WO2016146910A1 - Rotor de machine électrique tournante a implantation de moyens de fixation optimisée - Google Patents

Rotor de machine électrique tournante a implantation de moyens de fixation optimisée Download PDF

Info

Publication number
WO2016146910A1
WO2016146910A1 PCT/FR2016/050380 FR2016050380W WO2016146910A1 WO 2016146910 A1 WO2016146910 A1 WO 2016146910A1 FR 2016050380 W FR2016050380 W FR 2016050380W WO 2016146910 A1 WO2016146910 A1 WO 2016146910A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor body
axis
rotor according
fixing hole
Prior art date
Application number
PCT/FR2016/050380
Other languages
English (en)
Inventor
Benoit WALME
Mamy Rakotovao
Nam-Gook Kim
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to US15/557,884 priority Critical patent/US20180115207A1/en
Priority to KR1020177025950A priority patent/KR20170128317A/ko
Priority to CN201690000564.8U priority patent/CN208638111U/zh
Publication of WO2016146910A1 publication Critical patent/WO2016146910A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to a rotary electric machine rotor with optimized fastening means implantation.
  • the rotating electrical machines comprise a stator and a rotor secured to a shaft.
  • the rotor may be integral with a driving shaft and / or driven and may belong to a rotating electrical machine in the form of an alternator, an electric motor, or a reversible machine that can operate in both modes.
  • the stator is mounted in a housing configured to rotate the shaft for example by means of bearings.
  • the stator comprises a body constituted by a stack of thin sheets forming a ring, the inner face of which is provided with notches open towards the inside to receive phase windings.
  • the windings are obtained for example from a continuous wire coated with enamel or from conductive elements in the form of pins connected together by welding.
  • the phase windings are constituted by closed coils on themselves which are wound around the teeth of the stator.
  • the protection between the package of sheets and the winding wire is provided either by a paper-type insulation, or by plastic by overmolding or by means of an insert.
  • These windings are polyphase windings connected in star or delta whose outputs are connected to a control electronics.
  • the rotor comprises a body formed by a stack of sheets of sheet metal held in pack form by means of a suitable fastening system, such as rivets axially passing through the rotor from one side to the other, or by means of staples or buttons.
  • the rotor has poles formed by permanent magnets housed in cavities in the rotor body.
  • Rotating electrical machines are known that are coupled to a shaft of an electric turbocharger. This electric turbocharger makes it possible to compensate, at least in part, for the loss of power of the reduced-displacement heat engines used on many motor vehicles in order to reduce their consumption and the emissions of pollutant particles (so-called "downsizing" principle).
  • the electric turbocharger comprises a turbine disposed on the intake duct upstream or downstream of the heat engine to allow compression of the air to optimize the filling of the cylinders of the engine.
  • the electric machine is activated to drive the turbine in order to minimize the torque response time, in particular during the transient phases during acceleration, or in the automatic restart phase of the engine after a standby ("stop and start" operation in English).
  • stop and start operation in English.
  • the invention proposes the configuration of a rotor provided with holes for the passage of fastening means ensuring the mechanical strength of the sheets while disturbing the minimum electromagnetic performance of the rotor.
  • the subject of the present invention is a rotary electric machine rotor, especially an electric machine rotatable at rotation speeds of the order of 60000 to 80000 revolutions / min, having an axis of rotation and comprising:
  • a rotor body formed by a bundle of sheets
  • a plurality of holes made in said rotor body to allow each passage of a plate fastening means of said rotor body, characterized in that a ratio between a radial distance separating one axis from each fixing hole relative to said axis of rotation and an outer radius of said rotor body is less than 70%, especially less than 65%.
  • Such positioning of the fixing holes makes it possible to obtain, with a reduced number of corresponding fastening means, an optimized magnetic flux. in all parts of the rotor body, and to guarantee the mechanical strength of the rotor.
  • each fixing hole is angularly disposed between two permanent magnets.
  • Such a configuration is particularly adapted to allow a good mechanical strength, in particular for electrical machines having rotation speeds of the order of 60000 to 80000 revolutions / min and having a large volume of magnet relative to the volume of the package of sheets.
  • a rotor radius cutting a fixing hole does not cut any of the permanent magnets of the rotor.
  • each fixing hole is of round, square or rectangular section.
  • said rotor body in a given radial direction passing through said axis of rotation of said rotor and an axis of a fixing hole, said rotor body comprises a single fixing hole.
  • said rotor body has a plurality of cavities each housing at least one permanent magnet of said set of permanent magnets.
  • each cavity opens through the rotor body.
  • said rotor comprises one or more permanent magnets per cavity.
  • each attachment hole has an edge at a first smaller distance from a first adjacent cavity and at a second smaller distance from a second adjacent cavity, a sum of the first and second distances is greater than at a thickness of an arm, this minimum thickness being of the order of 1 .5 mm, the thickness of an arm being measured in a orthoradial direction.
  • said rotor body has as many attachment holes as arms.
  • each fixing hole is positioned on a plane of symmetry of an arm.
  • said rotor body has no fixing hole in an outer material strip having a width equal to at least 15%, especially at least equal to 17% of the outer diameter of the rotor.
  • said fixing holes are positioned substantially on the same circumference of said rotor body.
  • said permanent magnets are radially magnetized.
  • an angular aperture of each permanent magnet is at least equal to 30 degrees, in particular greater than 45 degrees.
  • said permanent magnets are made of rare earth.
  • an outer diameter of said rotor body is between 20 mm and 50 mm, in particular between 24 mm and 34 mm, and is preferably of the order of 28 mm. This diameter responds to a physical rule, imposing a certain maximum diameter as a function of the maximum speed, not to exceed a critical linear velocity.
  • the rotor body has an outer periphery having a cylindrical face substantially of the shape of that of a cylinder of revolution.
  • Such a rotor makes it possible to increase the inductance (Lq) in the axis passing between the permanent magnets. This makes it possible to obtain a reluctant torque that participates in the production of high-speed engine torque. This is particularly suitable for electric machines running at high speed, namely at speeds of at least 40000 revolutions / min.
  • the rotor has four poles.
  • the invention also relates to a rotating electrical machine comprising a wound stator and a rotor as previously defined.
  • the wound stator may comprise a concentric winding. This type of winding makes it possible to reach lower cycle times than with a distributed winding.
  • said machine has a response time of between 100 ms and 600 ms, in particular between 200 ms and 400 ms, for example being of the order of 250 ms to go from 5000 to 70,000 revolutions / min.
  • a utilization voltage is 12 V and a steady state current is of the order of 150 A.
  • the electrical machine is capable of providing a current peak of between 150 A and 300 A, in particular between 180 A and 220 A.
  • an outer diameter of the stator is between 35mm and 80mm, in particular between 45mm and 55mm, for example between 48mm and 52mm.
  • This diameter has been defined by taking as a constraint a space volume of the turbocharger not to be exceeded on the one hand, and the feasibility constraint of the process to provide a concentric winding on the other hand imposing a minimum internal diameter stator to be able to pass the arm of the winding needle.
  • Figure 1 is a sectional view of a turbocharger comprising a rotary electric machine according to the present invention
  • Fig. 2 shows a perspective view of the rotor of the rotating electrical machine according to the present invention
  • Fig. 3 is a cross-sectional view of the rotor of the rotating electrical machine according to the present invention
  • Fig. 4 is a perspective view of a permanent magnet for insertion into a cavity of the rotor according to the present invention
  • Figure 5 shows a partial sectional view illustrating an alternative embodiment of the rotor of the electric machine according to the present invention. Identical, similar or similar elements retain the same reference from one figure to another.
  • FIG. 1 shows a turbocharger 1 comprising a turbine 2 equipped with fins 3 able to suck, via an inlet 4, uncompressed air coming from an air source (not represented) and to drive back compressed air via the outlet 5 after passing through a volute referenced 6.
  • the output 5 may be connected to an inlet distributor (not shown) located upstream or downstream of the engine to optimize the filling of the cylinders of the engine .
  • the suction of the air is performed in an axial direction, that is to say along the axis of the turbine 2, and the discharge is made in a radial direction perpendicular to the axis of turbine 2.
  • the suction is radial while the discharge is axial.
  • the suction and the discharge are made in the same direction relative to the axis of the turbine (axial or radial).
  • the turbine 2 is driven by an electric machine 7 mounted inside the housing 8.
  • This electric machine 7 comprises a stator 9, which may be polyphase, surrounding a rotor 10 with the presence of an air gap.
  • This stator 9 is mounted in the housing 8 configured to rotate a shaft 19 by means of bearings 20.
  • the shaft 19 is connected in rotation with the turbine 2 as well as with the rotor 10.
  • the stator 9 is preferably mounted in the housing 8 by hooping.
