WO2018092352A1 - 押付力測定方法 - Google Patents
押付力測定方法 Download PDFInfo
- Publication number
- WO2018092352A1 WO2018092352A1 PCT/JP2017/025111 JP2017025111W WO2018092352A1 WO 2018092352 A1 WO2018092352 A1 WO 2018092352A1 JP 2017025111 W JP2017025111 W JP 2017025111W WO 2018092352 A1 WO2018092352 A1 WO 2018092352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressing force
- tube
- characteristic data
- probe
- heat transfer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/25—Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
- G01L1/255—Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons using acoustic waves, or acoustic emission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/002—Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
- F22B37/003—Maintenance, repairing or inspecting equipment positioned in or via the headers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
- G01B17/02—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/005—Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0028—Force sensors associated with force applying means
- G01L5/0033—Force sensors associated with force applying means applying a pulling force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C17/00—Monitoring; Testing ; Maintaining
- G21C17/003—Remote inspection of vessels, e.g. pressure vessels
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present disclosure relates to a method for measuring a pressing force received by each tube by a vibration suppressing member inserted in a gap between the tubes in a tube group disposed in a fluid.
- Patent Document 1 discloses an example of a vibration control structure of a heat transfer tube group in which a substantially letter-shaped vibration suppression member is inserted in a gap between a plurality of heat transfer tubes included in a heat exchanger.
- a self-excited vibration phenomenon such as hydroelastic vibration that vibrates along an in-plane direction (axial direction of each tube) may occur.
- the thickness of the vibration suppressing member used in the conventional damping structure including Patent Document 1 is assumed to suppress vibration generated in an out-of-plane direction (a direction substantially perpendicular to the axial direction of each pipe).
- the pressing force applied to each pipe by the vibration suppressing member is substantially zero, and a countermeasure for suppressing the vibration phenomenon in the in-plane direction is desired.
- At least one embodiment of the present invention has been made in view of the above circumstances, and a pressing force capable of appropriately measuring the pressing force applied to each tube by a vibration suppressing member that supports a group of tubes arranged in the fluid.
- An object is to provide a measurement method.
- a pressing force measurement method is a vibration in which a tube group disposed in a fluid is inserted between the tubes included in the tube group.
- the pressing force measuring method for measuring the pressing force received from the vibration suppressing member by the tube group using a probe inserted into the tube, A characteristic data preparation step for preparing characteristic data that prescribes the relationship between the measured value of the probe and the pressing force; and inserting the probe into the tube; and measuring the measured value of the probe A measurement value acquisition step to be acquired; and a pressing force calculation step of calculating the pressing force corresponding to the measured value based on the characteristic data.
- the relationship between the measured value of the probe that can be inserted into the tube and the pressing force is prepared in advance as the characteristic data, so that the probe can be searched based on the characteristic data. It is possible to appropriately calculate the pressing force corresponding to the measured value obtained as the actual measurement value by the touch element.
- a predetermined load that simulates the pressing force is applied to a sample corresponding to the tube supported by the vibration suppressing member.
- the characteristic data is created by performing a load test to acquire the measurement value of the probe inserted into the sample while applying.
- reliable characteristic data can be obtained by creating characteristic data by a load test using a sample corresponding to the object to be measured.
- the probe in the method of (1) or (2), in the measurement value acquisition step, the probe is scanned with the measurement value while scanning the probe inside the tube. Position information is acquired, and the measurement value and the position information are recorded in association with each other.
- the measured value is stored in association with the position information, so that the pressing force can be efficiently measured continuously over a wide range.
- the sample in the characteristic data preparation step, the sample is opposed to the substantially same position along the axial direction of the sample with the tube sandwiched from both sides.
- First characteristic data is created based on the measured value obtained by applying a predetermined load, and the predetermined load is arranged so as to oppose different positions along the axial direction of the sample across the tube.
- the second characteristic data is created based on the measured value acquired by applying the material, and in the pressing force calculation step, the material the first characteristic is based on the positional relationship between the tube and the vibration suppressing member. Either data or the second characteristic data is used as the characteristic data.
- the characteristic data is prepared separately according to the installation mode of the vibration suppressing member for each pipe (supported from both sides or supported from one side). . Then, the pressing force is calculated using the characteristic data corresponding to the positional relationship between the pipe and the vibration suppressing member at the measurement point to be measured. Thereby, for example, an error may occur in the measured value of the probe depending on the installation mode of the vibration suppressing member. However, even in such a case, the pressing force can be accurately calculated without being affected by the error.
- the vibration suppressing member is disposed so that the tube faces the substantially same position along the axial direction with the tube sandwiched from both sides.
- the pressing force corresponding to the measured value measured is calculated based on the first characteristic data
- the pressing force corresponding to the measured value measured at the second point is calculated as the second characteristic data.
- the pressing force is selected using the first characteristic data and the second characteristic data based on whether the point to be measured is the first point or the second point. Is calculated. Thereby, for example, an error may occur in the measured value of the probe depending on the installation mode of the vibration suppressing member. However, even in such a case, the pressing force can be accurately calculated without being affected by the error.
- a marker that can be detected by the probe is installed at a reference position along the axial direction of the tube, and the measurement is performed.
- the position information is acquired based on the displacement from the reference position.
- the position information can be managed accurately with reference to the marker provided at the reference position.
- the probe in any one of the methods (1) to (6), includes an eddy current flaw probe that can be inserted into the tube.
- the probe is a displacement meter that can measure the inner diameter of the tube by being inserted into the tube. Including.
- a pressing force measurement method capable of appropriately measuring the pressing force applied to each tube by the vibration suppressing member that supports the tube group disposed in the fluid.
- FIG. 2 is a schematic perspective view of the heat transfer tube group in FIG. 1. It is a mimetic diagram showing the whole pressing force measuring system composition concerning at least 1 embodiment of the present invention.
- FIG. 4 is a block diagram functionally showing the internal configuration of the measuring instrument main body of FIG. 3. It is a flowchart which shows the pressing force measuring method which concerns on at least 1 embodiment of this invention for every process. It is a graph which shows an example of the characteristic data created by Step S10 of Drawing 5. It is a schematic diagram which shows an example of the load test implemented by step S10 of FIG.
- expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within the range where the same effect can be obtained. A shape including a chamfered portion or the like is also expressed.
- the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
- FIG. 1 is a schematic side sectional view of a steam generator 1 which is a measurement target of a pressing force measuring method according to at least one embodiment of the present invention
- FIG. 2 is a schematic perspective view of a heat transfer tube group 51 of FIG.
- the steam generator 1 is a heat exchanger having a heat transfer tube group including a plurality of heat transfer tubes, and is, for example, a steam generator used for a pressurized water reactor (PWR: Pressurized Water Reactor).
- a primary coolant for example, light water
- the primary coolant which became high temperature and high pressure is heat-exchanged with the secondary coolant, thereby evaporating the secondary coolant and generating steam, and the primary coolant becoming high temperature and pressure Cool the coolant.
- the steam generator 1 is disposed along the vertical direction and has a sealed hollow cylindrical shape.
- the steam generator 1 has a body portion 2 whose lower half portion is slightly smaller in diameter than the upper half portion, and is disposed in the lower half portion with a predetermined distance from the inner wall surface of the body portion 2.
- a tube group outer cylinder 3 having a cylindrical shape is provided. The lower end of the tube group outer tube 3 extends to the vicinity of the tube plate 4 disposed below in the lower half of the body 2.
- a heat transfer tube group 51 is provided in the tube group outer tube 3.
- the heat transfer tube group 51 includes a plurality of heat transfer tubes 5 having an inverted U shape.
- Each heat transfer tube 5 is arranged so that the U-shaped arc portion is convex upward, both lower end portions are supported by the tube plate 4, and the intermediate portion is interposed via a plurality of tube support plates 6. And is supported by the tube group outer tube 3. A large number of through holes (not shown) are formed in the tube support plate 6, and the heat transfer tubes 5 are inserted into the through holes.
- a water chamber 7 is provided at the lower end of the body 2.
- the water chamber 7 is divided into an entrance chamber 71 and an exit chamber 72 by a partition wall 8.
- the entrance chamber 71 communicates with one end of each heat transfer tube 5, and the exit chamber 72 communicates with the other end of each heat transfer tube 5.
- the entrance chamber 71 is formed with an inlet nozzle 74 that communicates with the outside of the body portion 2, and the exit chamber 72 is formed with an exit nozzle 75 that communicates with the exterior of the body portion 2.
- the inlet nozzle 74 is connected to a cooling water pipe (not shown) through which a primary coolant is sent from the pressurized water reactor, and the outlet nozzle 75 converts the primary coolant after heat exchange into the pressurized water type.
- a cooling water pipe (not shown) to be sent to the nuclear reactor is connected.
- a steam / water separator 9 that separates the secondary coolant after heat exchange into steam (gas phase) and hot water (liquid phase), and the moisture content of the separated steam
- a moisture separator 10 is provided to remove the water and bring it to a state close to dry steam.
- a water supply pipe 11 for supplying water of the secondary coolant from the outside into the body 2 is inserted.
- a steam discharge port 12 is formed at the upper end portion of the body portion 2.
- the secondary coolant supplied from the water supply pipe 11 into the body portion 2 is caused to flow down between the body portion 2 and the tube group outer tube 3 in the tube plate 4.
- the water supply channel 13 is formed so as to be folded and raised along the heat transfer tube group 51.
