WO2018091847A1 - Machine électrique tournante à rendement amélioré - Google Patents

Machine électrique tournante à rendement amélioré Download PDF

Info

Publication number
WO2018091847A1
WO2018091847A1 PCT/FR2017/053155 FR2017053155W WO2018091847A1 WO 2018091847 A1 WO2018091847 A1 WO 2018091847A1 FR 2017053155 W FR2017053155 W FR 2017053155W WO 2018091847 A1 WO2018091847 A1 WO 2018091847A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
machine according
rotor
rotating electrical
electrical machine
Prior art date
Application number
PCT/FR2017/053155
Other languages
English (en)
Inventor
Mamy Rakotovao
Philippe-Siad Farah
Frédéric Palleschi
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to EP17804640.5A priority Critical patent/EP3542457A1/fr
Priority to CN201780071230.9A priority patent/CN110063019A/zh
Publication of WO2018091847A1 publication Critical patent/WO2018091847A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the invention relates to a rotor of rotating electrical machine with improved efficiency.
  • the rotating electrical machines comprise a stator and a rotor secured to a shaft.
  • the rotor may be integral with a driving shaft and / or driven and may belong to a rotating electrical machine in the form of an alternator, an electric motor, or a reversible machine that can operate in both modes.
  • the stator is mounted in a housing configured to rotate the shaft for example by means of bearings.
  • the stator comprises a body constituted by a stack of thin sheets forming a ring, the inner face of which is provided with notches open towards the inside to receive phase windings.
  • the windings are obtained for example from a continuous wire coated with enamel or from conductive elements in the form of pins connected together by welding.
  • the phase windings are constituted by closed coils on themselves which are wound around the teeth of the stator.
  • These windings are polyphase windings connected in star or delta or star delta whose outputs are connected to a control electronics.
  • the system can be double three-phase.
  • the rotor comprises a body formed by a stack of sheets of sheet metal held in pack form by means of a suitable fastening system.
  • the rotor has poles formed by permanent magnets housed in cavities in the rotor body.
  • Rotating electrical machines are known that are coupled to a shaft of an electric compressor.
  • This electric compressor makes it possible to compensate, at least in part, for the loss of power of the reduced-displacement heat engines used on many motor vehicles in order to reduce their consumption and the emissions of polluting particles (so-called "downsizing" principle in English).
  • the electric turbocharger arranged on the intake duct upstream of the engine, comprises a turbine to allow air to be compressed in order to optimize the filling of the cylinders of the engine.
  • the electric machine is activated to drive the turbine at a very high speed in order to minimize the torque response time, in particular during the transient phases during acceleration, or in the automatic restart phase of the heat engine after a standby (operation " stop and start ").
  • the electromagnetic saliency of a rotating electrical machine is defined by the relation that exists between the inductance in the direct axis (Ld) and the inductance in the quadrature axis (Lq).
  • Ld direct axis
  • Lq quadrature axis
  • positive current must be injected into the armature, along the quadrature axis (Q axis) so as to produce a current in quadrature with respect to the magnetic flux generated by the inductor.
  • the magnetic flux generated by the permanent magnets of the rotor along the axis direct creates a counter-electromotive force in the quadrature axis (Q-axis), which prevents effective sending of positive current along the quadrature axis to create the optimum torque.
  • the present invention aims to effectively remedy this need by providing a rotating electrical machine arranged to operate at least in engine mode, in particular for an electric motor vehicle turbo-compressor, comprising:
  • stator comprising a winding provided with a plurality of electrical phases
  • said rotating electrical machine having a saliency coefficient equal to an inductance in a quadrature axis divided by an inductance in a direct axis, an inverter for electrically controlling said rotating electrical machine,
  • said rotating electrical machine is configured so that the coefficient of salience is greater than 1, 2, in particular greater than or equal to 1, 5, for example between 1, 5 and 3,
  • the inverter being configured to generate a negative current in the direct axis in the electric phases of the stator to reduce the magnetic flux in the direct axis, so as to create a positive reluctant torque.
  • the invention thus makes it possible to increase the inductance in the quadrature axis, which makes it possible to increase the magnetic flux in the quadrature axis while reinforcing the torque generated by the electric machine.
  • the invention therefore makes it possible to deflux the electric machine without degrading the efficiency thereof at high speed.
  • the permanent magnets are radially magnetized, two faces parallel to each other of a given permanent magnet having an orthoradial orientation being magnetized so as to be able to generate a magnetic flux in a radial orientation relative to to an axis of the rotating electrical machine.
  • the inverter is configured to provide a full wave type control having a variable opening angle. This makes it possible to reduce the magnetic field in the direct axis and to reduce the acoustic noise generated by the radial component of the magnetic flux without reducing the torque developed by the machine.
  • the opening angle is between 70 and 150 degrees.