  • the electric machine 7 has a short response time of between 100 ms and 600 ms, in particular between 200 ms and 400 ms. for example being of the order of 250 ms to go from 5000 to 70000 revolutions / min.
  • the operating voltage is 12 V and a steady state current is of the order of 150 A.
  • the electric machine 7 is able to provide a peak current, that is to say a current delivered over a continuous period of less than 3 seconds, between 150 A and 300 A, in particular between 180 A and 220 A.
  • the electric machine 7 is capable of operating in alternator mode, or is a reversible type electric machine .
  • the stator 9 comprises a body 91 consisting of a stack of thin sheets forming a ring, whose inner face is provided with notches open inward to receive phase windings of a coil 92.
  • the windings are obtained for example from a continuous wire covered with enamel or from conductive elements in the form of pins connected together by welding.
  • the phase windings are constituted by closed coils on themselves which are wound around the teeth of the stator 9.
  • the protection between the package of sheets and the winding wire is provided either by a paper-type insulation, or by plastic by overmolding or by means of an insert.
  • These windings are polyphase windings connected in star or delta whose outputs are connected to a control electronics.
  • the rotation axis rotor X shown in detail in FIG. 2 is permanent magnets.
  • the rotor 10 comprises a rotor body 1 1 formed here by a stack of sheets extending in a radial plane perpendicular to the axis X in order to reduce the eddy currents.
  • This rotor body 1 1 is made of ferromagnetic material.
  • the sheets are held by fixing means 14, for example rivets, passing axially through the stack of sheets, or with staples or by means of buttons, for forming a manipulable and transportable assembly.
  • each hole 13 is of round section and has a diameter of the order of 1, 5 mm.
  • the fixing holes 13 are preferably through, that is to say that they open axially on each of the axial ends 17, 18 of the rotor body 1 1, so that it is possible to pass inside each hole 13 a rod 14 provided with a head 141 at one of its ends and the other end will be deformed for example by a method of pegging to ensure the axial retention of the sheet package.
  • the rod 14 is devoid of head 141 and the two ends are then deformed by a method of pegging.
  • the holes 13 may have a section of square, rectangular shape, or any other shape adapted to the passage of the fastening means 14.
  • the rotor body 11 can be rotatably connected to the shaft 19 in various ways, for example by force-fitting the splined shaft 19 inside the central opening 12 of the rotor 10, or at the using a keyed device.
  • the rotor body 1 1 has an inner periphery 15 delimiting the central cylindrical opening 12 having an internal diameter D1, for example of the order of 10 mm, and an outer periphery 16 delimited by a cylindrical face of external diameter D 2 of between 20 mm. and 50 mm, especially between 24mm and 34mm, and preferably of the order of 28mm.
  • the rotor body 1 1 also has two annular axial end faces 17, 18 extending between the inner periphery 15 and the outer periphery 16.
  • an outer diameter of the stator 9 is between 35mm and 80mm, in particular between 45mm and 55mm, for example between 48mm and 52mm.
  • the rotor 10 comprises a plurality of cavities 21 in each of which is housed a permanent magnet 22.
  • Each cavity 21 passes axially through the rotor body 1 1 from one side to the other, that is to say from an axial end face 17, 18 to another.
  • Two adjacent cavities 21 are separated by an arm 25 coming from a core 26 of the rotor 10, so that there is an alternation of cavities 21 and arm 25 when following a circumference of the rotor 10.
  • the rotor body 1 1 also comprises polar walls 31 each located between two adjacent arms 25.
  • Each pole wall 31 extends between an inner face 36 in contact with a permanent magnet 22 and the outer periphery of the rotor 10.
  • each arm 25 is connected to a corresponding polar wall 31 via a bridge 32 .
  • the cavities 21 are each delimited by two faces 35 of two adjacent arms 25 facing each other, a flat inner face 36 of a polar wall 31 extending following an orthoradial direction, a flat face 37 formed in the core 26 parallel to the face 36, and the inner faces 38 of two bridges 32.
  • the junctions between the faces 35 and 38 may be rounded to facilitate the manufacture of parts.
  • the preferred configuration of the fixing holes 13 with respect to that of the rotor 10 is specified below.
  • a ratio between a radial distance separating the Y axis from each hole 13 with respect to the axis of rotation X and a outer radius (equal to D2 / 2) of the rotor body 1 1 is less than 70%, especially less than 65%.
  • the fixing holes 13 are positioned substantially on the same circumference of the rotor body January 1, namely on a circle C having in this case a diameter of the order of 17 mm plus or minus 10% of this value.
  • each hole 13 is angularly disposed between two consecutive permanent magnets 22.
  • a plane passing through the Y axis of a given hole 13 and the X axis does not cut permanent magnet 22.
  • the rotor 10 has a single fixing hole 13. This minimizes the number of fastening means 14 used.
  • each hole 13 has an edge located at a first L1 smaller distance from a first cavity 21 adjacent and a second L2 smaller distance from a second cavity 21 adjacent, a sum of the first L1 and the second L2 distances is greater than a minimum thickness L3 of an arm measured in an orthoradial direction (see Figure 3); this minimum thickness being of the order of 1 .5 mm.
  • the two distances L1 and L2 are substantially equal but could alternatively be different.
  • the rotor 10 has as many holes 13 as there are arms 25, and each hole 13 is preferably positioned on a plane of symmetry P1 of one arm 25 consisting of a radial orientation plane passing through the X axis and separating the arm 25 into two substantially identical parts.
  • the plane of symmetry P1 is here also a plane of symmetry of the rotor rotor body 1 1.
  • the rotor body 11 is devoid of hole 13 in an outer material strip having a width equal to at least 15%, in particular at least 17% of the outside diameter D 2 of the rotor. rotor 10.
  • the permanent magnets 22 have a rectangular parallelepiped shape whose angles are slightly bevelled.
  • the magnets 22 thus have a substantially constant rectangular cross-section.
  • the magnets 22 are radially magnetized, that is to say that the two faces 41, 42 parallel to each other having an orthoradial orientation are magnetized so as to be able to generate a magnetic flux in a radial orientation M with respect to the axis X.
  • these faces 41, 42 parallel there is the internal face 41 located on the X axis side of the rotor 10 and the outer face 42 located on the side of the outer periphery 16 of the rotor 10 .
  • the magnets 22 located in two consecutive cavities 21 are of alternating polarity.
  • the inner faces 41 of the magnets 22 bearing against the flat face 37 formed in the core 26 have an alternating polarity
  • the outer faces 42 of the magnets 22 in contact with the inner face 36 of the corresponding polar wall 31 have an alternating polarity .
  • each magnet 22 The inner 41 and outer 42 faces of each magnet 22 are in this case flat, like the other faces of each magnet 22.
  • the outer face 42 of each magnet 22 is curved.
  • the inner face 41 of the magnet 22 is flat, or vice versa
  • the inner face 36 of the polar wall 31 then has a corresponding curved shape. This improves the maintenance of the magnet 22 inside a cavity 21.
  • both sides Lateral elements 41 and 42 are bent in the same direction (see dashed line 50), so that each magnet 22 generally has a tile shape.
  • the magnets 22 do not completely fill the cavities 21, so that there are two empty spaces 45 on either side of the magnet 22.
  • the volume of air delimited by all the spaces 45 of the rotor 10 makes it possible to reduce the inertia of the rotor 10.
  • the angular aperture a1 of a cavity 21 is greater than the angular aperture o2 of a corresponding permanent magnet 22.
  • the angular aperture ⁇ 1, o2 of a given element is defined by the angle formed by two planes each passing through the axis X and one end of said element.
  • the angular aperture a1 of each cavity 21 is strictly greater than 40 degrees, while the angular aperture o2 of a magnet 22 is at least 30 degrees.
  • the angular aperture o2 of a magnet may be greater than 45 degrees.
  • the angular aperture a1 of each cavity 21 is of the order of 73 degrees, while the angular aperture o2 of a magnet 22 is of the order of 67 degrees.
  • the magnets 22 are preferably made of rare earth in order to maximize the magnetic power of the machine 7. Alternatively, however, they may be made of ferrite according to the applications and the desired power of the electric machine 7. Alternatively, the magnets 22 can be of different shades to reduce costs.
  • the cavities 21 are alternated with the use of a rare earth magnet and a less powerful but less expensive ferrite magnet. Some cavities 21 may also be left empty depending on the desired power of the electric machine 7. For example, two cavities 21 diametrically opposed may be empty.
  • the number of cavities 21 is here equal to four, as is the number of magnets 22 associated. It is however possible to increase the number of cavities 21 and magnets 22 depending on the application.
  • a single permanent magnet 22 is inserted inside each cavity 21.
  • the rotor 10 may also comprise, inside each cavity 21, a plate (not shown), called a laminate, made of a material that is more flexible than the magnets 22. These plates make it possible to facilitate the insertion of the magnets 22 into the cavities 21 which is performed by sliding the magnets 22 parallel to the axis X of the rotor 10. This plate may be replaced by a mechanical holding member of the spring type magnets, pin or glue, to ensure the mechanical retention of the magnets.
  • the rotor body 1 1 may also comprise two holding plates (not shown) plated on either side of the rotor 10 on its axial end faces. These holding plates provide axial retention of the magnets 22 inside the cavities 21 and also serve to balance the rotor.
  • the flanges are made of non-magnetic material, for example aluminum.