- the steam outlet 12 is connected to a cooling water pipe (not shown) for sending steam to the turbine, and the steam used in the turbine is connected to the water supply pipe 11 by a condenser (not shown).
- a cooling water pipe (not shown) for supplying the cooled secondary coolant is connected.
- the primary coolant heated in the pressurized water reactor is sent to the entrance chamber 71 and circulates through the numerous heat transfer tubes 5 to reach the exit chamber 72.
- the secondary coolant cooled by the condenser is sent to the water supply pipe 11 and rises along the heat transfer pipe group 51 through the water supply path 13 in the trunk portion 2. At this time, heat exchange is performed between the high-pressure and high-temperature primary coolant and the secondary coolant in the body portion 2. Then, the cooled primary coolant is returned from the exit chamber 72 to the pressurized water reactor.
- the secondary coolant that has exchanged heat with the high-pressure and high-temperature primary coolant rises in the body 2 and is separated into steam and hot water by the steam / water separator 9.
- the separated steam is removed from the moisture by the moisture separator 10 and sent to the turbine.
- the upper end portion of the heat transfer tube group 51 is formed in a hemispherical shape by arranging the arc portions 5a of the plurality of heat transfer tubes 5 having an inverted U shape.
- the plurality of heat transfer tubes 5 are provided so that the radius of curvature becomes larger toward the outside in the radial direction of the radius of curvature in each plane, and the heat transfer tube layer 5A is formed by being provided so that the axial directions are parallel.
- the heat transfer tube layers 5A are arranged in parallel with a predetermined gap in an out-of-plane direction orthogonal to the in-plane direction.
- the curvature radius of each heat transfer tube 5 on the outermost side in the radial direction of the radius of curvature in the plane decreases toward the outside in the out-of-plane direction.
- the arc portion 5 a of the heat transfer tube 5 is provided with a plurality of vibration suppressing members 14 for suppressing vibration of the heat transfer tube 5.
- the plurality of vibration suppression members 14 are respectively inserted between the plurality of heat transfer tube layers 5A arranged in parallel, and are made of a metal material such as stainless steel, for example.
- the ends of the plurality of vibration suppression members 14 extend so as to reach the outer side of the arc portion 5a, and are attached to the outer circumference of the arc portion 5a, that is, the hemispherical outer circumference of the arc portion 5a. Is held by the holding member 15.
- the plate thickness of the vibration suppressing member 14 is set slightly larger than the gap between the heat transfer tubes 5. Thereby, the vibration suppression member 14 is pressed down by the reaction force due to the elastic deformation of the heat transfer tube 5, and a vibration suppression structure that can effectively suppress vibration in the in-plane direction is formed. Even in such a vibration control structure, the dimensions of the heat transfer tube 5 and the vibration suppression member 14 vary in manufacturing accuracy. If the plate thickness of the vibration suppression member 14 is too large, the heat transfer tube 5 is plastically deformed. There is also a risk. Therefore, it is necessary to appropriately manage the pressing force of the heat transfer tube 5, and for that purpose, it is necessary to measure the pressing force of the heat transfer tube 5.
- board thickness of the vibration suppression member 14 may be set so that it may become the same as the clearance gap between the heat exchanger tubes 5.
- the plate thickness of the vibration suppression member 14 becomes larger than the average value of the gap due to the thermal expansion of each member and the pressure expansion of the heat transfer tube 5, thereby obtaining the same effect as described above. Can do.
- FIG. 3 is a schematic diagram showing the overall configuration of the pressing force measurement system 100 according to at least one embodiment of the present invention
- FIG. 4 is a block diagram functionally showing the internal configuration of the measuring instrument main body 108 of FIG.
- FIG. 3 when the pressing force measurement is performed, the steam generator 1 is installed so that the end of the heat transfer tube 5 inserted through the tube plate 4 is exposed, and a fluid is previously drawn from the inside of the heat transfer tube 5.
- the state where the tube insertion type probe 102 of the pressing force measurement system 100 is inserted into the heat transfer tube 5 is shown in a state where the tube is discharged and made hollow.
- the pair of heat transfer tubes 5 and the vibration suppressing member 14 are representatively shown in the heat transfer tube group 51 so that the illustration is not complicated.
- the pressing force measurement system 100 includes a tube insertion type probe 102 that can be inserted into the heat transfer tube 5.
- the in-pipe insertion type probe 102 is accommodated in a holder attached to the tip of the transport cable 104 formed of a flexible material made of a Teflon (registered trademark) tube, a spring coil, or the like.
- the conveyance cable 104 is connected to a winding device 106, and the tube insertion type probe 102 provided at the tip of the conveyance cable 104 is wound or sent out according to the operation of the winding device 106. However, it is comprised so that conveyance of the inside of the heat exchanger tube 5 along an axial direction is possible.
- the tube insertion type flaw detector 102 is an eddy current flaw detection (ECT) probe, and outputs a measurement signal corresponding to a thinning amount, a flaw, a crack, or the like of the heat transfer tube 5.
- ECT eddy current flaw detection
- a measurement signal from the in-pipe insertion type probe 102 is built in the transport cable 104 or measured outside via a signal line (not shown) routed so as to run in parallel with the transport cable 104.
- ECT eddy current flaw detection
- the measuring instrument main body 108 is composed of an electronic computing unit such as a computer, for example, and calculates a pressing force by performing an analysis using the measurement signal acquired from the in-pipe insertion type probe 102. As shown in FIG. 4, the measuring instrument main body 108 has an input unit 112 to which input data from the in-pipe insertion type probe 102 and various input devices operated by an operator are input, and an input unit 112 to which input data is input.
- a storage unit 114 that stores various data and algorithms related to various calculations, a calculation unit 116 that calculates a pressing force by performing calculations based on the various data and algorithms stored in the storage unit 114, and a calculation in the calculation unit 116
- an output unit 118 that outputs the result.
- the storage unit 114 includes characteristic data 120 that defines the relationship between the measured value of the tube insertion type probe 102 and the pressing force of the vibration suppressing member 14 against the heat transfer tube 5, and the heat transfer tube 5 in the heat transfer tube group 51.
- specification data 122 that prescribes the layout specification of the vibration suppression member 14 is stored in advance. The characteristic data 120 is created by a load test using the sample 122 as will be described later.
- FIG. 5 is a flowchart showing the pressing force measurement method according to at least one embodiment of the present invention for each process
- FIG. 6 is a graph showing an example of the characteristic data 120 created in step S10 of FIG.
- FIG. 8 is a schematic diagram illustrating an example of a load test performed in step S10 of FIG. 5, and FIG. 8 is a schematic diagram illustrating another example of the load test performed in step S10 of FIG.
- characteristic data 120 necessary for carrying out the pressing force measurement method is created in advance (step S10).
- the characteristic data 120 is created as a characteristic graph as shown in FIG. 6, for example, which defines the relationship between the measured value of the tube insertion type probe 102 and the pressing force of the vibration suppressing member 14 against the heat transfer tube 5.
- Such characteristic data 120 is created by performing a load test using a sample 122 equivalent to the heat transfer tube 5 to be measured prior to each subsequent process.
- the load test for creating the characteristic data 120 will be described in detail with reference to FIGS.
- a tube insertion type probe inserted into the sample 122 while applying a predetermined load simulating the pressing force to the sample 122 corresponding to the heat transfer tube 5 supported by the vibration suppressing member 14. This is done by obtaining the measured value of 102.
- Such a load test is performed using a load test apparatus 200 shown in FIGS.
- the load test apparatus 200 supports the load cell 204 from above and a load cell 204 arranged so as to come into contact with the sample 122 arranged on the pedestal table 202 from above and the sample 122 arranged on the test machine table 202.
- a cross head 206 configured to be able to apply a load, a magnet stand 208 provided at each end of the cross head 206, and a displacement between the magnet stand 208 and the tester table 202 can be detected.
- the displacement tester 210 is a so-called compression tester.
- a predetermined load is applied to the sample 122 arranged between the test machine table 202 and the load cell 204 by moving the test machine table 202 up and down with respect to the cross head 206 by a power source (not shown). Is done.
- the load applied to the sample 122 is detected by the load cell 204 and is sent to the static strain meter 212 together with the detection result of the displacement meter 210.
- the static strain meter 212 acquires the output voltage of the in-pipe insertion probe 102 and the load detected by the load cell 204 with the in-tube insertion type probe 102 inserted into the sample 122. Then, the characteristic data 120 is created as the correlation between the output voltage and the load. At this time, the static strain meter 212 may acquire the displacement detected by the displacement meter 210 as reference data and record it in association with the characteristic data 120. In this case, the relationship between the output voltage of the in-pipe insertion type probe 102 and the load is represented as a graph similar to the load-displacement curve (or stress-strain diagram) as shown in FIG.
- the load and the output signal of the in-pipe type probe 102 are proportional, just as the load and the displacement are proportional.
- the displacement amount increases with respect to the load.
- the increment of the output signal of the in-pipe insertion type probe 102 becomes larger with respect to the increment of the load.
- first characteristic data 120a and second characteristic data 120b two types are created in accordance with the load application pattern to the sample 122.
- the first characteristic data 120a is created by a load test shown in FIG.
- a pair of vibration suppression members 14a and 14b are arranged so as to face each other with both sides of the heat transfer tube 5 from substantially the same position along the axial direction of the sample 122.
- 14 a is in contact with the tester table 202 and the upper vibration suppressing member 14 b is set in contact with the load cell 204.