  • said rotating electrical machine is configured to adapt an advance angle to the opening of the full wave control according to a speed of the electric machine. This makes it possible to obtain a negative current in the direct axis adapted as a function of the speed of the machine which reduces the magnetic noise while maintaining an optimal performance that is little or no degradation.
  • the opening angle of opening is between 60 degrees and 100 degrees.
  • the advance angle is defined by the electrical angle between the vacuum electromotive force of a phase and the voltage applied across it.
  • the stator comprises at least three electrical phases.
  • the stator comprises a three-phase double-phase winding, or more generally a polyphase type winding with any number N of phases.
  • the three electrical phases are coupled in a triangle.
  • the triangle coupling allows for a smaller wire diameter and a higher number of turns to be easier to adjust at low voltage.
  • the coupling may be a star-type coupling.
  • the permanent magnets are of the buried type.
  • the rotor comprises a plurality of cavities each housing at least one permanent magnet, two adjacent cavities being separated by an arm belonging to the rotor body, the arm having in particular a thickness greater than or equal to 2 mm.
  • the thickness of an arm is between 2 and 3.6mm.
  • a ratio between a thickness of an arm divided by a thickness of a permanent magnet is between 0.5 and 1.2. This makes it possible to obtain a machine whose saliency coefficient is optimized for the present application.
  • the rotor is surface magnets, and has interpolar spaces between two adjacent magnets made of magnetic material.
  • the machine is configured to rotate at maximum speeds of between 10,000 and 100,000 revolutions per minute.
  • an outer diameter of the rotor is between 20 and 35 mm, and is preferably of the order of 30 mm.
  • Figure 1 is a sectional view of a turbocharger comprising a rotary electric machine according to the present invention
  • Figures 2a and 2b are respectively perspective and cross-sectional views of the rotor of the rotating electrical machine according to the invention.
  • Figure 3 is a perspective view of the stator of the rotating electrical machine according to the present invention.
  • FIG. 4 is a schematic representation of the inverter controlling the phases of the rotating electrical machine according to the invention.
  • Fig. 5 is a diagram of the state of the inverter switching elements as well as phase voltages for full-wave type control as a function of the rotation angle of the rotor;
  • FIG. 6 is a diagram illustrating in particular the configuration of the currents in the reference frame formed by a direct axis and a quadrature axis;
  • Figure 7 is a timing diagram illustrating the advance angle between the vacuum electromotive force of a phase and the voltage applied thereto. Identical, similar or similar elements retain the same reference from one figure to another.
  • FIG. 1 shows an electric compressor 1, comprising a turbine 2 equipped with fins 3 able to suck, via an inlet 4, uncompressed air coming from an air source (not represented) and to repress the compressed air via the outlet 5 after passing through a volute referenced 6.
  • the output 5 may be connected to an inlet distributor (not shown) to optimize the filling of the cylinders of the engine.
  • the suction of the air is carried out in an axial direction, that is to say along the axis of the turbine 2, and the discharge is carried out according to a radial direction perpendicular to the axis of the turbine 2.
  • the suction is radial while the discharge is axial.
  • the suction and the discharge are made in the same direction relative to the axis of the turbine (axial or radial).
  • the turbine 2 is driven by an electric machine 7 mounted inside the housing 8.
  • This electric machine 7 comprises a stator 9, which may be polyphase, surrounding a rotor 10 with the presence of an air gap.
  • This stator 9 is mounted in the housing 8 configured to rotate a shaft 1 1 through bearings 14.
  • the shaft 1 1 is connected in rotation with the turbine 2 and with the rotor 10.
  • the stator 9 is preferably mounted in the housing 8 by hooping.
  • the electric machine 7 has a short response time of less than 300 ms to go from 0 to 70000 revolutions / min.
  • the operating voltage is 12 V or 48 V and a steady state current is in the range of 150 A to 260A.
  • the electrical machine 7 is able to provide a current peak, that is to say a current delivered over a continuous duration of less than 3 seconds, between 150 A and 800 A, in particular between 180 A and 220 A. .
  • the rotation axis rotor X corresponding to the axis of the machine is permanent magnets.
  • the rotor body 17 is a bundle of sheets formed by an axial stack of sheets on one another. This rotor body 17 is made of ferromagnetic material. The sheets are held by fixing means, for example rivets 18, passing axially right through the rotor body 17.
  • the rotor body 17 can be rotatably connected to the shaft 11 in various ways, for example by force-fitting the splined shaft 1 1 inside the central opening 20 of the rotor body 17 or by means of a key device.
  • the rotor body 17 has an internal diameter D1 for example of the order of 10 mm, and an outer diameter D 2 of between 20 mm and 35 mm, and preferably of the order of 30 mm. Furthermore, an outer diameter of the stator 9 is between 35mm and 80mm, in particular between 45mm and 55mm, for example between 48mm and 52mm.
  • the "buried magnet" type rotor 10 comprises a plurality of cavities 22 intended to each receive at least one permanent magnet 23. Two adjacent cavities 22 are separated by an arm 26 belonging to the rotor body 10. As shown on FIG. 2b, each arm 26 has a thickness E measured in a direction orthoradial with respect to the X axis greater than or equal to 2mm. For example, the thickness E of an arm 26 is between 2 and 3.6mm.