Abstract

L'invention porte principalement sur un rotor (10) de machine électrique tournante ayant un axe de rotation (X) et comportant; un corps de rotor (11) formé par un paquet de tôles, un ensemble d'aimants permanents (22), et une pluralité de trous (13) réalisés dans ledit corps de rotor (11) pour autoriser chacun le passage d'un moyen de fixation (14) des tôles dudit corps de rotor (11), caractérisé en ce qu'un ratio entre une distance radiale séparant un axe de chaque trou de fixation (13) par rapport audit axe de rotation (X) et un rayon externe dudit corps de rotor (11) est inférieur à 70 %, notamment inférieur à 65%.

Description

ROTOR DE MACHINE ELECTRIQUE TOURNANTE A IMPLANTATION DE MOYENS DE FIXATION OPTIMISEE
L'invention porte sur un rotor de machine électrique tournante à implantation de moyens de fixation optimisée. De façon connue en soi, les machines électriques tournantes comportent un stator et un rotor solidaire d'un arbre. Le rotor peut être solidaire d'un arbre menant et/ou mené et peut appartenir à une machine électrique tournante sous la forme d'un alternateur, d'un moteur électrique, ou d'une machine réversible pouvant fonctionner dans les deux modes. Le stator est monté dans un carter configuré pour porter à rotation l'arbre par exemple par l'intermédiaire de roulements. Le stator comporte un corps constitué par un empilage de tôles minces formant une couronne, dont la face intérieure est pourvue d'encoches ouvertes vers l'intérieur pour recevoir des enroulements de phase. Dans un bobinage de type ondulé réparti, les enroulements sont obtenus par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme d'épingles reliées entre elles par soudage. Alternativement, dans un bobinage de type "concentrique", les enroulements de phase sont constitués par des bobines fermées sur elles-mêmes qui sont enroulées autour des dents du stator. La protection entre le paquet de tôles et le fil de bobinage est assurée soit par un isolant de type papier, soit par du plastique par surmoulage ou au moyen d'une pièce rapportée. Ces enroulements sont des enroulements polyphasés connectés en étoile ou en triangle dont les sorties sont reliées à une électronique de commande. Par ailleurs, le rotor comporte un corps formé par un empilage de feuilles de tôles maintenues sous forme de paquet au moyen d'un système de fixation adapté, tel que des rivets traversant axialement le rotor de part en part, ou grâce à des agrafes ou des boutons. Le rotor comporte des pôles formés par des aimants permanents logés dans des cavités ménagées dans le corps du rotor. On connaît des machines électriques tournantes accouplées à un arbre d'un turbocompresseur électrique. Ce turbocompresseur électrique permet de compenser au moins en partie la perte de puissance des moteurs thermiques de cylindrée réduite utilisés sur de nombreux véhicules automobiles pour en diminuer la consommation et les émissions de particules polluantes (principe dit de "downsizing" an anglais). A cet effet, le turbocompresseur électrique comprend une turbine disposée sur le conduit d'admission en amont ou en aval du moteur thermique pour permettre de comprimer l'air afin d'optimiser le remplissage des cylindres du moteur thermique. La machine électrique est activée pour entraîner la turbine afin de minimiser le temps de réponse en couple, notamment lors des phases transitoires à l'accélération, ou en phase de redémarrage automatique du moteur thermique après une mise en veille (fonctionnement "stop and start" en anglais). Etant donné la très faible dimension du corps de rotor et le fait qu'une grande partie de son volume est occupée par les aimants permanents, la localisation des moyens de fixation des tôles sur ce type de rotor est problématique.
L'invention propose la configuration d'un rotor muni de trous pour le passage des moyens de fixation garantissant la tenue mécanique des tôles tout en perturbant au minimum les performances électromagnétiques du rotor. Plus précisément, la présente invention a pour objet un rotor de machine électrique tournante notamment de machine électrique apte à tourner à des vitesses de rotation de l'ordre de 60000 à 80000 tours/min, ayant un axe de rotation et comportant:
- un corps de rotor formé par un paquet de tôles,
- un ensemble d'aimants permanents, et
- une pluralité de trous réalisés dans ledit corps de rotor pour autoriser chacun le passage d'un moyen de fixation des tôles dudit corps de rotor, caractérisé en ce qu'un ratio entre une distance radiale séparant un axe de chaque trou de fixation par rapport audit axe de rotation et un rayon externe dudit corps de rotor est inférieur à 70 %, notamment inférieur à 65%.
Un tel positionnement des trous de fixation permet d'obtenir, avec un nombre réduit de moyens de fixation correspondants, un flux magnétique optimisé dans l'ensemble des parties du corps du rotor, et de garantir la tenue mécanique du rotor.
Selon une réalisation, chaque trou de fixation est disposé angulairement entre deux aimants permanents. Une telle configuration est particulièrement adaptée pour permettre une bonne tenue mécanique, en particulier pour des machines électriques ayant des vitesses de rotation de l'ordre de 60000 à 80000 tours/min et ayant un volume d'aimant important par rapport au volume du paquet de tôles.
Selon une réalisation, un rayon du rotor coupant un trou de fixation, ne coupe pas l'un quelconque des aimants permanents du rotor.
Selon une réalisation, chaque trou de fixation est de section ronde, carrée ou rectangulaire.
Selon une réalisation, suivant une direction radiale donnée passant par ledit axe de rotation dudit rotor et un axe d'un trou de fixation, ledit corps de rotor comporte un seul trou de fixation.
Selon une réalisation, ledit corps de rotor comporte une pluralité de cavités logeant chacune au moins un aimant permanent dudit ensemble d'aimants permanents.
Selon une réalisation, chaque cavité débouche de part en part du corps de rotor.
Selon une réalisation, ledit rotor comporte un seul ou plusieurs aimants permanents par cavité.
