WO2016082561A1 - 一种非晶态合金构件成形方法 - Google Patents

一种非晶态合金构件成形方法 Download PDF

Info

Publication number
WO2016082561A1
WO2016082561A1 PCT/CN2015/083961 CN2015083961W WO2016082561A1 WO 2016082561 A1 WO2016082561 A1 WO 2016082561A1 CN 2015083961 W CN2015083961 W CN 2015083961W WO 2016082561 A1 WO2016082561 A1 WO 2016082561A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
forming
heating
amorphous alloy
amorphous
Prior art date
Application number
PCT/CN2015/083961
Other languages
English (en)
French (fr)
Inventor
张海峰
付华萌
朱正旺
王爱民
李宏
张宏伟
李扬德
李卫荣
汤铁装
杨洁丹
Original Assignee
中国科学院金属研究所
东莞宜安科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所, 东莞宜安科技股份有限公司 filed Critical 中国科学院金属研究所
Priority to EP15862248.0A priority Critical patent/EP3225711A4/en
Publication of WO2016082561A1 publication Critical patent/WO2016082561A1/zh
Priority to US15/607,452 priority patent/US20170259331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/15Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Definitions

  • the present invention relates to the field of amorphous alloy technology, and in particular to a method for forming an amorphous alloy member.
  • Amorphous composites have special properties due to their unique structural characteristics, such as high specific strength, high wear resistance, high corrosion resistance, and unique deformation characteristics. It has broad application prospects in the fields of aerospace materials, national defense industry, and consumer electronics.
  • the preparation technology of amorphous alloy components mainly includes two kinds, one is vacuum die casting forming technology, which is charged into the cavity by a certain pressure under a certain pressure, and then is cooled, that is, the liquidus temperature is charged. Type and shape.
  • the method can obtain parts with complicated structure, and is fast and efficient, and has good moldability.
  • the disadvantage of the method is that the surface of the product is easy to form pores, the distribution is irregular, the size is different, and the core of the product is also prone to generate pores.
  • the second preparation method is a supercooled liquid zone forming technique, and the obtained amorphous alloy is heated between a glass transition temperature (Tg) and an initial crystallization temperature (Tx) to form at a certain pressure and a certain speed, that is, The amorphous alloy is deformed and formed in a narrow temperature range.
  • Tg glass transition temperature
  • Tx initial crystallization temperature
  • the method firstly obtains an amorphous base metal, and thus the preparation process is complicated, the efficiency is low, the temperature control and the deformation time are demandingly harsh, otherwise the product is prone to crystallization, and the final performance is deteriorated, and the product use requirements cannot be met.
  • an object of the present invention is to provide a method for forming an amorphous alloy member, which is subjected to low pressure precision forming in a temperature interval during solidification of an amorphous alloy melt.
  • the method has short process flow, high production efficiency, cost saving and good product quality.
  • a method for forming an amorphous alloy member by placing a master alloy of a desired composition and weight on a melting platform, heating and melting the master alloy under vacuum, stopping heating, free cooling, and cooling the alloy melt
  • the forming temperature is between the glass transition temperature and the liquidus temperature
  • the state is used by the forming mold
  • the alloy is subjected to press forming while rapidly cooling the state alloy to obtain the amorphous alloy member.
  • the selected mother alloy has an amorphous forming ability as long as the composition is uniform; the mother alloy is prepared by smelting or casting; the shape of the mother alloy is a rod shape, a plate shape, a sheet shape and/or a spherical regular shape; the weight of the mother alloy It is determined according to the shape and size of the amorphous member to be prepared.
  • the vacuum condition means that the degree of vacuum is from 1 ⁇ 10 -1 to 1 ⁇ 10 -6 Pa.
  • the material of the melting platform is guaranteed not to react with the master alloy, and does not affect the heating and melting behavior of the master alloy and the subsequent solidification forming process.
  • the heating method of the master alloy is arc heating, induction heating, resistance heating, laser heating, plasma heating, infrared heating or microwave heating.
  • the rapid cooling has a cooling rate of 10 -2 to 10 2 K/min, which is achieved by a low-temperature forming mold and/or a melting platform having a cooling function, so that the alloy is rapidly cooled to obtain a pure amorphous structure.
  • the forming method of the invention is suitable for the preparation of all amorphous alloy system components, such as: Zr-based amorphous alloy, Ti-based amorphous alloy, Fe-based amorphous alloy, Ni-based amorphous alloy, Al-based amorphous alloy, Mg-based non- Crystal alloy, Pd-based amorphous alloy, Ag-based amorphous alloy, Au-based amorphous alloy, Hf-based amorphous alloy, Ca-based amorphous alloy, Pt-based amorphous alloy, Cu-based amorphous alloy, Co-based amorphous alloy And rare earth based amorphous alloys.