- the tester table 202 is driven upward, a load is applied to the sample 122 from both sides at substantially the same position along the axial direction.
- the sample 122 is deformed so that the cross-sectional shape changes from a circular shape to an elliptical shape by receiving a load from above and below.
- the second characteristic data 120b is created by a load test shown in FIG.
- the three vibration suppression members 14a, 14b, and 14c are arranged so as to face each other with different positions along the axial direction of the sample 122, and the two lower vibration suppression members 14 a and 14 b are set to contact the tester table 202, and the upper vibration suppressing member 14 c is set to contact the load cell 204.
- the upper vibration suppression member 14c is disposed at a substantially midpoint position along the axial direction of the two lower vibration suppression members 14a and 14b.
- a load directed upward is applied to the sample 122 at a location in contact with the vibration suppression members 14a and 14b, and the sample 122 is in contact with the vibration suppression member 14c.
- a downward load is applied to the location.
- the sample 122 receiving such a load is subjected to a three-point bending deformation by applying a local load in the vicinity of the corner of the vibration suppressing member 14c having a substantially rectangular cross section.
- step S10 two types of characteristic data 120a and 120b are prepared in advance in step S10. Is done.
- the in-tube probe 102 is inserted into the heat transfer tube 5 that is the actual measurement target, and measurement is started (step S11).
- the measuring instrument main body 108 acquires the measurement value from the in-tube insertion type probe 102 (step S12).
- the acquisition of the measured value in step S12 is continuously performed while the tube insertion type probe 102 is scanned along the axial direction inside the heat transfer tube 5 by the winding device 106.
- the measuring instrument main body 108 (input unit 112) acquires the position information of the in-pipe insertion type probe 102 together with the measurement value of the in-pipe insertion type probe 102 (step S13).
- the position information acquired in step S13 is acquired based on, for example, the winding amount or the sending amount of the transport cable 104 of the winding device 106. Then, the measuring instrument main body 108 associates the measurement value acquired in Step S12 with the position information acquired in Step S13, and stores it in the storage unit 114 (Step S14).
- the measuring instrument main body 108 determines that the measured value is based on the position information associated with the measured value acquired in step S14 based on the specification data 124 stored in advance in the storage unit 114.
- the specification data 124 is data defining the layout specifications of the heat transfer tubes 5 and the vibration suppression members 14 in the heat transfer tube group 51, and what pattern the heat transfer tubes 5 and the vibration suppression members 14 are measuring. Structural information is specified as to whether it is laid out.
- FIG. 2 An example of the layout of the heat transfer tube 5 and the vibration suppressing member 14 is shown in FIG. Although the details are omitted in FIG. 2, the first point and the second point along the axial direction of each heat transfer tube have a predetermined pattern according to the layout of the heat transfer tube 5 and the vibration suppressing member 14 along the axial direction. It is sorted by.
- Such a layout pattern is defined in advance as specification data 124, and when the measuring instrument main body 108 reads out, it is determined whether each position in the axial direction is the first point or the second point. It is configured to be possible.
- the measuring instrument main body 108 calculates a pressing force corresponding to the measurement value (output voltage value) acquired in step S12 based on the characteristic data 120 acquired from the storage unit 114 (step S16).
- the characteristic data 120 used here is the first characteristic data 120a or the second characteristic data 120b based on whether the position information acquired in step S13 in step S14 is the first point or the second point. One of these is adopted. That is, the pressing force corresponding to the measured value measured at the first point is calculated based on the first characteristic data 120a, and the pressing force corresponding to the measured value measured at the second point is the second characteristic. Calculation is based on the data 120b. Since these characteristic data 120 define the relationship between the output voltage and the pressing force as shown in FIG. 6, the pressing force corresponding to the measured value is calculated.
- the pressure calculated in this way is output from the output unit 118 as a measurement result (step S17).
- the measurement result may be output as a distribution based on position information associated with the pressing force, for example.
- a marker 220 is installed at a reference position along the axial direction of the heat transfer tube 5 to be inspected (for example, equally spaced positions R (n), R (n + 1), R (n + 2) along the axial direction). Position information may be acquired based on a displacement with reference to.
- the marker 220 is made of a material that can be detected by the in-tube insertion type probe 102 such as a metal material such as aluminum, and can be detected based on the output voltage of the in-tube insertion type probe 102.
- the marker 220 may be removable after the measurement is completed by being attached to the outer surface of the heat transfer tube 5 to be measured by being formed in a tape shape.
- the position of the tube insertion type probe 102 to be inserted into the tube can be adjusted based on the operating state (winding amount) of the winding device 106, but in reality, an obstacle or a scale is included in the heat transfer tube 5. As a result, irregularities may occur or clogging may occur, which may cause errors in position measurement.
- the marker 220 is installed at a reference position along the axial direction, and by using these as a reference, the position of the in-tube probe 102 is managed as a displacement from the reference position. Can be suppressed.
- FIG. 10 is a diagram showing an example in which an ultrasonic probe is used as the in-tube insertion type probe 102.
- This in-pipe insertion type probe 102 includes an ultrasonic probe accommodated in a holder 130 provided at the tip of the transport cable 104.
- the ultrasonic probe includes an acoustic / electric reversible conversion element 132, and includes one or a plurality of vibrators made of, for example, an electrostrictive element, a magnetostrictive element, or a composite thereof.
- the acoustic / electric reversible conversion element 132 transmits an ultrasonic wave toward the inner wall of the heat transfer tube 5 and receives a reception echo signal reflected by the tube wall, and outputs a reception echo signal according to the intensity of the ultrasonic wave. .
- the received echo signal output from the acoustic / electric reversible conversion element 132 is sent to the measuring instrument main body 108 via a signal line (not shown) and used for calculation of the pressing force.
- a plurality of acoustic / electric reversible conversion elements 132 are arranged along the circumferential direction and the axial direction of the holder 130. Since the in-tube insertion type probe 102 moves in the heat transfer tube 5 only by the operation of the winding device 106, it is difficult to control the posture of the in-tube insertion type probe 102, but the acoustic / electric reversible conversion element 132.
- the inner wall of the heat transfer tube 5 can be measured in the circumferential direction without rotating the tube insertion type probe 102. Thereby, compared with the case where ultrasonic flaw detection is performed while rotating the single acoustic / electric reversible conversion element 132 in the circumferential direction, it is not necessary to install a rotation driving device, and the size can be reduced.
- FIG. 11 is a diagram showing an example in which a capacitive displacement meter is used as the in-tube probe 102.
- This in-pipe insertion type probe 102 includes a main body 134 connected to the transport cable 104, a pair of leaf spring members 136 extending from the main body 134 to the opposite side of the transport cable 104, and a pair of leaf spring members 136. And a pair of measuring units 138 provided in each, and an output cable 140 for transmitting the measurement results of the pair of measuring units 138 as electrical signals.
- a plurality of wheels 142 arranged so as to face the inner wall of the heat transfer tube 5 are provided on the side surface of the main body 134, and the conveyance cable 104 is wound or sent out by the winding device 106 to be inserted into the pipe.
- the probe 102 is configured to be movable along the axial direction inside the heat transfer tube 5.
- the measuring sections 138 provided on the pair of leaf spring members 136 are configured as electrodes made of a conductive material such as metal.
- the pair of measurement units 138 are arranged on the pair of leaf spring members 136 at a predetermined distance from each other, thereby forming a capacitance. Since this electrostatic capacity is variable depending on the distance between the measurement parts, when the measurement part 138 is displaced due to the shape of the inner wall of the heat transfer tube 5, the electrostatic capacity also changes. For this reason, in this aspect, when a measurement current is applied between the output cable 140 and the pair of measurement units 138, the capacitance difference is obtained based on the potential difference by detecting the potential difference between the measurement units 138.
- the capacitance thus obtained is converted into a pressing force based on characteristic data 120 that predefines the relationship between the capacitance and the pressing force in accordance with FIG.
- characteristic data 120 can also be created by measuring the relationship between capacitance and pressing force in advance based on the same idea as the load test shown in FIGS.
- FIG. 11 illustrates the in-tube probe 102 using a capacitive displacement meter
- a strain gauge displacement meter may be used instead.
- strain gauges are used for the measurement units 138 provided on the pair of leaf spring members 136, respectively.
- an output signal corresponding to the strain generated when the leaf spring member 136 is deformed due to the shape of the inner wall of the heat transfer tube 5 is output. Therefore, by preparing the relationship between the output signal and the pressing force as the characteristic data 120 that prescribes in advance, the pressing force corresponding to the output signal is obtained.
- Such characteristic data can also be created by measuring the relationship between the output signal and the pressing force in advance based on the same idea as the load test shown in FIGS.
- the pressing force measurement that can appropriately measure the pressing force applied to each heat transfer tube 5 by the vibration suppressing member 14 that supports the heat transfer tube group 51 disposed in the fluid.
- the method can be realized.