Selon une réalisation, deux cavités voisines sont séparées par un bras appartenant audit corps de rotor. Selon une réalisation, chaque trou de fixation comporte un bord situé à une première plus petite distance d'une première cavité adjacente et à une deuxième plus petite distance d'une deuxième cavité adjacente, une somme de la première et de la deuxième distance est supérieure à une épaisseur d'un bras, cette épaisseur minimale étant de l'ordre de 1 .5mm, l'épaisseur d'un bras étant mesurée suivant une direction orthoradiale.
Selon une réalisation, ledit corps de rotor comporte autant de trous de fixation que de bras. Selon une réalisation, chaque trou de fixation est positionné sur un plan de symétrie d'un bras.
Selon une réalisation, ledit corps de rotor est dépourvu de trou de fixation dans une bande de matière extérieure ayant une largeur égale à au moins 15%, notamment au moins égale à 17% du diamètre extérieur du rotor. Selon une réalisation, lesdits trous de fixation sont positionnés sensiblement sur une même circonférence dudit corps de rotor.
Selon une réalisation, lesdits aimants permanents sont à aimantation radiale.
Selon une réalisation, une ouverture angulaire de chaque aimant permanent est au moins égale à 30 degrés, notamment supérieure à 45 degrés. Selon une réalisation, lesdits aimants permanents sont réalisés en terre rare.
Selon une réalisation, un diamètre externe dudit corps de rotor est compris entre 20 mm et 50 mm, notamment compris entre 24 mm et 34 mm, et est de préférence de l'ordre de 28 mm. Ce diamètre répond à une règle physique, imposant un certain diamètre maximal en fonction de la vitesse maximale, pour ne pas dépasser une vitesse linéaire critique.
Selon un mode de réalisation, le corps de rotor présente une périphérie externe ayant une face cylindrique sensiblement de la forme de celle d'un cylindre de révolution.
Un tel rotor permet d'augmenter l'inductance (Lq) dans l'axe passant entre les aimants permanents. Ceci permet d'obtenir un couple réluctant qui participe à la production du couple moteur à haute vitesse. Ceci est tout particulièrement adapté pour des machines électriques tournant à haute vitesse, à savoir à des vitesses d'au moins 40000 tours/min. Selon une réalisation, le rotor comporte quatres pôles.
L'invention a également pour objet une machine électrique tournante comportant un stator bobiné et un rotor tel que précédemment défini.
Le stator bobiné peut comporter un bobinage concentrique. Ce type de bobinage permet d'atteindre des temps de cycle plus faibles qu'avec un bobinage réparti.
Selon une réalisation, ladite machine présente un temps de réponse compris entre 100 ms et 600 ms, notamment compris entre 200 ms et 400 ms, par exemple étant de l'ordre de 250 ms pour passer de 5000 à 70000 tours/min. Selon une réalisation, une tension d'utilisation est de 12 V et un courant en régime permanent est de l'ordre de 150 A.
De préférence, la machine électrique est apte à fournir un pic de courant compris entre 150 A et 300 A, notamment entre 180 A et 220 A.
Selon une réalisation, un diamètre externe du stator est compris entre 35mm et 80mm, notamment entre 45mm et 55mm, par exemple entre 48mm et 52mm. Ce diamètre a été défini en prenant comme contrainte un volume d'encombrement du turbocompresseur à ne pas dépasser d'une part, et la contrainte de faisabilité du procédé pour assurer un bobinage concentrique d'autre part imposant un diamètre interne minimal stator pour pouvoir faire passer le bras de l'aiguille de bobinage.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
La figure 1 est une vue en coupe d'un turbocompresseur comportant une machine électrique tournante selon la présente invention;
La figure 2 montre une vue en perspective du rotor de la machine électrique tournante selon la présente invention;
La figure 3 est une vue en coupe transversale du rotor de la machine électrique tournante selon la présente invention; La figure 4 est une vue en perspective d'un aimant permanent destiné à être inséré à l'intérieur d'une cavité du rotor selon la présente invention;
La figure 5 montre une vue en coupe partielle illustrant une variante de réalisation du rotor de la machine électrique selon la présente invention. Les éléments identiques, similaires, ou analogues conservent la même référence d'une figure à l'autre.
La figure 1 montre un turbocompresseur 1 comportant une turbine 2 munie d'ailettes 3 apte à aspirer, via une entrée 4, de l'air non-comprimé issu d'une source d'air (non représentée) et à refouler de l'air comprimé via la sortie 5 après passage dans une volute référencée 6. La sortie 5 pourra être reliée à un répartiteur d'admission (non représenté) situé en amont ou en aval du moteur thermique afin d'optimiser le remplissage des cylindres du moteur thermique. En l'occurrence, l'aspiration de l'air est réalisée suivant une direction axiale, c'est-à-dire suivant l'axe de la turbine 2, et le refoulement est réalisé suivant une direction radiale perpendiculaire à l'axe de la turbine 2. En variante, l'aspiration est radiale tandis que le refoulement est axial. Alternativement, l'aspiration et le refoulement sont réalisés suivant une même direction par rapport à l'axe de la turbine (axiale ou radiale).
A cet effet, la turbine 2 est entraînée par une machine électrique 7 montée à l'intérieur du carter 8. Cette machine électrique 7 comporte un stator 9, qui pourra être polyphasé, entourant un rotor 10 avec présence d'un entrefer. Ce stator 9 est monté dans le carter 8 configuré pour porter à rotation un arbre 19 par l'intermédiaire de roulements 20. L'arbre 19 est lié en rotation avec la turbine 2 ainsi qu'avec le rotor 10. Le stator 9 est de préférence monté dans le carter 8 par frettage.