  • a ratio between a thickness E of an arm 26 divided by a thickness of a magnet 23 is between 0.5 and 1.2. This makes it possible to obtain a machine whose saliency coefficient is optimized for the present application.
  • the permanent magnets 23 have a rectangular parallelepiped shape whose angles can be beveled.
  • the magnets 23 are radially magnetized, that is to say that the two faces parallel to each other having an orthoradial orientation are magnetized so as to be able to generate a magnetic flux in a radial orientation with respect to the X axis.
  • the magnets 23 are preferably made of rare earth to maximize the magnetic power of the machine. Alternatively, they may however be made of ferrite according to the applications and the desired power of the electric machine. A magnet 23 may have a thickness of in particular between 3 and 4 mm.
  • the number of cavities 22 is preferably equal to four. It is however possible to increase the number of cavities 22 and corresponding magnets 23 depending on the application.
  • the rotor body 17 may also comprise two holding flanges (not shown) plated on either side of the rotor 10 on its axial end faces. These holding flanges provide axial retention of the magnets 23 inside the cavities 22 and also serve to balance the rotor 10.
  • the flanges are made of non-magnetic material, for example aluminum.
  • the stator 9 comprises a body 29 and a coil 30.
  • the stator body 29 has an annular cylindrical shape with a Y axis intended to coincide with the X axis when the stator 9 is mounted inside the electrical machine 7.
  • the stator body 29 consists of an axial stack of flat sheets held by means of rivets 33.
  • the body 29 has teeth 35 distributed angularly in a regular manner on an inner circumference of a yoke 36. These teeth 35 delimit notches 37, so that each notch 37 is delimited by two successive teeth 35.
  • the yoke 36 thus corresponds to the solid outer annular portion of the body 29 which extends between the bottom of the notches 37 and the outer periphery of the stator body 29.
  • the notches 37 open axially into the axial end faces of the body 29.
  • the notches 37 are also open radially in the internal cylindrical face of the body 29.
  • each phase is formed by two coils 40.
  • the phases PH1, PH2, PH3 of the electrical machine 7 are connected in a triangle.
  • the phase outputs u, v, w corresponding to a node between two phases PH1, PH2, PH3 are connected to an inverter 44.
  • the inverter 44 has arms B1, B2, B3.
  • Each arm B1, B2, B3 comprises a first switching element K1, K2, K3 connecting a phase output u, v, w to the supply voltage B + (element called "high side") when it is passing, and a second switching element ⁇ 1 ', ⁇ 2', K3 'connecting this phase output u, v, w to a mass M (element called "low side") when it is passing.
  • the switching elements K1, K2, K3, ⁇ 1 ', K2', K3 ' generally take the form of MOSFET power transistors.
  • Figure 5 illustrates a generation of full wave control by the inverter 44 during motor mode operation of the rotating electrical machine.
  • the control unit alternately controls the "high side" transistors K1, K2, K3 and "low side” ⁇ 1 ', K2', K3 'of an arm B1, B2, B3 of the inverter 44 for connect a phase output u, v, w either to the supply voltage B +, or to the ground M, when the angular position passes a first switching angular threshold equal to 0 (modulo 360 °), or a second angular threshold of switching is 120 °.
  • the aperture angle A0 of the transistors K1, K2, K3, ⁇ 1 ', ⁇ 2', K3 ' is 120 degrees but may alternatively be different, as explained below.
  • the corresponding phase voltages obtained are referenced UPh1 for the voltage measured between the potentials U and V, UPH2 for the voltage measured between the potentials V and W, and UPh3 for the voltage measured between the potentials W and U.
  • the rotating electrical machine 7 has a saliency coefficient equal to an inductance in the quadrature axis Lq divided by an inductance in the direct axis Ld.
  • the electric machine 7 is configured so that the saliency coefficient is greater than 1, 2, especially greater than or equal to 1, 5, for example between 1, 5 and 3.
  • the inverter 44 is configured to generate a negative current in the direct axis ID in the electrical phases PH1; PH2, PH3 of the stator 9 to decrease the magnetic flux in the direct axis cpD, so as to create a positive reluctant torque.
  • the inverter 44 is configured to perform a control of the full wave type having a variable opening angle AO, between 70 and 150 degrees.
  • an angle of advance at the opening AA of the full-wave control is adapted according to the speed of the electric machine.
  • This lead angle AA is defined by the electrical angle between the electromotive force (EMF) at one phase and the voltage applied across its terminals.
  • FIG. 7 shows by way of example the advance angle AA between the force electromotive vacuum generator of phase PH1 referenced FemPHI and voltage UPH1 measured between potentials U and V.
  • This lead angle AA is between 60 degrees and 100 degrees.
  • an advance angle AA of the order of 60 ° is sufficient but beyond 40000rpm, the lead angle AA increases to 80 degrees and to 100.degree. 70000rpm.
  • the yield is strongly degraded. This makes it possible to obtain a negative current in the D axis that is adapted as a function of the speed of the machine, which reduces the magnetic noise while maintaining optimum performance that is little or no degradation.
  • the rotor 10 is surface magnets 23, and has interpolar spaces between two adjacent magnets 23 made of magnetic material.
  • the phases PH1, PH2, PH3 may be connected in a star.
  • the stator 9 comprises a winding 30 of the double three-phase type.
  • the winding 30 may be of distributed wavy type, the windings being obtained for example from a continuous wire covered with enamel or from conductive elements in the form of U-shaped pins whose free ends are connected together by welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