- the present disclosure can be used for a method of measuring the pressing force received by each tube by the vibration suppressing member inserted into the gap between the tubes constituting the tube group arranged in the fluid.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
流体中に配置される管群を構成する各管が振動抑制部材から受ける押付力を、管内に挿入される探触子を用いて測定する。探触子の測定値と押付力との関係を規定する特性データを予め準備しておく。そして探触子を管内に挿入し、探触子の測定値から特性データに基づいて押付力を算出する。
Description
本開示は、流体中に配置される管群において、各管の隙間に挿入される振動抑制部材によって各管が受ける押付力の測定方法に関する。
蒸気発生器等の熱交換器に使用される管群は、流体中に配置された際に振動が発生することを抑制するために、各管の隙間に振動抑制部材として振り止め金具が挿入された制振構造が採用されるものがある。例えば特許文献1には、熱交換器が有する複数の伝熱管の隙間に略∨字形状の振動抑制部材が挿入された伝熱管群の制振構造の一例が開示されている。
近年、U字管のようなUベンド部を有する管群では、面内方向(各管の軸方向)に沿って振動する流力弾性振動等の自励振動現象が発生する可能性が指摘されている。特許文献1を含む従来の制振構造で用いられる振動抑制部材は、面外方向(各管の軸方向に略垂直な方向)に生じる振動を抑制することを想定しているため、その厚さは各管の隙間と同等若しくはわずかに小さく設計されていた。そのため、振動抑制部材によって各管に付与される押付力は略ゼロであり、面内方向の振動現象を抑制するための対策が望まれている。
このような面内方向に沿った振動現象を抑制するためには、振動抑制部材によって各管に適切な押付力を付与する新たな制振構造を設計する必要がある。その際、振動抑制部材によって各管に付与される押付力を適切に評価するために、押付力を実測する必要がある。
本発明の少なくとも1実施形態は上述の事情に鑑みなされたものであり、流体中に配置された管群を支持する振動抑制部材によって各管に付与される押付力を適切に測定可能な押付力測定方法を提供することを目的とする。
(1)本発明の少なくとも1実施形態に係る押付力測定方法は上記課題を解決するために、流体中に配置される管群が、前記管群に含まれる各管の間に挿入された振動抑制部材で支持されてなる制振構造において、前記管群が前記振動抑制部材から受ける押付力を、前記管の内部に挿入される探触子を用いて測定する押付力測定方法であって、前記探触子の測定値と前記押付力との関係を規定する特性データを予め準備する特性データ準備工程と、前記探触子を前記管の内部に挿入し、前記探触子の測定値を取得する測定値取得工程と、前記特性データに基づいて、前記測定された測定値に対応する前記押付力を算出する押付力算出工程と、を備える。
上記(1)の方法によれば、管の内部に挿入可能な探触子の測定値と押付力との関係を、予め特性データとして準備しておくことで、当該特性データに基づいて、探触子で実測値として得られた測定値に対応する押付力を適切に算出できる。
(2)幾つかの実施形態では上記(1)の方法において、前記特性データ準備工程では、前記振動抑制部材に支持された前記管に対応するサンプルに対して前記押付力を模擬する所定荷重を印加しながら、前記サンプルの内部に挿入された前記探触子の測定値を取得する荷重試験を実施することにより、前記特性データが作成される。
上記(2)の方法によれば、測定対象に対応するサンプルを用いた荷重試験によって特性データを作成することで、信頼性のある特性データが得られる。
(3)幾つかの実施形態では上記(1)又は(2)の方法において、前記測定値取得工程では、前記探触子を前記管の内部で走査しながら前記測定値とともに前記探触子の位置情報を取得し、前記測定値と前記位置情報を関連付けて記録する。
上記(3)の方法によれば、探触子を走査しながら測定を行う際に測定値を位置情報と関連付けて記憶することで、広い範囲にわたって連続的に押付力を効率的に測定できる。
(4)幾つかの実施形態では上記(3)の方法において、前記特性データ準備工程では、前記サンプルの軸方向に沿った略同一位置に対して両側から前記管を挟んで対向するように前記所定荷重を印加して取得された前記測定値に基づいて第1の特性データを作成し、前記サンプルの軸方向に沿った互いに異なる位置に対して前記管を挟んで対向するように前記所定荷重を印加して取得された前記測定値に基づいて第2の特性データを作成し、前記押付力算出工程では、前記管と前記振動抑制部材との位置関係に基づいて、材前記第1の特性データ又は前記第2の特性データのいずれか一方を前記特性データとして用いる。
上記(4)の方法によれば、各管に対する振動抑制部材の設置態様(両側から支持されるか、又は、片側から支持されるか)に応じて、特性データをそれぞれ区別して準備しておく。そして、測定対象となる測定地点における管と振動抑制部材との位置関係に応じた特性データを用いて押圧力の算出を行う。これにより、例えば振動抑制部材の設置態様によって探触子の測定値に誤差が生じる場合があるが、このような場合であっても誤差の影響を受けにくく、精度よく押付力を算出できる。
(5)幾つかの実施形態では上記(4)の方法において、前記管は、軸方向に沿った略同一位置に対して両側から前記管を挟んで対向するように前記振動抑制部材が配置された第1の地点と、軸方向に沿った略同一位置に対して片側から前記振動抑制部材が配置された第2の地点と、を含み、前記押付力算出工程では、前記第1の地点で測定された前記測定値に対応する前記押付力を前記第1の特性データに基づいて算出し、前記第2の地点で測定された前記測定値に対応する前記押付力を前記第2の特性データに基づいて算出する。
上記(5)の方法によれば、測定対象となる地点が第1の地点と第2の地点のいずれであるかに基づいて第1の特性データ及び第2の特性データを使い分けて、押付力の算出を行う。これにより、例えば振動抑制部材の設置態様によって探触子の測定値に誤差が生じる場合があるが、このような場合であっても誤差の影響を受けにくく、精度よく押付力を算出できる。
(6)幾つかの実施形態では上記(3)の方法において、前記測定値取得工程では、前記管の軸方向に沿った基準位置に前記探触子で検出可能なマーカを設置し、前記測定値を取得する際に前記基準位置からの変位に基づいて、前記位置情報を取得する。
上記(6)の方法によれば、探触子を管の内部を走査しながら測定する場合に、基準位置に設けられたマーカを基準として位置情報を精度よく管理できる。
(7)幾つかの実施形態では上記(1)から(6)のいずれか1方法において、前記探触子は、前記管の内部に挿入可能な渦電流探傷プローブを含む。
上記(7)の方法によれば、探触子として渦電流探傷プローブを用いることで、微小な変形を含む押付力の影響を精度よく測定することができる。
(8)幾つかの実施形態では上記(1)から(6)のいずれか1方法において、前記探触子は、前記管の内部に挿入することにより前記管の内径を計測可能な変位計を含む。
上記(8)の方法によれば、探触子として変位計を用いることにより、押付力によって管が変形されることにより生じる変位に基づいた押付力の測定ができる。
本発明の少なくとも1実施形態によれば、流体中に配置された管群を支持する振動抑制部材によって各管に付与される押付力を適切に測定可能な押付力測定方法を提供できる。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
[1.測定対象]
まず、本発明の少なくとも1実施形態に係る押付力測定方法の測定対象について説明する。図1は本発明の少なくとも1実施形態に係る押付力測定方法の測定対象である蒸気発生器1の側断面概略図であり、図2は図1の伝熱管群51の斜視概略図である。
まず、本発明の少なくとも1実施形態に係る押付力測定方法の測定対象について説明する。図1は本発明の少なくとも1実施形態に係る押付力測定方法の測定対象である蒸気発生器1の側断面概略図であり、図2は図1の伝熱管群51の斜視概略図である。
蒸気発生器1は、複数の伝熱管を含む伝熱管群を有する熱交換器であり、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)に用いられる蒸気発生器である。蒸気発生器1には、原子炉内を流通する原子炉冷却材及び中性子減速材としての一次冷却材(例えば、軽水)と、タービン内を流通する二次冷却材とが流入する。そして、蒸気発生器1では、高温高圧となった一次冷却材を、二次冷却材と熱交換させることにより、二次冷却材を蒸発させて蒸気を発生させ、且つ、高温高圧となった一次冷却材を冷却する。
蒸気発生器1は、上下方向に沿って配置され、且つ、密閉された中空円筒形状を有する。蒸気発生器1は、上半部に対して下半部が若干小径とされた胴部2を有しており、その下半部内には、該胴部2の内壁面と所定間隔をもって配置された円筒形状を成す管群外筒3が設けられている。管群外筒3は、その下端部が、胴部2の下半部内の下方に配置された管板4近傍まで延設されている。管群外筒3内には、伝熱管群51が設けられている。伝熱管群51は、逆U字形状をなす複数の伝熱管5を含む。各伝熱管5は、U字形状の円弧部が上方側に凸となるように配置され、下方側の両端部が管板4に支持されるとともに、中間部が複数の管支持板6を介して管群外筒3に支持されている。管支持板6には、多数の貫通孔(図示せず)が形成されており、この貫通孔内に各伝熱管5が挿通されている。
胴部2の下端部には、水室7が設けられている。水室7は、内部が隔壁8により入室71と出室72とに区画されている。入室71は、各伝熱管5の一端部が連通され、出室72は、各伝熱管5の他端部が連通されている。また、入室71は、胴部2の外部に通じる入口ノズル74が形成され、出室72は、胴部2の外部に通じる出口ノズル75が形成されている。そして、入口ノズル74には、加圧水型原子炉から一次冷却材が送られる冷却水配管(図示せず)が連結されており、出口ノズル75は、熱交換された後の一次冷却材を加圧水型原子炉に送る冷却水配管(図示せず)が連結されている。
胴部2の上半部内には、熱交換後の二次冷却材を蒸気(気相)と熱水(液相)とに分離する気水分離器9、及び、分離された蒸気の湿分を除去して乾き蒸気に近い状態とする湿分分離器10が設けられている。気水分離器9と伝熱管群51との間には、外部から胴部2内に二次冷却材の給水を行う給水管11が挿入されている。更に胴部2の上端部には、蒸気排出口12が形成されている。また胴部2の下半部内には、給水管11から胴部2内に給水された二次冷却材を、胴部2と管群外筒3との間を流下させて管板4にて折り返させ、伝熱管群51に沿って上昇させるように、給水路13が形成されている。
尚、蒸気排出口12には、タービンに蒸気を送る冷却水配管(図示せず)が連結されており、給水管11には、タービンで使用された蒸気が復水器(図示せず)で冷却された二次冷却材を供給するための冷却水配管(図示せず)が連結されている。