Afin de minimiser l'inertie de la turbine 2 lors d'une demande d'accélération de la part du conducteur, la machine électrique 7 présente un temps de réponse court compris entre 100 ms et 600 ms, notamment compris entre 200 ms et 400 ms, par exemple étant de l'ordre de 250 ms pour passer de 5000 à 70000 tours/min. De préférence, la tension d'utilisation est de 12 V et un courant en régime permanent est de l'ordre de 150 A. De préférence, la machine électrique 7 est apte à fournir un pic de courant, c'est-à-dire un courant délivré sur une durée continue inférieure à 3 secondes, compris entre 150 A et 300 A, notamment entre 180 A et 220 A. En variante, la machine électrique 7 est apte à fonctionner en mode alternateur, ou est une machine électrique de type réversible. Plus précisément, le stator 9 comporte un corps 91 constitué par un empilage de tôles minces formant une couronne, dont la face intérieure est pourvue d'encoches ouvertes vers l'intérieur pour recevoir des enroulements de phase d'un bobinage 92. Dans un bobinage de type ondulé réparti, les enroulements sont obtenus par exemple à partir d'un fil continu recouvert d'émail ou à partir d'éléments conducteurs en forme d'épingles reliées entre elles par soudage. Alternativement, dans un bobinage de type "concentrique", les enroulements de phase sont constitués par des bobines fermées sur elles-mêmes qui sont enroulées autour des dents du stator 9. . La protection entre le paquet de tôles et le fil de bobinage est assurée soit par un isolant de type papier, soit par du plastique par surmoulage ou au moyen d'une pièce rapportée. Ces enroulements sont des enroulements polyphasés connectés en étoile ou en triangle dont les sorties sont reliées à une électronique de commande.
Par ailleurs, le rotor 10 d'axe de rotation X montré en détails sur la figure 2 est à aimants permanents. Le rotor 10 comporte un corps de rotor 1 1 formé ici par un empilement de tôles s'étendant dans un plan radial perpendiculaire à l'axe X afin de diminuer les courants de Foucault. Ce corps de rotor 1 1 est réalisé en matière ferromagnétique. Les tôles sont maintenues par des moyens de fixation 14, par exemple des rivets, traversant axialement de part en part l'empilement des tôles, ou avec des agrafes ou encore au moyen de boutons, pour formation d'un ensemble manipulable et transportable.
A cet effet, une pluralité de trous de fixation 13 sont réalisés dans le corps de rotor 1 1 pour autoriser chacun le passage d'un moyen de fixation 14 des tôles du corps de rotor 1 1 . En l'occurrence, chaque trou 13 est de section ronde et présente un diamètre de l'ordre de 1 ,5 mm. Par ailleurs, les trous de fixation 13 sont de préférence traversants, c'est-à-dire qu'ils débouchent axialement sur chacune des extrémités axiales 17, 18 du corps de rotor 1 1 , en sorte qu'il est possible de faire passer à l'intérieur de chaque trou 13 une tige 14 munie d'une tête 141 à une de ses extrémités et dont l'autre extrémité sera déformée par exemple par un procédé de bouterollage afin d'assurer le maintien axial du paquet de tôles. En variante, la tige 14 est dépourvue de tête 141 et les deux extrémités sont alors déformées par un procédé de bouterollage. En variante, les trous 13 pourront présenter une section de forme carrée, rectangulaire, ou toute autre forme adaptée au passage des moyens de fixation 14.
Le corps de rotor 1 1 peut être lié en rotation à l'arbre 19 de différentes manières, par exemple par emmanchement en force de l'arbre 19 cannelé à l'intérieur de l'ouverture centrale 12 du rotor 10, ou à l'aide d'un dispositif à clavette.
Le corps de rotor 1 1 présente une périphérie interne 15 délimitant l'ouverture cylindrique centrale 12 ayant un diamètre interne D1 par exemple de l'ordre de 10mm, et une périphérie externe 16 délimitée par une face cylindrique de diamètre externe D2 compris entre 20 mm et 50 mm, notamment compris entre 24mm et 34mm, et de préférence de l'ordre de 28mm. Le corps de rotor 1 1 présente également deux faces d'extrémité axiale 17, 18 de forme annulaire s'étendant entre la périphérie interne 15 et la périphérie externe 16.
Par ailleurs, un diamètre externe du stator 9 est compris entre 35mm et 80mm, notamment entre 45mm et 55mm, par exemple entre 48mm et 52mm.
Le rotor 10 comporte une pluralité de cavités 21 dans chacune desquelles est logé un aimant permanent 22. Chaque cavité 21 traverse axialement le corps de rotor 1 1 de part en part, c'est-à-dire d'une face d'extrémité axiale 17, 18 à l'autre. Deux cavités 21 voisines sont séparées par un bras 25 issu d'une âme 26 du rotor 10, en sorte qu'il existe une alternance de cavités 21 et de bras 25 lorsque l'on suit une circonférence du rotor 10. Le corps de rotor 1 1 comporte également des parois polaires 31 situées chacune entre deux bras 25 adjacents. Chaque paroi polaire 31 s'étend entre une face interne 36 en contact avec un aimant permanent 22 et la périphérie externe du rotor 10. En outre, chaque bras 25 est raccordé à une paroi polaire 31 correspondante par l'intermédiaire d'un pont 32. Ainsi, comme on peut le voir sur la figure 3, les cavités 21 sont délimitées chacune par deux faces 35 de deux bras 25 adjacents tournées l'une vers l'autre, une face interne 36 plate d'une paroi polaire 31 s'étendant suivant une direction orthoradiale, une face 37 plate ménagée dans l'âme 26 parallèle à la face 36, et les faces internes 38 de deux ponts 32. Les jonctions entre les faces 35 et 38 pourront être arrondies afin de faciliter la fabrication des pièces.
On précise ci-après la configuration préférentielle des trous de fixation 13 par rapport à celle du rotor 10. De préférence, un ratio entre une distance radiale séparant l'axe Y de chaque trou 13 par rapport à l'axe de rotation X et un rayon externe (égal à D2/2) du corps de rotor 1 1 est inférieur à 70 %, notamment inférieur à 65%. Les trous de fixation 13 sont positionnés sensiblement sur une même circonférence du corps de rotor 1 1 , à savoir sur un cercle C ayant dans le cas présent un diamètre de l'ordre de 17 mm plus ou moins 10 % de cette valeur.
Dans l'exemple de réalisation, chaque trou 13 est disposé angulairement entre deux aimants permanents 22 consécutifs. Autrement dit, dans un plan orthogonal à l'axe, un plan passant par l'axe Y d'un trou 13 donné et l'axe X ne coupe pas d'aimant permanent 22. Suivant une direction radiale donnée passant par l'axe X du rotor 10 et un axe Y d'un trou 13, le rotor 10 comporte un seul trou de fixation 13. On minimise ainsi le nombre de moyens de fixation 14 utilisés.
Par ailleurs, avantageusement, chaque trou 13 comporte un bord situé à une première L1 plus petite distance d'une première cavité 21 adjacente et à une deuxième L2 plus petite distance d'une deuxième cavité 21 adjacente, une somme de la première L1 et de la deuxième L2 distances est supérieure à une épaisseur minimale L3 d'un bras 25 mesurée suivant une direction orthoradiale (cf. figure 3) ; cette épaisseur minimale étant de l'ordre de 1 .5mm. Compte tenu de la symétrie du corps du rotor de rotor 1 1 , les deux distances L1 et L2 sont sensiblement égales mais pourraient en variante être différentes.
De préférence, le rotor 10 comporte autant de trous 13 que de bras 25, et chaque trou 13 est de préférence positionné sur un plan de symétrie P1 d'un bras 25 consistant en un plan d'orientation radiale passant par l'axe X et séparant le bras 25 en deux parties sensiblement identiques. Le plan de symétrie P1 est ici également un plan de symétrie du corps de rotor de rotor 1 1 . Afin d'optimiser les performances magnétiques du rotor 10, le corps de rotor 1 1 est dépourvu de trou 13 dans une bande de matière extérieure ayant une largeur égale à au moins 15%, notamment au moins égale à 17% du diamètre extérieur D2 du rotor 10.
Dans le cas présent, comme cela est bien visible sur la figure 4, les aimants permanents 22 ont une forme de parallélépipède rectangle dont les angles sont légèrement biseautés. Les aimants 22 présentent ainsi une section transversale rectangulaire sensiblement constante. Les aimants 22 sont à aimantation radiale, c'est-à-dire que les deux faces 41 , 42 parallèles l'une par rapport à l'autre ayant une orientation orthoradiale sont magnétisées de manière à pouvoir générer un flux magnétique suivant une orientation radiale M par rapport à l'axe X. Parmi ces faces 41 , 42 parallèles, on distingue la face interne 41 située du côté de l'axe X du rotor 10 et la face externe 42 située du côté de la périphérie externe 16 du rotor 10.
Comme cela est bien visible sur les figures 3 et 5 où les lettres N et S correspondent respectivement aux pôles Nord et Sud, les aimants 22 situés dans deux cavités 21 consécutives sont de polarités alternées. Ainsi, d'une cavité 21 à l'autre; les faces internes 41 des aimants 22 en appui contre la face plate 37 ménagée dans l'âme 26 présentent une polarité alternée, et les faces externes 42 des aimants 22 en contact avec la face interne 36 de la paroi polaire 31 correspondante présentent une polarité alternée.
Les faces internes 41 et externes 42 de chaque aimant 22 sont en l'occurrence planes, comme les autres faces de chaque aimant 22. En variante, comme cela a été représenté sur la figure 5, la face externe 42 de chaque aimant 22 est courbée, tandis que la face interne 41 de l'aimant 22 est plate, ou inversement La face interne 36 de la paroi polaire 31 présente alors une forme courbe correspondante. On améliore ainsi le maintien de l'aimant 22 à l'intérieur d'une cavité 21 . Alternativement, les deux faces latérales 41 et 42 sont courbées dans le même sens (cf. trait pointillé 50), en sorte que chaque aimant 22 présente globalement une forme de tuile.
Par ailleurs, les aimants 22 ne remplissent pas complètement les cavités 21 , de telle façon qu'il existe deux espaces vides 45 de part et d'autre de l'aimant 22. Le volume d'air délimité par l'ensemble des espaces 45 du rotor 10 permet de réduire l'inertie du rotor 10.
A cet effet, l'ouverture angulaire a1 d'une cavité 21 est supérieure à l'ouverture angulaire o2 d'un aimant permanent 22 correspondant. L'ouverture angulaire α1 , o2 d'un élément donné (cavité 21 ou aimant 22) est définie par l'angle formé par deux plans passant chacun par l'axe X et par une des extrémités dudit élément. Dans un exemple de réalisation, l'ouverture angulaire a1 de chaque cavité 21 est supérieure strictement à 40 degrés, tandis que l'ouverture angulaire o2 d'un aimant 22 est d'au moins 30 degrés. L'ouverture angulaire o2 d'un aimant pourra être supérieure à 45 degrés. Dans un exemple de réalisation particulier, l'ouverture angulaire a1 de chaque cavité 21 est de l'ordre de 73 degrés, tandis que l'ouverture angulaire o2 d'un aimant 22 est de l'ordre de 67 degrés.
Les aimants 22 sont de préférence réalisés en terre rare afin de maximiser la puissance magnétique de la machine 7. En variante, ils pourront toutefois être réalisés en ferrite selon les applications et la puissance recherchée de la machine électrique 7. Alternativement, les aimants 22 peuvent être de nuances différentes pour réduire les coûts. Par exemple, on alterne dans les cavités 21 l'utilisation d'un aimant en terre rare et d'un aimant en ferrite moins puissant mais moins coûteux. Certaines cavités 21 pourront également être laissées vides en fonction de la puissance recherchée de la machine électrique 7. Par exemple, deux cavités 21 diamétralement opposés peuvent être vides. Le nombre de cavités 21 est ici égal à quatre, tout comme le nombre d'aimants 22 associés. Il est toutefois possible d'augmenter le nombre de cavités 21 et d'aimants 22 en fonction de l'application.
Par ailleurs, un aimant permanent 22 unique est inséré à l'intérieur de chaque cavité 21 . En variante, on pourra utiliser plusieurs aimants 22 empilés l'un sur l'autre à l'intérieur d'une même cavité 21 . On pourra par exemple utiliser deux aimants permanents 22 empilés axialement ou orthoradialement l'un sur l'autre qui pourront le cas échéant être de nuances différentes.
Le rotor 10 pourra également comprendre à l'intérieur de chaque cavité 21 une plaquette (non représentée), dite laminette, réalisée en un matériau plus souple que les aimants 22. Ces plaquettes permettent de faciliter l'insertion des aimants 22 dans les cavités 21 qui est effectuée en faisant coulisser les aimants 22 parallèlement à l'axe X du rotor 10. Cette plaquette pourra être remplacée par un élément de maintien mécanique des aimants de type ressort, goupille ou par une colle, pour assurer le maintien mécanique des aimants.
Le corps de rotor 1 1 pourra également comporter deux plaques de maintien (non représentées) plaquées de part et d'autre du rotor 10 sur ses faces d'extrémité axiale. Ces plaques de maintien assurent une retenue axiale des aimants 22 à l'intérieur des cavités 21 et servent également à équilibrer le rotor. Les flasques sont en matière amagnétique, par exemple en aluminium.
Bien entendu, la description qui précède a été donnée à titre d'exemple uniquement et ne limite pas le domaine de l'invention dont on ne sortirait pas en remplaçant les différents éléments par tous autres équivalents.

Claims

REVENDICATIONS
1 . Rotor (10) de machine électrique tournante notamment de machine électrique apte à tourner à des vitesses de rotation de l'ordre de 60000 à 80000 tours/min, ayant un axe de rotation (X) et comportant:
- un corps de rotor (1 1 ) formé par un paquet de tôles,
- un ensemble d'aimants permanents (22), et
- une pluralité de trous (13) réalisés dans ledit corps de rotor (1 1 ) pour autoriser chacun le passage d'un moyen de fixation (14) des tôles dudit corps de rotor (1 1 ),
caractérisé en ce qu'un ratio entre une distance radiale séparant un axe (Y) de chaque trou de fixation (13) par rapport audit axe de rotation (X) et un rayon externe dudit corps de rotor (1 1 ) est inférieur à 70 %, notamment inférieur à 65%.
2. Rotor selon la revendication 1 , caractérisé en ce que chaque trou de fixation (13) est disposé angulairement entre deux aimants permanents.
3. Rotor selon la revendication 1 ou 2, caractérisé en ce que suivant une direction radiale donnée passant par ledit axe de rotation (X) dudit rotor (10) et un axe (Y) d'un trou de fixation (13), ledit corps de rotor (1 1 ) comporte un seul trou de fixation (13).
4. Rotor selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit corps de rotor (1 1 ) comporte une pluralité de cavités (21 ) logeant chacune au moins un aimant permanent (22) dudit ensemble d'aimants permanents (22).
5. Rotor selon la revendication 4, caractérisé en ce que deux cavités (21 ) voisines sont séparées par un bras (25) appartenant audit corps de rotor (1 1 ).
6. Rotor selon la revendication 5, caractérisé en ce que chaque trou de fixation (13) comporte un bord situé à une première (L1 ) plus petite distance d'une première cavité adjacente (21 ) et à une deuxième (L2) plus petite distance d'une deuxième cavité adjacente (21 ), une somme de la première (L1 ) et de la deuxième (L2) distances est supérieure à une épaisseur (L3) d'un bras (25) mesurée suivant une direction orthoradiale.
7. Rotor selon la revendication 5 ou 6, caractérisé en ce que ledit corps de rotor (1 1 ) comporte autant de trous de fixation (13) que de bras (25).
8. Rotor selon l'une quelconque des revendications 5 à 7, caractérisé en ce que chaque trou de fixation (13) est positionné sur un plan de symétrie (P1 ) d'un bras (25).
9. Rotor selon l'une quelconque des revendications 1 à 8, caractérisé en ce que ledit corps de rotor (1 1 ) est dépourvu de trou de fixation (13) dans une bande de matière extérieure ayant une largeur égale à au moins 15%, notamment au moins égale à 17% du diamètre extérieur (D2) du rotor (10).
10. Rotor selon l'une quelconque des revendications 1 à 9, caractérisé en ce que lesdits trous de fixation (13) sont positionnés sensiblement sur une même circonférence dudit corps de rotor (1 1 ).
1 1 . Rotor selon l'une quelconque des revendications 1 à 10, caractérisé en ce que lesdits aimants permanents (22) sont à aimantation radiale.
12. Rotor selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce qu'une ouverture angulaire (a2) de chaque aimant permanent (22) est au moins égale à 30 degrés, notamment au moins égale à 45 degrés.
13. Rotor selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'un diamètre externe (D2) dudit corps de rotor (1 1 ) est compris entre 20 mm et 50 mm, notamment compris entre 24 mm et 34 mm, et est de préférence de l'ordre de 28 mm.
14. Machine électrique tournante (7) comportant un stator bobiné et un rotor (10) tel que défini selon l'une quelconque des revendications précédentes.
PCT/FR2016/050380 2015-03-16 2016-02-19 Rotor de machine électrique tournante a implantation de moyens de fixation optimisée WO2016146910A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/557,884 US20180115207A1 (en) 2015-03-16 2016-02-19 Rotor of a rotary electrical machine with optimised implantation of securing means
KR1020177025950A KR20170128317A (ko) 2015-03-16 2016-02-19 고정 수단을 최적으로 구현한 회전식 전기 기계의 회전자
CN201690000564.8U CN208638111U (zh) 2015-03-16 2016-02-19 旋转式电机的转子和旋转式电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552140A FR3033960B1 (fr) 2015-03-16 2015-03-16 Rotor de machine electrique tournante a implantation de moyens de fixation optimisee
FR1552140 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016146910A1 true WO2016146910A1 (fr) 2016-09-22

Family

ID=53776707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050380 WO2016146910A1 (fr) 2015-03-16 2016-02-19 Rotor de machine électrique tournante a implantation de moyens de fixation optimisée

Country Status (5)

Country Link
US (1) US20180115207A1 (fr)
KR (1) KR20170128317A (fr)
CN (1) CN208638111U (fr)
FR (1) FR3033960B1 (fr)
WO (1) WO2016146910A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304737A (ja) * 1992-02-26 1993-11-16 Toshiba Corp 永久磁石形モータ
JP2001069701A (ja) * 1999-08-30 2001-03-16 Mitsubishi Heavy Ind Ltd 磁石モータ
JP2001359247A (ja) * 2000-06-12 2001-12-26 Aichi Emerson Electric Co Ltd 永久磁石形電動機の回転子
JP2010068706A (ja) * 2008-08-11 2010-03-25 Ihi Corp モータ
JP2010098931A (ja) * 2008-09-17 2010-04-30 Ihi Corp モータ
US20130313934A1 (en) * 2011-02-10 2013-11-28 Panasonic Corporation Rotor of motor and fan driving motor including rotor
EP2773022A1 (fr) * 2011-10-26 2014-09-03 Mitsubishi Electric Corporation Rotor et moteur à aimants permanents intérieurs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918831A (en) * 1987-12-28 1990-04-24 General Electric Company Method of fabricating composite rotor laminations for use in reluctance, homopolar and permanent magnet machines
EP1458077A1 (fr) * 2003-03-12 2004-09-15 ebm-papst St. Georgen GmbH & Co. KG Moteur électrique polyphasé avec rotor à aimants incorporés
US7042127B2 (en) * 2003-04-02 2006-05-09 Nidec Sankyo Corporation Permanent magnet embedded motor
ITBO20050437A1 (it) * 2005-06-30 2007-01-01 Spal Automotive Srl Rotore per macchina elettrica
DE102007041099A1 (de) * 2007-08-30 2009-03-05 Robert Bosch Gmbh Rotoranordnung für eine elektrische Maschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304737A (ja) * 1992-02-26 1993-11-16 Toshiba Corp 永久磁石形モータ
JP2001069701A (ja) * 1999-08-30 2001-03-16 Mitsubishi Heavy Ind Ltd 磁石モータ
JP2001359247A (ja) * 2000-06-12 2001-12-26 Aichi Emerson Electric Co Ltd 永久磁石形電動機の回転子
JP2010068706A (ja) * 2008-08-11 2010-03-25 Ihi Corp モータ
JP2010098931A (ja) * 2008-09-17 2010-04-30 Ihi Corp モータ
US20130313934A1 (en) * 2011-02-10 2013-11-28 Panasonic Corporation Rotor of motor and fan driving motor including rotor
EP2773022A1 (fr) * 2011-10-26 2014-09-03 Mitsubishi Electric Corporation Rotor et moteur à aimants permanents intérieurs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ILES-KLUMPNER D ET AL: "Comparative optimization design of an interior permanent magnet synchronous motor for an automotive active steering system", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2004. PESC 04. 2004 IEEE 35TH ANNUAL, AACHEN, GERMANY 20-25 JUNE 2004, PISCATAWAY, NJ, USA,IEEE, US, 20 June 2004 (2004-06-20), pages 369 - 375Vol.1, XP010738018, ISBN: 978-0-7803-8399-9, DOI: 10.1109/PESC.2004.1355772 *

Also Published As

Publication number Publication date
FR3033960A1 (fr) 2016-09-23
FR3033960B1 (fr) 2018-03-30
CN208638111U (zh) 2019-03-22
KR20170128317A (ko) 2017-11-22
US20180115207A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
EP3347976B1 (fr) Stator de machine electrique tournante a taux de remplissage optimise
FR3036006B1 (fr) Rotor de machine electrique tournante muni d'au moins un element de plaquage d'un aimant a l'interieur d'une cavite correspondante
WO2019011760A1 (fr) Rotor de machine électrique tournante muni de languettes de maintien d'aimants permanents
WO2016146908A1 (fr) Rotor de machine electrique tournante a aimants permanents
WO2017042506A1 (fr) Machine electrique tournante a inertie reduite
FR3041182A1 (fr) Machine electrique tournante a entrefer optimise
WO2016146909A1 (fr) Rotor de machine electrique tournante a configuration d'aimants permanents optimisee
FR3036007B1 (fr) Rotor ameliore de machine electrique tournante comportant au moins un element de plaquage d'aimant
EP3607640B1 (fr) Rotor pour machine électrique à aimants permanents internes
WO2016146910A1 (fr) Rotor de machine électrique tournante a implantation de moyens de fixation optimisée
WO2018042124A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion deformable pour le remplissage d'une cavité
WO2017042485A1 (fr) Stator de machine électrique tournante a épaisseur de culasse optimisée
WO2017042487A1 (fr) Stator de machine electrique muni d'un isolant d'encoche surmoule
WO2017042489A1 (fr) Stator de machine electrique tournante a performances magnetiques ameliorees
FR3055484A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion incurvee de reception d'un ressort
WO2016177969A1 (fr) Rotor de machine électrique tournante muni d'un élément de plaquage d'aimant
WO2017042516A1 (fr) Stator de machine electrique tournante a ouvertures d'encoches optimisees
WO2017042517A9 (fr) Corps stator d'une machine electrique où des toles sont fixees par boutonnage
WO2018091847A1 (fr) Machine électrique tournante à rendement amélioré
FR3079686A1 (fr) Rotor de machine electrique tournante muni de languettes de maintien d'aimants permanents
FR3041184A1 (fr) Stator de machine electrique tournante muni de toles fixees par rivetage ou bouterollage
FR3055483A1 (fr) Rotor de machine electrique tournante muni d'au moins une languette deformable pour le remplissage d'une lame d'air parasite
FR3069114A1 (fr) Machine electrique tournante munie d'un stator segmente a configuration amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16709997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557884

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177025950

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16709997

Country of ref document: EP

Kind code of ref document: A1