L'invention porte principalement sur une machine électrique tournante (7) agencée pour fonctionner au moins en mode moteur, notamment pour un turbo-compresseur électrique (1 ) de véhicule automobile, comportant: un stator (9) comportant un bobinage muni d'une pluralité de phases électriques, un rotor (10) à aimants permanents, ladite machine électrique tournante (7) présentant un coefficient de saillance égal à une inductance dans un axe en quadrature divisé par une inductance dans un axe direct, un onduleur pour commander électriquement ladite machine électrique tournante, caractérisée en ce que ladite machine électrique tournante (7) est configurée pour que le coefficient de saillance soit supérieur à 1,2, notamment supérieur ou égal à 1,5, par exemple compris entre 1,5 et 3, l'onduleur étant configuré pour générer un courant négatif dans l'axe direct dans les phases électriques du stator (9) pour diminuer le flux magnétique dans l'axe direct, de manière à créer un couple réluctant positif.

Description

MACHINE ÉLECTRIQUE TOURNANTE À RENDEMENT AMÉLIORÉ
L'invention porte sur un rotor de machine électrique tournante à rendement amélioré.
De façon connue en soi, les machines électriques tournantes comportent un stator et un rotor solidaire d'un arbre. Le rotor peut être solidaire d'un arbre menant et/ou mené et peut appartenir à une machine électrique tournante sous la forme d'un alternateur, d'un moteur électrique, ou d'une machine réversible pouvant fonctionner dans les deux modes.
Le stator est monté dans un carter configuré pour porter à rotation l'arbre par exemple par l'intermédiaire de roulements. Le stator comporte un corps constitué par un empilage de tôles minces formant une couronne, dont la face intérieure est pourvue d'encoches ouvertes vers l'intérieur pour recevoir des enroulements de phase. Dans un bobinage de type ondulé réparti, les enroulements sont obtenus par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme d'épingles reliées entre elles par soudage. Alternativement, dans un bobinage de type "concentrique", les enroulements de phase sont constitués par des bobines fermées sur elles-mêmes qui sont enroulées autour des dents du stator. Ces enroulements sont des enroulements polyphasés connectés en étoile ou en triangle ou encore en étoile triangle dont les sorties sont reliées à une électronique de commande. Le système peut être en double triphasé.
Par ailleurs, le rotor comporte un corps formé par un empilage de feuilles de tôles maintenues sous forme de paquet au moyen d'un système de fixation adapté. Le rotor comporte des pôles formés par des aimants permanents logés dans des cavités ménagées dans le corps de rotor.
On connaît des machines électriques tournantes accouplées à un arbre d'un compresseur électrique. Ce compresseur électrique permet de compenser au moins en partie la perte de puissance des moteurs thermiques de cylindrée réduite utilisés sur de nombreux véhicules automobiles pour en diminuer la consommation et les émissions de particules polluantes (principe dit de "downsizing" an anglais). A cet effet, le turbocompresseur électrique, disposé sur le conduit d'admission en amont du moteur thermique, comprend une turbine pour permettre de comprimer l'air afin d'optimiser le remplissage des cylindres du moteur thermique. La machine électrique est activée pour entraîner la turbine à très haute vitesse afin de minimiser le temps de réponse en couple, notamment lors des phases transitoires à l'accélération, ou en phase de redémarrage automatique du moteur thermique après une mise en veille (fonctionnement "stop and start" en anglais).
On rappelle que la saillance électromagnétique d'une machine électrique tournante est définie par la relation qui existe entre l'inductance dans l'axe direct (Ld) et l'inductance dans l'axe en quadrature (Lq). Afin de générer un couple électromagnétique optimal, il est connu que du courant positif doit être injecté dans l'induit, suivant l'axe en quadrature (axe Q) de sorte à produire un courant en quadrature par rapport au flux magnétique généré par l'inducteur.
Dans le cas d'une machine électrique tournante à aimants permanents tournant à une vitesse de rotation élevée notamment supérieure à 10 000 tours par minute comme cela est le cas pour le turbocompresseur, le flux magnétique généré par les aimants permanents du rotor suivant l'axe direct (axe D) crée une force contre-électromotrice dans l'axe en quadrature (axe Q), ce qui empêche d'envoyer efficacement du courant positif suivant l'axe en quadrature pour créer le couple optimal.
La présente invention vise à remédier efficacement à ce besoin en proposant une machine électrique tournante agencée pour fonctionner au moins en mode moteur, notamment pour un turbo-compresseur électrique de véhicule automobile, comportant:
- un stator comportant un bobinage muni d'une pluralité de phases électriques,
- un rotor à aimants permanents,
- ladite machine électrique tournante présentant un coefficient de saillance égal à une inductance dans un axe en quadrature divisé par une inductance dans un axe direct, - un onduleur pour commander électriquement ladite machine électrique tournante,
caractérisée en ce que
- ladite machine électrique tournante est configurée pour que le coefficient de saillance soit supérieur à 1 ,2, notamment supérieur ou égal à 1 ,5, par exemple compris entre 1 ,5 et 3,
- l'onduleur étant configuré pour générer un courant négatif dans l'axe direct dans les phases électriques du stator pour diminuer le flux magnétique dans l'axe direct, de manière à créer un couple réluctant positif. L'invention permet ainsi d'augmenter l'inductance dans l'axe en quadrature, ce qui permet d'augmenter le flux magnétique dans l'axe en quadrature tout en renforçant le couple généré par la machine électrique. L'invention permet donc de défluxer la machine électrique sans dégrader le rendement de celle- ci à haute vitesse. Selon une réalisation, les aimants permanents sont à aimantation radiale, deux faces parallèles l'une par rapport à l'autre d'un aimant permanent donné ayant une orientation orthoradiale étant magnétisées de manière à pouvoir générer un flux magnétique suivant une orientation radiale par rapport à un axe de la machine électrique tournante. Selon une réalisation, l'onduleur est configuré pour réaliser une commande du type pleine onde présentant un angle d'ouverture variable. Ceci permet de diminuer le champ magnétique dans l'axe direct et de réduire le bruit acoustique généré par la composante radiale du flux magnétique sans réduire le couple développé par la machine. Selon une réalisation, l'angle d'ouverture est compris entre 70 et 150 degrés.
Selon une réalisation, ladite machine électrique tournante est configurée pour adapter un angle d'avance à l'ouverture de la commande pleine onde en fonction d'une vitesse de la machine électrique. Cela permet d'obtenir un courant négatif dans l'axe direct adapté en fonction de la vitesse de la machine qui réduit le bruit magnétique tout en conservant un rendement optimal peu ou pas dégradé. Selon une réalisation, l'angle d'avance à l'ouverture est compris entre 60 degrés et 100 degrés.