このような蒸気発生器1において、加圧水型原子炉で加熱された一次冷却材は、入室71に送られ、多数の伝熱管5内を通って循環して出室72に至る。一方、復水器で冷却された二次冷却材は、給水管11に送られ、胴部2内の給水路13を通って伝熱管群51に沿って上昇する。このとき、胴部2内で、高圧高温の一次冷却材と二次冷却材との間で熱交換が行われる。そして、冷却された一次冷却材は、出室72から加圧水型原子炉に戻される。一方、高圧高温の一次冷却材と熱交換を行った二次冷却材は、胴部2内を上昇し、気水分離器9で蒸気と熱水とに分離される。分離された蒸気は、湿分分離器10で湿分が除去され、タービンに送られる。
図2に示されるように、伝熱管群51の上端部は、逆U字形状となる複数の伝熱管5の円弧部5aが配置されることで、半球形状に形成されている。複数の伝熱管5は、各面内において曲率半径の径方向外側に向かうにつれて曲率半径が大きくなるように設けられると共に、軸方向が平行となるように設けられることで伝熱管層5Aとなる。伝熱管層5Aは、その面内に直交する面外方向に所定の隙間を空けて平行に並べて設けられている。この複数の伝熱管層5Aでは、面内において曲率半径の径方向の最外側にあるそれぞれの伝熱管5が、面外方向の外側に向かうにつれて曲率半径が小さくなる。このように複数の伝熱管5が並べられることで、伝熱管群51の上端部は半球形状に形成される。
このように構成された蒸気発生器1では、一次冷却材が各伝熱管5内を通過する際、逆U字形状の円弧部5aにて流体励起振動が発生する。そこで、伝熱管5の円弧部5aには、伝熱管5の振動を抑制するための複数の振動抑制部材14が設けられている。複数の振動抑制部材14は、平行に並んだ複数の伝熱管層5Aの間にそれぞれ挿入されており、例えば、ステンレス等の金属材で構成されている。複数の振動抑制部材14の端部は、円弧部5aの外側に至るように延在しており、円弧部5aの外周、すなわち、円弧部5aの半球状の外周に沿って取り付けられた円弧状の保持部材15によって保持されている。
本実施形態では特に、振動抑制部材14の板厚は、伝熱管5の隙間よりわずかに大きく設定されている。これにより、伝熱管5の弾性変形による反力で振動抑制部材14が押さえつけられ、面内方向における振動を効果的に抑制可能な制振構造が形成されている。このような制振構造においても、伝熱管5や振動抑制部材14の寸法には製作精度のばらつきがあるため、仮に振動抑制部材14の板厚が大きすぎると、伝熱管5を塑性変形させてしまうおそれもある。そのため伝熱管5の押圧力を適正に管理する必要があり、そのためには伝熱管5の押圧力を計測する必要がある。
尚、振動抑制部材14の板厚は、伝熱管5の隙間と同じになるように設定されていてもよい。この場合、運転(高温)時に各部材の熱膨張、及び、伝熱管5の圧力膨張により、振動抑制部材14の板厚が隙間の平均値より大きくなることにより、上記と同様の作用を得ることができる。
尚、振動抑制部材14の板厚は、伝熱管5の隙間と同じになるように設定されていてもよい。この場合、運転(高温)時に各部材の熱膨張、及び、伝熱管5の圧力膨張により、振動抑制部材14の板厚が隙間の平均値より大きくなることにより、上記と同様の作用を得ることができる。
[2.押付力測定システム]
続いて上記構成を有する蒸気発生器1に対して押付力測定方法を実施する際に使用される押付力測定システム100について説明する。図3は本発明の少なくとも1実施形態に係る押付力測定システム100の全体構成を示す模式図であり、図4は図3の測定器本体108の内部構成を機能的に示すブロック図である。
続いて上記構成を有する蒸気発生器1に対して押付力測定方法を実施する際に使用される押付力測定システム100について説明する。図3は本発明の少なくとも1実施形態に係る押付力測定システム100の全体構成を示す模式図であり、図4は図3の測定器本体108の内部構成を機能的に示すブロック図である。
尚、図3では、押付力測定が行われる際に蒸気発生器1が、管板4を挿通した伝熱管5の端部が露出するように設置されるとともに、伝熱管5の内部から予め流体を排出して中空にした状態で、押付力測定システム100の管内挿入型探触子102が伝熱管5の内部に挿入される様子が示されている。また図3では、図示が煩雑にならないように伝熱管群51のうち一対の伝熱管5及び振動抑制部材14が代表的に示されている。
押付力測定システム100は、伝熱管5の内部に挿入可能な管内挿入型探触子102を備える。管内挿入型探触子102は、テフロン(登録商標)チューブやバネコイル等からなるフレキシブル材から形成された搬送ケーブル104の先端に取り付けられたホルダ内に収容されている。搬送ケーブル104は巻取装置106に接続されており、該巻取装置106の動作に応じて巻き取り、又は、送り出されることによって、搬送ケーブル104の先端に設けられた管内挿入型探触子102が伝熱管5の内部を軸方向に沿って搬送可能に構成されている。
本実施形態では特に、管内挿入型探傷子102は渦電流探傷(ECT)プローブであり、伝熱管5の減肉量、傷や割れ等に対応する測定信号を出力する。管内挿入型探触子102からの測定信号は、搬送ケーブル104に内蔵され、又は、搬送ケーブル104に並走するようにとり回された信号線(不図示)を介して、外部に設置された測定器本体108に送られる。
測定器本体108は、例えばコンピュータ等の電子演算器から構成されており、管内挿入型探触子102から取得した測定信号を用いて解析を実施することにより、押付力を算出する。測定器本体108は、図4に示されるように、管内挿入型探触子102やオペレータによって操作される各種入力デバイスからの入力データが入力される入力部112と、入力部112から入力された各種データ及び各種演算に関するアルゴリズム等を記憶する記憶部114と、記憶部114に記憶された各種データ及びアルゴリズムに基づいて演算を行うことにより押付力を算出する演算部116と、演算部116における算出結果を出力する出力部118と、を備える。
特に記憶部114には、管内挿入型探触子102の測定値と、伝熱管5に対する振動抑制部材14の押付力との関係を規定する特性データ120、並びに、伝熱管群51における伝熱管5及び振動抑制部材14のレイアウト仕様を規定する仕様データ122が予め記憶されている。特性データ120は、後述するように、サンプル122を用いた荷重試験により作成される。
[3.押付力測定方法]
続いて上記構成を有する押付力測定システム100により実施される押付力測定方法について説明する。図5は本発明の少なくとも1実施形態に係る押付力測定方法を工程毎に示すフローチャートであり、図6は図5のステップS10で作成される特性データ120の一例を示すグラフであり、図7は図5のステップS10で実施される荷重試験の一例を示す模式図であり、図8は図5のステップS10で実施される荷重試験の他の例を示す模式図である。
続いて上記構成を有する押付力測定システム100により実施される押付力測定方法について説明する。図5は本発明の少なくとも1実施形態に係る押付力測定方法を工程毎に示すフローチャートであり、図6は図5のステップS10で作成される特性データ120の一例を示すグラフであり、図7は図5のステップS10で実施される荷重試験の一例を示す模式図であり、図8は図5のステップS10で実施される荷重試験の他の例を示す模式図である。
まず準備段階として、押付力測定方法を実施するために必要な特性データ120を予め作成する(ステップS10)。特性データ120は、管内挿入型探触子102の測定値と、伝熱管5に対する振動抑制部材14の押付力との関係を規定する、例えば図6に示されるような特性グラフとして作成される。このような特性データ120は、続く各工程に先立って、測定対象である伝熱管5と同等のサンプル122を使用した荷重試験を実施することにより作成される。
ここで図7及び図8を参照しながら、特性データ120を作成するための荷重試験について詳しく説明する。荷重試験は、振動抑制部材14に支持された伝熱管5に対応するサンプル122に対して、押付力を模擬する所定荷重を印加しながら、サンプル122の内部に挿入された管内挿入型探触子102の測定値を取得することにより行われる。
このような荷重試験は、図7及び図8に示される荷重試験装置200を用いて実施される。荷重試験装置200は、台座たる試験機テーブル202と、試験機テーブル202上に配置されるサンプル122に対して上方から接触するように配置されたロードセル204と、ロードセル204を上方から支持するとともに所定荷重を印加可能に構成されたクロスヘッド206と、クロスヘッド206の両端にそれぞれ設けられたマグネットスタンド208と、各マグネットスタンド208に設けられ試験機テーブル202との間の変位を検出可能に構成された変位計210と、を備えて構成された、いわゆる圧縮試験機である。荷重試験装置200では、不図示の動力源によってクロスヘッド206に対して試験機テーブル202が上下動することで、試験機テーブル202とロードセル204との間に配置されたサンプル122に所定荷重が印加される。サンプル122に対して印加された荷重はロードセル204によって検出され、変位計210の検出結果とともに、静歪計212に送られる。
荷重試験では、サンプル122の内部に管内挿入型探触子102を挿入した状態で、静歪計212が、管内挿入型探触子102の出力電圧、及び、ロードセル204で検知された荷重を取得し、当該出力電圧と荷重の相関として特性データ120を作成する。
尚、このとき静歪計212は、変位計210で検知された変位を参考データとして取得し、特性データ120と関連付けて記録してもよい。この場合、管内挿入型探触子102の出力電圧と荷重の関係は、図12に示されるように、荷重―変位量曲線(もしくは応力―歪み線図)と類似のグラフとして表される。すなわち、載荷荷重が弾性領域においては、荷重と変位が比例するのと同様に、荷重と管内挿入型探触子102の出力信号は比例する。一方、荷重が増加して、塑性領域に入ると、荷重の増分に対して変位量の増分が大きくなる。これと同様に荷重の増分に対して、管内挿入型探触子102の出力信号の増分も大きくなる。これを応用して、荷重を負荷→除荷→荷重というサイクルを、荷重を増加させながら繰り返し、変位と管内挿入型探触子102の出力信号を同時に計測することで、伝熱管5が塑性し始める点の管内挿入型探触子102の出力信号レベルを把握することができる。これにより、伝熱管5の長期健全性の一つの目安として、弾性範囲内の荷重にとどめることが可能となる。
尚、このとき静歪計212は、変位計210で検知された変位を参考データとして取得し、特性データ120と関連付けて記録してもよい。この場合、管内挿入型探触子102の出力電圧と荷重の関係は、図12に示されるように、荷重―変位量曲線(もしくは応力―歪み線図)と類似のグラフとして表される。すなわち、載荷荷重が弾性領域においては、荷重と変位が比例するのと同様に、荷重と管内挿入型探触子102の出力信号は比例する。一方、荷重が増加して、塑性領域に入ると、荷重の増分に対して変位量の増分が大きくなる。これと同様に荷重の増分に対して、管内挿入型探触子102の出力信号の増分も大きくなる。これを応用して、荷重を負荷→除荷→荷重というサイクルを、荷重を増加させながら繰り返し、変位と管内挿入型探触子102の出力信号を同時に計測することで、伝熱管5が塑性し始める点の管内挿入型探触子102の出力信号レベルを把握することができる。これにより、伝熱管5の長期健全性の一つの目安として、弾性範囲内の荷重にとどめることが可能となる。
本実施例では特に、サンプル122への荷重の印加パターンに応じて2種類の特性データ120(第1の特性データ120a及び第2の特性データ120b)が作成される。
