of the conductive film is lowered.
  • the glass transition temperature of the binder resin is preferably 150 ° C. or less, more preferably 120 ° C. or less, and still more preferably 100 ° C. or less in consideration of printability, adhesion, solubility, and paste viscosity.
  • the shape of the silver powder used in the present invention is not particularly limited. Examples of conventionally known shapes include flakes (flakes), spheres, dendrites (dendrites), and spherical primary particles described in JP-A-9-306240 are three-dimensional. Are aggregated shapes (aggregated).
  • the center diameter (D50) of the silver powder used in the present invention is preferably 0.5 ⁇ m or more.
  • the center diameter is preferably 0.5 ⁇ m or more.
  • the central diameter (D50) is the particle diameter ( ⁇ m) at which the cumulative value is 50% in the cumulative distribution curve (volume) obtained by some measurement method.
  • the cumulative distribution curve is measured in the total reflection mode using a laser diffraction / scattering particle size distribution measuring apparatus (MICROTRAC HRA manufactured by Nikkiso Co., Ltd.).
  • the tap density of the silver powder used in the present invention is preferably 2.0 g / cm 3 or more. If the tap density is low, the degree of silver filling in the coating film becomes low, and as a result, the surface smoothness deteriorates.
  • the upper limit of the tap density is not particularly limited, but is preferably 9.0 g / cm 3 , more preferably 7.5 g / cm 3 , and further preferably 5.5 g / cm 3 .
  • the silver powder content is preferably 400 parts by mass or more and more preferably 560 parts by mass or more with respect to 100 parts by mass of the binder resin from the viewpoint that the conductivity of the formed conductive film is good.
  • the content of the component is preferably 1,900 parts by mass or less, more preferably 1,230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint that the adhesiveness with the base material is good. .
  • the organic solvent that can be used in the present invention is not particularly limited, but from the viewpoint of keeping the volatilization rate of the organic solvent within an appropriate range, the boiling point is preferably 100 ° C. or more and less than 300 ° C., more preferably the boiling point. It is 150 degreeC or more and less than 280 degreeC.
  • the conductive paste of the present invention is typically prepared by dispersing a thermoplastic resin, silver powder, an organic solvent and other components as necessary with a three-roll mill or the like. In this case, the boiling point of the organic solvent is low. If the amount is too large, the solvent volatilizes during dispersion, and the component ratio of the conductive paste may change. On the other hand, if the boiling point of the organic solvent is too high, a large amount of the solvent may remain in the coating film depending on the drying conditions, which may cause a decrease in the reliability of the coating film.
  • the organic solvent that can be used in the present invention is preferably a solvent in which the binder is soluble and the silver powder can be well dispersed.
  • Specific examples include ethyl diglycol acetate (EDGAC), butyl glycol acetate (BMGAC), butyl diglycol acetate (BDGAC), cyclohexanone, toluene, isophorone, ⁇ -butyrolactone, benzyl alcohol, Exson Chemical's Solvesso 100, 150, 200, a mixture of dimethyl ester of propylene glycol monomethyl ether acetate, adipic acid, succinic acid and glutaric acid (for example, DBE manufactured by DuPont Co., Ltd.), terpionol, etc.
  • dissolution of binder resin EDGAC, BMGAC, BDGAC, and mixed solvents thereof are preferred from the viewpoints of excellent properties, moderate solvent volatility during continuous printing, and good suitability for printing by a screen printing method or the like.
  • the content of the organic solvent is preferably 5 to 40 parts by weight, more preferably 10 to 35 parts by weight, based on 100 parts by weight of the total paste. If the content of the organic solvent is too high, the paste viscosity becomes too low, and it tends to cause sagging during fine line printing. On the other hand, when the content of the organic solvent is too low, the viscosity as a paste becomes extremely high, and for example, screen printing properties when forming a conductive film may be significantly reduced.
  • Carbon filler can be added to the conductive paste of the present invention.
  • Examples include carbon-based fillers such as carbon black, graphite powder, and ketjen black.
  • the content of the carbon-based filler is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 2 parts by weight with respect to 100 parts by weight of silver powder.
  • inorganic substances can be added to the conductive paste of the present invention.
  • inorganic substances include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, diamond carbon lactam, and other carbides; boron nitride , Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica, fumed silica (for example, Japan) Aerosil) and other oxides such as colloidal silica; various titanate compounds such as calcium titanate, magnesium titanate and strontium titanate; sulfides such as molybdenum disulfide; magnesium fluoride and
  • a fumed silica is preferable from a viewpoint of providing durability, printability, especially screen printability.
  • a dispersant, a surface conditioner, an antifoaming agent, and a rheology control agent can be blended as additives.
  • a carbodiimide, an epoxy, etc. can also be mix
  • dispersant examples include Disperbyk-2155, and monocarboxylic acids such as lauric acid, myristic acid, palmitic sun, margaric acid, stearic acid, terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalene.
  • Aromatic dicarboxylic acid such as dicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, dicarboxylic acid such as azelaic acid, maleic acid, dimer acid etc.
  • trivalent or higher carboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and carboxylic acid diols such as dimethylolbutanoic acid and dimethylolpropionic acid.
  • an aliphatic monocarboxylic acid or aliphatic dicarboxylic acid solid at 25 ° C. a dispersant.
  • dicarboxylic acids such as lauric acid, myristic acid, palmitic sun, margaric acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid, maleic acid Etc.
  • a compound having a melting point at 60 ° C. to 150 ° C. is preferred as a dispersant.
  • Such a dispersant volatilizes and precipitates under the temperature conditions at the time of paste curing, but at the same time, the dispersant liquefies and reaches an effect of smoothing the paste cured film.
  • ⁇ Curing agent> You may mix
  • blending a curing agent there is a possibility that the curing temperature becomes high and the load of the production process is increased.
  • the type of the curing agent capable of reacting with the binder resin of the present invention is not limited, but is preferably an isocyanate compound and / or an epoxy resin in view of adhesion, flex resistance, curability and the like. Furthermore, regarding the isocyanate compound, it is preferable to use a blocked isocyanate group since the storage stability is improved.
  • curing agents other than isocyanate compounds include known compounds such as amino resins such as methylated melamine, butylated melamine, benzoguanamine, and urea resin, acid anhydrides, imidazoles, and phenol resins. These curing agents can be used in combination with a known catalyst or accelerator selected according to the type.
  • the blending amount of the curing agent is blended to such an extent that the effects of the present invention are not impaired, and is not particularly limited, but is 0.5 to 50 parts by mass with respect to 100 parts by mass of the binder resin. It is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass.
  • aromatic diisocyanates such as tetramethylene diisocyanate and hexamethylene diisocyanate
  • aromatic diisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate, etc.
  • Alicyclic diisocyanates, or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine
  • Low molecular active hydrogen compounds such as Polyester polyols, polyether polyols, terminal isocyanate group-containing compounds obtained by reacting a polymeric active hydrogen compound such as polyamides and the like.
  • isocyanate group blocking agent examples include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol; oximes such as acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime.
  • Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol ; Lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -propylolactam, and the like, as well as aromatic amines, imides, acetylacetone, Seto acetate, active methylene compounds such as malonic acid ethyl ester, mercaptans, imines, imidazoles, ureas, diaryl compounds, sodium bisulfite, etc. can be mentioned. Of these, oximes, imidazoles, and amines are particularly preferable from the viewpoint of curability.
  • Examples of the epoxy compound used as a curing agent in the present invention include glycidyl ether types such as bisphenol A glycidyl ether, bisphenol S glycidyl ether, novolak glycidyl ether, and bromo bromide, hexahydrophthalic acid glycidyl ester, and dimer acid glycidyl ester Examples include glycidyl ester type, triglycidyl isocyanurate, or 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, epoxidized soybean oil, and other alicyclic or aliphatic epoxides. You may use the above together.
  • bisphenol A glycidyl ether is most preferable, and among them, those having a molecular weight of less than 3000 and having two or more glycidyl ether groups in one molecule are more preferable.
  • the viscosity of the electrically conductive paste of this invention is not specifically limited, What is necessary is just to adjust suitably according to the formation method of a coating film.
  • the viscosity of the conductive paste is preferably 100 dPa ⁇ s or more, more preferably 150 dPa ⁇ s or more at the printing temperature.
  • the upper limit is not particularly limited, but if the viscosity is too high, the surface smoothness may decrease.
  • the conductive paste of the present invention preferably has an F value of 60 to 95%, more preferably 75 to 95%.
  • the filler mass part referred to here is the mass part of the conductive powder, and the solid content mass part is a mass part of components other than the solvent, and includes all of the conductive powder, organic components, other curing agents and additives. If the F value is too low, a conductive film showing good conductivity cannot be obtained. If the F value is too high, the adhesion between the conductive film and the substrate and / or the surface hardness of the conductive film tends to decrease. Yes, printability is inevitable.
  • the conductive powder refers to silver powder.
  • the conductive paste of the present invention has a dispersity of 10 ⁇ m or less obtained by Grind Gage specified in ISO 1524: 2013. If the degree of dispersion exceeds this range, abnormal protrusions increase on the surface of the conductive film obtained from the paste, and the fine lines caused by laser etching are deteriorated.
  • the conductive paste of the present invention can be prepared by dispersing an organic component, silver powder, an organic solvent, and other components as required with a three-roll roll or the like.
  • the binder resin is dissolved in an organic solvent.
  • silver powder, a dispersant, and other additives as necessary are added, and dispersion is carried out with a double planetary, a dissolver, a planetary stirrer, or the like.
  • the conductive paste thus obtained can be filtered if necessary.
  • dispersant that is solid at 25 ° C., and to mix and disperse the silver powder, the binder resin solvent solution, and the dispersant all at once.
  • the opening as a filter for filtering the conductive paste is not particularly limited, but a filter of 25 ⁇ m or less is preferable, more preferably 20 ⁇ m or less, and most preferably 15 ⁇ m or less.
  • a filter having a mesh size exceeding 25 ⁇ m is used, undispersed conductive powder, coarse particles, foreign matter, etc. cannot be removed, and a short circuit occurs between the fine wires after etching, resulting in poor yield.
  • the opening is preferably 1 ⁇ m or more, and if it is finer than this, depending on the particle diameter of the silver powder, the filtration rate is remarkably lowered, and finally the filtration filter is clogged. As a result, the number of filtration filter replacements increases, and the production efficiency decreases significantly.
  • a conductive paste having a dispersity of 10 ⁇ m or less obtained by Grind Gage defined in ISO 1524: 2013 of the present invention can be obtained.
  • the conductive paste of the present invention is applied or printed on a substrate to form a coating film, and then the organic solvent contained in the coating film is volatilized to dry the coating film, thereby forming the conductive film of the present invention.
  • the method for applying or printing the conductive paste on the substrate is not particularly limited, and can be applied to all printing methods such as gravure printing, offset printing, letterpress printing, ink jet printing, reverse printing, and micro contact printing.
  • printing by a screen printing method is preferable because it is a technique that is widely used in the industry for forming an electric circuit using a conductive paste and a simple process.
  • the step of evaporating the organic solvent is preferably performed at room temperature and / or under heating.
  • the heating temperature is preferably 80 ° C or higher, more preferably 100 ° C or higher, and further preferably 110 ° C or higher. Further, from the viewpoint of heat resistance of the underlying transparent conductive layer and energy saving in the production process, the heating temperature is preferably 150 ° C. or lower, more preferably 135 ° C. or lower, and further preferably 130 ° C. or lower.
  • the curing reaction proceeds when the step of evaporating the organic solvent is performed under heating.
  • the thickness of the conductive film of the present invention may be set to an appropriate thickness according to the intended use.
  • the film thickness of the conductive film is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, more preferably 0.8 ⁇ m or more and 20 ⁇ m or less, Preferably they are 1.2 micrometers or more and 10 micrometers or less, and still more are 1.6 micrometers or more and 7 micrometers or less. If the thickness of the conductive film is too thin, there is a possibility that desired conductivity as a circuit cannot be obtained. In addition, the thickness of the conductive film affects the line width formed by laser etching and the width between lines. Therefore, it is better not to make the thickness more than necessary particularly when fine wiring is required.
  • the surface roughness Ra of the conductive film of the present invention is essential to be 0.40 ⁇ m or less. If the surface roughness Ra is too high, the scattering of the laser light becomes remarkable in the laser etching process, and the sharpness of the fine line (edge linearity) is lowered.
  • laser etching unnecessary portions of the conductive film obtained as described above are removed using laser light (laser etching) to obtain fine wiring.
  • a carbon dioxide laser, a YAG laser, a YVO laser, a fiber laser, a semiconductor laser, an excimer laser, or the like can be used.
  • conductive fine wiring having a line width of 100 ⁇ m or less and a line width of 100 ⁇ m or less can be formed by laser etching.
  • the line width of the conductive fine wiring is preferably 50 ⁇ m or less, and the line width can be set to 4 times or less the thickness of the conductive film.
  • the line width of the conductive fine wiring is 35 ⁇ m or less, and the line width can be 3.5 times or less of the thickness of the conductive film.
  • the thin line width obtained by laser etching is 100 ⁇ m or less, and in the present invention, it is possible to realize a line width of about 2.5 times the thickness of the conductive film.
  • the thickness of the conductive film is 10 ⁇ m.
  • the minimum line width is 25 ⁇ m, and when the thickness of the conductive film is 5 ⁇ m, the line width is 12.5 ⁇ m.
  • the line width obtained by laser etching is 100 ⁇ m or less, and in the present invention, it is possible to realize a minimum line width of about 3 times the thickness of the conductive film.
  • a minimum line width of 30 ⁇ m can be realized, and when the thickness of the conductive film is set to 5 ⁇ m, a minimum line width of 15 ⁇ m can be realized.
  • ⁇ Number average molecular weight> The sample resin was dissolved in tetrahydrofuran so that the resin concentration was about 0.5% by weight, and filtered through a polytetrafluoroethylene membrane filter having a pore diameter of 0.5 ⁇ m to obtain a GPC measurement sample.
  • GPC measurement of a resin sample using tetrahydrofuran as a mobile phase, a gel permeation chromatograph (GPC) Prominence manufactured by Shimadzu Corporation, and a differential refractometer (RI meter) as a detector at a column temperature of 30 ° C. and a flow rate of 1 ml / min. was done.
  • the number average molecular weight was a standard polystyrene equivalent value, and was calculated by omitting a portion corresponding to a molecular weight of less than 1000.
  • GPC column shodex KF-802, 804L and 806L manufactured by Showa Denko KK were used.
  • ⁇ Acid value 2> A solution obtained by dissolving 0.1 g of resin in 10 ml of a mixed solvent of benzyl alcohol / chloroform (1/1 vol ratio) and 0.4 g of sodium hydroxide in a mixed solvent of benzyl alcohol / methanol (9/1 vol ratio) are dissolved. Measured by titrating with a prepared alkaline solution.
  • ⁇ Glass transition temperature (Tg)> 5 mg of sample resin is put in an aluminum sample pan, sealed, and measured with a differential scanning calorimeter (DSC) DSC-220 manufactured by Seiko Instruments Inc. up to 200 ° C. at a heating rate of 20 ° C./min. And the temperature at the intersection of the base line extension below the glass transition temperature and the tangent indicating the maximum slope at the transition.
  • DSC differential scanning calorimeter
  • ⁇ Paste viscosity> The viscosity was measured at 20 rpm using a BH viscometer (manufactured by Toki Sangyo Co., Ltd.) at a sample temperature of 25 ° C.
  • the conductive laminate test piece 1 was evaluated by a peel test using Cellotape (registered trademark) (manufactured by Nichiban Co., Ltd.) according to JIS K-5400-5-6: 1990. However, the number of cuts in each direction of the lattice pattern was 11, and the cut interval was 1 mm. 100/100 indicates that there is no peeling and good adhesion, and 0/100 indicates that all are peeled off.
  • ⁇ Moist heat test> The sample was exposed for 240 hours in a high-temperature and high-humidity tank adjusted to 85 ° C. and 85% RH at 1 atmosphere, and after having been leveled in a standard room for at least 24 hours, an adhesion test was conducted to evaluate the wet heat test.
  • ⁇ Resistivity> The sheet resistance and film thickness of the conductive laminate test piece 1 were measured, and the specific resistance was calculated.
  • a gauge stand ST-022 manufactured by Ono Sokki Co., Ltd.
  • the sheet resistance was measured for four test pieces using MILLIOHMMETER 4338B (manufactured by HEWLETT PACKARD), and the average value was used.
  • the range that can be detected by this milliohm meter is 1 ⁇ 10 ⁇ 2 ( ⁇ ⁇ cm) or less, and a specific resistance of 1 ⁇ 10 ⁇ 2 ( ⁇ ⁇ cm) or more is outside the measurement limit.
  • the surface roughness Ra was measured using a surface roughness meter (Handy Surf E-35B, Tokyo Seimitsu Co., Ltd., calculated based on JIS-1994).
  • Conductive paste is applied to a 2.5 x 10 cm rectangle on the polyester base ITO on which the ITO thin film has been formed by screen printing, using screen printing.
  • the conductive thin film was obtained by drying at 120 ° C. for 30 minutes.
  • the surface roughness R of the ITO tatami mat was 0.3 ⁇ m. Further, the printing conditions and the like were adjusted so that the film thickness was 4 to 6 ⁇ m.
  • laser etching is performed on the conductive thin film prepared by the above method, the line width / interline width shown below is drawn, and the presence or absence of fine wiring formation is observed with a microscope at each set line width / interline width.
  • the resin solution thus obtained was dropped on a polypropylene film and spread using a stainless steel applicator to obtain a resin solution thin film. This was left to stand in a hot air dryer adjusted to 120 ° C. for 3 hours to volatilize the solvent, and then the resin thin film was peeled off from the polypropylene film to obtain a film-like dry resin thin film, which was used for acid value measurement and the like. Thereafter, the raw material was changed in the same manner to perform a modification operation, and acid-modified phenoxy resins shown in Table 1 were obtained.
  • Example 1 2857 parts (1000 parts in terms of solid part) of an acid-modified phenoxy resin PH001 shown in Table 1 dissolved in EDGAC so that the solid content concentration is 35% by mass, 8361 parts of flaky silver powder 1 and 100 of curing agent 1 Part, 59 parts of leveling agent, 34 parts of additive 1 and 164 parts of EDGAC as a solvent were mixed and dispersed twice by passing through a chilled three-roll kneader. Next, a 635 mesh (stainless mesh filter (aperture 20 ⁇ m) filter) was attached to the paste filter, and the paste was filtered. After that, the obtained conductive paste was printed in a predetermined pattern, and then 130 ° C.
  • 635 mesh stainless mesh filter (aperture 20 ⁇ m) filter
  • Examples 2 to 11 [Comparative Examples 1 to 3] Examples 2 to 11 and Comparative Examples 1 to 3 were carried out by changing the resin and composition of the conductive paste. The results are shown in Table 2. In the examples, good coating film physical properties could be obtained by heating at a relatively low temperature of 130 ° C. for 30 minutes in an oven. Also, the adhesion to the ITO film and the adhesion after the wet heat environment test were good. Furthermore, it showed good fine wire formability by laser etching.
  • Silver powder 1 Agglomerated powder SF-2J (D50: 1.4 ⁇ m, tap density 3.8 g / cm 3 )
  • Silver powder 2 Flake silver powder SF-70A (D50: 2.4 ⁇ m, tap density 3.0 g / cm 3 )
  • Silver powder 3 Ag2-1C (D50: 0.9 ⁇ m, tap density 5.0 g / cm 3)
  • Silica Nippon Aerosil Co., Ltd. # 300, Carbon black: Ketjen ECP600JD made by Lion Co., Ltd.
  • Curing agent 1 MF-K60X manufactured by Asahi Kasei Chemicals Corporation Hardener 2: BI-7960 from Baxenden Curing catalyst: Kyodo Pharmaceutical Co., Ltd. KS1260, Leveling agent: Kyoeisha Chemical Co., Ltd. MK Conch, Dispersant 3: Oxalic acid dihydrate, melting point 101.5 ° C. Dispersant 5: malonic acid melting point 135 ° C. Dispersant 12: Margaric acid, melting point 61 ° C., EDGAC: Ethyl diglycol acetate manufactured by Daicel Corporation, BDGAC: butyl diglycol acetate manufactured by Daicel Corporation, It is.
  • Example 21 2857 parts of phenoxy resin PH-1 dissolved in EDGAC so that the solid content concentration is 35% by mass (1000 parts in terms of solid part), 8361 parts of flaky silver powder 1, 100 parts of curing agent 1, and a leveling agent 59 parts, 34 parts of additive 1 and 164 parts of EDGAC as a solvent were blended and dispersed by passing twice through a chilled three-roll kneader. Next, a 635 mesh (stainless mesh filter (aperture 20 ⁇ m) filter) was attached to the paste filter, and the paste was filtered. After that, the obtained conductive paste was printed in a predetermined pattern, and then 130 ° C. ⁇ The film was dried for 30 minutes to obtain a conductive film, the basic physical properties were measured using this conductive film, and then the surface smoothness was examined.
  • 635 mesh stainless mesh filter (aperture 20 ⁇ m) filter
  • Examples 22 to 53 [Comparative Examples 11 to 14] Examples 22 to 53 and Comparative Examples 11 to 14 were carried out by changing the resin and the composition of the conductive paste.
  • the formulation and evaluation results of the conductive paste are shown in Tables 3 to 6.
  • good coating film physical properties could be obtained by heating at a relatively low temperature of 130 ° C. for 30 minutes in an oven. Also, the adhesion to the ITO film was good.
  • Ketjen Black (Carbon Black): Ketjen ECP600JD manufactured by Lion Corporation Hardener 1: MF-K60X manufactured by Asahi Kasei Chemicals Corporation Hardener 2: Baksenden BI-7960 Curing catalyst: Kyodo Pharmaceutical Co., Ltd. KS1260 Leveling agent: Kyoeisha Chemical Co., Ltd. MK Conk Additive 1: MK Conc (leveling agent) Additive 2: BYK-410 (Rheology control agent) manufactured by Big Chemie Japan Co., Ltd.
  • Additive 3 BYK-405 (Rheology control agent) manufactured by Big Chemie Japan Additive 4: jER-820 (epoxy) Dispersant 1: Disperbyk 2155 (dispersant) manufactured by Big Chemie Japan Co., Ltd.
  • Dispersant 2 Disperbyk130 (dispersant) manufactured by Big Chemie Japan Co., Ltd.
  • Dispersant 3 Oxalic acid dihydrate, melting point 101.5 ° C.
  • Dispersant 4 Adipic acid melting point 152.1 ° C.
  • Dispersant 5 malonic acid melting point 135 ° C.
  • Dispersant 6 Succinic acid Melting point 184 ° C
  • Dispersant 7 Maleic acid Melting point 131 ° C.
  • Dispersant 8 fumaric acid
  • Dispersant 9 Lauric acid, melting point 43.2 ° C.
  • Dispersant 10 myristic acid, melting point 54.4 ° C
  • Dispersant 11 Palmitic Sun, melting point 62.9 ° C.
  • Dispersant 12 Margaric acid, melting point 61 ° C.
  • Dispersant 13 Stearic acid, melting point 69.6 ° C.
  • EDGAC Ethyl diglycol acetate manufactured by Daicel Corporation
  • BDGAC Butyl diglycol acetate manufactured by Daicel Corporation
  • the binder resin PH-3 was produced by the following operation. ⁇ Binder resin PH-3> Into a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 400 parts of InChem phenoxy resin PKHC was added, and then 489 parts of ethyl diglycol acetate (EDGAC) was charged and dissolved at 85 ° C. Thereafter, 3 parts of trimellitic anhydride was added, 0.19 part of dimethylaminopyridine and 0.48 part of diazabicycloundecene were added as catalysts, and reacted at 85 ° C. for 4 hours to obtain a solution of phenoxy resin PH-3. Obtained.
  • EDGAC ethyl diglycol acetate
  • the solid content concentration of the obtained phenoxy resin solution was 35% by mass.
  • the resin solution thus obtained was dropped on a polypropylene film and spread using a stainless steel applicator to obtain a resin solution thin film. This was left to stand in a hot air dryer adjusted to 120 ° C. for 3 hours to volatilize the solvent, and then the resin thin film was peeled off from the polypropylene film to obtain a film-like dry resin thin film, which was used for various measurements.
  • the conductive paste of the present invention has a high degree of dispersion
  • the conductive film obtained from the paste of the present invention has a good laser etching property
  • a conductive thin film such as ITO to make a touch panel. It can be used effectively as a member for an input / output interface such as. Further, it can be suitably used for a wiring layer such as a printed TFT that requires fine wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

