WO2018092651A1 - 低温液化ガスポンプ用断熱容器 - Google Patents

低温液化ガスポンプ用断熱容器 Download PDF

Info

Publication number
WO2018092651A1
WO2018092651A1 PCT/JP2017/040224 JP2017040224W WO2018092651A1 WO 2018092651 A1 WO2018092651 A1 WO 2018092651A1 JP 2017040224 W JP2017040224 W JP 2017040224W WO 2018092651 A1 WO2018092651 A1 WO 2018092651A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
liquefied gas
low
temperature liquefied
pump
Prior art date
Application number
PCT/JP2017/040224
Other languages
English (en)
French (fr)
Inventor
大介 吉本
尚一郎 林
山口 哲
耕一郎 山之内
裕也 山根
直哉 児玉
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP17871666.8A priority Critical patent/EP3543590A4/en
Priority to US16/338,794 priority patent/US11384747B2/en
Priority to CN201780066992.XA priority patent/CN109891146B/zh
Priority to AU2017363128A priority patent/AU2017363128C1/en
Publication of WO2018092651A1 publication Critical patent/WO2018092651A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • F04B23/021Pumping installations or systems having reservoirs the pump being immersed in the reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • F04B23/021Pumping installations or systems having reservoirs the pump being immersed in the reservoir
    • F04B23/023Pumping installations or systems having reservoirs the pump being immersed in the reservoir only the pump-part being immersed, the driving-part being outside the reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • F04B23/025Pumping installations or systems having reservoirs the pump being located directly adjacent the reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/086Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/5893Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps heat insulation or conduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/605Mounting; Assembling; Disassembling specially adapted for liquid pumps
    • F04D29/606Mounting in cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps

Definitions

  • the present invention relates to a heat-insulating container for a low-temperature liquefied gas pump, and particularly relates to a container with improved maintainability for a pump and a vacuum heat-insulating layer.
  • low-temperature liquefied gas pumps for pumping ultra-low-temperature liquefied gases such as liquefied helium, liquefied hydrogen, liquefied nitrogen, liquefied oxygen, liquefied argon, and LNG have been put into practical use.
  • an in-tank pump (submerged pump) installed in a liquefied gas tank that stores the low-temperature liquefied gas immersed in the low-temperature liquefied gas is provided outside the liquefied gas tank and connected to the liquefied gas tank.
  • a pod type pump installed in a heat insulating container is known.
  • ⁇ In-tank type pumps are inferior in maintainability because it is necessary to discharge low-temperature liquefied gas from the low-temperature liquefied gas tank and replace the tank with inert gas during maintenance.
  • the pump may be installed outside the tank at room temperature. In that case, it is necessary to pre-cool the pump before the pump is operated, and there is a demerit that boil-off gas is also generated for the pre-cooling. .
  • Patent Document 1 discloses a heat insulating container equipped with a tank lorry for transporting a low-temperature liquefied gas and containing a pod-type pump, the heat-insulating container for a low-temperature liquefied gas pump containing the low-temperature liquefied gas pump immersed in the low-temperature liquefied gas. Are listed.
  • This insulated container for a low-temperature liquefied gas pump has a casing and a lid.
  • the casing has a bottomed cylindrical inner wall (inner tub), an outer wall (outer tub) covered with a vacuum insulation layer on the inner wall, and a ceiling wall that covers the inner wall and the upper surface of the outer wall in an airtight manner.
  • a fixed plate to which the lower end of the outer wall is fixed and a plurality of mounting vertical plates for connecting the above-mentioned lids stacked on the ceiling wall are provided, and a hermetic pump is accommodated in the inner wall.
  • a suction port and a return port for returning the vaporized gas are connected to the outer wall, and a discharge pipe connected to the hermetic pump extends outside through the ceiling wall and the lid.
  • the suction port and the return port should be connected to the inner wall through the outer wall.
  • the pump-out structure that allows the low-temperature liquefied gas pump to be easily removed to the outside for maintenance, and the vacuum heat-insulating layer to easily maintain the vacuum heat-insulating layer A structure for exposing the heat insulating layer that can be exposed to the surface is required.
  • the heat insulating container includes a suction pipe, a discharge pipe, a gas pipe, a plurality of pressure detection pipes for detecting the filling state of the low-temperature liquefied gas in the inner tank, electric wires for a pump drive system, signal lines for vibration sensors and temperature sensors. Therefore, it is not easy to provide the structure for taking out the pump and the structure for exposing the heat insulating layer.
  • An object of the present invention is to provide a heat insulating container for a low-temperature liquefied gas pump with improved heat insulation of the lid structure and improved maintainability of the pump.
  • the heat insulating container for a low-temperature liquefied gas pump includes an inner tank for storing the low-temperature liquefied gas, an outer tank that is externally provided around the inner tank, and a low-temperature liquefied gas pump that is disposed in the inner tank.
  • the outer tub has an upper outer tub on the upper end side portion and an outer tub main body other than the upper outer tub, and is detachably fitted to the upper side portion of the inner tub.
  • the heat insulating structure is provided with a lid structure, the pump is fixed to the lid structure, the suction pipe and the discharge pipe are inserted and fixed, and a vacuum heat insulating layer is provided between the inner tank and the outer tank.
  • the heat insulating performance on the cover side of the heat insulating container can be enhanced by the cover structure of the heat insulating structure. Further, by removing the lid structure upward, the pump can be easily removed from the inner tank together with the suction pipe and the discharge pipe, and maintenance of the pump can be easily performed.
  • the invention of claim 2 is characterized in that, in claim 1, a vacuum pump port is formed in the upper outer tank. With the above configuration, the outer tub main body can be removed without affecting the signal line or the like introduced from the vacuum pump port to the vacuum heat insulating layer.
  • a third aspect of the present invention is characterized in that in the first or second aspect, a pressure detection pipe or a drain pipe that is fixedly penetrated to the upper outer tank is provided. With the above configuration, the outer tub main body can be removed without affecting the pressure detection tube or the drain tube.
  • the pump is fixed to the lid structure via a pump support mechanism.
  • the pump can be easily removed together with the lid structure and the pump support mechanism.
  • a fifth aspect of the present invention provides the pump support mechanism according to any one of the first to fourth aspects, wherein the pump support mechanism includes a plurality of first guide members each having a vertical first guide groove fixed to an inner surface of the inner tank.
  • a plurality of first rod members that are slidably mounted in the first guide grooves of the plurality of first guide members and whose upper ends are connected to the lid structure, and the pumps to the plurality of first rod members.
  • a plurality of connecting members to be connected.
  • a sixth aspect of the present invention provides the position regulating mechanism according to any one of the first to fifth aspects, wherein a position regulating mechanism is provided for regulating the position of the inner tub relative to the outer tub so as not to move in the direction perpendicular to the axis.
  • the position regulating mechanism is fixed to a plurality of second guide members having a vertical second guide groove fixed to the inner surface of the outer tub or the outer surface of the inner tub, and the outer surface of the inner tub or the inner surface of the outer tub.
  • a plurality of engagement connecting members having engagement portions slidably engaged with the second guide grooves of the plurality of second guide members.
  • a seventh aspect of the invention is characterized in that, in any one of the first to sixth aspects, the vacuum heat insulating layer is filled with a laminated heat insulating material or pearlite. With the above configuration, the vacuum heat insulating layer having excellent heat insulating properties can be obtained.
  • the invention of claim 8 is characterized in that, in any one of claims 1 to 7, a synthetic resin foam is provided inside the lid structure. With the above configuration, the heat insulating property of the lid structure can be ensured.
  • a ninth aspect of the invention is characterized in that, in any one of the first to seventh aspects, a laminated heat insulating material is provided in a heat insulating gap inside the lid structure and a vacuum layer is formed. With the above configuration, the heat insulating property of the lid structure can be ensured.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 1.
  • It is a principal part perspective view of a pump support mechanism. It is a principal part perspective view of a position control mechanism.
  • It is sectional drawing of the heat insulation container for low-temperature liquefied gas pumps of Example 2. It is sectional drawing of the heat insulation container for low temperature liquefied gas pumps of Example 3.
  • the low temperature liquefied gas pump heat insulating container 1 contains a low temperature liquefied gas pump for pumping low temperature liquefied gas such as liquefied helium, liquefied hydrogen, liquefied nitrogen, liquefied oxygen, liquid air, LNG, etc. It is an insulated container.
  • the low-temperature liquefied gas of the present embodiment is liquefied hydrogen
  • the low-temperature liquefied gas pump 2 pressurizes the liquefied hydrogen supplied from the liquefied hydrogen storage tank through the double pipe of the heat insulating structure to the external double pipe of the heat insulating structure. It is to be pumped.
  • the low-temperature liquefied gas pump 2 can be applied to an application of pumping liquefied hydrogen to a refrigerant passage between an inner tube and an outer tube in a double pipe having a heat insulating structure for pumping liquefied hydrogen.
  • This low temperature liquefied gas pump heat insulating container 1 (hereinafter referred to as a heat insulating container) was externally provided with an inner tank 3 having a vertical axis containing liquefied hydrogen and a vacuum heat insulating layer 4 around the inner tank 3.
  • a gas pipe 9 for deriving hydrogen gas vaporized from the inside, a cable pipe 10 through which electric wires pass, two pressure detection pipes 11 and 12, a drain pipe 13 and the like are provided.
  • the members constituting the heat insulating container 1 and various accompanying structures to be described later are made of low temperature steel (stainless steel in this embodiment), and members made of materials other than the low temperature steel are as follows. The material shall be noted.
  • the inner tank 3 is a container configured to contain liquefied hydrogen by closing the bottom of an elongated cylindrical body having a predetermined diameter with a bowl-shaped end plate.
  • the outer tub 5 is obtained by closing the bottom of an elongated cylindrical body having a larger diameter than the inner tub 3 with a bowl-shaped end plate, and the outer tub 5 is vacuum-insulated around the inner tub 3 (outer peripheral side and bottom side). It is exteriorized with a layer 4 in between.
  • the vacuum heat insulating layer 4 is made of a known laminated heat insulating material 4a (super insulation, SI) and is in a vacuum state.
  • the thickness dimension in the radial direction of the vacuum heat insulating layer 4 is set to a necessary size.
  • the outer tub 5 includes a cylindrical upper outer tub 5U that constitutes the upper end side portion, and an outer tub main body 5L other than the upper outer tub 5U.
  • a vacuum pump port 14 that can be connected to an external vacuum pump is formed in the upper outer tank 5U, and is closed by a lid member 14a so as to be opened and closed.
  • a signal line of a vacuum gauge or a temperature sensor is introduced into the vacuum heat insulating layer 4 from the vacuum pump port 14.
  • An annular first flange 15 is provided at the upper end of the inner tub 3 and the upper outer tub 5U, and the outer diameter of the upper end of the lid structure 6 has the same outer diameter as the first flange 15.
  • the second flange 16 is provided on the first flange 15 in a state where a sheet-like low-temperature gasket 17 is interposed between the first and second flanges 15 and 16.
  • a first fastening portion 19 fastened at 18 is provided.
  • An annular third flange 20 projecting to the outer diameter side is provided at the upper end portion of the outer tub body 5L, and an annular fourth flange 21 having the same outer diameter as the third flange 20 is provided at the lower end portion of the upper outer tub 5U.
  • a second fastening portion that is provided and fastens the fourth flange 21 to the third flange 20 with a plurality of bolts 23 with the sheet-like low-temperature gasket 22 interposed between the third and fourth flanges 20, 21. 24 is provided.
  • the lid structure 6 has a heat insulating structure that is detachably fitted to a predetermined length portion on the upper side of the inner tub 3.
  • the lid structure 6 is formed by integrally joining a cylindrical body 6a that is fitted in the inner tub 3 in a vertically slidable manner with a minute gap, a bottom plate 6b that closes the bottom of the cylindrical body 6a, and a second flange 16. It is a thing.
  • Low temperature O-rings 25 are attached to a plurality of annular seal grooves formed in the inner tank 3 at positions corresponding to the lower end portions of the cylindrical body 6a. Liquid tightly sealed.
  • a storage chamber 3a for storing the liquefied hydrogen and the low-temperature liquefied gas pump 2 is formed.
  • a suction pipe 7 and a discharge pipe 8 made of a vacuum heat insulating double pipe, a gas pipe 9 and a wire pipe 10 are inserted into the cylindrical body 6a of the lid structure 6, and these pipes 7 to 10 are internally connected. It is installed in a vertical posture parallel to the axis of the tank 3.
  • the lower end portion of the inner pipe 7a of the suction pipe 7 penetrates the bottom plate 6b and enters the accommodation chamber 3a, the lower end thereof opens into the accommodation chamber 3a, and the lower end of the outer tube 7b is joined to the upper surface of the bottom plate 6b.
  • the discharge pipe 8 is constituted by a vacuum heat insulating double pipe composed of an inner pipe and an outer pipe.
  • the inner pipe extends through the bottom plate 6b to the vicinity of the bottom in the housing chamber 3a and then makes a U-shape upward. It has a pipe 8a, is curved from the upper end of the U-shaped pipe 8a, and is connected to the discharge port at the top of the pump 2.
  • the lower end of the gas pipe 9 is joined to the upper surface of the bottom plate 6b.
  • the lower end of the conduit 10 is joined to the bottom plate 6b, and a power cable for driving the pump connected to the pump 2, a signal line of the vibration sensor attached to the pump 2 and a signal line of the temperature sensor are inserted into the conduit 10 It is attached to.
  • a heat insulating material 26 made of urethane foam (PUF) is filled in the outer space of the pipes 7 to 10 in the space in the cylindrical body 6a of the lid structure 6.
  • a top plate that closes the top surface of the lid structure 6 may be provided, and instead of the urethane foam 26, pearlite may be filled into a vacuum state, or a laminated heat insulating material may be filled into a vacuum state.
  • the low-temperature liquefied gas pump 2 is a centrifugal pump made of a low-temperature metal material such as stainless steel, and is installed in the storage chamber 3a with the axis centered vertically.
  • the pump 2 has a lid structure via a pump support mechanism 30 described later. It is fixed to the body 6.
  • the pump support mechanism 30 includes a plurality of (four in the present embodiment) having vertical first guide grooves 31a fixed to the inner surface of the inner tank 3 in the storage chamber 3a.
  • the first connecting member 33 connects the top of the pump 2 to the first rod-shaped member 32
  • the second connecting member 34 connects the middle step of the pump 2 to the first rod-shaped member 32.
  • the first guide member 31 is a strip material that is slightly shorter than the vertical length of the storage chamber 3a and is formed with a flat T-groove-shaped first guide groove 31a over the entire length on a strip member having a rectangular cross section. .
  • the four first guide members 31 are installed in a vertical posture with the first guide groove 31 a directed toward the inner diameter side at the circumferentially equally divided position of the inner surface of the inner tub 3 and joined to the inner surface of the inner tub 3. .
  • Each of the four first guide members 31 is provided with a flat bar-like first rod-like member 32 that is slidable in the vertical direction.
  • Four first connecting members 33 fixed to the four first rod-like members 32 are fastened to the top of the pump 2 by bolts 33a.
  • the first connecting member 33 is fixed at a right angle to the first rod-shaped member 32 and extends from the first rod-shaped member 32 to the pump 2 side, and the base end portion of the first connecting member 33 is connected to the first rod-shaped member 32 by a bolt. It is connected.
  • a neck portion 33 b that can pass through the opening groove portion 31 b of the first guide groove 31 a is formed at the base portion of the first connecting member 33.
  • a reinforcing bracket 33c that can pass through the opening groove 31b is formed on the lower surface side of the first connecting member 33.
  • a bolt hole 33d is formed at the distal end portion of the first connecting member 33, the distal end portion is brought into contact with the top portion of the pump 2, and the bolt 33a inserted through the bolt hole 33d is fastened to the bolt hole of the case of the pump 2.
  • the pump 2 is connected to the first rod-shaped member 32.
  • the second connecting member 34 is formed shorter than the first connecting member 33, but is the same as the first connecting member 33, and is connected to the first rod-like member 32 like the first connecting member 33, The tip is fastened to the middle stage of the case of the pump 2 with a bolt 34a.
  • the first rod-like member 32 is slidable in the vertical direction with respect to the first guide member 31, so that the lid structure 6 and the pipes 7 to 10 are moved upward during maintenance of the pump 2.
  • the four first rod-like members 32 connected to and supported by the lid structure 6 and the pump 2 can be pulled upward.
  • a position restricting mechanism 40 that restricts the position of the outer tub 5 so that the inner tub 3 does not move in the direction orthogonal to the axis.
  • the position regulating mechanism 40 is fixed to a plurality of (four in this embodiment) second guide members 41 having vertical second guide grooves 41 a fixed to the inner surface of the outer tub body 5 ⁇ / b> L and the outer surface of the inner tub 3.
  • a plurality (eight in this embodiment) of engagement connecting members 42 having engagement portions 42b slidably engaged with the second guide grooves 41a of the plurality of second guide members 41.
  • at least one of the second guide member 41 and the engagement connecting member 42 may be made of a fiber reinforced synthetic resin (for example, GFRP, CFRP, or the like).
  • the upper four engagement connecting members 42 are provided at positions corresponding to the middle upper part of the inner tank 3, and the lower four engagement connecting members 42 correspond to the lower end part of the inner tank 3. In the position.
  • the second guide member 41 is a strip material that is slightly shorter than the vertical length of the outer tub body 5L and has a rectangular section T-shaped second guide groove 41a formed over the entire length. is there.
  • the four second guide members 41 are installed in a vertical posture with the second guide groove 41a directed toward the inner diameter side at the circumferentially equally divided position of the inner surface of the outer tank body 5L, and are joined to the inner surface of the outer tank body 5L. Yes.
  • the engagement connecting member 42 is a member having a predetermined vertical width with an I-shaped cross section.
  • the engagement connecting member 42 is vertically fixed to a fixed-side flange 42a fastened to the outer surface of the inner tank 3 by four bolts passed through four bolt holes 42d and a second guide groove 41a of the second guide member 41.
  • An engagement flange 42b (engagement portion) that is slidably mounted, and a web 42c that integrally connects the fixed-side flange 42a and the engagement flange 42b are provided.
  • the outer tub 5 and the inner tub 3 can be moved relative to each other only in the vertical direction via the upper four engagement connection members 42 and the lower four engagement connection members 42. Relative movement in a direction perpendicular to the axis can be prohibited. Therefore, when the vacuum heat insulation layer 4 is maintained, the outer tub main body 5L can be pulled out without separating the second fastening portion 24 and affecting the vacuum heat insulation layer 4.
  • the four engagement connecting members 42 may be fixed to the inner surface of the outer tank body 5L, and the second guide member 41 may be fixed to the outer surface of the inner tank 3.
  • the pressure detection tubes 11 and 12, the drain tube 13, the rupture disk 43, etc. will be described. From the first pressure detection tube 11 for detecting the pressure at the top of the storage chamber 3a filled with liquefied hydrogen, the second pressure detection tube 12 for detecting the pressure at the bottom of the storage chamber 3a, and the bottom of the storage chamber 3a. A drain pipe 13 for discharging the drain is provided. The first and second pressure detection pipes 11 and 12 and the drain pipe 13 are fixed to the upper outer tank 5U.
  • the first pressure detection tube 11 extends downward in the vacuum heat insulating layer 4 from a penetrating portion penetrating the upper outer tub 5U, penetrates the inner tub 3 at a portion corresponding to the top of the storage chamber 3a, and the tip 11a thereof is inside. It protrudes slightly from the inner surface of the tank 3 and is open.
  • the second pressure detection tube 12 extends from the penetrating portion penetrating the upper outer tub 5U downward in the vacuum heat insulating layer 4 to the central portion outside the bottom of the inner tub 3, and the central portion of the bottom of the inner tub 3 is extended. It penetrates and the front-end
  • the drain pipe 13 extends from the penetrating portion penetrating the upper outer tank 5U downward in the vacuum heat insulating layer 4 to the center outside the bottom of the inner tank 3, and penetrates the center of the bottom of the inner tank 3, The tip is open to the inner surface of the bottom of the inner tub 3.
  • a rupture disk 43 for relieving pressure when the pressure of the vacuum heat insulating layer 4 rises abnormally is provided at a predetermined portion below the outer tank body 5L.
  • the heat insulation container 1 is installed in the state supported by the support stand (illustration omitted) made from the ordinary steel installed on the foundation concrete.
  • liquefied hydrogen in the liquefied hydrogen storage tank is filled into the storage chamber 3a via the suction pipe 7 at the head pressure.
  • the filled liquefied hydrogen is pressurized by the pump 2 and discharged from the discharge pipe 8 to the outside.
  • the boil-off gas generated in the storage chamber 3a is led out from the gas pipe 9 to the outside.
  • the vacuum heat insulating layer 4 between the inner tub 3 and the outer tub 5 is filled with the laminated heat insulating material 4a (or pearlite) and kept in a vacuum state, and the lid structure 6 is insulated by the urethane foam 26 having a large thickness. Therefore, the heat insulating container 1 is a highly heat insulating container. Moreover, since the top and bottom length of the lid structure 6 is long, the heat transfer distance of the pipes 7 to 10 is increased to reduce the amount of heat input from the pipes 7 to 10. Since the urethane foam 26 is disposed on the upper side of the bottom plate 6 b in the lid structure 6, the liquefied hydrogen in the storage chamber 3 a is not contaminated by the urethane foam 26.
  • the first rod-like member 32 and the pump 2 are inserted into the inner tub 3, the first rod-like member 32 is inserted into the first guide groove 31a of the first guide member 31, and the second The first fastening portion 19 is fastened by bringing the flange 16 into contact with the first flange 15 and the low-temperature gasket 17.
  • the fastening of the second fastening portion 24 is released and the outer tub main body 5L is pulled out downward, or By pulling out the heat insulating container part other than the outer tub main body 5L in the heat insulating container 1, the most part of the vacuum heat insulating layer 4 can be exposed to the outside.
  • the engagement flange 42 b of the engagement connecting member 42 of the position regulating mechanism 40 slides in the second guide groove 41 a of the second guide member 41, and the laminated heat insulation of the engagement connecting member 42 and the vacuum heat insulating layer 4. Since the material 4a does not move relative to the inner tub 3, the engagement connecting member 42 does not adversely affect the laminated heat insulating material 4a, so that most of the vacuum heat insulating layer 4 can be easily exposed to the outside world for easy maintenance. Can be done.
  • the outer tub body 5L is externally attached to the inner tub 3 from below while the engaging flange 42b is engaged with the second guide groove 41a of the second guide member 41, or the outer tub A heat insulating container portion other than the outer tub main body 5L is inserted into the main body 5L from above, and the fourth flange 21 is brought into contact with the third flange 20 and the low temperature seal member 22 to fasten the second fastening portion 24.
  • the position restriction mechanism 40 having a simple configuration can restrict the position of the inner tub 3 so as not to move in the direction perpendicular to the axis of the outer tub 5. Since the vacuum pump port 14 is formed in the upper outer tub 5U, the outer tub main body 5L can be removed without affecting the signal line or the like introduced from the vacuum pump port 14 to the vacuum heat insulating layer 4.
  • the outer tank main body 5L can be removed without affecting the pressure detection pipes 11 and 12 and the drain pipe 13.
  • At least one of the second guide member 41 and the engagement connecting member 42 is made of a fiber reinforced synthetic resin material, heat input into the heat insulating container 1 for the low temperature liquefied gas pump can be suppressed from the outside, Thermal insulation performance can be improved.
  • the vertical length of the upper outer tank 5U is shortened, and the vertical length of the lid structure 6A inserted into the inner tank 3 is also shortened. Instead, the cylinder body 6a of the lid structure 6A extends upward from the second flange 16, and the top plate 50 that closes the upper end of the cylinder body 6a is joined. The vertical length of the lid structure 6A is shorter than the lid structure 6 of the first embodiment.
  • a vacuum heat insulating layer 51 is formed in a space outside the pipes 7 to 10 in the internal space of the cylindrical body 6a.
  • a laminated heat insulating material 52 (SI) is horizontally stacked on the vacuum heat insulating layer 51 and vacuum is applied. Kept in a state.
  • the lid structure 6A also has a vacuum heat insulating double structure.
  • a vacuum pump port 53 is formed above the second flange 16 in the cylindrical body 6a, and a rupture disk 54 is also provided.
  • the heat insulating performance of the lid structure 6A can be further enhanced by the vacuum heat insulating layer 51 described above.
  • the same operations and effects as those of the first embodiment are obtained.
  • most of the low temperature liquefied gas pump heat insulating container 1B of the third embodiment is the same as the low temperature liquefied gas pump heat insulating container 1 of the first embodiment. Description is omitted, and only different configurations are described.
  • the vertical length of the upper outer tub 5U is shortened, and the vertical length of the lid structure 6B inserted into the inner tub 3 is also shortened. Instead, the cylinder 6a of the lid structure 6B extends upward from the second flange 16, and the top plate 55 that closes the upper end of the cylinder 6a is joined. The vertical length of the lid structure 6B is shorter than that of the lid structure 6 of the first embodiment.
  • a cylindrical portion 56 that covers the protruding portion of the conduit 10 is joined to the top plate 55.
  • the bottom plate 6 b is joined to a cylindrical portion 57 that surrounds the inner tube 7 a of the suction pipe 7 and a cylindrical portion that surrounds the discharge pipe 8, and the upper end of the cylindrical portion 57 is closed by a closing plate 58.
  • a vacuum heat insulating layer 59 is formed in an outer space of the pipes 7 to 10 in the internal space of the lid structure 6B, and a laminated heat insulating material 60 (SI) is horizontally stacked on the vacuum heat insulating layer 59 and is vacuumed. Kept in a state.
  • the lid structure 6B also has a vacuum heat insulating double structure.
  • a vacuum pump port 61 is formed in the cylindrical body 6a above the second flange 16, and a rupture disk 62 is also provided.
  • the heat insulating performance of the lid structure 6B can be further enhanced by the vacuum heat insulating layer 59 described above.
  • the cylinder part 56 surrounding the upper end side part of the conduit 10 is provided, the amount of heat input from the conduit 10 can be reduced.
  • the same operations and effects as those of the first embodiment are obtained.
  • the outer tub 5, the second guide member 41, and the third and fourth flanges 20, 21 may be made of ordinary steel.
  • the top plates 50 and 55 may be connected to the cylindrical body 6a by flange connection.
  • the structure of each part and the shapes and sizes of various members can be appropriately changed by those skilled in the art without departing from the gist of the present invention, and the present invention includes the modified embodiments. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本発明は、低温液化ガスを収容する内槽(3)と、この内槽(3)の周囲に外装された外槽(5)と、内槽(3)内に配設された低温液化ガスポンプ(2)とを有する低温液化ガスポンプ用断熱容器(1)において、外槽(5)は、上端部側部分の上部外槽(5U)と、この上部外槽(5U)以外の外槽本体(5L)とを有し、内槽(3)の上部側部分に着脱可能に内嵌された断熱構造の蓋構造体(6)を設け、蓋構造体(6)にポンプ(2)が固定されると共に吸込管(7)と吐出管(8)とが挿通固定され、内槽(3)と外槽(5)との間に真空断熱層(4)を設けたものであり、蓋構造の断熱性を高め且つポンプのメンテナンス性を高めた低温液化ガスポンプ用断熱容器を提供する。

Description

低温液化ガスポンプ用断熱容器
 本発明は、低温液化ガスポンプ用断熱容器に関し、特にポンプや真空断熱層に対するメンテナンス性を高めたものに関する。
 液化ヘリウム、液化水素、液化窒素、液化酸素、液化アルゴン、LNG等の超低温液化ガスを圧送する為の種々の低温液化ガスポンプが実用化されている。
 例えば、前記低温液化ガスポンプとしては、低温液化ガスを貯蔵する液化ガスタンク内に低温液化ガスに浸漬状態に設置されるインタンク型ポンプ(サブマージポンプ)、液化ガスタンクの外部に設けて液化ガスタンクに接続された断熱容器内に設置されるポッド型ポンプなどが公知である。
 インタンク型ポンプでは、そのメンテナンスの際に低温液化ガスタンク内から低温液化ガスを排出し、タンク内を不活性ガスで置換してからポンプを取り出すことが必要でメンテナンス性に劣る。尚、タンクの外部にポンプが常温状態で設置される場合もあるが、その場合、ポンプの作動前にポンプを予冷することが必要で、その予冷のためボイルオフ・ガスも発生するというデメリットがある。
 特許文献1には、低温液化ガスを輸送するタンクローリーに装備され且つポッド型ポンプを収容した断熱容器であって、低温液化ガスポンプを低温液化ガス中に浸漬状態に収容した低温液化ガスポンプ用断熱容器が記載されている。
 この低温液化ガスポンプ用断熱容器は、ケーシングと蓋とを有する。ケーシングは、有底筒状の内壁(内槽)と、この内壁に真空断熱層を空けて外装された外壁(外槽)と、これら内壁と外壁の上面開口を気密状に蓋をする天井壁とを備えている。外壁の下端が固定された固定板と、天井壁の上に重ねた上記の蓋を連結する複数の取付用縦板とが設けられ、内壁内に密閉型ポンプが収容されている。外壁に吸込口と気化ガスを戻す戻り口が接続され、密閉型ポンプに接続された吐出管は天井壁と蓋を貫通して外部へ延びている。
 尚、吸込口と戻り口は外壁を貫通して内壁に接続されるべきものである。
特許第3434203号公報
 特許文献1の低温液化ガスポンプ用断熱容器では、天井壁と蓋とが断熱層なしに当接した構造であるため、天井壁と蓋からの入熱量が多くなる。
 特許文献1の断熱容器では、メンテナンスの為に、ポンプを外部へ取り出すことができず、また、断熱層を外部に露出させることもできない。
 しかし、実用に供する低温液化ガスポンプ用断熱容器では、メンテナンスの為に、低温液化ガスポンプを外部へ簡単に取り出し可能にするポンプ取出用構造、真空断熱層をメンテナンスする為に真空断熱層を簡単に外部に露出可能にする断熱層露出用構造などが必要である。
 前記断熱容器には、吸込管、吐出管、ガス管、内槽内の低温液化ガスの充填状態を検知する為の複数の圧力検知管、ポンプ駆動系の電線、振動センサや温度センサの信号線なども装着されるため、上記のポンプ取出用構造や断熱層露出用構造を設けることは容易ではない。
 本発明の目的は、蓋構造の断熱性を高め且つポンプのメンテナンス性を高めた低温液化ガスポンプ用断熱容器を提供することである。
 請求項1の低温液化ガスポンプ用断熱容器は、低温液化ガスを収容する内槽と、この内槽の周囲に外装された外槽と、前記内槽内に配設された低温液化ガスポンプとを有する低温液化ガスポンプ用断熱容器において、前記外槽は、上端部側部分の上部外槽と、この上部外槽以外の外槽本体とを有し、前記内槽の上部側部分に着脱可能に内嵌された断熱構造の蓋構造体を設け、前記蓋構造体に前記ポンプが固定されると共に吸込管と吐出管が挿通固定され、前記内槽と外槽の間は真空断熱層であることを特徴とする。
 上記の構成により、断熱構造の蓋構造体により断熱容器の蓋側の断熱性能を高めることができる。また、蓋構造体を上方へ取り外すことにより、吸込管と吐出管と共にポンプを内槽から簡単に取り外すことができ、ポンプのメンテナンスを容易に行うことができる。
 請求項2の発明は、請求項1において、前記上部外槽に真空ポンプポートが形成されたことを特徴としている。
 上記の構成により、真空ポンプポートから真空断熱層に導入される信号線等に影響を及ぼすことなく、外槽本体を取り外すことができる。
 請求項3の発明は、請求項1又は2において、前記上部外槽に貫通固定された圧力検知管またはドレン管が設けられたことを特徴としている。
 上記の構成により、圧力検知管またはドレン管に影響を及ぼすことなく、外槽本体を取り外すことができる。
 請求項4の発明は、請求項1~3の何れか1項において、前記蓋構造体にポンプ支持機構を介して前記ポンプが固定されたことを特徴としている。
 上記の構成により、前記蓋構造体及びポンプ支持機構と共にポンプを簡単に取り外すことができる。
 請求項5の発明は、請求項1~4の何れか1項において、前記ポンプ支持機構は、前記内槽の内面に固定された鉛直の第1ガイド溝を有する複数の第1ガイド部材と、これら複数の第1ガイド部材の第1ガイド溝に摺動自在に装着されて上端部が前記蓋構造体に連結された複数の第1棒状部材と、これら複数の第1棒状部材に前記ポンプを連結する複数の連結部材とを備えたことを特徴としている。
 上記の構成により、簡単な構成の前記ポンプ支持機構を実現することができる。
 請求項6の発明は、請求項1~5の何れか1項において、前記外槽に対して前記内槽をその軸心直交方向へ移動しないように位置規制する位置規制機構が設けられ、この位置規制機構は、前記外槽の内面又は前記内槽の外面に固定された鉛直の第2ガイド溝を有する複数の第2ガイド部材と、前記内槽の外面又は前記外槽の内面に固定され且つ複数の第2ガイド部材の第2ガイド溝に摺動自在に係合された係合部を有する複数の係合連結部材とを備えたことを特徴としている。
 上記の構成により、前記外槽に対して前記内槽をその軸心直交方向へ移動しないように位置規制すると共に、簡単な構成の位置規制機構を実現することができる。
 請求項7の発明は、請求項1~6の何れか1項において、前記真空断熱層には、積層断熱材またはパーライトが充填されたことを特徴としている。
 上記の構成により、断熱性に優れた前記真空断熱層とすることができる。
 請求項8の発明は、請求項1~7の何れか1項において、前記蓋構造体の内部には合成樹脂発泡体が設けられたことを特徴としている。
 上記の構成により、前記蓋構造体の断熱性を確保することができる。
 請求項9の発明は、請求項1~7の何れか1項において、前記蓋構造体の内部の断熱隙間には積層断熱材が設けられると共に真空層が形成されたことを特徴としている。
 上記の構成により、前記蓋構造体の断熱性を確保することができる。
本発明の実施例1の低温液化ガスポンプ用断熱容器の断面図である。 図1のII-II線断面図である。 図1のIII-III線断面図である。 ポンプ支持機構の要部斜視図である。 位置規制機構の要部斜視図である。 実施例2の低温液化ガスポンプ用断熱容器の断面図である。 実施例3の低温液化ガスポンプ用断熱容器の断面図である。
 本発明を実施するための形態について実施例に基づいて説明する。
 図1、図2に示すように、低温液化ガスポンプ用断熱容器1は、液化ヘリウム、液化水素、液化窒素、液化酸素、液体空気、LNG等の低温液化ガスを圧送する為の低温液化ガスポンプを収容する断熱容器である。
 本実施例の低温液化ガスは液化水素であり、低温液化ガスポンプ2は液化水素貯蔵タンクから断熱構造の二重管を介して供給される液化水素を加圧して外部の断熱構造の二重管へ圧送するものである。例えば、低温液化ガスポンプ2は、液化水素圧送用の断熱構造の二重管における内管と外管の間の冷媒通路に液化水素を圧送する用途などにも適用可能なものである。
この低温液化ガスポンプ用断熱容器1(以下、断熱容器という)は、液化水素を収容する鉛直の軸心を有する内槽3と、この内槽3の周囲に真空断熱層4を空けて外装された外槽5と、内槽3内に設置された低温液化ガスポンプ2と、蓋構造体6と、液化水素を吸い込む吸込管7と、加圧した液化水素を吐出する吐出管8と、内槽3内から気化した水素ガスを導出するガス管9と、電線類を通す電線管10と、2つの圧力検知管11,12と、ドレン管13などを備えている。
 この断熱容器1とこれに付随する後述の種々の付随構造を構成する諸部材は、低温用鋼(本実施例では、ステンレス鋼)で構成され、低温用鋼以外の材料で製作する部材についてはその材料を特記するものとする。
 内槽3は、所定の直径を有する細長い円筒体の底部を椀状の鏡板で塞いで液化水素を収容可能に構成した容器である。
 外槽5は、内槽3よりも大径の細長い円筒体の底部を椀状の鏡板で塞いだものであり、外槽5は、内槽3の周囲(外周側と底面側)に真空断熱層4を空けて外装されている。本実施例の場合、真空断熱層4は、公知の積層断熱材4a(スーパーインシュレーション、SI)を収容して真空状態にしたものである。但し、積層断熱材4aの代わりにパーライトを充填して真空状態にした真空断熱層も採用可能である。但し、この場合、真空断熱層4の径方向の厚さ寸法を必要な大きさに設定するものとする。
 外槽5は、上端部側部分を構成する円筒状の上部外槽5Uと、この上部外槽5U以外の外槽本体5Lとを有する。上部外槽5Uに外部の真空ポンプに接続可能な真空ポンプポート14が形成され、蓋部材14aで開閉可能に閉塞されている。真空ポンプポート14から真空計や温度センサの信号線が真空断熱層4に導入される。
 内槽3と上部外槽5Uの上端部には外径側へ張り出す環状の第1フランジ15が設けられ、蓋構造体6の上端部の外周部には第1フランジ15と同外径を有する環状の第2フランジ16が設けられ、第1,第2フランジ15,16の間にシート状の低温用ガスケット17を介装した状態で、第1フランジ15に第2フランジ16を複数のボルト18で締結した第1締結部19が設けられている。
 外槽本体5Lの上端部には外径側へ張り出す環状の第3フランジ20が設けられ、上部外槽5Uの下端部には第3フランジ20と同外径の環状の第4フランジ21が設けられ、第3,第4フランジ20,21の間にシート状の低温用ガスケット22を介装した状態で、第3フランジ20に第4フランジ21を複数のボルト23で締結した第2締結部24が設けられている。
 蓋構造体6は、内槽3の上部側所定長さ部分に着脱可能に内嵌された断熱構造のものである。蓋構造体6は、内槽3に上下方向に摺動可能に微小隙間をもって内嵌される筒体6aと、筒体6aの底部を塞ぐ底板6bと、第2フランジ16とを一体的に接合したものである。筒体6aの下端寄り部位に対応する位置で、内槽3に形成された複数の環状シール溝に低温用Oリング25が装着され、これらOリング25により内槽3と蓋構造体6間が液密にシールされている。
 内槽3内の蓋構造体6の下側空間には、液化水素を収容すると共に低温液化ガスポンプ2を収容する収容室3aが形成されている。蓋構造体6の筒体6aには、真空断熱二重管からなる吸込管7及び吐出管8と、ガス管9と、電線管10とが挿入されて、これらの配管類7~10は内槽3の軸心と平行な鉛直姿勢に設置されている。吸込管7の内管7aの下端部分は底板6bを貫通して収容室3aに突入し、その下端は収容室3a内に開口し、外管7bの下端は底板6bの上面に接合されている。
 吐出管8は、内管と外管とからなる真空断熱二重管で構成され、その内管は底板6bを貫通して収容室3a内の底部近くまで延びてから上方へUターンするU字管8aを有し、U字管8aの上端部から湾曲してポンプ2の頂部の吐出口に接続されている。ガス管9の下端は底板6bの上面に接合されている。電線管10の下端部は底板6bに接合され、この電線管10にはポンプ2に接続されるポンプ駆動用電力ケーブルとポンプ2に取り付けた振動センサの信号線と温度センサの信号線が挿通状に装着されている。
 蓋構造体6の筒体6a内の空間のうちの配管類7~10の外側空間にはウレタン発泡体(PUF)からなる断熱材26が充填されている。
 但し、蓋構造体6の天面を塞ぐ天板を設け、ウレタン発泡体26の代わりに、パーライトを充填して真空状態にしたり、積層断熱材を充填して真空状態にしてもよい。
 低温液化ガスポンプ2は、ステンレス等の低温用金属材料で構成された遠心ポンプであり、収容室3aに軸心を鉛直にして設置され、このポンプ2は後述するポンプ支持機構30を介して蓋構造体6に固定されている。
 図1、図3、図4に示すように、ポンプ支持機構30は、収容室3a内で内槽3の内面に固定された鉛直の第1ガイド溝31aを有する複数(本実施例では4つ)の第1ガイド部材31と、これら複数の第1ガイド部材31の第1ガイド溝31aに摺動自在に装着されて上端部が蓋構造体6の底板6bに連結された複数(本実施例では4つ)の第1棒状部材32と、これら複数の第1棒状部材32にポンプ2を連結する複数(本実施例では各4つ)の第1,第2連結部材33,34とを備えている。第1連結部材33はポンプ2の頂部を第1棒状部材32に連結するものであり、第2連結部材34はポンプ2の中段部を第1棒状部材32に連結するものである。
 第1ガイド部材31は、収容室3aの上下長よりやや短い条材であって断面矩形の条材に、偏平なT溝状の第1ガイド溝31aを全長に亙って形成したものである。4本の第1ガイド部材31は、内槽3の内面の円周4等分位置に第1ガイド溝31aを内径側に向けて鉛直姿勢に設置されて内槽3の内面に接合されている。
 4本の第1ガイド部材31には、夫々、フラットバー状の第1棒状部材32が上下方向に摺動自在に装着されている。4本の第1棒状部材32に夫々固定された4つの第1連結部材33がポンプ2の頂部にボルト33aにより締結されている。
 第1連結部材33は、第1棒状部材32に対して直角に固定されて第1棒状部材32からポンプ2側へ延び、第1連結部材33の基端部が第1棒状部材32にボルトにより連結されている。第1連結部材33の基部には第1ガイド溝31aの開口溝部31bを通過可能な首部33bが形成されている。また、第1連結部材33の下面側には開口溝部31bを通過可能な補強ブラケット33cが形成されている。
 第1連結部材33の先端部にはボルト穴33dが形成され、その先端部をポンプ2の頂部に当接させ、ボルト穴33dに挿通させたボルト33aをポンプ2のケースのボルト穴に締結することで、ポンプ2が第1棒状部材32に連結されている。
 第2連結部材34は、第1連結部材33より短かく形成されているが、第1連結部材33と同様のもので、第1連結部材33と同様に第1棒状部材32に連結され、その先端部がボルト34aによりポンプ2のケースの中段部に締結されている。
 上記の構成により、第1棒状部材32は第1ガイド部材31に対して上下方向に摺動移動可能であるため、ポンプ2のメンテナンスの際に蓋構造体6と配管類7~10を上方へ引き抜くことにより、蓋構造体6に連結支持された4つの第1棒状部材32とポンプ2とを上方へ引き抜くことができる。
 図1、図3、図5に示すように、外槽5に対して内槽3がその軸心直交方向へ移動しないように位置規制する位置規制機構40が設けられている。この位置規制機構40は、外槽本体5Lの内面に固定された鉛直の第2ガイド溝41aを有する複数(本実施例では4つ)の第2ガイド部材41と、内槽3の外面に固定され且つ複数の第2ガイド部材41の第2ガイド溝41aに摺動自在に係合した係合部42bを有する複数(本実施例では8つ)の係合連結部材42とを備えている。なお、第2ガイド部材41と係合連結部材42の少なくともいずれか一方の部材は、繊維強化合成樹脂(例えば、GFRPやCFRP等)で構成されていてもよい。
 上側の4つの係合連結部材42は、内槽3の中段のやや上側部位に対応する位置に設けられ、下側の4つの係合連結部材42は、内槽3の下端寄り部位に対応する位置に設けられている。
 第2ガイド部材41は、外槽本体5Lの上下長よりやや短い条材であって断面矩形の条材に、偏平なT溝状の第2ガイド溝41aを全長に亙って形成したものである。4つの第2ガイド部材41は、外槽本体5Lの内面の円周4等分位置に第2ガイド溝41aを内径側に向けて鉛直姿勢に設置されて外槽本体5Lの内面に接合されている。
 係合連結部材42は、断面I字形の所定の上下幅を有する部材である。係合連結部材42は、4つのボルト穴42dに通した4本のボルトで内槽3の外面に締結される固定側フランジ42aと、第2ガイド部材41の第2ガイド溝41aに上下方向に摺動自在に装着される係合フランジ42b(係合部)と、固定側フランジ42aと係合フランジ42bとを一体的に接続するウェブ42cとを備えている。
 以上の構成により、上側の4つの係合連結部材42と下側の4つの係合連結部材42とを介して外槽5と内槽3を上下方向にのみ相対移動可能とし、内槽3の軸心と直交する方向への相対移動を禁止することができる。そのため、真空断熱層4をメンテナンスする場合等に、第2締結部24を分離して、真空断熱層4に影響を及ぼすことなく、外槽本体5Lを下方へ引き抜くことが可能になる。
 尚、上記の構成の変更例として、4つの係合連結部材42を外槽本体5Lの内面に固定し、第2ガイド部材41を内槽3の外面に固定してもよい。
 次に、圧力検知管11,12、ドレン管13、ラプチャーディスク43等について説明する。液化水素が充填される収容室3a内の頂部の圧力を検知する第1圧力検知管11と、収容室3a内の底部の圧力を検知する第2圧力検知管12と、収容室3aの底部からドレンを排出するドレン管13が設けられている。これら第1,第2圧力検知管11,12とドレン管13は上部外槽5Uに貫通固定されている。
 第1圧力検知管11は、上部外槽5Uを貫通する貫通部位から真空断熱層4内を下方へ延び、収容室3aの頂部に対応する部位で内槽3を貫通し、その先端11aが内槽3の内面から僅かに突出して開端している。第2圧力検知管12は、上部外槽5Uを貫通する貫通部位から真空断熱層4内を下方へ延びてから内槽3の底部外側の中心部まで延び、内槽3の底部の中心部を貫通し、その先端が内槽3の底部の内面に開端している。
 ドレン管13は、上部外槽5Uを貫通する貫通部位から真空断熱層4内を下方へ延びてから内槽3の底部外側の中心部まで延び、内槽3の底部の中心部を貫通し、その先端が内槽3の底部の内面に開端している。
 外槽本体5Lの下部の所定部位には、真空断熱層4の圧力が異常に上昇した場合に、圧力をリリーフさせる為のラプチャーディスク43が設けられている。
 尚、断熱容器1は、基礎コンクリート上に設置された普通鋼製の支持台(図示略)に支持した状態に設置されている。
 次に、低温液化ガスポンプ用断熱容器1の作用、効果について説明する。
   通常、液化水素貯蔵タンクの液化水素がそのヘッド圧で吸込管7を経由して収容室3aに充填される。充填された液化水素はポンプ2により加圧されて吐出管8から外部に吐出される。収容室3a内に発生するボイルオフガスはガス管9から外部へ導出される。
 内槽3と外槽5の間の真空断熱層4には積層断熱材4a(又はパーライト)が充填されて真空状態に保持され、蓋構造体6は厚さの大きなウレタン発泡体26で断熱されているため、断熱容器1は、高断熱の容器になっている。
 しかも、蓋構造体6の上下長は長いため、配管類7~10の伝熱距離を長くして配管類7~10からの入熱量を少なくしている。蓋構造体6においてウレタン発泡体26は底板6bの上側に配置されているため、収容室3a内の液化水素がウレタン発泡体26で汚染されることもない。
 ポンプ2のメンテナンスを行う際には、第1締結部19の締結を解除し、蓋構造体6と配管類7~10を上方へ抜き出すと、ポンプ支持機構30において第1棒状部材32が第1ガイド部材31に対して上方へ摺動移動し、第1棒状部材32に支持されたポンプ2も上方へ移動し、ポンプ2を上方へ抜き取ることができる。
 こうして、真空断熱層4の真空をブレイクすることなく、ポンプ2を簡単に抜き取ることができるためメンテナンスを容易に行うことができる。
 ポンプ2のメンテナンス終了後には、第1棒状部材32とポンプ2を内槽3内へ挿入し、第1棒状部材32を第1ガイド部材31の第1ガイド溝31aに挿入していき、第2フランジ16を第1フランジ15と低温用ガスケット17に当接させて第1締結部19を締結する。
 内槽3と外槽5の間の真空断熱層4の積層断熱材4a等に対するメンテナンスを行う際には、第2締結部24の締結を解除し、外槽本体5Lを下方へ引き抜くか、或いは、断熱容器1のうちの外槽本体5L以外の断熱容器部分を上方へ引き抜くことにより、真空断熱層4の大部分を外界に露出させることができる。
 このとき、位置規制機構40の係合連結部材42の係合フランジ42bが第2ガイド部材41の第2ガイド溝41a内を摺動移動し、係合連結部材42と真空断熱層4の積層断熱材4aは内槽3に対して相対移動しないから、係合連結部材42により積層断熱材4aに何ら悪影響を及ぼすことなく、真空断熱層4の大部分を簡単に外界に露出させてメンテナンスを容易に行うことができる。
 その真空断熱層4に対するメンテナンス終了後には、係合フランジ42bを第2ガイド部材41の第2ガイド溝41aに係合させながら、外槽本体5Lを下方から内槽3に外装させるか、外槽本体5Lに対して外槽本体5L以外の断熱容器部分を上方から挿入し、第3フランジ20と低温用シール部材22に第4フランジ21を当接させて第2締結部24を締結する。
 しかも、簡単な構成の位置規制機構40により、外槽5に対して内槽3をその軸心直交方向へ移動しないように位置規制することができる。
 上部外槽5Uに真空ポンプポート14が形成されたため、真空ポンプポート14から真空断熱層4に導入される信号線等に影響を及ぼすことなく、外槽本体5Lを取り外すことができる。
 上部外槽5Uに圧力検知管11,12及びドレン管13を貫通固定して設けたため、圧力検知管11,12とドレン管13に影響を及ぼすことなく、外槽本体5Lを取り外すことができる。
第2ガイド部材41と係合連結部材42の少なくともいずれか一方が繊維強化合成樹脂材料で構成されているため、外部から低温液化ガスポンプ用断熱容器1内への入熱を抑制することができ、断熱性能を向上することができる。
 図6に示すように、この実施例2の低温液化ガスポンプ用断熱容器1Aの大部分は、実施例1の低温液化ガスポンプ用断熱容器1と同様であるので、同じ部材に同じ符号を付して説明を省略し、異なる構成についてのみ説明する。
 上部外槽5Uの上下長が短縮されると共に、内槽3に挿入される蓋構造体6Aの上下長も短縮されている。その代わりに、蓋構造体6Aの筒体6aが第2フランジ16よりも上方へ延長され、その筒体6aの上端を塞ぐ天板50が接合されている。蓋構造体6Aの上下長は実施例1の蓋構造体6よりも短くなっている。
 筒体6aの内部空間のうちの配管類7~10の外側の空間には真空断熱層51が形成され、この真空断熱層51には積層断熱材52(SI)が水平向きに積層され且つ真空状態に保持される。こうして、蓋構造体6Aも真空断熱二重構造になっている。筒体6aには、第2フランジ16よりも上方において真空ポンプポート53が形成され、ラプチャーディスク54も設けられている。
 上記の真空断熱層51により蓋構造体6Aの断熱性能を一層高めることができる。その他、実施例1と同様の作用、効果を奏する。
 図7に示すように、この実施例3の低温液化ガスポンプ用断熱容器1Bの大部分は、実施例1の低温液化ガスポンプ用断熱容器1と同様であるので、同じ部材に同じ符号を付して説明を省略し、異なる構成についてのみ説明する。
 上部外槽5Uの上下長が短縮されると共に、内槽3に挿入される蓋構造体6Bの上下長も短縮されている。その代わりに、蓋構造体6Bの筒体6aが第2フランジ16よりも上方へ延長され、その筒体6aの上端を塞ぐ天板55が接合されている。蓋構造体6Bの上下長は実施例1の蓋構造体6よりも短くなっている。
 上記の天板55には、電線管10の突出部分を覆う筒部56が接合されている。底板6bには、吸込管7の内管7aを囲繞する筒部57と、吐出管8を囲繞する筒部が接合され、筒部57の上端が閉塞板58で閉塞されている。
 蓋構造体6Bの内部空間のうち配管類7~10の外側空間には、真空断熱層59が形成され、この真空断熱層59には積層断熱材60(SI)が水平向きに積層され且つ真空状態に保持される。こうして、蓋構造体6Bも真空断熱二重構造になっている。筒体6aには、第2フランジ16よりも上方において真空ポンプポート61が形成され、ラプチャーディスク62も設けられている。
 上記の真空断熱層59により蓋構造体6Bの断熱性能を一層高めることができる。また、電線管10の上端側部分を囲繞する筒部56を設けるため電線管10からの入熱量を小さくすることができる。その他、実施例1と同様の作用、効果を奏する。
 次に、前記実施例を部分的に変更する例について説明する。
(1)断熱容器1,1A,1Bにおいて、外槽5、第2ガイド部材41、第3,第4フランジ20,21は、普通鋼で製作してもよい。
(2)断熱容器1A,1Bにおいて、天板50,55をフランジ接続により筒体6aに接続してもよい。
(3)その他、各部の構造や諸部材の形状やサイズ等は、当業者ならば本発明の趣旨を逸脱することなく適宜変更可能であり、本発明はその変更形態をも包含するものである。
1,1A,1B  低温液化ガスポンプ用断熱容器
2  低温液化ガスポンプ
3  内槽
4    真空断熱層
4a 積層断熱材
5  外槽
5U 上部外槽
5L 外槽本体
6,6A,6B  蓋構造体
7  吸込管
8  吐出管
9  ガス管
10 電線管
11,12 圧力検知管
13  ドレン管
14  真空ポンプポート
15  第1フランジ
16  第2フランジ
19  第1締結部
20  第3フランジ
21   第4フランジ
24   第2締結部
26  合成樹脂発泡体
30  ポンプ支持機構
31  第1ガイド部材
31a  第1ガイド溝
32  第1棒状部材
33,34  連結部材
40   位置規制機構
41  第2ガイド部材
41a 第2ガイド溝
42  係合連結部材
52,60  積層断熱材
53,61  真空ポンプポート

Claims (9)

  1.  低温液化ガスを収容する内槽と、この内槽の周囲に外装された外槽と、前記内槽内に配設された低温液化ガスポンプとを有する低温液化ガスポンプ用断熱容器において、
     前記外槽は、上端部側部分の上部外槽と、この上部外槽以外の外槽本体とを有し、
     前記内槽の上部側部分に着脱可能に内嵌された断熱構造の蓋構造体を設け、
     前記蓋構造体に前記ポンプが固定されると共に吸込管と吐出管が挿通固定され、
     前記内槽と外槽の間は真空断熱層であることを特徴とする低温液化ガスポンプ用断熱容器。
  2.  前記上部外槽に真空ポンプポートが形成されたことを特徴とする請求項1に記載の低温液化ガスポンプ用断熱容器。
  3.  前記上部外槽に貫通固定された複数の圧力検知管とドレン管とが設けられたことを特徴とする請求項1又は2に記載の低温液化ガスポンプ用断熱容器。
  4.  前記蓋構造体にポンプ支持機構を介して前記ポンプが固定されたことを特徴とする請求項13の何れか1項に記載の低温液化ガスポンプ用断熱容器。
  5.  前記ポンプ支持機構は、前記内槽の内面に固定された鉛直の第1ガイド溝を有する複数の第1ガイド部材と、これら複数の第1ガイド部材の第1ガイド溝に摺動自在に装着されて上端部が前記蓋構造体に連結された複数の第1棒状部材と、これら複数の第1棒状部材に前記ポンプを連結する複数の連結部材とを備えたことを特徴とする請求項 に記載の低温液化ガスポンプ用断熱容器。
  6.  前記外槽に対して前記内槽をその軸心直交方向へ移動しないように位置規制する位置規制機構が設けられ、この位置規制機構は、前記外槽の内面又は前記内槽の外面に固定された鉛直の第2ガイド溝を有する複数の第2ガイド部材と、前記内槽の外面又は前記外槽の内面に固定され且つ複数の第2ガイド部材の第2ガイド溝に摺動自在に係合された係合部を有する複数の係合連結部材とを備えたことを特徴とする請求項1~5の何れか1項に記載の低温液化ガスポンプ用断熱容器。
  7.  前記真空断熱層には、積層断熱材またはパーライトが装着されたことを特徴とする請求項1~6の何れか1項に記載の低温液化ガスポンプ用断熱容器。
  8.  前記蓋構造体の内部には合成樹脂発泡体が設けられたことを特徴とする請求項1~6の何れか1項に記載の低温液化ガスポンプ用断熱容器。
  9.  前記蓋構造体の内部の断熱隙間に積層断熱材が装着されると共に真空層が形成され、
    前記蓋構造体には真空ポンプポートが形成されたことを特徴とする請求項1~8の何れか1項に記載の低温液化ガスポンプ用断熱容器。
PCT/JP2017/040224 2016-11-18 2017-11-08 低温液化ガスポンプ用断熱容器 WO2018092651A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17871666.8A EP3543590A4 (en) 2016-11-18 2017-11-08 INSULATING CONTAINER FOR LOW TEMPERATURE LIQUEFIED GAS PUMPS
US16/338,794 US11384747B2 (en) 2016-11-18 2017-11-08 Heat insulating vessel for low temperature liquefied gas pump
CN201780066992.XA CN109891146B (zh) 2016-11-18 2017-11-08 低温液化气泵用隔热容器
AU2017363128A AU2017363128C1 (en) 2016-11-18 2017-11-08 Heat insulating container for low-temperature liquefied gas pumps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-225019 2016-11-18
JP2016225019A JP6855219B2 (ja) 2016-11-18 2016-11-18 低温液化ガスポンプ用断熱容器