まず第1の特性データ120aは、図7に示す荷重試験によって作成される。この荷重試験では、サンプル122の軸方向に沿った略同一位置に対して両側から伝熱管5を挟んで一対の振動抑制部材14a、14bが対向するように配置されており、下方の振動抑制部材14aが試験機テーブル202に接触するとともに上方の振動抑制部材14bがロードセル204に接触するようにセッティングされている。そして試験機テーブル202が上方に駆動されることにより、サンプル122には軸方向に沿った略同一位置に対して両側から荷重が印加される。このときサンプル122は、上下方向から荷重を受けることにより、断面形状が円形から楕円形になるように変形する。
まず第1の特性データ120aは、図7に示す荷重試験によって作成される。この荷重試験では、サンプル122の軸方向に沿った略同一位置に対して両側から伝熱管5を挟んで一対の振動抑制部材14a、14bが対向するように配置されており、下方の振動抑制部材14aが試験機テーブル202に接触するとともに上方の振動抑制部材14bがロードセル204に接触するようにセッティングされている。そして試験機テーブル202が上方に駆動されることにより、サンプル122には軸方向に沿った略同一位置に対して両側から荷重が印加される。このときサンプル122は、上下方向から荷重を受けることにより、断面形状が円形から楕円形になるように変形する。
一方、第2の特性データ120bは、図8に示す荷重試験によって作成される。この荷重試験では、サンプル122の軸方向に沿った互いに異なる位置に対して管を挟んで対向するように3つの振動抑制部材14a、14b、14cが配置されており、下方の2つの振動抑制部材14a、14bが試験機テーブル202に接触させるとともに上方の振動抑制部材14cがロードセル204に接触するようにセッティングされている。ここで上方の振動抑制部材14cは下方の2つの振動抑制部材14a、14bの軸方向に沿った略中点位置に配置されている。そのため、試験機テーブル202が上方に駆動されると、サンプル122には振動抑制部材14a、14bに接触している箇所に上側に向かう荷重が印加されるとともに、振動抑制部材14cに接触している箇所に下側に向かう荷重が印加される。このような荷重を受けたサンプル122は、略矩形断面を有する振動抑制部材14cの角部近傍に局所的な荷重が印加され、3点曲げ変形となる。
このように図7と図8では、サンプル122に対する荷重の印加形態が異なる。サンプル122の内部に挿入された管内挿入型探触子102で得られる出力電圧は、これら2パターンの荷重の印加態様に依存することから、ステップS10では予め2種類の特性データ120a、120bが用意される。
再び図5に戻って、サンプル122を用いた特性データ120の準備が完了すると、実際の測定対象である伝熱管5の内部に管内挿入型探触子102を挿入し、測定を開始する(ステップS11)。測定を行っている際、測定器本体108(入力部112)は管内挿入型探触子102から測定値を取得する(ステップS12)。ここでステップS12における測定値の取得は、巻取装置106によって管内挿入型探触子102を伝熱管5の内部で軸方向に沿って走査しながら連続的に行われる。このとき、測定器本体108(入力部112)は管内挿入型探触子102の測定値とともに管内挿入型探触子102の位置情報を取得する(ステップS13)。
ここでステップS13において取得される位置情報は、例えば、巻取装置106の搬送ケーブル104の巻取量又は送出量に基づいて取得される。そして、測定器本体108は、ステップS12で取得した測定値と、ステップS13で取得した位置情報を関連付けて、記憶部114に記憶する(ステップS14)。
続いて測定器本体108は、記憶部114に予め記憶された仕様データ124に基づいて、ステップS14で取得された測定値に関連付けられた位置情報に基づいて、当該測定値が第1の地点(軸方向に沿った略同一位置に対して両側から前記管を挟んで対向するように前記振動抑制部材が配置された地点)と、第2の地点(軸方向に沿った略同一位置に対して片側から前記振動抑制部材が配置された地点)のいずれで取得されたものであるかを判別する(ステップS15)。ここで仕様データ124は、伝熱管群51における伝熱管5及び振動抑制部材14のレイアウト仕様を規定するデータであり、測定が行われている伝熱管5と振動抑制部材14とがどのようなパターンでレイアウトされているかについて構造的な情報が規定されている。
このような伝熱管5と振動抑制部材14とのレイアウトは、その一例が図2に示されている。図2では詳細は省略されているが、軸方向に沿って伝熱管5と振動抑制部材14とのレイアウトによって、各伝熱管の軸方向に沿って第1の地点及び第2の地点が所定パターンで振り分けられている。このようなレイアウトパターンは、仕様データ124として予め規定されており、測定器本体108が読みだすことによって、軸方向の各位置が第1の地点及び第2の地点のいずれかであるかが判別可能に構成されている。
続いて、測定器本体108(演算部116)は記憶部114から取得した特性データ120に基づいて、ステップS12で取得した測定値(出力電圧値)に対応する押圧力を算出する(ステップS16)。ここで用いられる特性データ120は、ステップS14においてステップS13で取得された位置情報が第1の地点又は第2の地点のいずれであったかに基づいて第1の特性データ120a又は第2の特性データ120bのいずれかが採用される。すなわち、第1の地点で測定された測定値に対応する押付力を第1の特性データ120aに基づいて算出し、第2の地点で測定された測定値に対応する押付力を第2の特性データ120bに基づいて算出する。これらの特性データ120は、図6に示されるように出力電圧と押圧力との関係を規定しているため、測定値に対応する押圧力が算出されることとなる。
このように算出された押圧力は、測定結果として出力部118から出力される(ステップS17)。この測定結果は、例えば押圧力と関連付けられる位置情報に基づいて、分布として出力されてもよい。
尚、上記実施例ではステップS13で取得される位置情報を巻取装置106の搬送ケーブル104の巻取量又は送出量に基づいて求める場合について述べたが、例えば、図9に示されるように、検査対象である伝熱管5の軸方向に沿った基準位置(例えば軸方向に沿った等間隔位置R(n)、R(n+1)、R(n+2))にマーカ220を設置し、当該マーカ220を基準とした変位に基づいて位置情報を取得してもよい。マーカ220は、例えばアルミニウム等の金属材料のように管内挿入型探触子102によって検出可能な材料からなり、管内挿入型探触子102の出力電圧に基づいて検知可能となっている。またマーカ220は、テープ状に形成されることで測定対象である伝熱管5の外側表面に対して貼り付けて使用することで、測定終了後には除去可能になっていてもよい。
管内に挿入される管内挿入型探触子102は、巻取装置106の動作状態(巻取量)に基づいて位置を調整可能であるが、現実には、伝熱管5内に障害物やスケール等による凹凸が存在したり、詰まりが発生する場合があり、位置計測に少なからず誤差が生じることがある。図9の場合では、軸方向に沿った基準位置にマーカ220を設置して、これらを基準とすることで、基準位置からの変位として管内挿入型探触子102の位置を管理することで誤差を抑えることができる。
また上記実施形態では、管内挿入型探触子102としてECTプローブを用いた場合について例示したが、その他の方式の探触子を採用してもよい。図10は管内挿入型探触子102として超音波探触子を用いた例を示す図である。この管内挿入型探触子102は搬送ケーブル104の先端に設けられたホルダ130に収容された超音波探触子を備える。超音波探触子は、音響/電気可逆的変換素子132を有し、例えば電歪素子又は磁歪素子、あるいはこれらの複合体等からなる振動子を一又は複数有する。
音響/電気可逆的変換素子132は伝熱管5の内壁に向けて超音波を発信し、管壁で反射した受信エコー信号を受波すると、その超音波の強度に応じて受信エコー信号を出力する。音響/電気可逆的変換素子132から出力された受信エコー信号は、不図示の信号線を介して測定器本体108に送られ、押圧力の算出に用いられる。
図10の例では、音響/電気可逆的変換素子132は、ホルダ130の周方向及び軸方向に沿って複数配置されている。管内挿入型探触子102は巻取装置106の動作のみで伝熱管5内を移動するため、管内挿入型探触子102の姿勢を制御することが難しいが、音響/電気可逆的変換素子132をホルダ130の周方向及び軸方向に沿って複数配置することで、管内挿入型探触子102を回転させることなく伝熱管5の内壁を周方向にわたって測定することが可能となる。これにより、単一の音響/電気可逆的変換素子132を周方向に回転させながら超音波探傷する場合に比べて、回転駆動装置を設置する必要がなく小型化できる。
続いて図11は管内挿入型探触子102として静電容量式変位計を用いた例を示す図である。この管内挿入型探触子102は、搬送ケーブル104に接続された本体134と、本体134から搬送ケーブル104とは反対側に延在する一対の板バネ部材136と、一対の板バネ部材136上にそれぞれ設けられた一対の測定部138と、一対の測定部138の測定結果を電気信号として送信するための出力ケーブル140と、を備える。本体134の側面には、伝熱管5の内壁に面するように配置された複数の車輪142が設けられており、搬送ケーブル104を巻取装置106によって巻取又は送り出しすることによって、管内挿入型探触子102が伝熱管5の内部を軸方向に沿って移動可能に構成されている。
一対の板バネ部材136の先端近傍には、伝熱管5の内壁に面するように設けられた他の車輪144がそれぞれ設けられている。管内挿入型探触子102が伝熱管5の内部を移動すると、車輪144が伝熱管5の内壁の形状(凹凸)に沿って押圧され、板バネ部材136が弾性的に変形する。その結果、板バネ部材136に設けられた測定部138の位置が変位するようになっている。
一対の板バネ部材136上にそれぞれ設けられた測定部138は、金属等の導電性材料からなる電極として構成されている。一対の測定部138は一対の板バネ部材136上に互いに所定距離を隔てて配置されることにより、静電容量を構成する。この静電容量は、測定部間の距離に依存して可変であるため、伝熱管5の内壁の形状によって測定部138が変位すると、静電容量もまた変化する。そのため、この態様では出力ケーブル140から一対の測定部138間に測定用電流を印加した際に、測定部138間の電位差を検知することにより、当該電位差に基づいて静電容量が求められる。
このように求められた静電容量は、図6に倣って静電容量と押圧力との関係を予め規定する特性データ120に基づいて押圧力に換算される。このような特性データ120もまた、図7及び図8に示す荷重試験と同様の思想に基づいて、予め静電容量と押圧力との関係を測定しておくことで作成することができる。
尚、図11では静電容量型変位計を利用した管内挿入型探触子102について例示しているが、これに代えて歪みゲージ式変位計を利用してもよい。この場合、一対の板バネ部材136上にそれぞれ設けられた測定部138にそれぞれ歪みゲージが用いられる。これらの歪みゲージでは、伝熱管5の内壁の形状によって板バネ部材136が変形した際に生じる歪みに対応する出力信号が出力される。そのため、出力信号と押圧力との関係を予め規定する特性データ120として準備しておくことで、出力信号に対応する押圧力が求められる。このような特性データもまた、図7及び図8に示す荷重試験と同様の思想に基づいて、予め出力信号と押圧力との関係を測定しておくことで作成することができる。