L'angle d'avance est défini par l'angle électrique entre la force électromotrice à vide d'une phase et la tension appliquée à ses bornes. Selon une réalisation, le stator comporte au moins trois phases électriques. En variante, le stator comporte un bobinage de type double triphasé, ou plus généralement de type polyphasé avec un nombre N quelconque de phases.
Selon une réalisation, les trois phases électriques sont couplées en triangle. Le couplage triangle permet d'utiliser un diamètre de fil plus petit et un nombre de spires plus élevé plus facile à ajuster en basse tension. En variante, le couplage pourra être un couplage de type étoile.
Selon une réalisation, les aimants permanents sont du type enterrés.
Selon une réalisation, le rotor comporte une pluralité de cavités logeant chacune au moins un aimant permanent, deux cavités voisines étant séparées par un bras appartenant au corps de rotor, le bras ayant notamment une épaisseur supérieure ou égale à 2mm. Par exemple, l'épaisseur d'un bras est comprise entre 2 et 3.6mm.
Selon une réalisation, un ratio entre une épaisseur d'un bras divisée par une épaisseur d'un aimant permanent est compris entre 0.5 et 1 .2. Ceci permet d'obtenir une machine dont le coefficient de saillance est optimisé pour la présente application.
Selon une réalisation, le rotor est à aimants surfaciques, et comporte des espaces interpolaires entre deux aimants adjacents réalisés en matériau magnétique. Selon une réalisation, la machine est configurée pour tourner à des vitesses maximales comprises entre 10000 et 100000 tours par minute.
Selon une réalisation, un diamètre externe du rotor est compris entre 20 et 35 mm, et vaut de préférence de l'ordre de 30mm. L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
La figure 1 est une vue en coupe d'un turbocompresseur comportant une machine électrique tournante selon la présente invention;
Les figures 2a et 2b sont respectivement des vues en perspective et en coupe transversale du rotor de la machine électrique tournante selon l'invention;
La figure 3 est une vue en perspective du stator de la machine électrique tournante selon la présente invention;
La figure 4 est une représentation schématique de l'onduleur commandant les phases de la machine électrique tournante selon l'invention;
La figure 5 est un diagramme de l'état des éléments de commutation de l'onduleur ainsi que des tensions de phase pour une commande de type pleine onde en fonction de l'angle de rotation du rotor;
La figure 6 est un diagramme illustrant notamment la configuration des courants dans le repère formé par un axe direct et un axe en quadrature;
La figure 7 est un diagramme temporel illustrant l'angle d'avance entre la force électromotrice à vide d'une phase et la tension appliquée à ses bornes. Les éléments identiques, similaires, ou analogues conservent la même référence d'une figure à l'autre.
La figure 1 montre un compresseur électrique 1 , comportant une turbine 2 munie d'ailettes 3 apte à aspirer, via une entrée 4, de l'air non-comprimé issu d'une source d'air (non représentée) et à refouler de l'air comprimé via la sortie 5 après passage dans une volute référencée 6. La sortie 5 pourra être reliée à un répartiteur d'admission (non représenté) afin d'optimiser le remplissage des cylindres du moteur thermique.
En l'occurrence, l'aspiration de l'air est réalisée suivant une direction axiale, c'est-à-dire suivant l'axe de la turbine 2, et le refoulement est réalisé suivant une direction radiale perpendiculaire à l'axe de la turbine 2. En variante, l'aspiration est radiale tandis que le refoulement est axial. Alternativement, l'aspiration et le refoulement sont réalisés suivant une même direction par rapport à l'axe de la turbine (axiale ou radiale). A cet effet, la turbine 2 est entraînée par une machine électrique 7 montée à l'intérieur du carter 8. Cette machine électrique 7 comporte un stator 9, qui pourra être polyphasé, entourant un rotor 10 avec présence d'un entrefer. Ce stator 9 est monté dans le carter 8 configuré pour porter à rotation un arbre 1 1 par l'intermédiaire de roulements 14. L'arbre 1 1 est lié en rotation avec la turbine 2 ainsi qu'avec le rotor 10. Le stator 9 est de préférence monté dans le carter 8 par frettage.
La machine électrique 7 présente un temps de réponse court inférieur à 300ms pour passer de 0 à 70000 tours/min. De préférence, la tension d'utilisation est de 12 V ou 48 V et un courant en régime permanent est de l'ordre de 150 A jusqu'à 260A. De préférence, la machine électrique 7 est apte à fournir un pic de courant, c'est-à-dire un courant délivré sur une durée continue inférieure à 3 secondes, compris entre 150 A et 800 A, notamment entre 180 A et 220 A.
Plus précisément, comme cela est montré sur la figure 2a, le rotor 10 d'axe de rotation X correspondant à l'axe de la machine est à aimants permanents. Le corps de rotor 17 est un paquet de tôles formé par un empilement axial de tôles les unes sur les autres. Ce corps de rotor 17 est réalisé en matière ferromagnétique. Les tôles sont maintenues par des moyens de fixation, par exemple des rivets 18, traversant axialement de part en part le corps de rotor 17. Le corps de rotor 17 peut être lié en rotation à l'arbre 1 1 de différentes manières, par exemple par emmanchement en force de l'arbre 1 1 cannelé à l'intérieur de l'ouverture centrale 20 du corps de rotor 17 ou à l'aide d'un dispositif à clavette.
Le corps de rotor 17 présente un diamètre interne D1 par exemple de l'ordre de 10mm, et un diamètre externe D2 compris entre 20 mm et 35 mm, et de préférence de l'ordre de 30mm. Par ailleurs, un diamètre externe du stator 9 est compris entre 35mm et 80mm, notamment entre 45mm et 55mm, par exemple entre 48mm et 52mm. Le rotor 10 de type à "aimants enterrés" comporte une pluralité de cavités 22 destinées à recevoir chacune au moins un aimant permanent 23. Deux cavités 22 voisines sont séparées par un bras 26 appartenant au corps du rotor 10. Tel que cela est montré sur la figure 2b, chaque bras 26 a une épaisseur E mesurée, suivant une direction orthoradiale par rapport à l'axe X, supérieure ou égale à 2mm. Par exemple, l'épaisseur E d'un bras 26 est comprise entre 2 et 3.6mm.
De préférence, un ratio entre une épaisseur E d'un bras 26 divisée par une épaisseur d'un aimant 23 est compris entre 0.5 et 1 .2. Ceci permet d'obtenir une machine dont le coefficient de saillance est optimisé pour la présente application.
Dans le cas présent, on empile axialement deux aimants 23 par cavité 22. Les aimants permanents 23 ont une forme de parallélépipède rectangle dont les angles pourront être biseautés. Les aimants 23 sont à aimantation radiale, c'est-à-dire que les deux faces parallèles l'une par rapport à l'autre ayant une orientation orthoradiale sont magnétisées de manière à pouvoir générer un flux magnétique suivant une orientation radiale par rapport à l'axe X.