[Problem] To provide a conductive paste which enables the achievement of a conductive film that has excellent laser etching properties and is useful for the formation of a thin wiring line. [Solution] After mixing and dispersing a silver powder having a central particle diameter D50 of from 0.5 μm to 5 μm (inclusive) and preferably having a tap density of 2.0 g/cm3 or more, a binder resin containing 60% by weight or more of a phenoxy resin having a number average molecular weight of 3,000 to 100,000 and an acid value of 20 eq./106 to 500 eq./106, a solvent and a dispersant that is preferably in a solid state at 25°C or higher, the resulting dispersion mixture is filtered, thereby obtaining a conductive paste which has a degree of dispersity of 10 μm or less as determined with a grind gage as specified by ISO 1524 (2013). According to the present invention, a thin wiring line is obtained by applying the thus-obtained conductive paste to a device material, on which an inorganic thin film has been formed, and subsequently drying and curing the conductive paste and then subjecting the resulting conductive paste to laser etching.

Description

導電性ペースト、導電性膜、導電性膜の製造方法、導電性微細配線、導電性微細配線の製造方法。A conductive paste, a conductive film, a method for manufacturing a conductive film, a conductive fine wiring, and a method for manufacturing a conductive fine wiring.
 本発明の目的は、タッチパネル等に用いられる、透明導電薄膜と近接して形成される微細配線を形成するために好適に用いられる導電性ペーストを提供することにあり、また、プリンテッド・エレクトロニクスにおいて、TFTベース電極を形成する際に、高表面平滑性を持つ電極回路配線を問題なく製造することができる導電性ペーストを提供することにある。 An object of the present invention is to provide a conductive paste that is suitably used for forming fine wiring formed close to a transparent conductive thin film used in a touch panel or the like. In printed electronics, An object of the present invention is to provide a conductive paste capable of producing an electrode circuit wiring having high surface smoothness without problems when forming a TFT base electrode.
 近年、携帯電話や、ノートパソコン、電子書籍などに代表される透明タッチパネルを搭載する電子機器の高性能化と小型化が急激に進んでいる。これらの電子機器の高性能化と小型化には、搭載される電子部品の小型化、高性能化、集積度の向上に加え、これら電子部品相互を接合する電極回路配線の高密度化が求められている。透明タッチパネルの方式として電極回路配線の数が少ない抵抗膜方式に加え、電極回路配線の数が飛躍的に多い静電容量方式の普及が近年急速に進んでおり、このような観点から電極回路配線の高密度化が強く求められている。また、ディスプレイ画面をより大きくするために、また商品デザイン上の要求により、電極回路配線が配置される額縁部をより狭くしたいとの要求があり、このような観点からも電極回路配線の高密度化が求められている。以上のような要求を満たすために、従来以上の電極回路配線の高密度配置を行うことができる技術が求められている。 In recent years, electronic devices equipped with a transparent touch panel represented by mobile phones, notebook computers, electronic books, and the like are rapidly increasing in performance and size. In order to improve the performance and miniaturization of these electronic devices, it is necessary to increase the density of the electrode circuit wiring that joins these electronic components in addition to the reduction in size, performance, and integration of the electronic components. It has been. As a transparent touch panel method, in addition to the resistive film method with a small number of electrode circuit wirings, the use of a capacitive method with a remarkably large number of electrode circuit wirings has been rapidly spreading in recent years. High density is strongly demanded. In addition, in order to make the display screen larger and due to demands on product design, there is a demand for a narrower frame portion on which the electrode circuit wiring is arranged. From this viewpoint, the density of the electrode circuit wiring is high. Is required. In order to satisfy the above requirements, there is a demand for a technique capable of performing higher-density arrangement of electrode circuit wiring than in the past.
 抵抗膜方式の透明タッチパネルの額縁部分の電極回路配線の配置密度は、平面方向のラインとスペースの幅が各々200μm(以下、L/S=200/200μmというように略記する)以上程度であり、これを導電性ペーストのスクリーン印刷によって形成することが従来から行われている。静電容量方式のタッチパネルでは、L/Sの要求は100/100μm程度以下となっており、さらにはL/Sが50/50μm以下を求められる場合もあり、スクリーン印刷による電極回路配線形成技術では対応困難な状況になりつつある。 The arrangement density of the electrode circuit wiring in the frame part of the transparent touch panel of the resistive film type is about 200 μm (hereinafter abbreviated as L / S = 200/200 μm) in the width of the line and the space in the plane direction. Conventionally, this is formed by screen printing of a conductive paste. In the capacitive touch panel, the L / S requirement is about 100/100 μm or less, and there are cases where the L / S is required to be 50/50 μm or less. The situation is becoming difficult to deal with.
 スクリーン印刷に替わる電極回路配線形成技術の候補の一例として、フォトリソグラフィ法が挙げられる。フォトリソグラフィ法を用いれば、L/Sが50/50μm以下の細線を形成することも十分に可能である。しかしながらフォトリソグラフィ法にも課題がある。フォトリソグラフィ法の最も典型的な事例は感光性レジストを用いる手法であり、一般的には、銅箔層を形成した表面基板の銅箔部位に感光性レジストを塗布し、フォトマスクあるいはレーザー光の直接描画等の方法により所望のパターンを露光し、感光性レジストの現像を行ない、その後、所望のパターン以外の銅箔部位を薬品で溶解・除去することにより、銅箔の細線パターンを形成させる。このため、廃液処理による環境負荷が大きく、さらには工程が煩雑であり、生産効率の観点、コスト的観点を含め多くの課題を抱えている。 As an example of a candidate electrode circuit wiring forming technique that replaces screen printing, a photolithography method can be cited. If a photolithography method is used, it is possible to form a thin line having an L / S of 50/50 μm or less. However, there are also problems with photolithography. The most typical example of photolithography is a method using a photosensitive resist. Generally, a photosensitive resist is applied to a copper foil portion of a surface substrate on which a copper foil layer is formed, and a photomask or a laser beam is used. A desired pattern is exposed by a method such as direct drawing, the photosensitive resist is developed, and then a copper foil portion other than the desired pattern is dissolved and removed with a chemical to form a fine line pattern of the copper foil. For this reason, the environmental load by waste liquid processing is large, and also the process is complicated, and it has many problems including the viewpoint of production efficiency and the viewpoint of cost.
 さらに近年のプリンテッド・エレクトロニクスでは、印刷によりトランジスタなどの能動素子を作製する技術が実現しつつある。かかる用途においては微細配線と同時に膜厚の均一性、薄膜化が要求される。 Furthermore, in recent printed electronics, technology for producing active elements such as transistors by printing is being realized. In such an application, it is required to have a uniform film thickness and a thin film simultaneously with fine wiring.
 特許文献1には、無機粉末と、カルボキシル基含有樹脂と、ガラスフリットと、溶剤からなるペーストを基板上に塗布する塗布工程と、塗布された前記ペーストを乾燥し、乾燥塗膜を形成する乾燥工程と、  レーザー照射により、前記乾燥塗膜にパターンを描画するレーザー照射工程と、アルカリ溶液を用いて、前記パターンを現像する現像工程と、を含むパターン形成方法、が開示されている。かかる提案はレーザーによるペースト樹脂成分中の樹脂成分を除去することによりパターン化を行う点が、一般的なフォトリソグラフィと異なるが、アルカリ溶液による洗浄が必要な点で従来のフォトリソグラフィ法の欠点を解消したとは云えない。 Patent Document 1 discloses an application step of applying a paste made of inorganic powder, a carboxyl group-containing resin, glass frit, and a solvent on a substrate, and drying the applied paste to dry the applied paste. There is disclosed a pattern forming method including a process, a laser irradiation process for drawing a pattern on the dry coating film by laser irradiation, and a development process for developing the pattern using an alkaline solution. This proposal is different from general photolithography in that patterning is performed by removing the resin component in the paste resin component using a laser, but the disadvantage of the conventional photolithography method is that it requires cleaning with an alkaline solution. It cannot be said that it has been resolved.
 特許文献2には、AlN粉末、ガラスフリット及び溶剤を含むペーストを基板上に塗布する塗布工程と、  塗布された前記ペーストを乾燥し、乾燥塗膜を形成する乾燥工程と、 レーザー光の照射により、前記乾燥塗膜に導電パターンを描画するレーザー描画工程と、前記乾燥塗膜のうち、前記レーザー光の未照射部分を、現像液を用いて除去する現像工程とを含むことを特徴とする導電パターン形成方法が開示されている。かかる発明も、パターニングにレーザーを使用する点では前記技術と同様であり、洗浄を必須とする点で、従来のフォトリソグラフィ法の欠点を解消した物とは云えない。 Patent Document 2 discloses a coating process in which a paste containing AlN powder, glass frit, and a solvent is coated on a substrate, a drying process in which the paste coated is dried to form a dry coating film, and a kite laser light irradiation. A conductive film comprising: a laser drawing process for drawing a conductive pattern on the dried coating film; and a developing process for removing an unirradiated portion of the laser beam in the dried coating film using a developer. A pattern forming method is disclosed. This invention is also similar to the above technique in that a laser is used for patterning, and cannot be said to have solved the disadvantages of the conventional photolithography method in that cleaning is essential.
 本出願人等は、かかる状況の解消を目指し、特許文献3に示す技術を提案している。すなわち、酸価50~300eq./106gであるポリエステル樹脂および酸価50~300eq./106gであるポリウレタン樹脂からなる群から選ばれる1種又は2種以上の混合物からなるバインダ樹脂(A)、金属粉(B)および有機溶剤(C)を含有し、前記バインダ樹脂(A)が、数平均分子量が5,000~60,000であり、なおかつ、ガラス転移温度が60~100℃である熱可塑性樹脂であることを特徴とする、レーザーエッチング加工用導電性ペーストである。本提案に開示された技術によれば、高出力のレーザー光による熱アブレーションにより不要部分の導電層全体を除去して微細線の加工が可能である。しかしながら、さらなる微細線化、狭いピッチ化には、線幅だけでなく線間幅を狭める必要があり、当該技術においてもさらなる改良が要求されていた。 The present applicants have proposed the technique shown in Patent Document 3 with the aim of eliminating such a situation. That is, an acid value of 50 to 300 eq. / 10 6 g of polyester resin and an acid value of 50 to 300 eq. The binder resin (A) contains a binder resin (A), a metal powder (B), and an organic solvent (C) made of one or a mixture of two or more selected from the group consisting of polyurethane resins that are / 10 6 g. ) Is a thermoplastic paste having a number average molecular weight of 5,000 to 60,000 and a glass transition temperature of 60 to 100 ° C. According to the technique disclosed in this proposal, it is possible to process a fine line by removing the entire conductive layer of an unnecessary portion by thermal ablation with high-power laser light. However, for further miniaturization and narrow pitch, it is necessary to reduce not only the line width but also the line-to-line width, and further improvements have been required in this technology.
特開2010-237573号公報JP 2010-237573 A 特開2011-181338号公報JP 2011-181338 A 特開2015-127958号公報Japanese Patent Laying-Open No. 2015-127958
 本発明の目的は、タッチパネル等に用いられる、透明導電薄膜と近接して形成される微細配線を形成するために好適に用いられる導電性ペーストを提供することにあり、また、TFTベース電極を形成する際に、高表面平滑性を持つ電極回路配線を問題なく製造することができる導電性ペーストを提供することにある。 An object of the present invention is to provide a conductive paste suitably used for forming fine wiring formed close to a transparent conductive thin film used for a touch panel or the like, and also to form a TFT base electrode. It is an object of the present invention to provide a conductive paste that can produce electrode circuit wiring having high surface smoothness without problems.
 本発明者らは高表面平滑性を持つ電極回路配線を配置する導電性ペーストについて鋭意検討した結果、導電性膜を形成するのに適する導電性ペーストを見出した。すなわち、本願発明は以下の構成からなるものである。
[1] 少なくとも熱可塑性および/または熱硬化性樹脂からなるバインダ樹脂、銀粉および有機溶剤を含有する導電性ペーストにおいて、
 前記銀粉の中心径D50が0.5μm以上、5μm以下であり、 
 前記バインダ樹脂が、数平均分子量が3,000~100,000、酸価が20~500eq./106のフェノキシ樹脂を60重量%以上含有することを特徴とする導電ペースト。
[2] [1]に記載の導電ペーストを、表面粗さが0.1μm以下の表面を有する無機薄膜層が形成された高分子フィルム上に塗布し、乾燥硬化することによる、表面粗さRaが0.4μm以下である導電性膜の製造方法。
[3] 高分子フィルム、または表面粗さが0.1μm以下無機薄膜層を表面に有する高分子フィルムのいずれかを基材とする、
 少なくとも数平均分子量が3,000~100,000、酸価が20~500eq./106のフェノキシ樹脂硬化物および導電性粒子からなり、線幅が100μm以下、線間幅が100μm以下である導電性微細配線。
[4] 前記導電性微細配線の線間幅が50μm以下であり、かつ線間幅が導電性膜の厚さの4倍以下である事を特徴とする[3]に記載の導電性微細配線。
[5] 前記導電性微細配線の線幅が50μm以下で有り、かつ導電性膜の厚さの3.5倍以下である事を特徴とする[3]または[4]記載の導電性微細配線。
[6] [2]に記載の導電性膜の不要部分を、レーザー光にて除去することによる[3]から[5]のいずれかに記載の導電性微細配線の製造方法。
As a result of intensive studies on a conductive paste on which electrode circuit wiring having high surface smoothness is disposed, the present inventors have found a conductive paste suitable for forming a conductive film. That is, this invention consists of the following structures.
[1] In a conductive paste containing at least a binder resin composed of a thermoplastic and / or thermosetting resin, silver powder, and an organic solvent,
The center diameter D50 of the silver powder is 0.5 μm or more and 5 μm or less,
The binder resin has a number average molecular weight of 3,000 to 100,000 and an acid value of 20 to 500 eq. A conductive paste characterized by containing 60% by weight or more of / 10 6 phenoxy resin.
[2] Surface roughness Ra by applying the conductive paste according to [1] on a polymer film on which an inorganic thin film layer having a surface with a surface roughness of 0.1 μm or less is formed and drying and curing. Of a conductive film having a thickness of 0.4 μm or less.
[3] Based on either a polymer film or a polymer film having an inorganic thin film layer having a surface roughness of 0.1 μm or less on the surface,
The number average molecular weight is at least 3,000 to 100,000, and the acid value is 20 to 500 eq. Conductive fine wiring comprising a cured phenoxy resin of 10 6 and conductive particles, and having a line width of 100 μm or less and a line width of 100 μm or less.
[4] The conductive fine wiring according to [3], wherein a line width of the conductive fine wiring is 50 μm or less and a line width is four times or less of a thickness of the conductive film. .
[5] The conductive fine wiring according to [3] or [4], wherein the conductive fine wiring has a line width of 50 μm or less and 3.5 times or less of the thickness of the conductive film. .
[6] The method for producing a conductive fine wiring according to any one of [3] to [5], wherein unnecessary portions of the conductive film according to [2] are removed with a laser beam.
 本発明はさらに以下の構成を有する。
[7] 少なくとも熱可塑性および/または熱硬化性樹脂からなるバインダ樹脂、銀粉および有機溶剤を含有する導電性ペーストにおいて、
 前記銀粉の中心径D50が0.5μm以上、5μm以下であり、 
 前記銀粉のタップ密度が2.0g/cm3以上であり、
 前記バインダ樹脂が、数平均分子量が3,000~100,000のフェノキシ樹脂を60重量%以上含有し、ISO 1524:2013に規定されるGrind Gageにより得られる分散度が10μm以下であることを特徴とする導電ペースト。
[8] 少なくとも、中心径D50が0.5μm以上、5μm以下であり、タップ密度が2.0g/cm3以上である銀粉、  数平均分子量が3,000~100,000のフェノキシ樹脂を60重量%以上含有するバインダ樹脂、溶剤、分散剤を含む組成物を三本ロールミルにて混合分散した後に、目開き1μm以上25μmのフィルターにて濾過することを特徴とする[7]記載の導電ペーストの製造方法。
[9] [8]の製造方法により得られた導電ペーストを、表面粗さが0.1μm以下の表面を有する無機薄膜層が形成された高分子フィルム上にスクリーン印刷し、乾燥硬化することによる、表面粗さRaが00.4μm以下である導電性膜の製造方法。
[10] [9]の製造方法にて得られた導電性膜の不要部分を、レーザー光にて除去することを特徴とする、表面粗さRaが0.4以下であり、線幅が100μm以下で有り、線間が100μm以下である導電性微細配線の製造方法。
The present invention further has the following configuration.
[7] In a conductive paste containing at least a binder resin composed of a thermoplastic and / or thermosetting resin, silver powder, and an organic solvent,
The center diameter D50 of the silver powder is 0.5 μm or more and 5 μm or less,
The silver powder tap density is 2.0 g / cm3 or more,
The binder resin contains 60% by weight or more of a phenoxy resin having a number average molecular weight of 3,000 to 100,000, and has a dispersion obtained by Grind Gage defined in ISO 1524: 2013 of 10 μm or less. A conductive paste.
[8] At least 60% by weight of silver powder having a center diameter D50 of 0.5 μm or more and 5 μm or less and a tap density of 2.0 g / cm 3 or more, and a phenoxy resin having a number average molecular weight of 3,000 to 100,000 The composition containing the binder resin, solvent, and dispersant contained above is mixed and dispersed by a three-roll mill, and then filtered through a filter having an opening of 1 μm to 25 μm. Method.
[9] By subjecting the conductive paste obtained by the production method of [8] to screen printing on a polymer film on which an inorganic thin film layer having a surface with a surface roughness of 0.1 μm or less is formed, and then drying and curing A method for producing a conductive film having a surface roughness Ra of 00.4 μm or less.
[10] An unnecessary portion of the conductive film obtained by the manufacturing method of [9] is removed with a laser beam. The surface roughness Ra is 0.4 or less, and the line width is 100 μm or less. Yes, a method for manufacturing conductive fine wiring in which the distance between lines is 100 μm or less.
 さらに本発明では、以下の構成を含む事が好ましい。
[11] ISO 1524:2013に規定されるGrind Gageにより得られる分散度が10μm以下であることを特徴とする[1]に記載の導電ペースト。
[12] 前記混合分散後に、目開き1μm以上25μmのフィルターにて濾過することを特徴とする[1]または[11]に記載の導電ペーストの製造方法。
Further, the present invention preferably includes the following configuration.
[11] The conductive paste according to [1], wherein the dispersion obtained by Grind Gage specified in ISO 1524: 2013 is 10 μm or less.
[12] The method for producing a conductive paste according to [1] or [11], wherein the mixture is dispersed through a filter having an opening of 1 μm or more and 25 μm after the dispersion.
 さらに本発明では、以下の構成を含む事が好ましい。
[15] 少なくとも、数平均分子量が3000~100000のフェノキシ樹脂とブロックイソシアネートからなる反応硬化物と、中心径D50が0.5μm以上である銀粉を含有し、塗膜の表面粗さRaが0.4以下である事を特徴とする、レーザーエッチング用導電塗膜。
[16] 前記分散剤が25℃にて固体であり、かつ、銀粉、バインダ樹脂の溶剤溶液、分散剤を一括で混合分散することを特徴とする[2]に記載の導電ペーストの製造方法。
[17] 前記フェノキシ樹脂の酸価が20当量/10g以上500当量/10g以下であることを特徴とする[7]記載の導電ペースト。
[18] 前記フェノキシ樹脂の酸価が20当量/10g以上500当量/10g以下であることを特徴とする[8]記載の導電ペーストの製造方法。
[19] 前記フェノキシ樹脂の酸価が20当量/10g以上500当量/10g以下であることを特徴とする[9]記載の導電性膜の製造方法。
[20] 前記フェノキシ樹脂の酸価が20当量/10g以上500当量/10g以下であることを特徴とする[10]記載の導電性微細配線の製造方法。
Further, the present invention preferably includes the following configuration.
[15] At least a reaction cured product composed of a phenoxy resin having a number average molecular weight of 3000 to 100,000 and a blocked isocyanate, and silver powder having a center diameter D50 of 0.5 μm or more, and the surface roughness Ra of the coating film is 0.00. A conductive coating film for laser etching, characterized by being 4 or less.
[16] The method for producing a conductive paste according to [2], wherein the dispersant is solid at 25 ° C., and silver powder, a solvent solution of a binder resin, and a dispersant are mixed and dispersed all at once.
[17] The conductive paste according to [7], wherein the acid value of the phenoxy resin is 20 equivalents / 10 6 g or more and 500 equivalents / 10 6 g or less.
[18] The method for producing a conductive paste according to [8], wherein the acid value of the phenoxy resin is 20 equivalents / 10 6 g or more and 500 equivalents / 10 6 g or less.
[19] The method for producing a conductive film according to [9], wherein the acid value of the phenoxy resin is 20 equivalents / 10 6 g or more and 500 equivalents / 10 6 g or less.
[20] The method for producing a conductive fine wiring according to [10], wherein the acid value of the phenoxy resin is 20 equivalents / 10 6 g or more and 500 equivalents / 10 6 g or less.
 本発明の導電性ペーストは、酸価が20~500eq./106のフェノキシ樹脂をバインダとして用いる事によりスクリーン印刷にて形成した塗膜の表面粗さRaが0.4μm以下であり、湿熱試験後の基材との接着性に優れる導電膜を形成できる導電性ペーストであり、このような構成をとることによって、線幅、線間幅ともに微細化が可能で、タッチパネルなどに要求される微細配線ならびにプリンテッドエレクトロニクスによるTFTゲート電極等、ベース、コレクタ、エミッタ電極などに適した導電性膜を形成できることができる。
 また本発明の導電性ペーストは、熱可塑性および/または熱硬化性樹脂を含む有機成分、銀粉および有機溶剤を含有する導電性ペーストにおいて、前記有機成分中にバインダ樹脂を含み、スクリーン印刷にて形成した塗膜の表面粗さRaが0.4μm以下であることを特徴とする導電性ペーストであり、このような構成をとることによって、TFTベース電極に適した導電性膜を形成できることができる。
 また本発明では好ましくは特定の配合方法によりペーストを混合分散し、濾過工程を経ることにより所定の分散度が得られ、結果として表面が平滑で、レーザーエッチング適正に優れる導電性膜を得ることができる。
The conductive paste of the present invention has an acid value of 20 to 500 eq. The surface roughness Ra of the coating film formed by screen printing is 0.4 μm or less by using a / 10 6 phenoxy resin as a binder, and a conductive film having excellent adhesion to the substrate after the wet heat test can be formed. This is a conductive paste, and by adopting such a configuration, both line width and line width can be miniaturized. Fine wiring required for touch panels and TFT gate electrodes by printed electronics, base, collector, A conductive film suitable for an emitter electrode or the like can be formed.
The conductive paste of the present invention is a conductive paste containing an organic component containing a thermoplastic and / or thermosetting resin, silver powder and an organic solvent, and includes a binder resin in the organic component, and is formed by screen printing. The coated film has a surface roughness Ra of 0.4 μm or less, and a conductive film suitable for a TFT base electrode can be formed by adopting such a configuration.
In the present invention, the paste is preferably mixed and dispersed by a specific blending method, and a predetermined degree of dispersion is obtained through a filtration step. As a result, a conductive film having a smooth surface and excellent laser etching suitability can be obtained. it can.
<<本発明の導電性ペーストを構成する成分>>
 本発明の導電性ペーストは、熱可塑性および/または熱硬化性樹脂を含む有機成分、銀粉および有機溶剤を含有し、前記有機成分中にバインダ樹脂を必須成分として含有する。本発明における有機成分とは、導電性ペースト中の無機成分と有機溶剤とを除いた、全ての部分のことを指す。
<< Components constituting the conductive paste of the present invention >>
The conductive paste of the present invention contains an organic component containing thermoplastic and / or thermosetting resin, silver powder and an organic solvent, and contains a binder resin as an essential component in the organic component. The organic component in the present invention refers to all parts excluding the inorganic component and the organic solvent in the conductive paste.
<バインダ樹脂>
 本発明では、数平均分子量が3,000~100,000、酸価が20~500eq./106のフェノキシ樹脂を60重量%以上含有するバインダ樹脂を必須とする。
 本発明におけるフェノキシ樹脂とは、ビスフェノール類とエピクロルヒドリンより合成されるポリヒドロキシポリエーテルである。本発明におけるバインダ樹脂として用いられるフェノキシ樹脂とは、たとえば、ビスフェノールA型、ビスフェノールA/F共重合型、ビスフェノールS型、ビスフェノールA/S共重合型が挙げられる。このうち基材密着性の観点より、ビスフェノールA型から得られるフェノキシ樹脂を好ましく用いる事ができる。
 本発明におけるフェノキシ樹脂の酸価は20eq./106g以上500eq./106g以下であることが好ましく、30eq./106g以上200eq./106g以下であることがより好ましい。有機成分中の酸価は基材密着性、特に湿熱試験後の密着性を向上させるが、高すぎると有機成分の加水分解を促進し導電性や基材密着性を損なう恐れがある。また耐マイグレーション性にも悪影響を及ぼす恐れがある。
<Binder resin>
In the present invention, the number average molecular weight is 3,000 to 100,000, and the acid value is 20 to 500 eq. A binder resin containing 60% by weight or more of / 10 6 phenoxy resin is essential.
The phenoxy resin in the present invention is a polyhydroxy polyether synthesized from bisphenols and epichlorohydrin. Examples of the phenoxy resin used as the binder resin in the present invention include bisphenol A type, bisphenol A / F copolymer type, bisphenol S type, and bisphenol A / S copolymer type. Among these, from the viewpoint of adhesion to the substrate, a phenoxy resin obtained from bisphenol A type can be preferably used.
The acid value of the phenoxy resin in the present invention is 20 eq. / 10 6 g or more and 500 eq. / 10 6 g or less, preferably 30 eq. / 10 6 g or more and 200 eq. / 10 6 g or less is more preferable. The acid value in the organic component improves the substrate adhesion, particularly the adhesion after the wet heat test, but if it is too high, the hydrolysis of the organic component is promoted and the conductivity and substrate adhesion may be impaired. In addition, there is a possibility of adversely affecting migration resistance.
 フェノキシ樹脂の酸価を、所定の範囲に収めるには、フェノキシ樹脂と酸無水物を反応させることによる。本発明では酸無水物として、無水トリメリット酸、無水ピロメリット酸、水添トリメリット酸、無水フタル酸、無水マレイン酸などを用いる事ができる。触媒としては、ピリジン系触媒、ジメチルアミノピリジン、ジアザビシクロウンデセン等を使用できる。また、高酸価のフェノキシ樹脂と、低酸価のフェノキシ樹脂を配合して、所定の酸価に調整する手法も有効である。 In order to keep the acid value of the phenoxy resin within a predetermined range, the phenoxy resin is reacted with an acid anhydride. In the present invention, trimellitic anhydride, pyromellitic anhydride, hydrogenated trimellitic acid, phthalic anhydride, maleic anhydride and the like can be used as the acid anhydride. As the catalyst, a pyridine catalyst, dimethylaminopyridine, diazabicycloundecene and the like can be used. In addition, a method of adjusting a predetermined acid value by blending a high acid value phenoxy resin and a low acid value phenoxy resin is also effective.
 本発明では所定の酸価のフェノキシ樹脂以外の樹脂を配合することができる。バインダ樹脂の種類は熱可塑性樹脂であれば特に限定されないが、ポリエステル樹脂、エポキシ樹脂、フェノキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、フェノール樹脂、アクリル樹脂、ポリスチレン、スチレンーアクリル樹脂、スチレンーブタジエン共重合体、フェノール樹脂、ポリエチレン系樹脂、ポリカーボネート系樹脂、フェノール樹脂、アルキッド樹脂、スチレンーアクリル樹脂、スチレンーブタジエン共重合樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、エチレン-酢酸ビニル共重合、ポリスチレン、シリコーン樹脂、フッ素系樹脂等を挙げることができ、これらの樹脂は単独で、あるいは2種以上の混合物として、使用することができる。ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノキシ樹脂、塩化ビニル樹脂、繊維素誘導体樹脂からなる群から選ばれる1種又は2種以上の混合物であることが好ましい。。 In the present invention, a resin other than a phenoxy resin having a predetermined acid value can be blended. The type of binder resin is not particularly limited as long as it is a thermoplastic resin, but polyester resin, epoxy resin, phenoxy resin, polyamide resin, polyamideimide resin, polycarbonate resin, polyurethane resin, phenol resin, acrylic resin, polystyrene, styrene-acrylic resin , Styrene-butadiene copolymer, phenol resin, polyethylene resin, polycarbonate resin, phenol resin, alkyd resin, styrene-acrylic resin, styrene-butadiene copolymer resin, polysulfone resin, polyethersulfone resin, vinyl chloride-vinyl acetate Examples thereof include copolymer resins, ethylene-vinyl acetate copolymer, polystyrene, silicone resins, and fluorine resins. These resins can be used alone or as a mixture of two or more. Can. One or a mixture of two or more selected from the group consisting of a polyester resin, a polyurethane resin, an epoxy resin, a phenoxy resin, a vinyl chloride resin, and a fiber derivative resin is preferable. .
 本発明におけるフェノキシ樹脂の数平均分子量は特に限定はされないが、数平均分子量が3,000~100,000であることが好ましく、より好ましくは8000~50000である。数平均分子量が低すぎると、形成された導電性膜の耐久性、耐湿熱性の面で好ましくない。一方、数平均分子量が高すぎると、樹脂の凝集力が増し、導電性膜としての耐久性等は向上するものの、表面平滑性が顕著に悪化する。 The number average molecular weight of the phenoxy resin in the present invention is not particularly limited, but the number average molecular weight is preferably 3,000 to 100,000, more preferably 8,000 to 50,000. If the number average molecular weight is too low, it is not preferable in terms of durability and heat and humidity resistance of the formed conductive film. On the other hand, when the number average molecular weight is too high, the cohesive force of the resin increases and the durability as a conductive film is improved, but the surface smoothness is significantly deteriorated.
 本発明におけるフェノキシ樹脂のガラス転移温度は60℃以上であることが好ましく、65℃以上であることがより好ましい。ガラス転移温度が低いと導電性膜としての湿熱後信頼性が低下する恐れがあり、また表面硬度の低下を誘発しタック性により使用の際に接触相手側へのペースト含有成分の移行が生じて導電性膜信頼性が低下するおそれがある。一方バインダ樹脂のガラス転移温度は印刷性、密着性、溶解性、ペースト粘度を考慮すると、150℃以下が好ましく、120℃以下がより好ましく、100℃以下が更に好ましい。 The glass transition temperature of the phenoxy resin in the present invention is preferably 60 ° C. or higher, and more preferably 65 ° C. or higher. If the glass transition temperature is low, the reliability after wet heat as a conductive film may be reduced, and the surface hardness may be reduced, and the tack content may cause transfer of paste-containing components to the contact partner during use. There is a possibility that the reliability of the conductive film is lowered. On the other hand, the glass transition temperature of the binder resin is preferably 150 ° C. or less, more preferably 120 ° C. or less, and still more preferably 100 ° C. or less in consideration of printability, adhesion, solubility, and paste viscosity.
<銀粉>
 本発明に用いられる銀粉の形状は特に限定されない。従来から知られている形状の例としては、フレーク状(リン片状)、球状、樹枝状(デンドライト状)、特開平9-306240号公報に記載されている球状の1次粒子が3次元状に凝集した形状(凝集状)等がある。
<Silver powder>
The shape of the silver powder used in the present invention is not particularly limited. Examples of conventionally known shapes include flakes (flakes), spheres, dendrites (dendrites), and spherical primary particles described in JP-A-9-306240 are three-dimensional. Are aggregated shapes (aggregated).
 本発明に用いられる銀粉の中心径(D50)は0.5μm以上であることが好ましい。中心径が0.5μm以下のものを用いた場合には、導電パスが良好に形成されず、導電性悪化を招く可能性がある。また粒径が細かくなると凝集し易く、結果として分散が困難となるため、中心径は0.5μm以上であることが好ましい。 The center diameter (D50) of the silver powder used in the present invention is preferably 0.5 μm or more. When the one having a center diameter of 0.5 μm or less is used, the conductive path is not formed well and there is a possibility that the conductivity is deteriorated. Further, when the particle size is small, the particles are likely to aggregate and as a result, dispersion becomes difficult. Therefore, the center diameter is preferably 0.5 μm or more.
 なお、中心径(D50)とは、何らかの測定方法によって得られた累積分布曲線(体積)において、その累積値が50%となる粒径(μm)のことである。本発明においては、累積分布曲線をレーザー回折散乱式粒度分布測定装置(日機装(株)製、MICROTRAC HRA)を用い全反射モードで測定することとする。 The central diameter (D50) is the particle diameter (μm) at which the cumulative value is 50% in the cumulative distribution curve (volume) obtained by some measurement method. In the present invention, the cumulative distribution curve is measured in the total reflection mode using a laser diffraction / scattering particle size distribution measuring apparatus (MICROTRAC HRA manufactured by Nikkiso Co., Ltd.).
 本発明に用いられる銀粉のタップ密度は2.0g/cm3以上であることが好ましい。タップ密度が低いと塗膜内の銀充填度が低くなり、結果として表面平滑性が悪化する。タップ密度の上限は特に限定されないが好ましくは9.0g/cm3、さらに好ましくは7.5g/cm3、さらに好ましくは5.5g/cm3である。 The tap density of the silver powder used in the present invention is preferably 2.0 g / cm 3 or more. If the tap density is low, the degree of silver filling in the coating film becomes low, and as a result, the surface smoothness deteriorates. The upper limit of the tap density is not particularly limited, but is preferably 9.0 g / cm 3 , more preferably 7.5 g / cm 3 , and further preferably 5.5 g / cm 3 .
 銀粉の含有量は、形成された導電性膜の導電性が良好であるという観点から、バインダ樹脂100質量部に対して、400質量部以上が好ましく、560質量部以上がより好ましい。また、成分の含有量は、基材との密着性において良好であるという観点から、熱可塑性樹脂100質量部に対して、1,900質量部以下が好ましく、1,230質量部以下がより好ましい。 The silver powder content is preferably 400 parts by mass or more and more preferably 560 parts by mass or more with respect to 100 parts by mass of the binder resin from the viewpoint that the conductivity of the formed conductive film is good. In addition, the content of the component is preferably 1,900 parts by mass or less, more preferably 1,230 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint that the adhesiveness with the base material is good. .
<有機溶剤>
 本発明に用いることのできる有機溶剤は、とくに限定されないが、有機溶剤の揮発速度を適切な範囲に保つ観点から、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が150℃以上、280℃未満である。本発明の導電性ペーストは、典型的には熱可塑性樹脂、銀粉、有機溶剤および必要に応じてその他の成分を三本ロールミル等で分散して作製するが、その際に有機溶剤の沸点が低すぎると、分散中に溶剤が揮発し、導電性ペーストを構成する成分比が変化する懸念がある。一方で、有機溶剤の沸点が高すぎると、乾燥条件によっては溶剤が塗膜中に多量に残存する可能性があり、塗膜の信頼性低下を引き起こす懸念がある。
<Organic solvent>
The organic solvent that can be used in the present invention is not particularly limited, but from the viewpoint of keeping the volatilization rate of the organic solvent within an appropriate range, the boiling point is preferably 100 ° C. or more and less than 300 ° C., more preferably the boiling point. It is 150 degreeC or more and less than 280 degreeC. The conductive paste of the present invention is typically prepared by dispersing a thermoplastic resin, silver powder, an organic solvent and other components as necessary with a three-roll mill or the like. In this case, the boiling point of the organic solvent is low. If the amount is too large, the solvent volatilizes during dispersion, and the component ratio of the conductive paste may change. On the other hand, if the boiling point of the organic solvent is too high, a large amount of the solvent may remain in the coating film depending on the drying conditions, which may cause a decrease in the reliability of the coating film.
 また、本発明に用いることのできる有機溶剤としては、バインダが可溶であり、かつ、銀粉を良好に分散させることができるものが好ましい。具体例としては、エチルジグリコールアセテート(EDGAC)、ブチルグリコールアセテート(BMGAC)、ブチルジグリコールアセテート(BDGAC)、シクロヘキサノン、トルエン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、アジピン酸、こはく酸およびグルタル酸のジメチルエステルの混合物(例えば、デュポン(株)社製DBE)、ターピオネール等が挙げられるが、これらの中で、バインダ樹脂の溶解性に優れ、連続印刷時の溶剤揮発性が適度でありスクリーン印刷法等による印刷に対する適性が良好であるという観点から、EDGAC、BMGAC、BDGACおよびそれらの混合溶剤が好ましい。 The organic solvent that can be used in the present invention is preferably a solvent in which the binder is soluble and the silver powder can be well dispersed. Specific examples include ethyl diglycol acetate (EDGAC), butyl glycol acetate (BMGAC), butyl diglycol acetate (BDGAC), cyclohexanone, toluene, isophorone, γ-butyrolactone, benzyl alcohol, Exson Chemical's Solvesso 100, 150, 200, a mixture of dimethyl ester of propylene glycol monomethyl ether acetate, adipic acid, succinic acid and glutaric acid (for example, DBE manufactured by DuPont Co., Ltd.), terpionol, etc. Among them, dissolution of binder resin EDGAC, BMGAC, BDGAC, and mixed solvents thereof are preferred from the viewpoints of excellent properties, moderate solvent volatility during continuous printing, and good suitability for printing by a screen printing method or the like.
 有機溶剤の含有量としては、ペースト全重量100重量部に対して5重量部以上、40重量部以下であることが好ましく、10重量部以上、35重量部以下であることがさらに好ましい。有機溶剤の含有量が高すぎるとペースト粘度が低くなりすぎ、細線印刷の際にダレを生じやすくなる傾向にある。一方で有機溶剤の含有量が低すぎると、ペーストとしての粘度が極めて高くなり、導電性膜を形成させる際の例えばスクリーン印刷性が顕著に低下する場合がある。 The content of the organic solvent is preferably 5 to 40 parts by weight, more preferably 10 to 35 parts by weight, based on 100 parts by weight of the total paste. If the content of the organic solvent is too high, the paste viscosity becomes too low, and it tends to cause sagging during fine line printing. On the other hand, when the content of the organic solvent is too low, the viscosity as a paste becomes extremely high, and for example, screen printing properties when forming a conductive film may be significantly reduced.
 本発明の導電性ペーストには、炭素系フィラーを添加することができる。例としては、カーボンブラック、グラファイト粉、ケッチェンブラックなどの炭素系のフィラーを挙げることができる。前記炭素系フィラーの含有量としては銀粉100重量部に対し、0.1~5重量部であることが好ましく、0.3~2重量部であることがより好ましい。 Carbon filler can be added to the conductive paste of the present invention. Examples include carbon-based fillers such as carbon black, graphite powder, and ketjen black. The content of the carbon-based filler is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 2 parts by weight with respect to 100 parts by weight of silver powder.
 本発明の導電性ペーストには、下記の無機物を添加することができる。無機物としては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化バナジウム、炭化タンタル、炭化ニオブ、炭化タングステン、炭化クロム、炭化モリブテン、炭化カルシウム、ダイヤモンドカーボンラクタム等の各種炭化物;窒化ホウ素、窒化チタン、窒化ジルコニウム等の各種窒化物、ホウ化ジルコニウム等の各種ホウ化物;酸化チタン(チタニア)、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化銅、酸化アルミニウム、シリカ、フュームドシリカ(例えば日本アエロジル社製のアエロジル)コロイダルシリカ等の各種酸化物;チタン酸カルシウム、チタン酸マグネシウム、チタン酸ストロンチウム等の各種チタン酸化合物;二硫化モリブデン等の硫化物;フッ化マグネシウム、フッ化炭素等の各種フッ化物;ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の各種金属石鹸;その他、滑石、ベントナイト、タルク、炭酸カルシウム、ベントナイト、カオリン、ガラス繊維、雲母等を用いることができる。これらの無機物を添加することによって、印刷性や耐熱性、さらには機械的特性や長期耐久性を向上させることが可能となる場合がある。中でも、本発明の導電性ペーストにおいては、耐久性、印刷適性、特にスクリーン印刷適性を付与するという観点でフュームドシリカが好ましい。 The following inorganic substances can be added to the conductive paste of the present invention. Examples of inorganic substances include silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, chromium carbide, molybdenum carbide, calcium carbide, diamond carbon lactam, and other carbides; boron nitride , Various nitrides such as titanium nitride and zirconium nitride, various borides such as zirconium boride; titanium oxide (titania), calcium oxide, magnesium oxide, zinc oxide, copper oxide, aluminum oxide, silica, fumed silica (for example, Japan) Aerosil) and other oxides such as colloidal silica; various titanate compounds such as calcium titanate, magnesium titanate and strontium titanate; sulfides such as molybdenum disulfide; magnesium fluoride and carbon fluoride Fluoride; aluminum stearate, calcium stearate, zinc stearate, various metal soaps such as magnesium stearate and the like; may be used talc, bentonite, talc, calcium carbonate, bentonite, kaolin, glass fiber, mica or the like. By adding these inorganic substances, it may be possible to improve printability and heat resistance, as well as mechanical properties and long-term durability. Especially, in the electrically conductive paste of this invention, a fumed silica is preferable from a viewpoint of providing durability, printability, especially screen printability.
 本発明の導電性ペーストには、添加剤として分散剤、表面調整剤、消泡剤、レオロジーコントロール剤を配合することができる。さらにはカルボジイミド、エポキシ等を適宜配合することもできる。これらは単独でもしくは併用して用いることができる。これらはペーストに添加することでペーストのレオロジーを変化せしめ、表面平滑性を向上させる場合がある。 In the conductive paste of the present invention, a dispersant, a surface conditioner, an antifoaming agent, and a rheology control agent can be blended as additives. Furthermore, a carbodiimide, an epoxy, etc. can also be mix | blended suitably. These can be used alone or in combination. These may be added to the paste to change the rheology of the paste and improve the surface smoothness.
 分散剤の例としては、Disperbyk-2155などが挙げられ、さらにラウリン酸、ミリスチル酸、パルミチンサン、マルガリン酸、ステアリン酸などのモノカルボン酸、テレフタル酸、イソフタル酸、オルソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸等のジカルボン酸、マレイン酸、ダイマー酸等の炭素数12~28の二塩基酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、2-メチルヘキサヒドロ無水フタル酸、ジカルボキシ水素添加ビスフェノールA、ジカルボキシ水素添加ビスフェノールS、ダイマー酸、水素添加ダイマー酸、水素添加ナフタレンジカルボン酸、トリシクロデカンジカルボン酸等の脂環族ジカルボン酸、ヒドロキシ安息香酸、乳酸等のヒドロキシカルボン酸を挙げることができる。また無水トリメリット酸、無水ピロメリット酸等の三価以上のカルボン酸、フマール酸等の不飽和ジカルボン酸、ジメチロールブタン酸、ジメチロールプロピオン酸等のカルボン酸ジオールを挙げることができる。 Examples of the dispersant include Disperbyk-2155, and monocarboxylic acids such as lauric acid, myristic acid, palmitic sun, margaric acid, stearic acid, terephthalic acid, isophthalic acid, orthophthalic acid, and 2,6-naphthalene. Aromatic dicarboxylic acid such as dicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, dicarboxylic acid such as azelaic acid, maleic acid, dimer acid etc. Dibasic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methyl Hexahydrophthalic anhydride, dicarboxy hydrogenated bisphenol A Dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalenedicarboxylic acid, alicyclic dicarboxylic acids such as tricyclodecane acid, hydroxybenzoic acid, and hydroxycarboxylic acids such as lactic acid. Further, trivalent or higher carboxylic acids such as trimellitic anhydride and pyromellitic anhydride, unsaturated dicarboxylic acids such as fumaric acid, and carboxylic acid diols such as dimethylolbutanoic acid and dimethylolpropionic acid.
 本発明ではこれらの内、25℃にて固体の脂肪族モノカルボン酸、脂肪族ジカルボン酸を分散剤として用いる事が好ましい。具体的にはラウリン酸、ミリスチル酸、パルミチンサン、マルガリン酸、ステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸、アゼライン酸等のジカルボン酸、マレイン酸等を例示できる。
 さらに本発明ではこれらの固体脂肪酸の内、60℃~150℃に融点を有する化合物が分散剤として好ましい。かかる分散剤は、ペースト硬化時の温度条件にて溶剤が揮発すると共に析出するが、同時に自らが融点に達するために液状化し、ペースト硬化膜を平滑化する効果を発揮する。
In the present invention, among these, it is preferable to use an aliphatic monocarboxylic acid or aliphatic dicarboxylic acid solid at 25 ° C. as a dispersant. Specifically, dicarboxylic acids such as lauric acid, myristic acid, palmitic sun, margaric acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, azelaic acid, maleic acid Etc. can be illustrated.
In the present invention, among these solid fatty acids, a compound having a melting point at 60 ° C. to 150 ° C. is preferred as a dispersant. Such a dispersant volatilizes and precipitates under the temperature conditions at the time of paste curing, but at the same time, the dispersant liquefies and reaches an effect of smoothing the paste cured film.
 本発明における、その他の表面調整剤、消泡剤、レベリング剤、レオロジーコントロール剤としては、インクないしペーストに使用される公知の添加剤を必要に応じて使用すれば良い。 As other surface conditioners, antifoaming agents, leveling agents, and rheology control agents in the present invention, known additives used for inks or pastes may be used as necessary.
<硬化剤>
 本発明の導電性ペーストには、バインダ樹脂と反応し得る硬化剤を、本発明の効果を損なわない程度に配合してもよい。硬化剤を配合することにより、硬化温度が高くなり、生産工程の負荷が増す可能性はあるが、塗膜乾燥に発生する熱による架橋で塗膜の耐湿熱性の向上が期待できる。
<Curing agent>
You may mix | blend the hardening | curing agent which can react with binder resin to the conductive paste of this invention to such an extent that the effect of this invention is not impaired. By blending a curing agent, there is a possibility that the curing temperature becomes high and the load of the production process is increased.
 本発明のバインダ樹脂に反応し得る硬化剤は、種類は限定しないが密着性、耐屈曲性、硬化性等からイソシアネート化合物および/またはエポキシ樹脂が特に好ましい。さらに、イソシアネート化合物に関しては、イソシアネート基をブロック化したものを使用すると、貯蔵安定性が向上し、好ましい。イソシアネート化合物以外の硬化剤としては、メチル化メラミン、ブチル化メラミン、ベンゾグアナミン、尿素樹脂等のアミノ樹脂、酸無水物、イミダゾール類、フェノール樹脂等の公知の化合物が挙げられる。これらの硬化剤には、その種類に応じて選択された公知の触媒あるいは促進剤を併用することもできる。硬化剤の配合量としては、本発明の効果を損なわない程度に配合されるものであり、特に制限されるものではないが、バインダ樹脂100質量部に対して、0.5~50質量部が好ましく、1~30質量部がより好ましく、2~20質量部がさらに好ましい。 The type of the curing agent capable of reacting with the binder resin of the present invention is not limited, but is preferably an isocyanate compound and / or an epoxy resin in view of adhesion, flex resistance, curability and the like. Furthermore, regarding the isocyanate compound, it is preferable to use a blocked isocyanate group since the storage stability is improved. Examples of curing agents other than isocyanate compounds include known compounds such as amino resins such as methylated melamine, butylated melamine, benzoguanamine, and urea resin, acid anhydrides, imidazoles, and phenol resins. These curing agents can be used in combination with a known catalyst or accelerator selected according to the type. The blending amount of the curing agent is blended to such an extent that the effects of the present invention are not impaired, and is not particularly limited, but is 0.5 to 50 parts by mass with respect to 100 parts by mass of the binder resin. It is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass.
 本発明の導電性ペーストに配合することができるイソシアネート化合物の例としては、芳香族又は脂肪族のジイソシアネート、3価以上のポリイソシアネート等があり、低分子化合物、高分子化合物のいずれでもよい。例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、等の芳香族ジイソシアネート、水素化ジフェニルメタンジイソシアネート、水素化キシリレンジイソシアネート、ダイマー酸ジイソシアネート、イソホロンジイソシアネート等の脂環族ジイソシアネート、あるいはこれらのイソシアネート化合物の3量体、及びこれらのイソシアネート化合物の過剰量と例えばエチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の低分子活性水素化合物又は各種ポリエステルポリオール類、ポリエーテルポリオール類、ポリアミド類の高分子活性水素化合物等と反応させて得られる末端イソシアネート基含有化合物が挙げられる。また、イソシアネート基のブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール類;アセトキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等のオキシム類;メタノール、エタノール、プロパノール、ブタノール等のアルコール類;エチレンクロルヒドリン、1,3-ジクロロ-2-プロパノール等のハロゲン置換アルコール類;t-ブタノール、t-ペンタノール等の第三級アルコール類;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピロラクタム等のラクタム類が挙げられ、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステル等の活性メチレン化合物、メルカプタン類、イミン類、イミダゾール類、尿素類、ジアリール化合物類、重亜硫酸ソーダ等も挙げられる。このうち、硬化性よりオキシム類、イミダゾール類、アミン類が特に好ましい。 Examples of isocyanate compounds that can be blended in the conductive paste of the present invention include aromatic or aliphatic diisocyanates, trivalent or higher polyisocyanates, and any of low molecular compounds and high molecular compounds may be used. For example, aliphatic diisocyanates such as tetramethylene diisocyanate and hexamethylene diisocyanate, aromatic diisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate, etc. Alicyclic diisocyanates, or trimers of these isocyanate compounds, and excess amounts of these isocyanate compounds such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine Low molecular active hydrogen compounds such as Polyester polyols, polyether polyols, terminal isocyanate group-containing compounds obtained by reacting a polymeric active hydrogen compound such as polyamides and the like. Examples of the isocyanate group blocking agent include phenols such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, and chlorophenol; oximes such as acetoxime, methyl ethyl ketoxime, and cyclohexanone oxime. Alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; tertiary alcohols such as t-butanol and t-pentanol ; Lactams such as ε-caprolactam, δ-valerolactam, γ-butyrolactam, β-propylolactam, and the like, as well as aromatic amines, imides, acetylacetone, Seto acetate, active methylene compounds such as malonic acid ethyl ester, mercaptans, imines, imidazoles, ureas, diaryl compounds, sodium bisulfite, etc. can be mentioned. Of these, oximes, imidazoles, and amines are particularly preferable from the viewpoint of curability.
 本発明において硬化剤として用いられるエポキシ化合物は、たとえば、ビスフェノールAグリシジルエーテル、ビスフェノールSグリシジルエーテル、ノボラックグリシジルエーテル、ブロム化ビスなどのグリシジルエーテルタイプ、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステルなどのグリシジルエステルタイプ、トリグリシジルイソシアヌレート、あるいは3,4-エポキシシクロヘキシルメチルカルボキシレート、エポキシ化ポリブタジエン、エポキシ化大豆油などの脂環族あるいは脂肪族エポキサイドなどが挙げられ、一種単独で用いても二種以上を併用しても構わない。このうち硬化性の観点より、ビスフェノールAグリシジルエーテルが最も好ましく、その中でも分子量3000未満、一分子中にグリシジルエーテル基を2つ以上有するものがさらに好ましい。 Examples of the epoxy compound used as a curing agent in the present invention include glycidyl ether types such as bisphenol A glycidyl ether, bisphenol S glycidyl ether, novolak glycidyl ether, and bromo bromide, hexahydrophthalic acid glycidyl ester, and dimer acid glycidyl ester Examples include glycidyl ester type, triglycidyl isocyanurate, or 3,4-epoxycyclohexylmethyl carboxylate, epoxidized polybutadiene, epoxidized soybean oil, and other alicyclic or aliphatic epoxides. You may use the above together. Among these, from the viewpoint of curability, bisphenol A glycidyl ether is most preferable, and among them, those having a molecular weight of less than 3000 and having two or more glycidyl ether groups in one molecule are more preferable.
<<本発明の導電性ペーストに求められる物性>>
 本発明の導電性ペーストの粘度は特に限定されず、塗膜の形成方法に応じて適切に調整すればよい。例えば、導電性ペーストの基材への塗布をスクリーン印刷によって行う場合には、導電性ペーストの粘度は、印刷温度において100dPa・s以上、さらに好ましくは150dPa・s以上であることが好ましい。上限は特には限定しないが、粘度が高すぎると表面平滑性が低下する場合がある。
<< Physical Properties Required for the Conductive Paste of the Present Invention >>
The viscosity of the electrically conductive paste of this invention is not specifically limited, What is necessary is just to adjust suitably according to the formation method of a coating film. For example, when the conductive paste is applied to the substrate by screen printing, the viscosity of the conductive paste is preferably 100 dPa · s or more, more preferably 150 dPa · s or more at the printing temperature. The upper limit is not particularly limited, but if the viscosity is too high, the surface smoothness may decrease.
 本発明の導電性ペーストは、F値が60~95%であることが好ましく、より好ましくは75~95%である。F値とはペースト中に含まれる全固形分100質量部に対するフィラー質量部を示す数値であり、F値=(フィラー質量部/固形分質量部)×100で表される。ここで言うフィラー質量部とは導電性粉末の質量部、固形分質量部とは溶剤以外の成分の質量部であり、導電性粉末、有機成分、その他の硬化剤や添加剤を全て含む。F値が低すぎると良好な導電性を示す導電性膜が得られず、F値が高すぎると導電性膜と基材との密着性及び/又は導電性膜の表面硬度が低下する傾向にあり、印刷性の低下も避けられない。尚、ここで導電性粉末とは、銀粉のことを指す。 The conductive paste of the present invention preferably has an F value of 60 to 95%, more preferably 75 to 95%. The F value is a numerical value indicating the filler mass part with respect to 100 mass parts of the total solid content contained in the paste, and is represented by F value = (filler mass part / solid mass part) × 100. The filler mass part referred to here is the mass part of the conductive powder, and the solid content mass part is a mass part of components other than the solvent, and includes all of the conductive powder, organic components, other curing agents and additives. If the F value is too low, a conductive film showing good conductivity cannot be obtained. If the F value is too high, the adhesion between the conductive film and the substrate and / or the surface hardness of the conductive film tends to decrease. Yes, printability is inevitable. Here, the conductive powder refers to silver powder.
 本発明の導電ペーストは、ISO 1524:2013に規定されるGrind Gageにより得られる分散度が10μm以下であることが必須である。分散度がこの範囲を超えると、ペーストから得られる導電性膜表面に異常突起が増え、レーザーエッチングによる細線のキレが悪くなる。 It is essential that the conductive paste of the present invention has a dispersity of 10 μm or less obtained by Grind Gage specified in ISO 1524: 2013. If the degree of dispersion exceeds this range, abnormal protrusions increase on the surface of the conductive film obtained from the paste, and the fine lines caused by laser etching are deteriorated.
<<本発明の導電性ペーストの製造方法>>
 本発明の導電性ペーストは前述したように有機成分、銀粉、有機溶剤および必要に応じてその他の成分を三本ロール等で分散して作製することができる。ここで、より具合的な作製手順の例を示す。バインダ樹脂をまずは有機溶剤に溶解する。その後、銀粉ならびに、分散剤、必要に応じてその他の添加剤を添加し、ダブルプラネタリーやディゾルバー、遊星式の攪拌機等で分散を実施する。その後、三本ロールミルで分散して、導電性ペーストを得る。このようにして得られた導電性ペーストは必要に応じて濾過することができる。その他の分散機、例えばビーズミル、ニーダー、エクストルーダーなどを用いて分散しても何ら問題はない。
 本発明では、ここで25℃にて固体である分散剤を用い、かつ、銀粉、バインダ樹脂の溶剤溶液、分散剤を一括で混合分散することが好ましい。
<< Method for Producing Conductive Paste of the Present Invention >>
As described above, the conductive paste of the present invention can be prepared by dispersing an organic component, silver powder, an organic solvent, and other components as required with a three-roll roll or the like. Here, an example of a more specific production procedure is shown. First, the binder resin is dissolved in an organic solvent. Thereafter, silver powder, a dispersant, and other additives as necessary are added, and dispersion is carried out with a double planetary, a dissolver, a planetary stirrer, or the like. Then, it disperses | distributes with a 3 roll mill, and obtains an electrically conductive paste. The conductive paste thus obtained can be filtered if necessary. There is no problem even if the dispersion is performed using other dispersers such as a bead mill, a kneader, and an extruder.
In the present invention, it is preferable to use a dispersant that is solid at 25 ° C., and to mix and disperse the silver powder, the binder resin solvent solution, and the dispersant all at once.
 本発明では材料を混合分散した後に濾過を行う。導電性ペーストを濾過するフィルターとしての目開きはとくに限定されないが、25μm以下のフィルターが好ましく、さらに好ましくは20μm以下であり、最も好ましくは15μm以下である。目開きが25μmを超えるフィルターを用いた場合、導電性粉体の未分散物、粗大粒子、異物などが除去できなくなり、エッチング後の細線間に短絡が発生した結果、歩留りを悪化させる。
一方で、目開きは1μm以上が好ましく、これより細かくすると銀粉の粒子径によっては、濾過速度が顕著に落ち、最終的には濾過フィルターが目詰まりする。結果的には濾過フィルター交換回数が増え、生産効率が著しく低下する。
In the present invention, filtration is performed after the materials are mixed and dispersed. The opening as a filter for filtering the conductive paste is not particularly limited, but a filter of 25 μm or less is preferable, more preferably 20 μm or less, and most preferably 15 μm or less. When a filter having a mesh size exceeding 25 μm is used, undispersed conductive powder, coarse particles, foreign matter, etc. cannot be removed, and a short circuit occurs between the fine wires after etching, resulting in poor yield.
On the other hand, the opening is preferably 1 μm or more, and if it is finer than this, depending on the particle diameter of the silver powder, the filtration rate is remarkably lowered, and finally the filtration filter is clogged. As a result, the number of filtration filter replacements increases, and the production efficiency decreases significantly.
 以上の工程を経て、本発明の、ISO 1524:2013に規定されるGrind Gageにより得られる分散度が10μm以下である導電ペーストを得ることができる。 Through the above steps, a conductive paste having a dispersity of 10 μm or less obtained by Grind Gage defined in ISO 1524: 2013 of the present invention can be obtained.
<<本発明の導電性膜、導電性積層体およびこれらの製造方法>>
 本発明の導電性ペーストを基材上に塗布または印刷して塗膜を形成し、次いで塗膜に含まれる有機溶剤を揮散させ塗膜を乾燥させることにより、本発明の導電性膜を形成することができる。導電性ペーストを基材上に塗布または印刷する方法はとくに限定されず、グラビア印刷、オフセット印刷、凸版印刷、インクジェット印刷、反転印刷、マイクロコンタクト印刷等のあらゆる印刷方法に適用することが出来るが、特にスクリーン印刷法により印刷することが工程の簡便さおよび導電性ペーストを用いて電気回路を形成する業界で普及している技術である点から好ましい。
<< Conductive Film, Conductive Laminate and Production Method of the Present Invention >>
The conductive paste of the present invention is applied or printed on a substrate to form a coating film, and then the organic solvent contained in the coating film is volatilized to dry the coating film, thereby forming the conductive film of the present invention. be able to. The method for applying or printing the conductive paste on the substrate is not particularly limited, and can be applied to all printing methods such as gravure printing, offset printing, letterpress printing, ink jet printing, reverse printing, and micro contact printing. In particular, printing by a screen printing method is preferable because it is a technique that is widely used in the industry for forming an electric circuit using a conductive paste and a simple process.
 有機溶剤を揮散させる工程は、常温下および/または加熱下で行うことが好ましい。加熱する場合、乾燥後の導電性膜の導電性や密着性、表面硬度が良好となることから、加熱温度は80℃以上が好ましく、100℃以上がより好ましく、110℃以上がさらに好ましい。また、下地の透明導電性層の耐熱性、及び生産工程における省エネルギーの観点から、加熱温度は150℃以下が好ましく、135℃以下がより好ましく、130℃以下がさらに好ましい。本発明の導電性ペーストに硬化剤が配合されている場合には、有機溶剤を揮散させる工程を加熱下で行うと、硬化反応が進行する。 The step of evaporating the organic solvent is preferably performed at room temperature and / or under heating. In the case of heating, since the conductivity, adhesion, and surface hardness of the conductive film after drying are improved, the heating temperature is preferably 80 ° C or higher, more preferably 100 ° C or higher, and further preferably 110 ° C or higher. Further, from the viewpoint of heat resistance of the underlying transparent conductive layer and energy saving in the production process, the heating temperature is preferably 150 ° C. or lower, more preferably 135 ° C. or lower, and further preferably 130 ° C. or lower. When the curing agent is blended in the conductive paste of the present invention, the curing reaction proceeds when the step of evaporating the organic solvent is performed under heating.
 本発明の導電性膜の厚さは、用いられる用途に従って適切な厚さに設定すればよい。但し、乾燥後の導電性膜の導電性が良好であるという観点から、導電性膜の膜厚は0.5μm以上、30μm以下が好ましく、より好ましくは0.8μm以上、20μm以下であり、さらに好ましくは1.2μm以上、10μm以下であり、なおさらには1.6μm以上7μm以下である。導電性膜の膜厚が薄すぎると、回路としての所望の導電性が得られない可能性がある。また導電性膜の厚さは、レーザーエッチングにより形成される線幅、線間幅に影響するため、特に微細配線を要求される場合には必要以上に厚くしない方が良い。 The thickness of the conductive film of the present invention may be set to an appropriate thickness according to the intended use. However, from the viewpoint of good conductivity of the conductive film after drying, the film thickness of the conductive film is preferably 0.5 μm or more and 30 μm or less, more preferably 0.8 μm or more and 20 μm or less, Preferably they are 1.2 micrometers or more and 10 micrometers or less, and still more are 1.6 micrometers or more and 7 micrometers or less. If the thickness of the conductive film is too thin, there is a possibility that desired conductivity as a circuit cannot be obtained. In addition, the thickness of the conductive film affects the line width formed by laser etching and the width between lines. Therefore, it is better not to make the thickness more than necessary particularly when fine wiring is required.
 本発明の導電性膜の表面粗度Raは0.40μm以下であることが必須である。表面粗度Raが高すぎるとレーザーエッチング工程においてレーザー光の散乱が顕著になり、細線のキレ(エッジの直線性)が低下する。 The surface roughness Ra of the conductive film of the present invention is essential to be 0.40 μm or less. If the surface roughness Ra is too high, the scattering of the laser light becomes remarkable in the laser etching process, and the sharpness of the fine line (edge linearity) is lowered.
 本発明では以上のようにして得られた導電性膜をレーザー光を用いて不要部分を除去し(レーザーエッチング)、微細配線を得る。本発明において用いられるレーザーとしては炭酸ガスレーザー、YAGレーザー、YVOレーザー、ファイバーレーザー、半導体レーザー、エキシマレーザー等を用いる事ができる。 In the present invention, unnecessary portions of the conductive film obtained as described above are removed using laser light (laser etching) to obtain fine wiring. As the laser used in the present invention, a carbon dioxide laser, a YAG laser, a YVO laser, a fiber laser, a semiconductor laser, an excimer laser, or the like can be used.
 本発明ではレーザーエッチングにより、線幅が100μm以下、線間幅が100μm以下である導電性微細配線が形成可能になる。本発明では好ましくは導電性微細配線の線間幅が50μm以下であり、かつ線間幅が導電性膜の厚さの4倍以下とすることができる。さらに本発明では前記導電性微細配線の線幅が35μm以下で有り、かつ線幅が導電性膜の厚さの3.5倍以下とすることができる。 In the present invention, conductive fine wiring having a line width of 100 μm or less and a line width of 100 μm or less can be formed by laser etching. In the present invention, the line width of the conductive fine wiring is preferably 50 μm or less, and the line width can be set to 4 times or less the thickness of the conductive film. Furthermore, in the present invention, the line width of the conductive fine wiring is 35 μm or less, and the line width can be 3.5 times or less of the thickness of the conductive film.
 本発明においてレーザーエッチングで得られる細線幅は100μm以下で有り、本発明においては導電膜の厚さの2.5倍程度の線幅を実現で可能であり、例えば、導電膜の厚さを10μmに調整した場合には最小線幅25μm、導電膜の厚さを5μmとした場合には線幅12.5μmを実現可能である。
 本発明においてレーザーエッチングで得られる線間幅は100μm以下で有り、本発明においては導電膜の厚さの3倍程度の最小線間幅を実現で可能であり、例えば、導電膜の厚さを10μmに調整した場合には最小線間幅30μm、導電膜の厚さを5μmとした場合には最小線間幅15μmを実現可能である。
 
In the present invention, the thin line width obtained by laser etching is 100 μm or less, and in the present invention, it is possible to realize a line width of about 2.5 times the thickness of the conductive film. For example, the thickness of the conductive film is 10 μm. When the thickness is adjusted to 25, the minimum line width is 25 μm, and when the thickness of the conductive film is 5 μm, the line width is 12.5 μm.
In the present invention, the line width obtained by laser etching is 100 μm or less, and in the present invention, it is possible to realize a minimum line width of about 3 times the thickness of the conductive film. When adjusted to 10 μm, a minimum line width of 30 μm can be realized, and when the thickness of the conductive film is set to 5 μm, a minimum line width of 15 μm can be realized.
 本発明をさらに詳細に説明するために以下に実施例、比較例を挙げるが、本発明は実施例によってなんら限定されるものではない。尚、実施例、比較例に記載された各測定値は次の方法によって測定したものである。 In order to describe the present invention in more detail, examples and comparative examples are given below, but the present invention is not limited to the examples. In addition, each measured value described in the Example and the comparative example was measured by the following method.
<数平均分子量>
 試料樹脂を、樹脂濃度が0.5重量%程度となるようにテトラヒドロフランに溶解し、孔径0.5μmのポリ四フッ化エチレン製メンブランフィルターで濾過し、GPC測定試料とした。テトラヒドロフランを移動相とし、島津製作所社製のゲル浸透クロマトグラフ(GPC)Prominenceを用い、示差屈折計(RI計)を検出器として、カラム温度30℃、流量1ml/分にて樹脂試料のGPC測定を行なった。尚、数平均分子量は標準ポリスチレン換算値とし、分子量1000未満に相当する部分を省いて算出した。GPCカラムは昭和電工(株)製のshodex KF-802、804L、806Lを用いた。
<Number average molecular weight>
The sample resin was dissolved in tetrahydrofuran so that the resin concentration was about 0.5% by weight, and filtered through a polytetrafluoroethylene membrane filter having a pore diameter of 0.5 μm to obtain a GPC measurement sample. GPC measurement of a resin sample using tetrahydrofuran as a mobile phase, a gel permeation chromatograph (GPC) Prominence manufactured by Shimadzu Corporation, and a differential refractometer (RI meter) as a detector at a column temperature of 30 ° C. and a flow rate of 1 ml / min. Was done. The number average molecular weight was a standard polystyrene equivalent value, and was calculated by omitting a portion corresponding to a molecular weight of less than 1000. As the GPC column, shodex KF-802, 804L and 806L manufactured by Showa Denko KK were used.
<酸価1>
 試料樹脂0.2gを精秤し20mlのクロロホルムに溶解した。ついで、指示薬にフェノールフタレイン溶液を用い、0.01Nの水酸化カリウム(エタノール溶液)で滴定を行った。酸価の単位はeq./106g、すなわち試料1メトリックトン当たりの当量とした。
<Acid value 1>
0.2 g of sample resin was precisely weighed and dissolved in 20 ml of chloroform. Subsequently, titration was performed with 0.01 N potassium hydroxide (ethanol solution) using a phenolphthalein solution as an indicator. The unit of acid value is eq. / 10 6 g, that is, equivalent per 1 metric ton of sample.
<酸価2>
 樹脂0.1gをベンジルアルコール/クロロホルム(1/1vo比l)混合溶媒10mlに溶解して得られた溶液を、ベンジルアルコール/メタノール(9/1vol比)混合溶媒に水酸化ナトリウム0.4gを溶解したアルカリ溶液で滴定することにより測定した。
 
<Acid value 2>
A solution obtained by dissolving 0.1 g of resin in 10 ml of a mixed solvent of benzyl alcohol / chloroform (1/1 vol ratio) and 0.4 g of sodium hydroxide in a mixed solvent of benzyl alcohol / methanol (9/1 vol ratio) are dissolved. Measured by titrating with a prepared alkaline solution.
<ガラス転移温度(Tg)>
 試料樹脂5mgをアルミニウム製サンプルパンに入れて密封し、セイコーインスツルメンツ(株)製の示差走査熱量分析計(DSC)DSC-220を用いて、200℃まで、昇温速度20℃/分にて測定し、ガラス転移温度以下のベースラインの延長線と遷移部における最大傾斜を示す接線との交点の温度で求めた。
<Glass transition temperature (Tg)>
5 mg of sample resin is put in an aluminum sample pan, sealed, and measured with a differential scanning calorimeter (DSC) DSC-220 manufactured by Seiko Instruments Inc. up to 200 ° C. at a heating rate of 20 ° C./min. And the temperature at the intersection of the base line extension below the glass transition temperature and the tangent indicating the maximum slope at the transition.
<ペースト粘度>
 粘度の測定はサンプル温度25℃において、BH型粘度計(東機産業社製,)を用い、20rpmにおいて測定を実施した。
<Paste viscosity>
The viscosity was measured at 20 rpm using a BH viscometer (manufactured by Toki Sangyo Co., Ltd.) at a sample temperature of 25 ° C.
<分散度>
 ISO 1524:2013に規定されるGrind Gageにより測定した。
<導電性積層体テストピース1の作成>
 厚み100μmのアニール処理をしたPETフィルム(東レ社製ルミラーS)に、400メッシュのステンレススクリーンを用いてスクリーン印刷法により導電性ペーストを印刷し、幅25mm、長さ450mmのべた塗りパターンを形成し、次いで熱風循環式乾燥炉にて130℃で30分加熱したものを導電性積層体テストピースとした。なお、乾燥膜厚が5~10μmになるように印刷時の塗布厚を調整した。
<Dispersity>
It was measured by Grind Gage specified in ISO 1524: 2013.
<Creation of conductive laminate test piece 1>
An electrically conductive paste is printed on a PET film (Lumirror S, manufactured by Toray Industries, Inc.) having a thickness of 100 μm by screen printing using a 400 mesh stainless screen to form a solid coating pattern having a width of 25 mm and a length of 450 mm. Then, what was heated at 130 degreeC for 30 minutes with the hot-air circulation type drying furnace was used as the electroconductive laminated body test piece. The coating thickness at the time of printing was adjusted so that the dry film thickness was 5 to 10 μm.
<密着性>
 前記導電性積層体テストピース1を用いてJIS K-5400-5-6:1990に従って、セロテープ(登録商標)(ニチバン(株)製)を用い、剥離試験により評価した。但し、格子パターンの各方向のカット数は11個、カット間隔は1mmとした。100/100は剥離がなく密着性が良好なことを示し、0/100は全て剥離してしまったことを表す。
<Adhesion>
The conductive laminate test piece 1 was evaluated by a peel test using Cellotape (registered trademark) (manufactured by Nichiban Co., Ltd.) according to JIS K-5400-5-6: 1990. However, the number of cuts in each direction of the lattice pattern was 11, and the cut interval was 1 mm. 100/100 indicates that there is no peeling and good adhesion, and 0/100 indicates that all are peeled off.
<湿熱試験>
 試料を85℃85%RH1気圧に調整した高温高湿槽にて240時間暴露し、標準状態の室内に24時間以上整地した後に密着性試験を行い、湿熱試験評価とした。
<Moist heat test>
The sample was exposed for 240 hours in a high-temperature and high-humidity tank adjusted to 85 ° C. and 85% RH at 1 atmosphere, and after having been leveled in a standard room for at least 24 hours, an adhesion test was conducted to evaluate the wet heat test.
<比抵抗>
 前記導電性積層体テストピース1のシート抵抗と膜厚を測定し、比抵抗を算出した。膜厚はゲージスタンドST-022(小野測器社製)を用い、PETフィルムの厚みをゼロ点として硬化塗膜の厚みを5点測定し、その平均値を用いた。シート抵抗はMILLIOHMMETER4338B(HEWLETT PACKARD社製)を用いてテストピース4枚について測定し、その平均値を用いた。尚、本ミリオームメーターで検出できる範囲は1×10-2以下(Ω・cm)であり、1×10-2(Ω・cm)以上の比抵抗は測定限界外となる。
<Resistivity>
The sheet resistance and film thickness of the conductive laminate test piece 1 were measured, and the specific resistance was calculated. For the film thickness, a gauge stand ST-022 (manufactured by Ono Sokki Co., Ltd.) was used, and the thickness of the cured coating film was measured at 5 points using the thickness of the PET film as a zero point, and the average value was used. The sheet resistance was measured for four test pieces using MILLIOHMMETER 4338B (manufactured by HEWLETT PACKARD), and the average value was used. The range that can be detected by this milliohm meter is 1 × 10 −2 (Ω · cm) or less, and a specific resistance of 1 × 10 −2 (Ω · cm) or more is outside the measurement limit.
<表面粗度>
 前記導電性積層体テストピース1において、表面粗さ計(ハンディーサーフ E-35B、東京精密社製、JIS-1994に基づき算出)を用い、表面粗さRaを測定した。
<Surface roughness>
In the conductive laminate test piece 1, the surface roughness Ra was measured using a surface roughness meter (Handy Surf E-35B, Tokyo Seimitsu Co., Ltd., calculated based on JIS-1994).
<レーザーエッチング性>
  スクリーン印刷法により、ITO薄膜が形成されたポリエステル基材のITO上に、導電性ペーストを2.5×10cmの長方形にスクリーン印刷を用いて印刷塗布し、印刷塗布後、熱風循環式乾燥炉にて120℃で30分間の乾燥を行って導電性薄膜を得た。なお、ITO畳の表面粗さRは0.3μmであった。また、膜厚は4~6μmとなるように印刷条件等を調整した。次いで、上記方法にて作成した導電性薄膜にレーザーエッチング加工を行い、以下に示す線幅/線間幅を描画し、各設定線幅/線間幅にて微細配線形成の有無を顕微鏡観察および、導通性、線間の短絡有無により確認し、長さ100mm以上の配線部分導通している場合、および長さ100mm以上の線間幅が電気的に短絡していない場合を微細配線形成が出来た、と判定した。
  線幅/線間幅=100μm/100μm
  線幅/線間幅= 70μm/ 70μm
  線幅/線間幅= 50μm/ 50μm
  線幅/線間幅= 50μm/ 40μm
  線幅/線間幅= 50μm/ 35μm
  線幅/線間幅= 50μm/ 30μm
  線幅/線間幅= 50μm/ 25μm
  線幅/線間幅= 50μm/ 20μm
  線幅/線間幅= 40μm/ 40μm
  線幅/線間幅= 40μm/ 35μm
  線幅/線間幅= 40μm/ 30μm
  線幅/線間幅= 40μm/ 25μm
  線幅/線間幅= 40μm/ 20μm
  線幅/線間幅= 40μm/ 15μm
  線幅/線間幅= 35μm/ 35μm
  線幅/線間幅= 35μm/ 30μm
  線幅/線間幅= 35μm/ 25μm
  線幅/線間幅= 35μm/ 20μm
  線幅/線間幅= 35μm/ 15μm
  線幅/線間幅= 35μm/ 10μm
  線幅/線間幅= 30μm/ 30μm
  線幅/線間幅= 30μm/ 25μm
  線幅/線間幅= 30μm/ 20μm
  線幅/線間幅= 30μm/ 15μm
  線幅/線間幅= 30μm/ 10μm
  線幅/線間幅= 25μm/ 25μm
  線幅/線間幅= 25μm/ 20μm
  線幅/線間幅= 25μm/ 15μm
  線幅/線間幅= 25μm/ 10μm
  線幅/線間幅= 20μm/ 20μm
  線幅/線間幅= 20μm/ 15μm
  線幅/線間幅= 20μm/ 10μm
 なおレーザー光にはYAGレーザーを用い、ビーム最小径はそれぞれの線間幅の半分以下となるように調整した。また配線の導通性、線間の短絡有無は、印可電圧1.5Vのテスターを用いた。
<Laser etching property>
Conductive paste is applied to a 2.5 x 10 cm rectangle on the polyester base ITO on which the ITO thin film has been formed by screen printing, using screen printing. The conductive thin film was obtained by drying at 120 ° C. for 30 minutes. The surface roughness R of the ITO tatami mat was 0.3 μm. Further, the printing conditions and the like were adjusted so that the film thickness was 4 to 6 μm. Next, laser etching is performed on the conductive thin film prepared by the above method, the line width / interline width shown below is drawn, and the presence or absence of fine wiring formation is observed with a microscope at each set line width / interline width. Confirmation by the presence or absence of short circuit between wires, and when the wiring part of 100mm or more length is conducting, and when the width of the line of 100mm or more length is not electrically short-circuited, fine wiring can be formed. It was determined.
Line width / line width = 100 μm / 100 μm
Line width / line width = 70 μm / 70 μm
Line width / line width = 50 μm / 50 μm
Line width / line width = 50 μm / 40 μm
Line width / line width = 50 μm / 35 μm
Line width / line width = 50 μm / 30 μm
Line width / line width = 50 μm / 25 μm
Line width / line width = 50 μm / 20 μm
Line width / line width = 40 μm / 40 μm
Line width / line width = 40 μm / 35 μm
Line width / line width = 40 μm / 30 μm
Line width / line width = 40 μm / 25 μm
Line width / line width = 40 μm / 20 μm
Line width / line width = 40 μm / 15 μm
Line width / line width = 35 μm / 35 μm
Line width / line width = 35 μm / 30 μm
Line width / interline width = 35 μm / 25 μm
Line width / line width = 35 μm / 20 μm
Line width / line width = 35 μm / 15 μm
Line width / inter-line width = 35 μm / 10 μm
Line width / line width = 30 μm / 30 μm
Line width / line width = 30 μm / 25 μm
Line width / line width = 30 μm / 20 μm
Line width / line width = 30 μm / 15 μm
Line width / inter-line width = 30 μm / 10 μm
Line width / line width = 25 μm / 25 μm
Line width / line width = 25 μm / 20 μm
Line width / line width = 25 μm / 15 μm
Line width / interline width = 25 μm / 10 μm
Line width / inter-line width = 20 μm / 20 μm
Line width / line width = 20 μm / 15 μm
Line width / line width = 20 μm / 10 μm
Note that a YAG laser was used as the laser beam, and the minimum beam diameter was adjusted to be not more than half of the width between each line. In addition, a tester with an applied voltage of 1.5 V was used for the continuity of wiring and the presence or absence of a short circuit between lines.
<合成例>
<バインダ樹脂PH001>
 攪拌機、コンデンサー、温度計を具備した反応容器に InChem製フェノキシ樹脂PKHCを400部投入した後、エチルジグリコールアセテート(EDGAC)489部を仕込み、85℃において溶解した。その後、無水トリメリット酸を1部加え、触媒としてジメチルアミノピリジンを0.19部、ジアザビシクロウンデセンを0.48部添加し、85℃で4時間反応させフェノキシ樹脂PH001の溶液を得た。
 得られたフェノキシ樹脂溶液の固形分濃度は35質量%であった。このようにして得た樹脂溶液をポリプロピレンフィルム上に滴下し、ステンレス鋼製のアプリケーターを用いて延展し、樹脂溶液の薄膜を得た。これを120℃に調整した熱風乾燥機内に3時間静置して溶剤を揮散させ、次いでポリプロピレンフィルムから樹脂薄膜を剥がし、フィルム状の乾燥樹脂薄膜を得て、酸価測定などに用いた。
 以下同様に原料を変えて変性操作を行い、表1に示す酸変性フェノキシ樹脂を得た。
[実施例1]
 表1に示した酸変性フェノキシ樹脂PH001を固形分濃度が35質量%となるようにEDGACに溶解した溶液2857部(固形部換算1000部)、フレーク状銀粉1を8361部、硬化剤1を100部、レベリング剤を59部、添加剤1を34部、溶剤としてEDGACを164部配合し、チルド三本ロール混練り機に2回通して分散した。次いで、ペースト濾過機に635メッシュ(ステンレスメッシュフィルター(目開き20μm)の濾過フィルターを取り付け、上記ペーストの濾過を行った。その後、得られた導電性ペーストを所定のパターンに印刷後、130℃×30分間乾燥し、導電性膜を得た。本導電性膜を用いて基本物性を測定し、次いで表面平滑性の検討を行った。さらに耐湿熱試験、レーザーエッチングによる微細配線形成性を評価した。評価結果を表2に示す。
<Synthesis example>
<Binder resin PH001>
Into a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 400 parts of InChem phenoxy resin PKHC was added, and then 489 parts of ethyl diglycol acetate (EDGAC) was charged and dissolved at 85 ° C. Thereafter, 1 part of trimellitic anhydride was added, 0.19 part of dimethylaminopyridine and 0.48 part of diazabicycloundecene were added as catalysts, and reacted at 85 ° C. for 4 hours to obtain a solution of phenoxy resin PH001. .
The solid content concentration of the obtained phenoxy resin solution was 35% by mass. The resin solution thus obtained was dropped on a polypropylene film and spread using a stainless steel applicator to obtain a resin solution thin film. This was left to stand in a hot air dryer adjusted to 120 ° C. for 3 hours to volatilize the solvent, and then the resin thin film was peeled off from the polypropylene film to obtain a film-like dry resin thin film, which was used for acid value measurement and the like.
Thereafter, the raw material was changed in the same manner to perform a modification operation, and acid-modified phenoxy resins shown in Table 1 were obtained.
[Example 1]
2857 parts (1000 parts in terms of solid part) of an acid-modified phenoxy resin PH001 shown in Table 1 dissolved in EDGAC so that the solid content concentration is 35% by mass, 8361 parts of flaky silver powder 1 and 100 of curing agent 1 Part, 59 parts of leveling agent, 34 parts of additive 1 and 164 parts of EDGAC as a solvent were mixed and dispersed twice by passing through a chilled three-roll kneader. Next, a 635 mesh (stainless mesh filter (aperture 20 μm) filter) was attached to the paste filter, and the paste was filtered. After that, the obtained conductive paste was printed in a predetermined pattern, and then 130 ° C. × After drying for 30 minutes, a conductive film was obtained, the basic physical properties were measured using this conductive film, the surface smoothness was then examined, and the wettability test and the fine wiring formability by laser etching were evaluated. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 なお、表1において
フェノキシ樹脂1     InChme製PKHC  数平均分子量21000 Tg 67℃
フェノキシ樹脂2     新日鉄住金化学製YP-70 数平均分子量28000  Tg 60℃
フェノキシ樹脂3     三菱化学製 jER-1010 数平均分子量  8000 Tg 55℃
フェノキシ樹脂4     三菱化学製 jER-1002 数平均分子量  1000 Tg 54℃
(Tg:ガラス転移温度)
である。
In Table 1, phenoxy resin 1 InChme PKHC number average molecular weight 21000 Tg 67 ° C
Phenoxy resin 2 Nippon Steel & Sumikin Chemical YP-70 Number average molecular weight 28000 Tg 60 ℃
Phenoxy resin 3 made by Mitsubishi Chemical jER-1010 Number average molecular weight 8000 Tg 55 ℃
Phenoxy resin 4 Made by Mitsubishi Chemical jER-1002 Number average molecular weight 1000 Tg 54 ℃
(Tg: Glass transition temperature)
It is.
[実施例2~11][比較例1~3]
 導電性ペーストの樹脂および配合を変えて実施例2~11、および比較例1~3を実施した。結果を表2に示す。実施例においてはオーブン130℃×30分という比較的低温かつ短時間の加熱により良好な塗膜物性を得ることができた。またITO膜への密着性、湿熱環境試験後の密着性も良好であった。さらに良好なレーザーエッチングによる微細配線形成性を示した。
[Examples 2 to 11] [Comparative Examples 1 to 3]
Examples 2 to 11 and Comparative Examples 1 to 3 were carried out by changing the resin and composition of the conductive paste. The results are shown in Table 2. In the examples, good coating film physical properties could be obtained by heating at a relatively low temperature of 130 ° C. for 30 minutes in an oven. Also, the adhesion to the ITO film and the adhesion after the wet heat environment test were good. Furthermore, it showed good fine wire formability by laser etching.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 なお表2において
 バインダ樹脂 RV-200:
    東洋紡製RV-200(ポリエステル樹脂、数平均分子量27000、Tg=67℃)、
銀粉1:凝集粉SF-2J (D50:1.4μm、タップ密度3.8g/cm3 )、
銀粉2:フレーク銀粉SF-70A(D50:2.4μm、タップ密度3.0g/cm3 )、
銀粉3:Ag2-1C(D50:0.9μm、タップ密度5.0g/cm3 ) 、
シリカ:日本アエロジル(株)製 #300、
カーボンブラック:ライオン(株)製ケッチェンECP600JD、
硬化剤1:旭化成ケミカルズ(株)製MF-K60X、
硬化剤2:バクセンデン製BI-7960、
硬化触媒:共同薬品(株)製KS1260、
レベリング剤:共栄社化学(株)MKコンク、
分散剤3:シュウ酸二水和物 融点101.5℃、
分散剤5:マロン酸 融点135℃、
分散剤12:マルガリン酸、融点61℃、
EDGAC:(株)ダイセル製エチルジグリコールアセテート、
BDGAC:(株)ダイセル製ブチルジグリコールアセテート、
である。
In Table 2, binder resin RV-200:
Toyobo RV-200 (polyester resin, number average molecular weight 27000, Tg = 67 ° C.),
Silver powder 1: Agglomerated powder SF-2J (D50: 1.4 μm, tap density 3.8 g / cm 3 ),
Silver powder 2: Flake silver powder SF-70A (D50: 2.4 μm, tap density 3.0 g / cm 3 ),
Silver powder 3: Ag2-1C (D50: 0.9 μm, tap density 5.0 g / cm 3)
Silica: Nippon Aerosil Co., Ltd. # 300,
Carbon black: Ketjen ECP600JD made by Lion Co., Ltd.
Curing agent 1: MF-K60X manufactured by Asahi Kasei Chemicals Corporation
Hardener 2: BI-7960 from Baxenden
Curing catalyst: Kyodo Pharmaceutical Co., Ltd. KS1260,
Leveling agent: Kyoeisha Chemical Co., Ltd. MK Conch,
Dispersant 3: Oxalic acid dihydrate, melting point 101.5 ° C.
Dispersant 5: malonic acid melting point 135 ° C.
Dispersant 12: Margaric acid, melting point 61 ° C.,
EDGAC: Ethyl diglycol acetate manufactured by Daicel Corporation,
BDGAC: butyl diglycol acetate manufactured by Daicel Corporation,
It is.
[実施例21]
 フェノキシ樹脂PH-1を固形分濃度が35質量%となるようにEDGACに溶解した溶液2857部(固形部換算1000部)、フレーク状銀粉1を8361部、硬化剤1を100部、レベリング剤を59部、添加剤1を34部、溶剤としてEDGACを164部配合し、チルド三本ロール混練り機に2回通して分散した。次いで、ペースト濾過機に635メッシュ(ステンレスメッシュフィルター(目開き20μm)の濾過フィルターを取り付け、上記ペーストの濾過を行った。その後、得られた導電性ペーストを所定のパターンに印刷後、130℃×30分間乾燥し、導電性膜を得た。本導電性膜を用いて基本物性を測定し、次いで表面平滑性の検討を行った。ペーストおよびペースト塗膜の評価結果を表3に示した。
[Example 21]
2857 parts of phenoxy resin PH-1 dissolved in EDGAC so that the solid content concentration is 35% by mass (1000 parts in terms of solid part), 8361 parts of flaky silver powder 1, 100 parts of curing agent 1, and a leveling agent 59 parts, 34 parts of additive 1 and 164 parts of EDGAC as a solvent were blended and dispersed by passing twice through a chilled three-roll kneader. Next, a 635 mesh (stainless mesh filter (aperture 20 μm) filter) was attached to the paste filter, and the paste was filtered. After that, the obtained conductive paste was printed in a predetermined pattern, and then 130 ° C. × The film was dried for 30 minutes to obtain a conductive film, the basic physical properties were measured using this conductive film, and then the surface smoothness was examined.
[実施例22~53][比較例11~14]
 導電性ペーストの樹脂および配合を変えて実施例22~53、および比較例11~14を実施した。導電性ペーストの配合および評価結果を表3~表6に示した。実施例においてはオーブン130℃×30分という比較的低温かつ短時間の加熱により良好な塗膜物性を得ることができた。またITO膜への密着性も良好であった。
[Examples 22 to 53] [Comparative Examples 11 to 14]
Examples 22 to 53 and Comparative Examples 11 to 14 were carried out by changing the resin and the composition of the conductive paste. The formulation and evaluation results of the conductive paste are shown in Tables 3 to 6. In the examples, good coating film physical properties could be obtained by heating at a relatively low temperature of 130 ° C. for 30 minutes in an oven. Also, the adhesion to the ITO film was good.
 なお、表3~表6において、バインダ樹脂、導電粉末、添加剤及び溶剤は以下のものを用いた。
 バインダ樹脂PH-1:
   InChem製PKHB(フェノキシ樹脂、数平均分子量16000、Tg=64℃、酸価 3当量/10g)
 バインダ樹脂PH-2:
   InChem製PKHC(フェノキシ樹脂、数平均分子量21000、Tg=66℃、酸価 2当量/10g)
 バインダ樹脂PH-3:InChme製PKHC変性物
           (フェノキシ樹脂、数平均分子量21000、Tg=67℃、酸価 105当量/10g)
 バインダ樹脂PH-4:
     InChem製PKHH(フェノキシ樹脂、数平均分子量27000、Tg=67℃、酸価 2当量/10g)
 バインダ樹脂PH-5:新日鉄住金化学製YP-50
     (フェノキシ樹脂、数平均分子量27000、Tg=65℃、酸価 3当量/10g)
   バインダ樹脂PH-6:新日鉄住金化学製YP-70
     (フェノキシ樹脂、数平均分子量28000、Tg=60℃、酸価 1当量/10g )
  バインダ樹脂PH-7:三菱化学製jER-1010
     (フェノキシ樹脂、数平均分子量8000、Tg=55℃、酸価 2当量/10g)
  バインダ樹脂PH-8:三菱化学製jER-1002
     (フェノキシ樹脂、数平均分子量1000、Tg=54℃、酸価 3当量/10g)
  バインダ樹脂PS-1:東洋紡製RV-200(ポリエステル樹脂、数平均分子量27000、Tg=67℃)
  銀粉1:凝集粉SF-2J (D50:1.4μm、タップ密度3.8g/cm3 )
  銀粉2:フレーク銀粉SF-70A(D50:3.0μm、タップ密度3.2g/cm3 )
   銀粉3:AC-2594(D50:1.7μm、タップ密度5.0g/cm3 )
   銀粉4:AGC-A(D50:3.5μm、タップ密度3.3g/cm3 )
   銀粉5:Ag2-1C(D50:0.9μm、タップ密度5.0g/cm3 )
   銀粉6:SFQ-ED(D50:1.4μm、タップ密度2.7g/cm3 )
   銀粉7:S11000-25(D50:0.3μm、タップ密度1.95g/cm3 )
  シリカ:日本アエロジル(株)製 #300
  ケッチェンブラック(カーボンブラック):ライオン(株)製ケッチェンECP600JD
  硬化剤1:旭化成ケミカルズ(株)製MF-K60X
  硬化剤2:バクセンデン製BI-7960
  硬化触媒:共同薬品(株)製KS1260
  レベリング剤:共栄社化学(株)MKコンク
  添加剤1:MKコンク(レベリング剤)
  添加剤2:ビックケミー・ジャパン(株)社製BYK-410(レオロジーコントロール剤)
  添加剤3:ビックケミー・ジャパン(株)社製BYK-405(レオロジーコントロール剤)
  添加剤4:jER-820(エポキシ) 
  分散剤1:ビックケミー・ジャパン(株)社製Disperbyk2155(分散剤)、
  分散剤2:ビックケミー・ジャパン(株)社製Disperbyk130(分散剤)、
  分散剤3:シュウ酸二水和物 融点101.5℃、
  分散剤4:アジピン酸 融点152.1℃、
  分散剤5:マロン酸 融点135℃、
  分散剤6:コハク酸 融点184℃、
  分散剤7:マレイン酸 融点131℃、
  分散剤8:フマル酸、
  分散剤9:ラウリン酸、融点 43.2℃、
  分散剤10:ミリスチル酸、融点54.4℃
  分散剤11:パルミチンサン、融点62.9℃
  分散剤12:マルガリン酸、融点61℃、
  分散剤13:ステアリン酸、融点69.6℃
  EDGAC:(株)ダイセル製エチルジグリコールアセテート
  BDGAC:(株)ダイセル製ブチルジグリコールアセテート
In Tables 3 to 6, the following binder resins, conductive powders, additives and solvents were used.
Binder resin PH-1:
PKHB manufactured by InChem (phenoxy resin, number average molecular weight 16000, Tg = 64 ° C., acid value 3 equivalents / 10 6 g)
Binder resin PH-2:
InChem PKHC (phenoxy resin, number average molecular weight 21000, Tg = 66 ° C., acid value 2 equivalents / 10 6 g)
Binder resin PH-3: PKHC modified product manufactured by InChme (phenoxy resin, number average molecular weight 21000, Tg = 67 ° C., acid value 105 equivalent / 10 6 g)
Binder resin PH-4:
PCHHH manufactured by InChem (phenoxy resin, number average molecular weight 27000, Tg = 67 ° C., acid value 2 equivalent / 10 6 g)
Binder resin PH-5: YP-50 manufactured by Nippon Steel & Sumikin Chemical
(Phenoxy resin, number average molecular weight 27000, Tg = 65 ° C., acid value 3 equivalents / 10 6 g)
Binder resin PH-6: YP-70 manufactured by Nippon Steel & Sumikin Chemical
(Phenoxy resin, number average molecular weight 28000, Tg = 60 ° C., acid value 1 equivalent / 10 6 g)
Binder resin PH-7: Mitsubishi Chemical's jER-1010
(Phenoxy resin, number average molecular weight 8000, Tg = 55 ° C., acid value 2 equivalents / 10 6 g)
Binder resin PH-8: Mitsubishi Chemical's jER-1002
(Phenoxy resin, number average molecular weight 1000, Tg = 54 ° C., acid value 3 equivalents / 10 6 g)
Binder resin PS-1: Toyobo RV-200 (polyester resin, number average molecular weight 27000, Tg = 67 ° C.)
Silver powder 1: Agglomerated powder SF-2J (D50: 1.4 μm, tap density 3.8 g / cm 3 )
Silver powder 2: Flake silver powder SF-70A (D50: 3.0 μm, tap density 3.2 g / cm 3 )
Silver powder 3: AC-2594 (D50: 1.7 μm, tap density 5.0 g / cm 3 )
Silver powder 4: AGC-A (D50: 3.5 μm, tap density 3.3 g / cm 3 )
Silver powder 5: Ag2-1C (D50: 0.9 μm, tap density 5.0 g / cm 3 )
Silver powder 6: SFQ-ED (D50: 1.4 μm, tap density 2.7 g / cm 3 )
Silver powder 7: S11000-25 (D50: 0.3 μm, tap density 1.95 g / cm 3 )
Silica: Nippon Aerosil Co., Ltd. # 300
Ketjen Black (Carbon Black): Ketjen ECP600JD manufactured by Lion Corporation
Hardener 1: MF-K60X manufactured by Asahi Kasei Chemicals Corporation
Hardener 2: Baksenden BI-7960
Curing catalyst: Kyodo Pharmaceutical Co., Ltd. KS1260
Leveling agent: Kyoeisha Chemical Co., Ltd. MK Conk Additive 1: MK Conc (leveling agent)
Additive 2: BYK-410 (Rheology control agent) manufactured by Big Chemie Japan Co., Ltd.
Additive 3: BYK-405 (Rheology control agent) manufactured by Big Chemie Japan
Additive 4: jER-820 (epoxy)
Dispersant 1: Disperbyk 2155 (dispersant) manufactured by Big Chemie Japan Co., Ltd.
Dispersant 2: Disperbyk130 (dispersant) manufactured by Big Chemie Japan Co., Ltd.
Dispersant 3: Oxalic acid dihydrate, melting point 101.5 ° C.
Dispersant 4: Adipic acid melting point 152.1 ° C.
Dispersant 5: malonic acid melting point 135 ° C.
Dispersant 6: Succinic acid Melting point 184 ° C
Dispersant 7: Maleic acid Melting point 131 ° C.
Dispersant 8: fumaric acid,
Dispersant 9: Lauric acid, melting point 43.2 ° C.,
Dispersant 10: myristic acid, melting point 54.4 ° C
Dispersant 11: Palmitic Sun, melting point 62.9 ° C.
Dispersant 12: Margaric acid, melting point 61 ° C.,
Dispersant 13: Stearic acid, melting point 69.6 ° C.
EDGAC: Ethyl diglycol acetate manufactured by Daicel Corporation BDGAC: Butyl diglycol acetate manufactured by Daicel Corporation
 なお、バインダ樹脂PH-3は以下の操作により作製した。
<バインダ樹脂PH-3>
 攪拌機、コンデンサー、温度計を具備した反応容器に InChem製フェノキシ樹脂PKHCを400部投入した後、エチルジグリコールアセテート(EDGAC)489部を仕込み、85℃において溶解した。その後、無水トリメリット酸を3部加え、触媒としてジメチルアミノピリジンを0.19部、ジアザビシクロウンデセンを0.48部添加し、85℃で4時間反応させフェノキシ樹脂PH-3の溶液を得た。得られたフェノキシ樹脂溶液の固形分濃度は35質量%であった。このようにして得た樹脂溶液をポリプロピレンフィルム上に滴下し、ステンレス鋼製のアプリケーターを用いて延展し、樹脂溶液の薄膜を得た。これを120℃に調整した熱風乾燥機内に3時間静置して溶剤を揮散させ、次いでポリプロピレンフィルムから樹脂薄膜を剥がし、フィルム状の乾燥樹脂薄膜を得て各種測定に用いた。
The binder resin PH-3 was produced by the following operation.
<Binder resin PH-3>
Into a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 400 parts of InChem phenoxy resin PKHC was added, and then 489 parts of ethyl diglycol acetate (EDGAC) was charged and dissolved at 85 ° C. Thereafter, 3 parts of trimellitic anhydride was added, 0.19 part of dimethylaminopyridine and 0.48 part of diazabicycloundecene were added as catalysts, and reacted at 85 ° C. for 4 hours to obtain a solution of phenoxy resin PH-3. Obtained. The solid content concentration of the obtained phenoxy resin solution was 35% by mass. The resin solution thus obtained was dropped on a polypropylene film and spread using a stainless steel applicator to obtain a resin solution thin film. This was left to stand in a hot air dryer adjusted to 120 ° C. for 3 hours to volatilize the solvent, and then the resin thin film was peeled off from the polypropylene film to obtain a film-like dry resin thin film, which was used for various measurements.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 以上述べてきたように、本発明の導電ペースト高い分散度を有し、本発明のペーストから得られる導電性膜は良好なレーザーエッチング性を有し、ITO等の導電性薄膜と組み合わせる事によりタッチパネル等の入出力インターフェース用の部材として有用に活用することができる。また微細配線が必要な印刷TFTなどの配線層に好適に使用できる。
 