以上説明したように、上記実施形態によれば、流体中に配置された伝熱管群51を支持する振動抑制部材14によって各伝熱管5に付与される押付力を適切に測定可能な押付力測定方法を実現できる。
本開示は、流体中に配置される管群を構成する各管の隙間に挿入される振動抑制部材によって、各管が受ける押付力の測定方法に利用可能である。
1 蒸気発生器
2 胴部
4 管板
5 伝熱管
5a 円弧部
6 管支持板
14 振動抑制部材
51 伝熱管群
100 押付力測定システム
102 管内挿入型探触子
104 搬送ケーブル
106 巻取装置
108 測定器本体
112 入力部
114 記憶部
116 演算部
118 出力部
120 特性データ
122 サンプル
124 仕様データ
132 電気可逆的変換素子
134 本体
136 板バネ部材
138 測定部
2 胴部
4 管板
5 伝熱管
5a 円弧部
6 管支持板
14 振動抑制部材
51 伝熱管群
100 押付力測定システム
102 管内挿入型探触子
104 搬送ケーブル
106 巻取装置
108 測定器本体
112 入力部
114 記憶部
116 演算部
118 出力部
120 特性データ
122 サンプル
124 仕様データ
132 電気可逆的変換素子
134 本体
136 板バネ部材
138 測定部
Claims (8)
- 流体中に配置される管群が、前記管群に含まれる各管の間に挿入された振動抑制部材で支持されてなる制振構造において、前記管群が前記振動抑制部材から受ける押付力を、前記管の内部に挿入される探触子を用いて測定する押付力測定方法であって、
前記探触子の測定値と前記押付力との関係を規定する特性データを予め準備する特性データ準備工程と、
前記探触子を前記管の内部に挿入し、前記探触子の測定値を取得する測定値取得工程と、
前記特性データに基づいて、前記測定された測定値に対応する前記押付力を算出する押付力算出工程と、
を備える、押付力測定方法。 - 前記特性データ準備工程では、前記振動抑制部材に支持された前記管に対応するサンプルに対して前記押付力を模擬する所定荷重を印加しながら、前記サンプルの内部に挿入された前記探触子の測定値を取得する荷重試験を実施することにより、前記特性データが作成される、請求項1に記載の押付力測定方法。
- 前記測定値取得工程では、前記探触子を前記管の内部で走査しながら前記測定値とともに前記探触子の位置情報を取得し、前記測定値と前記位置情報を関連付けて記録する、請求項1又は2に記載の押付力測定方法。
- 前記特性データ準備工程では、
前記サンプルの軸方向に沿った略同一位置に対して両側から前記管を挟んで対向するように前記所定荷重を印加して取得された前記測定値に基づいて第1の特性データを作成し、
前記サンプルの軸方向に沿った互いに異なる位置に対して前記管を挟んで対向するように前記所定荷重を印加して取得された前記測定値に基づいて第2の特性データを作成し、
前記押付力算出工程では、前記管と前記振動抑制部材との位置関係に基づいて、前記第1の特性データ又は前記第2の特性データのいずれか一方を前記特性データとして用いる、請求項3に記載の押付力測定方法。 - 前記管は、
軸方向に沿った略同一位置に対して両側から前記管を挟んで対向するように前記振動抑制部材が配置された第1の地点と、
軸方向に沿った略同一位置に対して片側から前記振動抑制部材が配置された第2の地点と、
を含み、
前記押付力算出工程では、
前記第1の地点で測定された前記測定値に対応する前記押付力を前記第1の特性データに基づいて算出し、
前記第2の地点で測定された前記測定値に対応する前記押付力を前記第2の特性データに基づいて算出する、請求項4に記載の押付力測定方法。 - 前記測定値取得工程では、前記管の軸方向に沿った基準位置に前記探触子で検出可能なマーカを設置し、前記測定値を取得する際に前記基準位置からの変位に基づいて、前記位置情報を取得する、請求項3に記載の押付力測定方法。
- 前記探触子は、前記管の内部に挿入可能な渦電流探傷プローブを含む、請求項1から6のいずれか1項に記載の押付力測定方法。
- 前記探触子は、前記管の内部に挿入することにより前記管の内径を計測可能な変位計を含む、請求項1から6のいずれか1項に記載の押付力測定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17872754.1A EP3457101B1 (en) | 2016-11-21 | 2017-07-10 | Contact force measurement method |
US16/308,981 US11079290B2 (en) | 2016-11-21 | 2017-07-10 | Contact force measurement method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016225635A JP6770409B2 (ja) | 2016-11-21 | 2016-11-21 | 押付力測定方法 |
JP2016-225635 | 2016-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018092352A1 true WO2018092352A1 (ja) | 2018-05-24 |
Family
ID=62145400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025111 WO2018092352A1 (ja) | 2016-11-21 | 2017-07-10 | 押付力測定方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11079290B2 (ja) |
EP (1) | EP3457101B1 (ja) |
JP (1) | JP6770409B2 (ja) |
WO (1) | WO2018092352A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113375899A (zh) * | 2021-05-14 | 2021-09-10 | 东方电气集团科学技术研究院有限公司 | 一种管束结构流致振动的应力应变测试方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6810660B2 (ja) * | 2017-06-07 | 2021-01-06 | 三菱重工業株式会社 | 支持力検査装置及び支持力検査方法 |
CN115824471B (zh) * | 2022-11-15 | 2023-07-14 | 中铁三局集团第四工程有限公司 | 一种盾构管片双向应力监测装置及监测方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60169757A (ja) * | 1984-01-17 | 1985-09-03 | ウエスチングハウス エレクトリック コ−ポレ−ション | 強磁性又は非磁性試料の応力測定方法 |
JPS6293586U (ja) | 1985-11-29 | 1987-06-15 | ||
US4893671A (en) * | 1988-06-20 | 1990-01-16 | Westinghouse Electric Corp. | Steam generator tube antivibration apparatus and method |
JPH09257453A (ja) * | 1996-03-21 | 1997-10-03 | Toray Ind Inc | 円筒体の検査方法、装置および内径修正方法、装置 |
JPH11264775A (ja) * | 1998-03-18 | 1999-09-28 | Osaka Gas Co Ltd | 管測定解析方法及び管解析装置 |
JP2010197096A (ja) * | 2009-02-23 | 2010-09-09 | Mitsubishi Heavy Ind Ltd | 相対変位計測方法及び相対変位計測装置 |
JP2010230337A (ja) * | 2009-03-26 | 2010-10-14 | Tokyo Electric Power Co Inc:The | データ収集装置 |
JP2014041102A (ja) * | 2012-08-23 | 2014-03-06 | Mitsubishi Heavy Ind Ltd | 伝熱管の支持力測定装置及び方法 |
JP2014048183A (ja) * | 2012-08-31 | 2014-03-17 | Mitsubishi Heavy Ind Ltd | 隙間計測装置及び方法並びにプログラム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU987508A1 (ru) * | 1980-07-31 | 1983-01-07 | Московский Ордена Ленина И Ордена Октябрьской Революции Энергетический Институт | Вихретоковый датчик дл неразрушающих испытаний и способ его изготовлени |
DE3511076A1 (de) * | 1985-03-27 | 1986-10-09 | Kopp AG International Pipeline Services, 4450 Lingen | Molch fuer elektromagnetische pruefungen an rohrleitungswandungen aus stahl sowie verfahren hierzu |
US4704577A (en) * | 1986-04-18 | 1987-11-03 | Westinghouse Electric Corp. | Eddy currents probe for measuring a gap between a tube and an antivibration bar |
US5134367A (en) * | 1991-03-19 | 1992-07-28 | The Babcock & Wilcox Company | Rotating eddy current roller head for inspecting and profiling tubing having two separate cross wound coils |
US5309377A (en) * | 1991-11-05 | 1994-05-03 | Illinois Tool Works Inc. | Calibration apparatus and method for improving the accuracy of tire uniformity measurements and tire testing method using same |
FR2745115B3 (fr) * | 1996-02-16 | 1998-04-03 | Framatome Sa | Procede et dispositif de controle de l'etat d'encastrement d'un tube dans une ouverture traversant une plaque |