Comme cela est bien visible sur la figure 2b où les lettres N et S correspondent respectivement aux pôles Nord et Sud, les aimants 23 qui seront situés dans deux cavités 22 consécutives sont de polarités alternées.
Les aimants 23 sont de préférence réalisés en terre rare afin de maximiser la puissance magnétique de la machine. En variante, ils pourront toutefois être réalisés en ferrite selon les applications et la puissance recherchée de la machine électrique. Un aimant 23 pourra présenter une épaisseur comprise notamment entre 3 et 4 mm. Le nombre de cavités 22 est de préférence égal à quatre. Il est toutefois possible d'augmenter le nombre de cavités 22 et d'aimants 23 correspondants en fonction de l'application.
Le corps de rotor 17 pourra également comporter deux flasques de maintien (non représentés) plaqués de part et d'autre du rotor 10 sur ses faces d'extrémité axiale. Ces flasques de maintien assurent une retenue axiale des aimants 23 à l'intérieur des cavités 22 et servent également à équilibrer le rotor 10. Les flasques sont en matière amagnétique, par exemple en aluminium.
Par ailleurs, comme on peut le voir sur la figure 3, le stator 9 comporte un corps 29 et un bobinage 30. Le corps de stator 29 a une forme cylindrique annulaire d'axe Y destiné à être confondu avec l'axe X lorsque le stator 9 est monté à l'intérieur de la machine électrique 7. Le corps de stator 29 consiste en un empilement axial de tôles planes maintenues au moyen de rivets 33.
Plus précisément, le corps 29 comporte des dents 35 réparties angulairement de manière régulière sur une circonférence interne d'une culasse 36. Ces dents 35 délimitent des encoches 37, de telle façon que chaque encoche 37 est délimitée par deux dents 35 successives. La culasse 36 correspond ainsi à la portion annulaire externe pleine du corps 29 qui s'étend entre le fond des encoches 37 et la périphérie externe du corps de stator 29. Les encoches 37 débouchent axialement dans les faces d'extrémité axiales du corps 29. Les encoches 37 sont également ouvertes radialement dans la face cylindrique interne du corps 29.
Pour former le bobinage 30 du stator 9, plusieurs bobines 40 sont enroulées autour des dents 35 du stator 9, ici au nombre de six. La protection entre le corps de stator 29 et le fil des bobines 40 est assurée soit par un isolant 41 de type papier, soit par du plastique par surmoulage ou au moyen d'une pièce rapportée. Le bobinage 30 étant de type triphasé, chaque phase est formée par deux bobines 40.
Comme cela est illustré par la figure 4, les phases PH1 , PH2, PH3 de la machine électrique 7 sont connectées en triangle. Les sorties de phase u, v, w correspondant à un nœud entre deux phases PH1 , PH2, PH3 sont reliées à un onduleur 44.
L'onduleur 44 présente des bras B1 , B2, B3. Chaque bras B1 , B2, B3 comporte un premier élément de commutation K1 , K2, K3 reliant une sortie de phase u, v, w à la tension d'alimentation B+ (élément dit "high side") quand il est passant, et un second élément de commutation Κ1 ', Κ2', K3' reliant cette sortie de phase u, v, w à une masse M (élément dit "low side") quand il est passant. Les éléments de commutations K1 , K2, K3, Κ1 ', K2', K3' prennent généralement la forme de transistors de puissance de puissance de type MOSFET.
La Figure 5 illustre une génération de commande pleine onde par l'onduleur 44 lors d'un fonctionnement en mode moteur de la machine électrique tournante. Suivant cette commande, l'unité de contrôle commande alternativement les transistors "high side" K1 , K2, K3 et "low side" Κ1 ', K2', K3' d'un bras B1 , B2, B3 de l'onduleur 44 pour connecter une sortie de phase u, v, w soit à la tension d'alimentation B+, soit à la masse M, quand la position angulaire franchit un premier seuil angulaire de commutation valant 0 (modulo 360°), ou un second seuil angulaire de commutation valant 120°. Autrement dit, l'angle d'ouverture AO des transistors K1 , K2, K3, Κ1 ', Κ2', K3' est de 120 degrés mais pourra en variante être différent, comme expliqué ci- après. Les tensions de phase correspondantes obtenues sont référencées UPh1 pour la tension mesurée entre les potentiels U et V, UPH2 pour la tension mesurée entre les potentiels V et W, et UPh3 pour la tension mesurée entre les potentiels W et U.
Comme cela est illustré par la figure 6, la machine électrique tournante 7 présente un coefficient de saillance égal à une inductance dans l'axe en quadrature Lq divisé par une inductance dans l'axe direct Ld. La machine électrique 7 est configurée pour que le coefficient de saillance soit supérieur à 1 ,2, notamment supérieur ou égal à 1 ,5, par exemple compris entre 1 ,5 et 3.
L'onduleur 44 est configuré pour générer un courant négatif dans l'axe direct ID dans les phases électriques PH1 ; PH2, PH3 du stator 9 pour diminuer le flux magnétique dans l'axe direct cpD, de manière à créer un couple réluctant positif. A cet effet, l'onduleur 44 est configuré pour réaliser une commande du type pleine onde présentant un angle d'ouverture AO variable, compris entre 70 et 150 degrés.
En outre, un angle d'avance à l'ouverture AA de la commande pleine onde est adapté en fonction de la vitesse de la machine électrique. Cet angle d'avance AA est défini par l'angle électrique entre la force électromotrice (fem) à vide d'une phase et la tension appliquée à ses bornes. Sur la figure 7, on a représenté à titre d'exemple l'angle d'avance AA entre la force électromotrice à vide de la phase PH1 référencée FemPHI et la tension UPH1 mesurée entre les potentiels U et V.
Cet angle d'avance AA est compris entre 60 degrés et 100 degrés. Ainsi, à 10000 tours/min, un angle d'avance AA de l'ordre de 60° suffit mais au-delà de 40000tours/min, l'angle d'avance AA passe à 80 degrés et à 100° pour un régime de 70000rpm. Au-delà d'un angle d'avance AA de 100°, le rendement se dégrade fortement. Cela permet d'obtenir un courant négatif dans l'axe D adapté en fonction de la vitesse de la machine qui réduit le bruit magnétique tout en conservant un rendement optimal peu ou pas dégradé. En variante, le rotor 10 est à aimants 23 surfaciques, et comporte des espaces interpolaires entre deux aimants 23 adjacents réalisés en matériau magnétique.
En variante, les phases PH1 , PH2, PH3 pourront être connectées en étoile.
En variante, le stator 9 comporte un bobinage 30 de type double triphasé. En variante, le bobinage 30 pourra être de type ondulé réparti, les enroulements étant obtenus par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme d'épingles en forme de U dont les extrémités libres sont reliées entre elles par soudage.
Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de l'invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents.
En outre, les différentes caractéristiques, variantes, et/ou formes de réalisation de la présente invention peuvent être associées les unes avec les autres selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres.

Claims

REVENDICATIONS
1 . Machine électrique tournante (7) agencée pour fonctionner au moins en mode moteur, notamment pour un turbo-compresseur électrique (1 ) de véhicule automobile, comportant:
- un stator (9) comportant un bobinage (30) muni d'une pluralité de phases électriques (PH1 , PH2, PH3),
- un rotor (10) à aimants permanents (23),
- ladite machine électrique tournante (7) présentant un coefficient de saillance égal à une inductance dans un axe en quadrature (Lq) divisé par une inductance dans un axe direct (Ld),
- un onduleur (44) pour commander électriquement ladite machine électrique tournante (7),
caractérisée en ce que
- ladite machine électrique tournante (7) est configurée pour que le coefficient de saillance soit supérieur à 1 ,2, notamment supérieur ou égal à
1 ,5, par exemple compris entre 1 ,5 et 3,
- l'onduleur (44) étant configuré pour générer un courant négatif dans l'axe direct (ID) dans les phases électriques (PH1 , PH2, PH3) du stator (9) pour diminuer le flux magnétique dans l'axe direct (cpD), de manière à créer un couple réluctant positif.
2. Machine électrique tournante selon la revendication 1 , caractérisée en ce que les aimants permanents (23) sont à aimantation radiale, deux faces parallèles l'une par rapport à l'autre d'un aimant permanent (23) donné ayant une orientation orthoradiale étant magnétisées de manière à pouvoir générer un flux magnétique suivant une orientation radiale par rapport à un axe (X) de la machine électrique tournante (7).
3. Machine électrique tournante selon la revendication 1 ou 2, caractérisée en ce que l'onduleur (44) est configuré pour réaliser une commande du type pleine onde présentant un angle d'ouverture (AO) variable.
4. Machine électrique tournante selon la revendication 3, caractérisée en ce que l'angle d'ouverture (AO) est compris entre 70 et 150 degrés.
5. Machine électrique tournante selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est configurée pour adapter un angle d'avance à l'ouverture (AA) de la commande pleine onde en fonction d'une vitesse de la machine électrique.
6. Machine électrique tournante selon la revendication 5, caractérisée en ce que l'angle d'avance à l'ouverture (AA) est compris entre 60 degrés et 100 degrés.
7. Machine électrique tournante selon l'une quelconque des revendications précédentes, caractérisée en ce que le stator (9) comporte au moins trois phases électriques (PH1 , PH2, PH3).
8. Machine électrique tournante selon la revendication 7, caractérisée en ce que les trois phases électriques (PH1 , PH2, PH3) sont couplées en triangle.
9. Machine électrique tournante selon l'une quelconque des revendications précédentes, caractérisée en ce que les aimants permanents (23) sont du type enterrés.
10. Machine électrique tournante selon la revendication 9, caractérisée en ce que le rotor (10) comporte une pluralité de cavités (22) logeant chacune au moins un aimant permanent (23), deux cavités (22) voisines étant séparées par un bras (26) appartenant au corps de rotor (17), le bras (26) ayant notamment une épaisseur (E) supérieure ou égale à 2mm.
1 1 . Machine électrique tournante selon la revendication 10, caractérisée en ce qu'un ratio entre une épaisseur (E) d'un bras (26) divisée par une épaisseur d'un aimant permanent (23) est compris entre 0.5 et 1 .2.
12. Machine électrique tournante selon l'une quelconque des revendications précédentes, caractérisée en ce que le rotor (10) est à aimants (23) surfaciques, et comporte des espaces interpolaires entre deux aimants (23) adjacents réalisés en matériau magnétique.
13. Machine électrique tournante selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un diamètre externe (D2) du rotor (10) est compris entre 20 et 35 mm, et vaut de préférence de l'ordre de 30mm.
PCT/FR2017/053155 2016-11-18 2017-11-17 Machine électrique tournante à rendement amélioré WO2018091847A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17804640.5A EP3542457A1 (fr) 2016-11-18 2017-11-17 Machine électrique tournante à rendement amélioré
CN201780071230.9A CN110063019A (zh) 2016-11-18 2017-11-17 具有改进性能的旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1661241 2016-11-18
FR1661241A FR3059168B1 (fr) 2016-11-18 2016-11-18 Machine electrique tournante a rendement ameliore

Publications (1)

Publication Number Publication Date
WO2018091847A1 true WO2018091847A1 (fr) 2018-05-24

Family

ID=58401676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053155 WO2018091847A1 (fr) 2016-11-18 2017-11-17 Machine électrique tournante à rendement amélioré

Country Status (4)

Country Link
EP (1) EP3542457A1 (fr)
CN (1) CN110063019A (fr)
FR (1) FR3059168B1 (fr)
WO (1) WO2018091847A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840276A1 (fr) * 2002-04-30 2003-12-05 Int Rectifier Corp Systeme de direction assistee electroniquement pour vehicule et procede et systeme de commande de moteur
US20070267990A1 (en) * 2006-05-22 2007-11-22 Black & Decker Inc. Electronically commutated motor and control system employing phase angle control of phase current
WO2016146908A1 (fr) * 2015-03-16 2016-09-22 Valeo Equipements Electriques Moteur Rotor de machine electrique tournante a aimants permanents

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI300647B (en) * 2004-06-10 2008-09-01 Int Rectifier Corp Method for controlling an electric motor to reduce emi
JP2014200150A (ja) * 2013-03-29 2014-10-23 株式会社東芝 永久磁石式リラクタンス型回転電機
CN103280904A (zh) * 2013-05-03 2013-09-04 苏州和鑫电气股份有限公司 电动汽车用双层v型内置式永磁电机转子
CN104158320B (zh) * 2013-05-14 2017-07-07 雅马哈发动机株式会社 跨乘式电动车辆用驱动机构以及跨乘式电动车辆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840276A1 (fr) * 2002-04-30 2003-12-05 Int Rectifier Corp Systeme de direction assistee electroniquement pour vehicule et procede et systeme de commande de moteur
US20070267990A1 (en) * 2006-05-22 2007-11-22 Black & Decker Inc. Electronically commutated motor and control system employing phase angle control of phase current
WO2016146908A1 (fr) * 2015-03-16 2016-09-22 Valeo Equipements Electriques Moteur Rotor de machine electrique tournante a aimants permanents

Also Published As

Publication number Publication date
EP3542457A1 (fr) 2019-09-25
CN110063019A (zh) 2019-07-26
FR3059168B1 (fr) 2018-10-26
FR3059168A1 (fr) 2018-05-25

Similar Documents

Publication Publication Date Title
EP3347976B1 (fr) Stator de machine electrique tournante a taux de remplissage optimise
FR3036006B1 (fr) Rotor de machine electrique tournante muni d'au moins un element de plaquage d'un aimant a l'interieur d'une cavite correspondante
WO2019011760A1 (fr) Rotor de machine électrique tournante muni de languettes de maintien d'aimants permanents
WO2016146908A1 (fr) Rotor de machine electrique tournante a aimants permanents
FR3051295A1 (fr) Machine electrique tournante a puissance augmentee
WO2018091847A1 (fr) Machine électrique tournante à rendement amélioré
WO2008043926A1 (fr) Rotor a griffes muni d'elements ferromagnetiques interpolaires de largeur optimisee et machine tournante equipee d'un tel rotor
EP3607640B1 (fr) Rotor pour machine électrique à aimants permanents internes
WO2018042124A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion deformable pour le remplissage d'une cavité
FR3041182A1 (fr) Machine electrique tournante a entrefer optimise
WO2016146909A1 (fr) Rotor de machine electrique tournante a configuration d'aimants permanents optimisee
FR3036007B1 (fr) Rotor ameliore de machine electrique tournante comportant au moins un element de plaquage d'aimant
FR3036554A1 (fr) Machine electrique tournante
FR3041181A1 (fr) Machine electrique tournante a inertie reduite
FR3055484A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion incurvee de reception d'un ressort
WO2017042487A9 (fr) Stator de machine electrique muni d'un isolant d'encoche surmoule
WO2016146910A1 (fr) Rotor de machine électrique tournante a implantation de moyens de fixation optimisée
WO2017042485A1 (fr) Stator de machine électrique tournante a épaisseur de culasse optimisée
FR3079686A1 (fr) Rotor de machine electrique tournante muni de languettes de maintien d'aimants permanents
FR3069114A1 (fr) Machine electrique tournante munie d'un stator segmente a configuration amelioree
FR3055483A1 (fr) Rotor de machine electrique tournante muni d'au moins une languette deformable pour le remplissage d'une lame d'air parasite
EP3925061A1 (fr) Machine électrique synchrone polyphasée à commutateur mécanique
WO2016177969A1 (fr) Rotor de machine électrique tournante muni d'un élément de plaquage d'aimant
FR3067882A1 (fr) Stator de machine electrique tournante
WO2017042516A1 (fr) Stator de machine electrique tournante a ouvertures d'encoches optimisees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17804640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017804640

Country of ref document: EP

Effective date: 20190618