 
 
As described above, the conductive paste of the present invention has a high degree of dispersion, the conductive film obtained from the paste of the present invention has a good laser etching property, and is combined with a conductive thin film such as ITO to make a touch panel. It can be used effectively as a member for an input / output interface such as. Further, it can be suitably used for a wiring layer such as a printed TFT that requires fine wiring.


Claims (10)

  1.  少なくとも熱可塑性および/または熱硬化性樹脂からなるバインダ樹脂、銀粉および有機溶剤を含有する導電性ペーストにおいて、
     前記銀粉の中心径D50が0.5μm以上、5μm以下であり、 
     前記バインダ樹脂が、数平均分子量が3,000~100,000、酸価が20~500eq./106のフェノキシ樹脂を60重量%以上含有することを特徴とする導電ペースト。
    In a conductive paste containing at least a binder resin made of thermoplastic and / or thermosetting resin, silver powder and an organic solvent,
    The center diameter D50 of the silver powder is 0.5 μm or more and 5 μm or less,
    The binder resin has a number average molecular weight of 3,000 to 100,000 and an acid value of 20 to 500 eq. A conductive paste characterized by containing 60% by weight or more of / 10 6 phenoxy resin.
  2.  請求項1に記載の導電ペーストを、表面粗さが0.1μm以下の表面を有する無機薄膜層が形成された高分子フィルム上に塗布し、乾燥硬化することによる、表面粗さRaが0.4μm以下である導電性膜の製造方法。 The conductive paste according to claim 1 is applied onto a polymer film on which an inorganic thin film layer having a surface with a surface roughness of 0.1 μm or less is formed, and is dried and cured to have a surface roughness Ra of 0.00. The manufacturing method of the electroconductive film | membrane which is 4 micrometers or less.
  3.  高分子フィルム、または表面粗さが0.1μm以下無機薄膜層を表面に有する高分子フィルムのいずれかを基材とする、
     少なくとも数平均分子量が3,000~100,000、酸価が20~500eq./106のフェノキシ樹脂硬化物および導電性粒子からなり、線幅が100μm以下、線間幅が100μm以下である導電性微細配線。
    Based on either a polymer film or a polymer film having a surface roughness of 0.1 μm or less and an inorganic thin film layer on the surface,
    The number average molecular weight is at least 3,000 to 100,000, and the acid value is 20 to 500 eq. A conductive fine wiring comprising a cured phenoxy resin of / 10 6 and conductive particles, having a line width of 100 μm or less and a line width of 100 μm or less.
  4.  前記導電性微細配線の線間幅が50μm以下であり、かつ線間幅が導電性膜の厚さの4倍以下である事を特徴とする請求項3に記載の導電性微細配線。 4. The conductive fine wiring according to claim 3, wherein a line width of the conductive fine wiring is 50 μm or less, and a line width is four times or less of a thickness of the conductive film.
  5.  前記導電性微細配線の線幅が50μm以下で有り、かつ線幅が導電性膜の厚さの3.5倍以下である事を特徴とする請求項3または4記載の導電性微細配線。 5. The conductive fine wiring according to claim 3, wherein the conductive fine wiring has a line width of 50 μm or less and a line width of 3.5 times or less of the thickness of the conductive film.
  6.  請求項2に記載の導電性膜の不要部分を、レーザー光にて除去することによる請求項3から5のいずれかに記載の導電性微細配線の製造方法。 6. The method for producing a conductive fine wiring according to claim 3, wherein unnecessary portions of the conductive film according to claim 2 are removed with a laser beam.
  7.  少なくとも熱可塑性および/または熱硬化性樹脂からなるバインダ樹脂、銀粉および有機溶剤を含有する導電性ペーストにおいて、
     前記銀粉の中心径D50が0.5μm以上、5μm以下であり、 
     前記銀粉のタップ密度が2.0g/cm3以上であり、
     前記バインダ樹脂が、数平均分子量が3,000~100,000のフェノキシ樹脂を60重量%以上含有し、ISO 1524:2013に規定されるGrind Gageにより得られる分散度が10μm以下であることを特徴とする導電ペースト。
    In a conductive paste containing at least a binder resin made of thermoplastic and / or thermosetting resin, silver powder and an organic solvent,
    The center diameter D50 of the silver powder is 0.5 μm or more and 5 μm or less,
    The silver powder tap density is 2.0 g / cm 3 or more,
    The binder resin contains 60% by weight or more of a phenoxy resin having a number average molecular weight of 3,000 to 100,000, and has a dispersion obtained by Grind Gage defined in ISO 1524: 2013 of 10 μm or less. A conductive paste.
  8.  少なくとも、中心径D50が0.5μm以上、5μm以下であり、タップ密度が2.0g/cm3以上である銀粉、 
     数平均分子量が3,000~100,000のフェノキシ樹脂を60重量%以上含有するバインダ樹脂、
     溶剤、
     分散剤、
    を含む組成物を三本ロールミルにて混合分散した後に、目開き1μm以上25μmのフィルターにて濾過することを特徴とする請求項7記載の導電ペーストの製造方法。
    Silver powder having a center diameter D50 of 0.5 μm or more and 5 μm or less and a tap density of 2.0 g / cm 3 or more,
    A binder resin containing 60% by weight or more of a phenoxy resin having a number average molecular weight of 3,000 to 100,000;
    solvent,
    Dispersant,
    The method for producing a conductive paste according to claim 7, wherein the composition containing is mixed and dispersed by a three-roll mill and then filtered through a filter having an opening of 1 μm to 25 μm.
  9.  請求項8の製造方法により得られた導電ペーストを、表面粗さが0.1μm以下の表面を有する無機薄膜層が形成された高分子フィルム上にスクリーン印刷し、乾燥硬化することによる、表面粗さRaが0.4μm以下である導電性膜の製造方法。 A surface roughness obtained by screen-printing the conductive paste obtained by the production method according to claim 8 on a polymer film on which an inorganic thin film layer having a surface with a surface roughness of 0.1 μm or less is formed, followed by drying and curing. A method for producing a conductive film having a thickness Ra of 0.4 μm or less.
  10.  請求項9の製造方法にて得られた導電性膜の不要部分を、レーザー光にて除去することを特徴とする、表面粗さRaが0.4以下であり、線幅が100μm以下で有り、線間が100μm以下である導電性微細配線の製造方法。
     
     
     
     
     
     
     
     
     
     
     
    An unnecessary portion of the conductive film obtained by the manufacturing method according to claim 9 is removed with a laser beam, the surface roughness Ra is 0.4 or less, the line width is 100 μm or less, A method for producing a conductive fine wiring having a gap of 100 μm or less.










PCT/JP2017/040909 2016-11-21 2017-11-14 Conductive paste, conductive film, method for producing conductive film, conductive thin wiring line and method for producing conductive thin wiring line WO2018092762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018551636A JP7024724B2 (en) 2016-11-21 2017-11-14 A method for manufacturing a conductive paste, a conductive film, a conductive film, a conductive fine wiring, and a method for manufacturing a conductive fine wiring.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-226003 2016-11-21
JP2016226004 2016-11-21
JP2016226003 2016-11-21
JP2016-226004 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092762A1 true WO2018092762A1 (en) 2018-05-24

Family

ID=62145541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040909 WO2018092762A1 (en) 2016-11-21 2017-11-14 Conductive paste, conductive film, method for producing conductive film, conductive thin wiring line and method for producing conductive thin wiring line

Country Status (3)

Country Link
JP (1) JP7024724B2 (en)
TW (1) TWI752117B (en)
WO (1) WO2018092762A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188077A (en) * 2019-05-10 2020-11-19 帝国通信工業株式会社 Circuit board
JP2021044087A (en) * 2019-09-06 2021-03-18 帝国通信工業株式会社 Circuit board

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754904A (en) * 2019-02-21 2019-05-14 珠海纳金科技有限公司 A kind of laser ablation electrocondution slurry and preparation method thereof
CN111014717A (en) * 2019-12-11 2020-04-17 北京氦舶科技有限责任公司 Silver powder for low-temperature curing conductive silver paste and preparation method thereof
CN113823458A (en) * 2021-08-18 2021-12-21 洋紫荆油墨(中山)有限公司 Low-resistance silver paste and preparation method and application thereof
JPWO2023210522A1 (en) * 2022-04-27 2023-11-02

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120382A (en) * 2012-12-18 2014-06-30 Sumitomo Metal Mining Co Ltd Conductive resin paste and electronic element using the same
WO2015111615A1 (en) * 2014-01-22 2015-07-30 東洋紡株式会社 Conductive paste for laser etching, conductive thin film and conductive laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389148B2 (en) * 2002-05-17 2009-12-24 日立化成工業株式会社 Conductive paste
JP4702499B1 (en) * 2010-02-05 2011-06-15 東洋インキScホールディングス株式会社 Conductive ink, laminate with conductive pattern and method for producing the same
JP6100924B2 (en) * 2014-01-06 2017-03-22 富士フイルム株式会社 Composition for forming conductive film, conductive film, organic thin film transistor, electronic paper, display device, wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120382A (en) * 2012-12-18 2014-06-30 Sumitomo Metal Mining Co Ltd Conductive resin paste and electronic element using the same
WO2015111615A1 (en) * 2014-01-22 2015-07-30 東洋紡株式会社 Conductive paste for laser etching, conductive thin film and conductive laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188077A (en) * 2019-05-10 2020-11-19 帝国通信工業株式会社 Circuit board
JP2021044087A (en) * 2019-09-06 2021-03-18 帝国通信工業株式会社 Circuit board

Also Published As

Publication number Publication date
TW201829651A (en) 2018-08-16
JPWO2018092762A1 (en) 2019-10-17
JP7024724B2 (en) 2022-02-24
TWI752117B (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6458820B2 (en) Conductive paste, conductive thin film and conductive laminate for laser etching
JP7024724B2 (en) A method for manufacturing a conductive paste, a conductive film, a conductive film, a conductive fine wiring, and a method for manufacturing a conductive fine wiring.
KR102324621B1 (en) Conductive paste for laser etching, conductive thin film and conductive laminate
JP6582982B2 (en) Conductive paste for laser etching, conductive thin film, conductive laminate
WO2017159381A1 (en) Conductive film and conductive paste for laser etching processing
JP2016029638A (en) Conductive paste for laser machining
JP6094642B2 (en) Conductive paste for laser processing
JP7331840B2 (en) conductive paste
JP6673215B2 (en) Conductive paste for laser etching, conductive thin film, conductive laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551636

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872791

Country of ref document: EP

Kind code of ref document: A1