Publications (1)

Publication Number Publication Date
WO2018092651A1 true WO2018092651A1 (ja) 2018-05-24

Family

ID=62145356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040224 WO2018092651A1 (ja) 2016-11-18 2017-11-08 低温液化ガスポンプ用断熱容器

Country Status (6)

Country Link
US (1) US11384747B2 (ja)
EP (1) EP3543590A4 (ja)
JP (1) JP6855219B2 (ja)
CN (1) CN109891146B (ja)
AU (1) AU2017363128C1 (ja)
WO (1) WO2018092651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973440A (zh) * 2019-04-12 2019-07-05 南京扬子石油化工设计工程有限责任公司 立式筒袋泵的安装结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109210004B (zh) * 2018-08-24 2020-08-25 武汉船用机械有限责任公司 一种潜液泵泵池
KR102537995B1 (ko) * 2021-08-06 2023-05-30 디앨 주식회사 액화가스 공급용 액중 펌프 용기
CN117329105B (zh) * 2023-11-22 2024-05-07 烟台东德氢能技术有限公司 一种液氢泵的真空绝热方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200091A (ja) * 1983-04-27 1984-11-13 Hitachi Ltd 極低温液化ガスポンプ
JPS62102000A (ja) * 1985-10-30 1987-05-12 Hino Motors Ltd 低温液化ガスタンクの燃料取出装置
US5551488A (en) * 1993-03-30 1996-09-03 Process System International, Inc. Method of filling a two-compartments storage tank with cryogenic fluid
JP2002535564A (ja) * 1999-01-29 2002-10-22 フイリップス ピトローリアム カンパニー 三重の封じ込めを有する底部入口ポンプ・システム
JP2004169690A (ja) * 2002-10-31 2004-06-17 Nikki Co Ltd 液化ガス用燃料タンク装置
WO2014203530A1 (ja) * 2013-06-21 2014-12-24 川崎重工業株式会社 液化ガス保持タンクおよび液化ガス運搬船

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126293C2 (de) * 1981-07-03 1983-12-15 Kernforschungsanlage Jülich GmbH, 5170 Jülich Pumpvorrichtung für sehr kalte Flüssigkeiten
JPS58204995A (ja) 1982-05-26 1983-11-29 Hitachi Ltd 液化ガス汲上げ用ポンプ装置
JP3434203B2 (ja) 1998-05-07 2003-08-04 エア・ウォーター株式会社 タンクローリー
US20050006392A1 (en) * 2003-06-26 2005-01-13 Xing Yuan Mechanical support system for devices operating at cryogenic temperature
JP4984323B2 (ja) 2007-04-12 2012-07-25 住友電気工業株式会社 真空断熱容器
CN203671229U (zh) 2013-12-10 2014-06-25 安瑞科(廊坊)能源装备集成有限公司 绝热容器
CN103711720B (zh) 2013-12-18 2016-05-11 河南开元气体装备有限公司 全真空卧式lng潜液泵池
US10125771B2 (en) * 2014-09-03 2018-11-13 Uchicago Argonne, Llc Compact liquid nitrogen pump
CN105570665B (zh) * 2014-10-10 2018-01-05 南通中集能源装备有限公司 船用加注储罐系统及具有该储罐系统的lng加注趸船
CN104564711B (zh) 2015-01-19 2016-08-24 江苏省特种设备安全监督检验研究院无锡分院 液化天然气输送用潜液式双排出磁力驱动泵
CN204877862U (zh) 2015-08-14 2015-12-16 成都鼎胜科技有限公司 一种lng泵池防结霜装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200091A (ja) * 1983-04-27 1984-11-13 Hitachi Ltd 極低温液化ガスポンプ
JPS62102000A (ja) * 1985-10-30 1987-05-12 Hino Motors Ltd 低温液化ガスタンクの燃料取出装置
US5551488A (en) * 1993-03-30 1996-09-03 Process System International, Inc. Method of filling a two-compartments storage tank with cryogenic fluid
JP2002535564A (ja) * 1999-01-29 2002-10-22 フイリップス ピトローリアム カンパニー 三重の封じ込めを有する底部入口ポンプ・システム
JP2004169690A (ja) * 2002-10-31 2004-06-17 Nikki Co Ltd 液化ガス用燃料タンク装置
WO2014203530A1 (ja) * 2013-06-21 2014-12-24 川崎重工業株式会社 液化ガス保持タンクおよび液化ガス運搬船

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543590A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973440A (zh) * 2019-04-12 2019-07-05 南京扬子石油化工设计工程有限责任公司 立式筒袋泵的安装结构
CN109973440B (zh) * 2019-04-12 2024-05-24 中集安瑞科工程科技有限公司 立式筒袋泵的安装结构

Also Published As

Publication number Publication date
US11384747B2 (en) 2022-07-12
US20200040881A1 (en) 2020-02-06
CN109891146A (zh) 2019-06-14
AU2017363128A1 (en) 2019-05-02
EP3543590A4 (en) 2020-06-03
CN109891146B (zh) 2021-09-17
JP6855219B2 (ja) 2021-04-07
AU2017363128C1 (en) 2020-05-14
JP2018080801A (ja) 2018-05-24
AU2017363128B2 (en) 2019-11-28
EP3543590A1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2018092651A1 (ja) 低温液化ガスポンプ用断熱容器
JP6134211B2 (ja) 二重殻タンクおよび液化ガス運搬船
RU2682229C2 (ru) Герметичный и изолированный резервуар, расположенный в плавучем двойном корпусе
KR102433806B1 (ko) 액화 가스 탱크
KR20190020317A (ko) 밀폐 단열 베슬을 위한 가스 돔 구조물
EP3904196B1 (en) Ship
WO2014092743A2 (en) Suspension system for a cryogenic vessel
WO2018092650A1 (ja) 低温液化ガスポンプ用断熱容器
KR101291126B1 (ko) 액화천연가스 저장탱크의 펌프타워 단열구조
KR101751841B1 (ko) 액화가스 저장탱크의 누출 액화가스 처리 시스템 및 방법
KR20220062405A (ko) 밀폐 단열된 탱크
JP2011084316A (ja) タンクのマンホール構造体
KR101819280B1 (ko) 시험용 저장탱크
KR102340889B1 (ko) 이중각 탱크 및 액화 가스 운반선
KR102651094B1 (ko) 펌프타워 로우어 서포트
JP2012184017A (ja) 低温二重殻タンクの断熱構造
NO320753B1 (no) Anordning ved lasteror i et skips lasttrykktank
JP2017186017A (ja) 低温液体貯蔵用タンク
JP2018188154A (ja) 低温液貯留用タンク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017363128

Country of ref document: AU

Date of ref document: 20171108

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871666

Country of ref document: EP

Effective date: 20190618