KR20050001859A (ko) * | 2003-06-26 | 2005-01-07 | 두산중공업 주식회사 | 증기 발생기의 전열관 마모 수명 산출 방법 |
US6959267B2 (en) * | 2004-01-09 | 2005-10-25 | Westinghouse Electric Co. Llc | Method of inspecting a heat exchanger and computer program product for facilitating same |
FR2960336B1 (fr) * | 2010-05-19 | 2012-06-22 | Areva Np | Ensemble et procede de detection et de mesure du taux de colmatage des passages d'eau dans un circuit secondaire d'un reacteur nucleaire a eau sous pression |
GB2529484A (en) * | 2014-08-22 | 2016-02-24 | Univ Sheffield | Deriving contact stress or contact loadusing ultrasound data |
FR3028042B1 (fr) * | 2014-11-05 | 2016-12-16 | Electricite De France | Dispositif et procede de detection de depots d'au moins un materiau ferromagnetique sur la paroi externe d'un tube |
GB2537124B (en) * | 2015-04-07 | 2018-09-05 | Innospection Group Ltd | In-line inspection tool |
US11499940B2 (en) * | 2019-01-22 | 2022-11-15 | Zetec, Inc. | Eddy current probe |
-
2016
- 2016-11-21 JP JP2016225635A patent/JP6770409B2/ja active Active
-
2017
- 2017-07-10 US US16/308,981 patent/US11079290B2/en active Active
- 2017-07-10 EP EP17872754.1A patent/EP3457101B1/en active Active
- 2017-07-10 WO PCT/JP2017/025111 patent/WO2018092352A1/ja unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60169757A (ja) * | 1984-01-17 | 1985-09-03 | ウエスチングハウス エレクトリック コ−ポレ−ション | 強磁性又は非磁性試料の応力測定方法 |
JPS6293586U (ja) | 1985-11-29 | 1987-06-15 | ||
US4893671A (en) * | 1988-06-20 | 1990-01-16 | Westinghouse Electric Corp. | Steam generator tube antivibration apparatus and method |
JPH09257453A (ja) * | 1996-03-21 | 1997-10-03 | Toray Ind Inc | 円筒体の検査方法、装置および内径修正方法、装置 |
JPH11264775A (ja) * | 1998-03-18 | 1999-09-28 | Osaka Gas Co Ltd | 管測定解析方法及び管解析装置 |
JP2010197096A (ja) * | 2009-02-23 | 2010-09-09 | Mitsubishi Heavy Ind Ltd | 相対変位計測方法及び相対変位計測装置 |
JP2010230337A (ja) * | 2009-03-26 | 2010-10-14 | Tokyo Electric Power Co Inc:The | データ収集装置 |
JP2014041102A (ja) * | 2012-08-23 | 2014-03-06 | Mitsubishi Heavy Ind Ltd | 伝熱管の支持力測定装置及び方法 |
JP2014048183A (ja) * | 2012-08-31 | 2014-03-17 | Mitsubishi Heavy Ind Ltd | 隙間計測装置及び方法並びにプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113375899A (zh) * | 2021-05-14 | 2021-09-10 | 东方电气集团科学技术研究院有限公司 | 一种管束结构流致振动的应力应变测试方法 |
CN113375899B (zh) * | 2021-05-14 | 2023-05-12 | 东方电气集团科学技术研究院有限公司 | 一种管束结构流致振动的应力应变测试方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6770409B2 (ja) | 2020-10-14 |
US11079290B2 (en) | 2021-08-03 |
EP3457101A1 (en) | 2019-03-20 |
US20190195707A1 (en) | 2019-06-27 |
EP3457101A4 (en) | 2019-05-15 |
JP2018084413A (ja) | 2018-05-31 |
EP3457101B1 (en) | 2020-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018092352A1 (ja) | 押付力測定方法 | |
CN105891323A (zh) | 一种检测管道变形的涡流探头阵列 | |
US4975855A (en) | Shaft crack detection method | |
Berruti et al. | A test rig for noncontact traveling wave excitation of a bladed disk with underplatform dampers | |
KR850000857B1 (ko) | 열교환기용 관검사장치 | |
JPH04305140A (ja) | 運転中軸系の亀裂検知方法 | |
US8899113B2 (en) | Apparatus and method for inspecting a tube | |
CN102460143B (zh) | 用于测量管内侧沉积物的装置和方法 | |
WO1992005438A1 (en) | Crack detection method for shaft at rest | |
Vinogradov et al. | Evaluation of magnetostrictive transducers for guided wave monitoring of pressurized pipe at 200 C | |
Sayyad et al. | Theoretical and experimental study for identification of crack in cantilever beam by measurement of natural frequencies | |
KR101966168B1 (ko) | 비파괴 검사를 위한 와전류 검사 장치 | |
Shelke et al. | Extracting quantitative information on pipe wall damage in absence of clear signals from defect | |
JPH01162102A (ja) | 試験片の摩耗位置指定装置及び方法 | |
KR101368092B1 (ko) | 검사 장치 | |
US11169116B2 (en) | Probe for nondestructive testing device using crossed gradient induced current and method for manufacturing induction coil for nondestructive testing device | |
KR101574102B1 (ko) | 터빈 블레이드 핑거 도브테일 결함 검사용 와전류 검사장치 및 검사방법 | |
Bertoncini et al. | An online monitoring technique for long-term operation using guided waves propagating in steel pipe | |
KR101203263B1 (ko) | 원전 증기발생기의 전열관 천이구역 단면변화검사용 와전류검사탐촉자 및 이를 사용하여 전열관의 천이구역 단면변화를 검사하는 방법 | |
Cappelli et al. | Guided waves as an online monitoring technology for long-term operation in nuclear power plants: Experimental results on a steam discharge pipe | |
Castillo Sauca et al. | Robust Tip Gap Measurements: A Universal In-Situ Dynamic Calibration and Demonstration in a Two-Stage High-Speed Turbine | |
Bertoncini et al. | Guided Waves as an Online Monitoring Technology for Long Term Operation in NPPs: New Experimental Results on a Steam Discharge Pipe | |
Rovai et al. | Measurement system and data analysis methods to evaluate Flow Induced Vibration in a nuclear fuel pin bundle with heavy liquid metal flow | |
KR101111261B1 (ko) | 강선의 결함 검사 장치 | |
Koehn et al. | CANDU fuel qualification testing in coolant pressure pulse conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17872754 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017872754 Country of ref document: EP Effective date: 20181210 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |