WO2018090820A1 - 一种非晶合金或其复合材料的连续精密成形设备和工艺 - Google Patents

一种非晶合金或其复合材料的连续精密成形设备和工艺 Download PDF

Info

Publication number
WO2018090820A1
WO2018090820A1 PCT/CN2017/108549 CN2017108549W WO2018090820A1 WO 2018090820 A1 WO2018090820 A1 WO 2018090820A1 CN 2017108549 W CN2017108549 W CN 2017108549W WO 2018090820 A1 WO2018090820 A1 WO 2018090820A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
melting
forming
amorphous
platform
Prior art date
Application number
PCT/CN2017/108549
Other languages
English (en)
French (fr)
Inventor
张海峰
付华萌
王爱民
朱正旺
李宏
张宏伟
李扬德
李卫荣
Original Assignee
东莞宜安科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞宜安科技股份有限公司 filed Critical 东莞宜安科技股份有限公司
Priority to EP17872276.5A priority Critical patent/EP3542924A4/en
Priority to US16/342,681 priority patent/US10751792B2/en
Publication of WO2018090820A1 publication Critical patent/WO2018090820A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/06Vacuum casting, i.e. making use of vacuum to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Definitions

  • the present application relates to the field of amorphous alloy technology, and in particular to a continuous precision forming apparatus and process for an amorphous alloy or a composite material thereof.
  • Amorphous alloys and their composites have excellent properties not found in many crystalline materials due to their unique structural characteristics, such as high specific strength, high wear resistance, high corrosion resistance, and unique deformation characteristics. It has broad application prospects in the fields of aerospace materials, national defense industry, and consumer electronics.
  • the preparation techniques of amorphous alloys and composite materials mainly include two kinds, one is that liquid metal is directly solidified into an amorphous alloy, and the typical representative is vacuum die casting forming technology, by charging the alloy melt under a certain pressure. Within the cavity, cooling is then achieved, i.e., filling and forming at the liquidus temperature. The method can obtain parts with complicated structure, and is fast and efficient, and has good formability.
  • the second preparation method is a supercooled liquid zone forming technique, and the obtained amorphous alloy is heated between a glass transition temperature (Tg) and an initial crystallization temperature (Tx) to form at a certain pressure and a certain speed, that is, The amorphous alloy is deformed and formed in a narrow temperature range.
  • Tg glass transition temperature
  • Tx initial crystallization temperature
  • the method firstly obtains an amorphous base metal, and thus the preparation process is complicated, the efficiency is low, the temperature control and the deformation time are demandingly harsh, otherwise the product is prone to crystallization, and the final performance is deteriorated, and the product use requirements cannot be met.
  • the present application combines the above two forming processes to realize the processing of the supercooled liquid zone during the solidification process of the alloy melt, thereby obtaining a high quality product, thereby realizing a low cost and high efficiency preparation technique.
  • the present application aims to provide a continuous precision forming apparatus and process for an amorphous alloy or a composite material thereof, which is a specific alloy in an amorphous alloy or a composite melt thereof. Continuous low pressure precision formation in the subcooled liquid zone temperature range during solidification Shape, short process, high production efficiency, cost saving, and good product quality.
  • a continuous precision forming apparatus for an amorphous alloy or a composite material thereof comprising a vacuum chamber, a feed bin, an alloy melting system, a forming system and a workpiece table;
  • the vacuum chamber can be vacuumed or charged according to process requirements a protective gas;
  • the feed bin is for supplying an alloy raw material to the alloy melting system;
  • the alloy melting system includes a heating device and a melting platform; the heating device is used for melting the alloy raw material into an alloy melt, and the alloy melt is placed in the melting In the platform;
  • the forming system includes a loading rod and a forming mold, the forming mold is disposed at a lower end of the loading rod; the melting platform is pluralityed and disposed on an upper surface of the workpiece table; the workpiece table is installed at a bottom of the vacuum chamber, and the workpiece table a rotating rod is mounted at a bottom center position, and the rotating rod can rotate and drive the workpiece table to rotate around it;
  • the distance between the plurality of melting platforms and the center rotating rod of the workpiece table is equal, and the distance between two adjacent melting platforms is equal; the setting enables the melting platform with the alloy melt to be rotated by the rotating rod to the positive of the forming mold Below, when the melting platform rotates from the melting position directly below the forming mold, the temperature of the alloy melt is in the temperature range of the supercooled liquid region of the alloy, and then the rod is driven to form a mold to press-form the alloy.
  • the heating device adopts an induction coil or an arc heating device; when heating by the induction coil, a melting crucible is arranged below the feeding bin, the induction coil is heated outside the crucible, and the melting platform can be rotated to reach the crucible Below.
  • the alloy material in the feed bin is placed in the melting platform by a robot, and the arc heating device is located directly above the melting platform.
  • the smelting crucible is quartz, ceramic crucible (alumina, etc.) or water-cooled copper crucible, and a baffle is arranged at the bottom of the crucible. When the alloy is melted, the baffle is opened to allow the alloy melt to flow onto the melting platform.
  • the press-formed amorphous alloy or composite thereof is taken out of the vacuum chamber by a sampler.
  • the material of the melting platform is ensured not to react with the master alloy, and does not affect the heating and melting behavior of the master alloy and the subsequent solidification and forming process.
  • the continuous precision forming process of the amorphous alloy or its composite material is performed by using the device as follows:
  • the heating and melting method is induction heating
  • the process is: vacuum is taken, and after the required vacuum condition is reached, the master alloy of the desired shape and quality is loaded into the feeding bin, and further fed into the melting crucible, and the mother is After the alloy is heated and melted, the heating is stopped, the bottom baffle is opened, the alloy melt flows onto the melting platform, and the melting platform with the alloy melt is rotated to a position directly below the forming mold, and is freely cooled during the rotation, when the alloy melt is cooled.
  • the process is: vacuum is taken, after the required vacuum condition is reached, the master alloy of the desired shape and quality is loaded into the feeding bin, further fed to the melting platform, and the electrode is used to After the alloy is heated and melted, the heating is stopped, and the melting platform with the alloy melt is rotated to a position directly below the forming mold, freely cooled during the rotation, and the alloy melt is cooled to a subcooling between the glass transition temperature and the liquidus temperature. In the liquid region range, the alloy in this state is subjected to press forming using a forming mold, and the alloy is rapidly cooled in the state, and finally the amorphous alloy or amorphous composite member is obtained.
  • the vacuum condition means that the degree of vacuum is between 1 ⁇ 10 ⁇ 1 and 1 ⁇ 10 ⁇ 4 Pa; the mother alloy is prepared by smelting or casting; the shape of the mother alloy is rod shape, plate shape, sheet shape and/or Or a spherical regular shape; the shape and quality of the master alloy are determined according to the shape and size of the amorphous member to be prepared.
  • the rapid cooling has a cooling rate of 10 -2 to 10 2 K/min; the alloy is rapidly cooled by a low-temperature forming mold and/or a melting platform having a cooling function to obtain a pure amorphous or amorphous composite structure.
  • the heating and forming process can be carried out simultaneously, and the translational speed of the melting platform and the forming die is determined according to the length of time required for heating and melting, to achieve continuous injection, melting and forming, and to realize amorphous alloy or composite material. Continuous forming.
  • This application is a temperature range in which the mother alloy is melted and then in the solidification process of the amorphous alloy melt, that is, in the liquidus (T l ) to glass transition (T g ) temperature range, the alloy in this state Perform low pressure precision forming.
  • the technology adopts the special structure equipment and fully utilizes the smooth free surface formed by solidification of the alloy melt in the forming temperature range, good deformation characteristics and low solidification shrinkage coefficient, and the obtained amorphous alloy member has high dimensional precision and good surface finish. , the inside of the component is dense, no shrinkage holes and other defects.
  • This application can realize continuous feeding, melting and forming, with high degree of automation, and can realize industrial production.
  • the application process is short, the production efficiency is high, the cost is saved, and the product quality is good.
  • the forming method of the present application is applicable to the preparation of all amorphous alloy system components, such as: Zr-based amorphous alloy, Ti-based amorphous alloy, Fe-based amorphous alloy, Ni-based amorphous alloy, Al-based amorphous alloy, Mg Amorphous alloy, Pd-based amorphous alloy, Ag-based amorphous alloy, Au-based amorphous alloy, Hf-based amorphous alloy, Ca-based amorphous alloy, Pt-based amorphous alloy, Cu-based amorphous alloy, Co-based non- Crystalline alloys and rare earth based amorphous alloys. It can also be applied to amorphous matrix composites.
  • amorphous alloy system components such as: Zr-based amorphous alloy, Ti-based amorphous alloy, Fe-based amorphous alloy, Ni-based amorphous alloy, Al-based amorphous alloy, Mg Amorphous alloy, Pd-based amorphous alloy
  • Example 1 is a schematic view of a continuous precision forming apparatus of an amorphous alloy or a composite material thereof according to the present application; wherein: (a) Example 1 induction melting; (b) Example 2 arc melting.
  • the present application is a continuous precision forming apparatus and process for an amorphous alloy or a composite material thereof.
  • the structure of the forming apparatus is as shown in FIG. 1.
  • the apparatus includes a vacuum chamber 3, a feed bin 6, an alloy melting system, a forming system, and a workpiece stage 2; the vacuum chamber 3 is evacuated or filled with a shielding gas according to a process requirement; the feed bin 6 is used to supply an alloy raw material to an alloy melting system; the alloy melting system includes a heating device and a melting platform;
  • the apparatus is for heating an alloy raw material into an alloy melt, and the molten alloy 12 is placed in a melting platform;
  • the forming system includes a loading rod 7 and a forming die 9, and the forming die 9 is disposed at a lower end of the loading rod 7;
  • the melting platform is a plurality of, disposed on the upper surface of the workpiece table 2;
  • the workpiece table 2 is mounted on the bottom of the vacuum chamber 3, and the rotating rod 1 is mounted at the bottom
  • the heating device uses an induction coil or an arc heating device; When the coil is heated, a melting crucible 11 is disposed under the feeding bin 6, the induction coil 5 is heated outside the crucible 11, and the melting platform is rotated to directly below the crucible; when the melting of the alloy is completed, the bottom baffle of the melting crucible is opened. 4. The alloy melt flows into the melting platform. When heated by the arc heating means, the alloying material in the feed bin 6 is placed in the melting platform by the feed robot 13, and the arc heating means is located directly above the melting platform with the alloy material.
  • the melting platform is used for loading the alloy melt, and is used for molding the alloy with the mold, and the workpiece is rotated by the rotating rod, so that continuous injection and forming can be realized; the formed sample 10 after press forming ( The amorphous alloy or its composite material is taken out of the vacuum chamber by a sampler 8.
  • the material of the melting platform is ensured not to react with the master alloy, and does not affect the heating and melting behavior of the master alloy and the subsequent solidification and forming process.
  • the forming process is:
  • the heating and melting method is induction heating
  • the process is: vacuum is taken, and after the required vacuum condition is reached, the master alloy of the desired shape and quality is loaded into the feed bin, further fed into the melting crucible, and the master alloy is heated. After melting, the heating is stopped, the bottom baffle is opened, the alloy melt flows onto the melting platform, and the melting platform with the alloy melt is rotated directly below the forming mold, freely cooled during the rotation, and the alloy melt is cooled to the glass.
  • the range of the supercooled liquid region between the transition temperature and the liquidus temperature is used, the alloy in this state is press-formed by using a forming die, and the alloy is rapidly cooled to obtain the amorphous alloy or amorphous composite. Material components.
  • the process is: vacuum is taken, after the required vacuum condition is reached, the master alloy of the desired shape and quality is loaded into the feeding bin, further fed to the melting platform, and the parent alloy is used by the electrode. After heating and melting, the heating is stopped, and the melting platform with the alloy melt is rotated to a position directly below the forming mold, freely cooled during the rotation, and the alloy melt is cooled to a supercooled liquid state between the glass transition temperature and the liquidus temperature. In the range of the region, the alloy of this state is subjected to press forming using a forming mold, and at the same time, the alloy in this state is rapidly cooled to finally obtain the amorphous alloy or amorphous composite member.
  • the heating and forming process can be carried out simultaneously, determining the translation speed of the melting platform according to the length of time required for heating, melting and forming, to achieve continuous injection, melting and forming, organic heating, cooling, solidification and forming processes during the coordinated forming process, Continuous forming of an amorphous alloy is achieved.
  • the master alloy is prepared by smelting or casting; the shape of the master alloy is a rod shape, a plate shape, a sheet shape and/or a spherical regular shape.
  • the material of the melting platform is ensured not to react with the master alloy, and does not affect the heating and melting behavior of the master alloy and the subsequent solidification and forming process.
  • the heating method of the master alloy is arc heating, induction heating, resistance heating, laser heating, plasma heating, infrared heating or microwave heating.
  • the alloy is rapidly cooled by a low temperature forming mold and/or a melting platform having a cooling function to obtain a pure amorphous or amorphous composite structure.
  • the apparatus of the present embodiment is provided with a feed bin 6 for continuous feeding, and the vacuum chamber 3 is pumped to a required degree of vacuum (1 ⁇ 10 -1 to 1 ⁇ 10 -4 Pa).
  • the mother alloy is fed into the crucible 11 in the induction coil 5, and the mother alloy is heated and melted by the induction coil 5 under vacuum (or argon atmosphere protection condition) to obtain the molten alloy 12, and then the heating is stopped, and the rotating rod 1 is rotated.
  • the present embodiment is provided with a feed bin 6 for continuous feeding, and the vacuum chamber 3 is pumped to a required vacuum (1 ⁇ 10 -1 to 1 ⁇ 10 -4 Pa).
  • the master alloy is fed to the melting platform below the arc melting device (ie, below the electrode 14 in the figure) by the feeding robot 13, and the master alloy is heated and melted by the non-consumable electrode 14 to obtain the molten alloy 12, and then the heating is stopped.
  • the rotating rod 1 rotates to drive the workpiece table 2, turns it under the mold 9, and cools freely.
  • the alloy melt is cooled to between the glass transition temperature (T g ) and the liquidus temperature (T l )
  • T l glass transition temperature
  • the molding die 9 at the lower end 7 press-forms the alloy in this state to effect cooling forming of the alloy (cooling rate is 10 -2 to 10 2 K/min), and the molded sample 10 is obtained, and the sample is taken out by the sampler 8.
  • cooling rate is 10 -2 to 10 2 K/min
  • the position of the other melting platform on the workpiece table is also rotated to a position directly below the non-consumable electrode 14, which also repeats the above-mentioned melting-rotation- - Forming and other processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种非晶合金或其复合材料连续精密成形设备和工艺,属于非晶态合金技术领域。该设备使得带有合金熔体的熔化平台从熔化位置旋转到成形模具(9)正下方的时候,合金熔体的温度处于合金的过冷液态区温度范围,然后加载杆(7)驱动成形模具(9)对合金进行压制成形。该工艺通过在非晶态合金熔体凝固过程中的一定温度区间,对非晶态合金进行压力精密成形,并且有机的协调成形过程中的加热、降温、凝固和成形过程,实现了非晶合金的连续成形。

Description

一种非晶合金或其复合材料的连续精密成形设备和工艺 技术领域
本申请涉及非晶合金技术领域,具体涉及一种非晶合金或其复合材料的连续精密成形设备和工艺。
背景技术
非晶态合金及其复合材料由于其独特结构特征,使其具有诸多晶态材料所不具备的优异性能,如高比强度、高耐磨性、高耐腐蚀性、独特的变形特性等。在航天材料、国防工业、消费电子等领域具有广阔应用前景。目前,非晶态合金及其复合材料的制备技术主要包括两种,一种是液态金属直接凝固成为非晶态合金,典型代表是真空压铸成形技术,通过将合金熔体在一定压力下充入型腔内,然后实现冷却,即在液相线温度实现充型和成形。该方法能够获得结构复杂的零件,并且快速高效、成形性好,但该方法的缺点就是产品表面容易形成气孔,分布不规则、大小不一,产品芯部也容易产生气孔。此外,该方法实现高真空条件很难,无法获得高品质的产品。第二种制备方法是过冷液态区成形技术,将获得的非晶态合金加热到玻璃转变温度(Tg)和初始晶化温度(Tx)之间,在一定压力、一定速度下实现成形,即在较窄的温度范围内对非晶态合金进行变形成形。该方法首先要获得非晶态母材,因而制备工艺复杂,效率低下,温度控制和变形时间要求较苛刻,否则产品容易产生晶化,最终性能恶化,无法满足产品的使用要求。本申请综合上述两种成形工艺,在合金熔体凝固过程中,实现过冷液态区的加工成形,获得高质量产品,从而实现低成本高效率的制备技术。
申请内容
为了克服现有技术的不足之处,本申请的目的在于提供一种非晶合金或其复合材料的连续精密成形设备和工艺,该工艺是采用特定设备在非晶态合金或者其复合材料熔体凝固过程中的过冷液态区温度区间对其进行连续的低压力精密成 形,工艺流程短、生产效率高、节约成本、产品质量好。
为实现上述目的,本申请所采用的技术方案如下:
一种非晶合金或其复合材料的连续精密成形设备,该成形设备包括真空腔体、给料仓、合金熔炼系统、成形系统和工件台;所述真空腔体能够根据工艺需要抽真空或充入保护气体;所述给料仓用于向合金熔炼系统提供合金原料;所述合金熔炼系统包括加热装置和熔化平台;加热装置用于将合金原料熔化为合金熔体,合金熔体置于熔化平台中;
所述成形系统包括加载杆和成形模具,成形模具设于加载杆的下端;所述熔化平台为多个,设于工件台的上表面;所述工件台安装于真空腔体的底部,工件台的底部中心位置安装旋转杆,该旋转杆能够旋转并带动工件台以其为中心进行转动;
所述多个熔化平台到工件台中心旋转杆的距离相等,相邻两个熔化平台之间的距离相等;该设置使得带有合金熔体的熔化平台能够旋转杆带动下旋转到成形模具的正下方,熔化平台从熔化位置旋转到成形模具正下方的时候,合金熔体的温度处于合金的过冷液态区温度范围,然后加载杆驱动成形模具对合金进行压制成形。
所述合金熔炼系统中,加热装置采用感应线圈或电弧加热装置;当采用感应线圈加热时,在给料仓的下方设置熔炼坩埚,感应线圈位于坩埚外侧对其加热,熔化平台能够旋转到达坩埚正下方。当采用电弧加热装置加热时,采用机械手将给料仓中的合金原料放置于熔化平台中,电弧加热装置位于熔化平台的正上方。
所述熔炼坩埚为石英、陶瓷坩埚(氧化铝等)或者水冷铜坩埚,坩埚底部设置挡板,当合金熔炼结束后,将挡板抽开,使得合金熔体能够流到熔化平台上。
该设备中,压制成形后的非晶合金或其复合材料通过取样器从真空腔体中取出。
该设备中,所述熔化平台的材质要保证不与母合金反应,不影响母合金的加热熔化行为和随后的凝固、成形过程。
利用所述设备进行非晶合金或其复合材料的连续精密成形工艺,过程如下:
当加热熔化方式为感应加热时,其工艺过程为:抽取真空,达到要求真空条件后,将所需形状和质量的母合金装入给料仓,进一步进给到熔炼坩埚中,将母 合金加热熔化后,停止加热,打开底部挡板,合金熔体流到熔化平台上,带有合金熔体的熔化平台旋转到成形模具正下方位置,在旋转过程中自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的过冷液态区范围时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,最终获得所述非晶态合金或者非晶复合材料构件;
当加热熔化方式为电弧加热时,其工艺过程为:抽取真空,达到要求真空条件后,将所需形状和质量的母合金装入给料仓,进一步进给到熔炼平台上,利用电极将母合金加热熔化后,停止加热,带有合金熔体的熔化平台旋转到成形模具正下方位置,在旋转过程中自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的过冷液态区范围时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,最终获得所述非晶态合金或者非晶复合材料构件。
所述真空条件是指真空度为1×10-1~1×10-4Pa范围之间;所述母合金采用熔炼或浇铸方式制备;母合金的形状为棒状、板状、片状和/或球状规则形状;母合金的形状和质量依据所需制备的非晶构件的形状和尺寸确定。
所述快速冷却的冷却速率为10-2~102K/min;通过低温的成形模具和/或具有致冷功能的熔化平台,合金实现快速冷却,获得纯非晶或者非晶复合材料结构。
该工艺中,加热和成形过程能够同时进行,依据加热熔化和成形所需的时间长短,确定熔化平台和成形模具的平移速度,实现连续进样、熔化和成形,实现非晶合金或者复合材料的连续成形。
本申请具有以下优点:
1、本申请是将母合金熔化后,再在非晶态合金熔体凝固过程中的温度区间,即液相线(Tl)到玻璃转变(Tg)温度范围内,对该状态下合金进行低压力精密成形。该技术采用特定结构的设备并充分利用了该成形温度区间合金熔体凝固形成的光滑自由表面、良好的变形特性和低凝固收缩系数等特点,所获得非晶合金构件尺寸精度高、表面光洁度好、构件内部致密、无缩孔等缺陷。
2、本申请可以实现连续给料、熔化和成形,自动化程度高,可以实现工业化生产。
3、本申请工艺流程短、生产效率高、节约成本、产品质量好。
4、本申请成形方法适用于所有非晶合金体系构件的制备,如:Zr基非晶合金、Ti基非晶合金、Fe基非晶合金、Ni基非晶合金、Al基非晶合金、Mg基非晶合金、Pd基非晶合金、Ag基非晶合金、Au基非晶合金、Hf基非晶合金、Ca基非晶合金、Pt基非晶合金、Cu基非晶合金、Co基非晶合金和稀土基非晶合金。还可应用于非晶基复合材料。
附图说明
图1为本申请非晶合金或其复合材料连续精密成形设备示意图;其中:(a)实施例1感应熔炼;(b)实施例2电弧熔炼。
图中:1-旋转杆、2-工件台、3-真空腔体、4-挡板、5-感应线圈、6-给料仓、7-加载杆、8-取样器、9-模具、10-成形样品、11-坩埚,12-熔融合金,13-给样机械手;14-电极。
具体实施方式
以下结合附图对本申请中所涉及的技术方法进行详细描述,但是应当理解本申请的保护范围并不受具体实施方式的限制。
本申请为非晶合金或其复合材料的连续精密成形设备和工艺,所述成形设备的结构如图1所示,该设备包括真空腔体3、给料仓6、合金熔炼系统、成形系统和工件台2;所述真空腔体3根据工艺需要抽真空或充入保护气体;所述给料仓6用于向合金熔炼系统提供合金原料;所述合金熔炼系统包括加热装置和熔化平台;加热装置用于将合金原料加热为合金熔体,熔融合金12置于熔化平台中;所述成形系统包括加载杆7和成形模具9,成形模具9设于加载杆7的下端;所述熔化平台为多个,设于工件台2的上表面;所述工件台2安装于真空腔体3的底部,工件台2的底部中心位置安装旋转杆1,该旋转杆1能够旋转并带动工件台2以其为中心进行转动;所述多个熔化平台到工件台中心旋转杆1的距离相等,相邻两个熔化平台之间的距离相等;该设置使得带有合金熔体的熔化平台能够在旋转杆1带动下旋转到成形模具9的正下方,加载杆7驱动成形模具9对合金进行压制成形,得到成形样品10。
所述合金熔炼系统中,加热装置采用感应线圈或电弧加热装置;当采用感应 线圈加热时,在给料仓6的下方设置熔炼坩埚11,感应线圈5置于坩埚11外侧对其加热,熔化平台旋转到达坩埚正下方;当合金熔化完成后,打开所述熔炼坩埚底部挡板4,合金熔体流入熔化平台。当采用电弧加热装置加热时,采用给料机械手13将给料仓6中的合金原料放置于熔化平台中,电弧加热装置位于带有合金原料的熔化平台的正上方。
该设备中,熔化平台既用于装载合金熔体,又用于与模具配合对合金压制成成形,通过旋转杆带动工件台旋转,能够实现连续进样和成形;压制成形后的成形样品10(非晶合金或其复合材料)通过取样器8从真空腔体中取出。
该设备中,所述熔化平台的材质要保证不与母合金反应,不影响母合金的加热熔化行为和随后的凝固、成形过程。
成形工艺为:
当加热熔化方式为感应加热时,其工艺过程为:抽取真空,达到要求真空条件后,将所需形状和质量的母合金装入给料仓,进一步进给到熔炼坩埚中,将母合金加热熔化后,停止加热,打开底部挡板,合金熔体流到熔化平台上,带有合金熔体的熔化平台旋转到成形模具正下方位置,在旋转过程中自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的过冷液态区范围时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,最终获得所述非晶态合金或者非晶复合材料构件。
当加热熔化方式为电弧时,其工艺过程为:抽取真空,达到要求真空条件后,将所需形状和质量的母合金装入给料仓,进一步进给到熔炼平台上,利用电极将母合金加热熔化后,停止加热,带有合金熔体的熔化平台旋转到成形模具正下方位置,在旋转过程中自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的过冷液态区范围时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,最终获得所述非晶态合金或者非晶复合材料构件。
加热和成形过程可以同时进行,依据加热熔化和成形所需的时间长短,确定熔化平台平移速度,实现连续进样、熔化和成形,有机的协调成形过程中的加热、降温、凝固和成形过程,实现了非晶合金的连续成形。
所述母合金采用熔炼或浇铸方式制备;母合金的形状为棒状、板状、片状和/或球状规则形状。
所述熔化平台的材质要保证不与母合金反应,不影响母合金的加热熔化行为和随后的凝固、成形过程。
对母合金的加热方式为电弧加热、感应加热、电阻加热、激光加热、等离子体加热、红外加热或微波加热。
通过低温的成形模具和/或具有致冷功能的熔化平台实现合金快速冷却,获得纯非晶或者非晶复合材料结构。
实施例1
如图1(a)所示,本实施例设备设有给料仓6,实现连续给料,将真空腔体3抽至所需真空度(1×10-1~1×10-4Pa),将母合金送入感应线圈5中的坩埚11中,在真空条件下(或者氩气气氛保护条件下)通过感应线圈5将母合金加热熔化,获得熔融合金12,随后停止加热,旋转杆1转动带动工件台2,将其转到模具9下方,自由冷却,待合金熔体冷却到玻璃转变温度(Tg)和液相线温度(Tl)之间的时候,通过加载杆7下端的成形模具9对该状态的合金进行压制成形,实现合金的冷却成形(冷却速率为10-2~102K/min),获得成形样品10,利用取样器8将样品取出。在上述过程中,当熔融合金12转至模具9下方的同时,工件台上另一熔化平台的位置也旋转到了坩埚正下方的位置,该位置同样重复上述熔化——旋转——成形的过程。
实施例2
如图1(b)所示,本实施例设有给料仓6,实现连续给料,将真空腔体3抽至所需真空度(1×10-1~1×10-4Pa),通过给料机械手13将母合金送入电弧熔炼装置下方(即图中电极14的下方)的熔化平台上,通过非自耗电极14将母合金加热熔化,获得熔融合金12,随后停止加热,旋转杆1转动带动工件台2,将其转到模具9下方,自由冷却,待合金熔体冷却到玻璃转变温度(Tg)和液相线温度(Tl)之间的时候,通过加载杆7下端的成形模具9对该状态的合金进行压制成形,实现合金的冷却成形(冷却速率为10-2~102K/min),获得成形样品10,利用取样器8将样品取出。在上述过程中,当熔融合金12转至模具9下方的同时,工件台上另一熔化平台的位置也旋转到了非自耗电极14正下方的位置,该位置同样重复上述熔化——旋转——成形等过程。

Claims (10)

  1. 一种非晶合金或其复合材料的连续精密成形设备,其特征在于:该成形设备包括真空腔体、给料仓、合金熔炼系统、成形系统和工件台;所述真空腔体能够根据工艺需要抽真空或充入保护气体;所述给料仓用于向合金熔炼系统提供合金原料;所述合金熔炼系统包括加热装置和熔化平台;加热装置用于将合金原料熔化为合金熔体,合金熔体置于熔化平台中;
    所述成形系统包括加载杆和成形模具,成形模具设于加载杆的下端;所述熔化平台为多个,设于工件台的上表面;所述工件台安装于真空腔体的底部,工件台的底部中心位置安装旋转杆,该旋转杆能够旋转并带动工件台以其为中心进行转动;
    所述多个熔化平台到工件台中心旋转杆的距离相等,相邻两个熔化平台之间的距离相等;该设置使得带有合金熔体的熔化平台能够旋转杆带动下旋转到成形模具的正下方,熔化平台从熔化位置旋转到成形模具正下方的时候,合金熔体的温度处于合金的过冷液态区温度范围,然后加载杆驱动成形模具对合金进行压制成形。
  2. 根据权利要求1所述的非晶合金或其复合材料的连续精密成形设备,其特征在于:所述合金熔炼系统中,加热装置采用感应线圈或电弧加热装置;当采用感应线圈加热时,在给料仓的下方设置熔炼坩埚,感应线圈位于坩埚外侧对其加热,熔化平台能够旋转到达坩埚正下方。
  3. 根据权利要求1所述的非晶合金或其复合材料的连续精密成形设备,其特征在于:所述合金熔炼系统中,当采用电弧加热装置加热时,采用机械手将给料仓中的合金原料放置于熔化平台中,电弧加热装置位于熔化平台的正上方。
  4. 根据权利要求2所述的非晶合金或其复合材料的连续精密成形设备,其特征在于:所述熔炼坩埚为石英、陶瓷坩埚(氧化铝等)或者水冷铜坩埚,坩埚底部设置挡板,当合金熔炼结束后,将挡板抽开,使得合金熔体能够流到熔化平台上。
  5. 根据权利要求1所述的非晶合金或其复合材料的连续精密成形设备,其特征在于:该设备中,压制成形后的非晶合金或其复合材料通过取样器从真空腔 体中取出。
  6. 根据权利要求1所述的非晶合金或其复合材料的连续精密成形设备,其特征在于:该设备中,所述熔化平台的材质要保证不与母合金反应,不影响母合金的加热熔化行为和随后的凝固、成形过程。
  7. 利用权利要求1所述设备进行非晶合金或其复合材料的连续精密成形工艺,其特征在于:当加热熔化方式为感应加热时,其工艺过程为:抽取真空,达到要求真空条件后,将所需形状和质量的母合金装入给料仓,进一步进给到熔炼坩埚中,将母合金加热熔化后,停止加热,打开底部挡板,合金熔体流到熔化平台上,带有合金熔体的熔化平台旋转到成形模具正下方位置,在旋转过程中自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的过冷液态区范围时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,最终获得所述非晶态合金或者非晶复合材料构件;
    当加热熔化方式为电弧加热时,其工艺过程为:抽取真空,达到要求真空条件后,将所需形状和质量的母合金装入给料仓,进一步进给到熔炼平台上,利用电极将母合金加热熔化后,停止加热,带有合金熔体的熔化平台旋转到成形模具正下方位置,在旋转过程中自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的过冷液态区范围时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,最终获得所述非晶态合金或者非晶复合材料构件。
  8. 根据权利要求7所述的非晶合金或其复合材料的连续精密成形工艺,其特征在于:所述真空条件是指真空度为1×10-1~1×10-4Pa范围之间;所述母合金采用熔炼或浇铸方式制备;母合金的形状为棒状、板状、片状和/或球状规则形状;母合金的形状和质量依据所需制备的非晶构件的形状和尺寸确定。
  9. 根据权利要求7所述的非晶合金或其复合材料的连续精密成形工艺,其特征在于:所述快速冷却的冷却速率为10-2~102K/min;通过低温的成形模具和/或具有致冷功能的熔化平台,合金实现快速冷却,获得纯非晶或者非晶复合材料结构。
  10. 根据权利要求7所述的非晶合金或其复合材料的连续精密成形工艺,其特征在于:该工艺中,加热和成形过程能够同时进行,依据加热熔化和成形所需 的时间长短,确定熔化平台和成形模具的平移速度,实现连续进样、熔化和成形,实现非晶合金或者复合材料的连续成形。
PCT/CN2017/108549 2016-11-18 2017-10-31 一种非晶合金或其复合材料的连续精密成形设备和工艺 WO2018090820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17872276.5A EP3542924A4 (en) 2016-11-18 2017-10-31 CONTINUOUS PRECISION MOLDING DEVICE AND METHOD FOR AMORPHOUS ALLOY OR COMPOSITE THEREOF
US16/342,681 US10751792B2 (en) 2016-11-18 2017-10-31 Continuous precision forming device and process for amorphous alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611015560.X 2016-11-18
CN201611015560.XA CN106735078B (zh) 2016-11-18 2016-11-18 一种非晶合金或其复合材料的连续精密成形设备和工艺

Publications (1)

Publication Number Publication Date
WO2018090820A1 true WO2018090820A1 (zh) 2018-05-24

Family

ID=58968718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108549 WO2018090820A1 (zh) 2016-11-18 2017-10-31 一种非晶合金或其复合材料的连续精密成形设备和工艺

Country Status (4)

Country Link
US (1) US10751792B2 (zh)
EP (1) EP3542924A4 (zh)
CN (1) CN106735078B (zh)
WO (1) WO2018090820A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735078B (zh) * 2016-11-18 2019-07-05 中国科学院金属研究所 一种非晶合金或其复合材料的连续精密成形设备和工艺
CN107988567B (zh) * 2017-12-19 2023-01-10 中铁建电气化局集团康远新材料有限公司 一种大长度铜基非晶合金高速铁路用接触线生产工艺及设备
JP2022056688A (ja) * 2020-09-30 2022-04-11 キオクシア株式会社 半導体装置
CN112962070B (zh) * 2021-02-02 2023-02-07 邱从章 一种溅射靶材的制备装备及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563640A (en) * 1979-06-25 1981-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous alloy
CN103464728A (zh) * 2013-08-28 2013-12-25 西北工业大学 镁基复合材料成形装置及利用该装置成形镁基复合材料的方法
CN104308134A (zh) * 2014-10-27 2015-01-28 东莞台一盈拓科技股份有限公司 高周波真空感应熔融装置及用其熔融非晶合金的方法
CN106735078A (zh) * 2016-11-18 2017-05-31 中国科学院金属研究所 一种非晶合金或其复合材料的连续精密成形设备和工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333034A (ja) * 1998-05-28 1999-12-07 Akihisa Inoue ゴルフクラブヘッド用アモルファス合金板の製造方法
CN1101477C (zh) * 1999-12-17 2003-02-12 中国科学院金属研究所 一种块体非晶态合金的制备方法
JP4011256B2 (ja) * 2000-03-01 2007-11-21 Ykk株式会社 活性合金成形用真空溶解射出成形装置
CN1274444C (zh) * 2003-11-07 2006-09-13 安泰科技股份有限公司 制备块体非晶的喷铸方法及装置
KR20090126403A (ko) * 2008-06-04 2009-12-09 제임스강 비정질 합금용 수직식 다이캐스팅 장치
JP5759382B2 (ja) * 2008-12-15 2015-08-05 ソリン ディベロプメント ビー. ヴィー. 誘導法により多結晶シリコンインゴットを製造する方法
CN102527982B (zh) * 2011-12-15 2015-05-13 比亚迪股份有限公司 非晶合金压铸设备及非晶合金压铸工艺
CN104741568A (zh) * 2013-12-25 2015-07-01 基准精密工业(惠州)有限公司 压铸机
CN104190896B (zh) * 2014-09-26 2016-07-06 东莞帕姆蒂昊宇液态金属有限公司 非晶合金的电弧熔融压铸方法
CN105710334B (zh) * 2014-11-30 2017-11-21 中国科学院金属研究所 一种非晶态合金构件成形方法
CN105903931B (zh) * 2016-05-04 2018-03-06 上海大学 阵列式块体非晶合金的高通量制备装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563640A (en) * 1979-06-25 1981-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous alloy
CN103464728A (zh) * 2013-08-28 2013-12-25 西北工业大学 镁基复合材料成形装置及利用该装置成形镁基复合材料的方法
CN104308134A (zh) * 2014-10-27 2015-01-28 东莞台一盈拓科技股份有限公司 高周波真空感应熔融装置及用其熔融非晶合金的方法
CN106735078A (zh) * 2016-11-18 2017-05-31 中国科学院金属研究所 一种非晶合金或其复合材料的连续精密成形设备和工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3542924A4 *

Also Published As

Publication number Publication date
CN106735078A (zh) 2017-05-31
CN106735078B (zh) 2019-07-05
EP3542924A4 (en) 2020-06-10
US20200047245A1 (en) 2020-02-13
US10751792B2 (en) 2020-08-25
EP3542924A1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2018090820A1 (zh) 一种非晶合金或其复合材料的连续精密成形设备和工艺
CN102693799B (zh) 永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法
CN109722553B (zh) 一种铜锰中间合金材料的制备方法
CN110983262A (zh) 一种铝钪合金靶材的制备方法
CN111519078A (zh) 一种增材制造用高镍共晶高熵合金粉体及其制备方法
CN113881875B (zh) 一种三维骨架结构金属增强铝基复合材料及制备方法
CN102423802A (zh) 高纯钴靶材的制备方法
CN105568036A (zh) 一种高硅铝复合材料的制备方法
CN109234552B (zh) 一种压力下凝固制备高Cu含量Al-Cu合金的方法
TW201715046A (zh) 含鈷、鐵、硼及(或)鎳合金的製品及製作其之方法
CN110218981A (zh) 一种铜镓靶材及其制备方法
CN112658221A (zh) 一种高熵合金的连续铸造方法
WO2016082561A1 (zh) 一种非晶态合金构件成形方法
CN106756254B (zh) 一种获得复杂精密细晶铸件的制备方法
CN102901659B (zh) 一种金属合金试棒的制备方法
JP6088768B2 (ja) Cu−Ga系合金ターゲットの製造方法
US11685976B2 (en) Method for preparing amorphous particle-modified magnesium alloy surface-gradient composites
US20130025746A1 (en) Twin roll sheet casting of bulk metallic glasses and composites in an inert environment
CN113732442B (zh) 一种电弧熔丝增材成形全等轴细晶镁合金构件的方法
TWI537077B (zh) 特殊金屬線材真空連續鑄造方法
CN206869046U (zh) 一种高纯镍、钴及其合金锭真空感应熔铸用装置
CN105401104B (zh) 高强度块体Cu‑Zr‑Zn金属玻璃及制备方法
CN102978551A (zh) 一种防止Mg-Li基镁合金表面脱Li及氧化的热处理方法
CN112522529A (zh) 电磁搅拌铸造制备高熵合金颗粒强化铝基复合材料的方法
CN206689388U (zh) 一种玻璃包覆悬浮深过冷快速定向凝固装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017872276

Country of ref document: EP

Effective date: 20190618