  • amorphous alloy system components such as: Zr-based amorphous alloy, Ti-based amorphous alloy, Fe-based amorphous alloy, Ni-based amorphous alloy, Al-based amorphous alloy, Mg-based non- Crystal alloy, Pd-based amorphous alloy, Ag-based amorphous alloy, Au-
  • the present invention is characterized in that the alloy is melted and then in the temperature range during the solidification of the amorphous alloy melt, that is, in the liquidus (Tl) to glass transition (Tg) temperature range, the alloy is low in this state. Precision forming of pressure.
  • the technology fully utilizes the smooth free surface formed by solidification of the alloy melt in the forming temperature range, good deformation characteristics and low solidification shrinkage coefficient, and the obtained amorphous alloy member has high dimensional precision, good surface smoothness, and compact internal components. Defects such as shrinkage holes.
  • the invention has short process flow, high production efficiency, cost saving and good product quality.
  • FIG. 1 is a schematic view of a device for precision forming of an amorphous alloy member.
  • Example 2 is a Ti-based amorphous alloy member in Example 1.
  • Example 3 is a Zr-based amorphous alloy member in Example 2.
  • Figure 4 is an XRD pattern of an amorphous alloy member.
  • the master alloy 3 of the desired composition and weight is placed on the melting platform 1, the vacuum chamber 2 is evacuated, and then the master alloy 3 is heated and melted by the heating body 5 under vacuum. Then, the heating is stopped, freely cooled, and when the alloy melt is cooled to between the glass transition temperature (Tg) and the liquidus temperature (Tl), the alloy of the state is pressed and formed by the forming mold 4, and the state is The alloy is rapidly cooled to further form an amorphous alloy member.
  • Tg glass transition temperature
  • Tl liquidus temperature
  • Master alloy composition Ti32.8Zr30.2Ni5.3Cu9Be22.7 (atomic percent).
  • the mother alloy smelting: according to the design of the composition of the alloy, then placed in the crucible, vacuuming to 5 ⁇ 10 -1 ⁇ 5 ⁇ 10 -3 Pa (can also be filled with inert protective gas), using induction melting or arc melting technology
  • a master alloy having a uniform composition is obtained and cast into a regular master alloy ingot (such as a rod, a plate or a sheet).
  • Master alloy cutting According to the quality of the amorphous alloy component, the cast alloy ingot is cut into the required size by using a cutting device.
  • amorphous alloy components placing the cut mother alloy on a melting platform, evacuating to 1 ⁇ 10 -1 to 1 ⁇ 10 -3 Pa (which can also be filled with an inert protective gas), using induction heating (It is also possible to use a heating method such as arc heating or laser heating to melt the master alloy, stop heating, and freely cool to cool the alloy melt to 20 degrees above the melting temperature (cooling to a temperature in the Tl to Tg temperature range of the selected alloy)
  • the mold can be pressed to form the master alloy for press forming until the mold and the melting platform (which can also be a special forming platform, that is, the alloy is melted and then poured into the forming platform) can not be further contacted, and the alloy is forced to cool rapidly.
  • rapid cooling is achieved by a melting platform having a cooling function, and the cooling rate is 10 -1 K/min; a member having a pure amorphous structure is obtained, as shown in FIG.
  • Example 2 The difference from Example 1 is that the selected master alloy composition is Zr54.73Cu29.75Ni4.97Al9.95Ag0.1Y0.5 (atomic percent), and a member having a pure amorphous structure is obtained as shown in FIG.
  • the amorphous alloy member prepared by the invention has good surface finish and dimensional precision. High degree, through SEM observation and analysis, the inside of the component is dense, no shrinkage holes and other defects (Figure 4).
  • the alloy composition of the present invention may be all amorphous alloy systems, such as Ti-based amorphous alloys, Zr-based amorphous alloys, Fe-based amorphous alloys, Ni-based amorphous alloys, Mg-based amorphous alloys, Pd-based amorphous alloys, Amorphous alloy compositions of other systems such as Ag-based amorphous alloys, Hf-based amorphous alloys, and Pt-based amorphous alloys.
  • amorphous alloy systems such as Ti-based amorphous alloys, Zr-based amorphous alloys, Fe-based amorphous alloys, Ni-based amorphous alloys, Mg-based amorphous alloys, Pd-based amorphous alloys, Amorphous alloy compositions of other systems such as Ag-based amorphous alloys, Hf-based amorphous alloys, and Pt-based amorphous alloys.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种非晶态合金构件成形方法,该方法是在非晶态合金熔体凝固过程中的温度区间,即液相线温度到玻璃转变温度范围内,对非晶态合金进行低压力精密成形。该方法利用了合金熔体凝固形成的光滑自由表面、良好的变形特性和低凝固收缩系数,所获得非晶合金构件尺寸精度高、表面光洁度好、构件内部致密,无缩孔、缩松等缺陷,工艺流程短、生产效率高、节约成本。

Description

一种非晶态合金构件成形方法 技术领域
本发明涉及非晶合金技术领域,具体涉及一种非晶态合金构件成形方法。
背景技术
非晶复合材料由于其独特结构特征,使其具有特殊的性能,如高比强度、高耐磨性、高耐腐蚀性、独特的变形特性等。在航天材料、国防工业、消费电子等领域具有广阔应用前景。目前,非晶态合金构件的制备技术主要包括两种,一种是真空压铸成形技术,通过将合金熔体在一定压力下充入型腔内,然后实现冷却,即在液相线温度实现充型和成形。该方法能够获得结构复杂的零件,并且快速高效、成型性好,但该方法的缺点就是产品表面容易形成气孔,分布不规则、大小不一,产品芯部也容易产生气孔。此外,该方法实现高真空条件很难,无法获得高品质的产品。第二种制备方法是过冷液态区成形技术,将获得的非晶态合金加热到玻璃转变温度(Tg)和初始晶化温度(Tx)之间,在一定压力、一定速度下实现成形,即在较窄的温度范围内对非晶态合金进行变形成形。该方法首先要获得非晶态母材,因而制备工艺复杂,效率低下,温度控制和变形时间要求较苛刻,否则产品容易产生晶化,最终性能恶化,无法满足产品的使用要求。
发明内容
为了克服现有技术的不足之处,本发明的目的在于提供一种非晶态合金构件成形方法,该方法是在非晶态合金熔体凝固过程中的温度区间对其进行低压力精密成形,该方法工艺流程短、生产效率高、节约成本、产品质量好。
为实现上述目的,本发明所采用的技术方案如下:
一种非晶态合金构件成形方法,该方法是将所需成分及重量的母合金置于熔化平台上,在真空条件下将母合金加热熔化后,停止加热,自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的成形温度时,采用成形模具对该状态 的合金进行压制成形,同时对状态合金进行快速冷却,获得所述非晶态合金构件。
所选择的母合金具有非晶形成能力,只要满足成分均匀即可;母合金采用熔炼或浇铸方式制备;母合金的形状为棒状、板状、片状和/或球状规则形状;母合金的重量依据所需制备的非晶构件的形状和尺寸确定。
所述真空条件是指真空度为1×10-1~1×10-6Pa。
所述熔化平台的材质要保证不与母合金反应,不影响母合金的加热熔化行为和随后的凝固成形过程。
对母合金的加热方式为电弧加热、感应加热、电阻加热、激光加热、等离子体加热、红外加热或微波加热。
所述快速冷却的冷却速率为10-2~102K/min,通过低温的成形模具和/或具有致冷功能的熔化平台实现,使合金实现快速冷却,获得纯非晶结构。
本发明成形方法适用于所有非晶合金体系构件的制备,如:Zr基非晶合金、Ti基非晶合金、Fe基非晶合金、Ni基非晶合金、Al基非晶合金、Mg基非晶合金、Pd基非晶合金、Ag基非晶合金、Au基非晶合金、Hf基非晶合金、Ca基非晶合金、Pt基非晶合金、Cu基非晶合金、Co基非晶合金和稀土基非晶合金。
本发明具有以下优点:
1、本发明是将母合金熔化后,再在非晶态合金熔体凝固过程中的温度区间,即液相线(Tl)到玻璃转变(Tg)温度范围内,对该状态下合金进行低压力精密成形。该技术充分利用了该成形温度区间合金熔体凝固形成的光滑自由表面、良好的变形特性和低凝固收缩系数等特点,所获得非晶合金构件尺寸精度高、表面光洁度好、构件内部致密、无缩孔等缺陷。
2、本发明工艺流程短、生产效率高、节约成本、产品质量好。
附图说明
图1为非晶态合金构件精密成形方法装置示意图。
图中:1-熔化平台;2-真空腔室;3-母合金;4-模具;5-加热体。
图2为实施例1中Ti基非晶合金构件。
图3为实施例2中Zr基非晶合金构件。
图4为非晶合金构件XRD图谱。
具体实施方式
以下结合附图对本发明中所涉及的技术方法进行详细描述,但是应当理解本发明的保护范围并不受具体实施方式的限制。
如图1所示,本发明方法是将所需成分和重量的母合金3置于熔化平台1上,将真空腔室2抽真空,然后在真空条件下通过加热体5将母合金3加热熔化,随后停止加热,自由冷却,待合金熔体冷却到玻璃转变温度(Tg)和液相线温度(Tl)之间的时候,采用成形模具4对该状态的合金进行压制成形,并对该状态合金进行快速冷却,进而实现非晶态合金构件的成形。
实施例1
本实施例成形过程具体如下:
1、母合金成分:Ti32.8Zr30.2Ni5.3Cu9Be22.7(原子百分比)。
2、母合金熔炼:按照设计成分配制合金,随后置于坩埚内,抽真空到5×10-1~5×10-3Pa(也可以充入惰性保护气体),采用感应熔炼或电弧熔炼技术获得成分均匀的母合金,并浇铸成规则的母合金锭(如棒状、板状或片状等)。
3、母合金切割:依据非晶态合金构件的质量,采用切割设备将浇铸的合金锭切割成所要求的尺寸。
4、非晶态合金构件成形加工:将切割后的母合金置于熔化平台上,抽真空到1×10-1~1×10-3Pa(也可以充入惰性保护气体),采用感应加热(也可以采用电弧加热或者激光加热等加热方式)将母合金熔化,停止加热,自由冷却使得合金熔体冷却到熔化温度以上20度(冷却至所选择合金的Tl到Tg温度区间的某一温度即可),模具挤压该状态母合金进行压制成形,直到模具和熔化平台(也可以是专门的成形平台,即合金熔化完成后倒入成形平台)无法进一步接触,同时对合金实现强制快速冷却,本实施例通过具有致冷功能的熔化平台实现快速冷却,冷却速率为10-1K/min;获得纯非晶结构的构件,如图2所示。
实施例2
与实施例1不同之处在于:所选择的母合金成分为Zr54.73Cu29.75Ni4.97Al9.95Ag0.1Y0.5(原子百分比),获得纯非晶结构的构件如图3所示。
由图2-3可以看出,本发明所制备的非晶合金构件表面光洁度良好、尺寸精 度高,通过SEM观察分析,构件内部致密、无缩孔等缺陷(图4)。
本发明合金成分可以是所有的非晶合金体系,如Ti基非晶合金、Zr基非晶合金、Fe基非晶合金、Ni基非晶合金、Mg基非晶合金、Pd基非晶合金、Ag基非晶合金、Hf基非晶合金、Pt基非晶合金等其它体系的非晶态合金成分。

Claims (8)

  1. 一种非晶态合金构件成形方法,其特征在于:将所需成分及重量的母合金置于熔化平台上,在真空条件下将母合金加热熔化后,停止加热,自由冷却,当合金熔体冷却到玻璃转变温度和液相线温度之间的成形温度时,采用成形模具对该状态的合金进行压制成形,同时对该状态合金进行快速冷却,获得所述非晶态合金构件。
  2. 根据权利要求1所述的非晶态合金构件成形方法,其特征在于:所选择的母合金具有非晶形成能力,只要满足成分均匀即可。
  3. 根据权利要求1或2所述的非晶态合金构件成形方法,其特征在于:所述母合金采用熔炼或浇铸方式制备;母合金的形状为棒状、板状、片状和/或球状规则形状;母合金的重量依据所需制备的非晶构件的形状和尺寸确定。
  4. 根据权利要求1所述的非晶态合金构件成形方法,其特征在于:所述真空条件是指真空度为1×10-1~1×10-6Pa。
  5. 根据权利要求1所述的非晶态合金构件成形方法,其特征在于:所述熔化平台的材质要保证不与母合金反应,不影响母合金的加热熔化行为和随后的凝固成形过程。
  6. 根据权利要求1所述的非晶态合金构件成形方法,其特征在于:对母合金的加热方式为电弧加热、感应加热、电阻加热、激光加热、等离子体加热、红外加热或微波加热。
  7. 根据权利要求1所述的非晶态合金构件成形方法,其特征在于:所述快速冷却的冷却速率为10-2~102K/min;通过低温的成形模具和/或具有致冷功能的熔化平台合金实现快速冷却,获得纯非晶结构。
  8. 根据权利要求1所述的非晶态合金构件成形方法,其特征在于:该成形方法适用于所有非晶合金体系。
PCT/CN2015/083961 2014-11-30 2015-07-14 一种非晶态合金构件成形方法 WO2016082561A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15862248.0A EP3225711A4 (en) 2014-11-30 2015-07-14 Method for forming amorphous alloy member
US15/607,452 US20170259331A1 (en) 2014-11-30 2017-05-27 Method for forming amorphous alloy part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410719338.2 2014-11-30
CN201410719338.2A CN105710334B (zh) 2014-11-30 2014-11-30 一种非晶态合金构件成形方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/607,452 Continuation-In-Part US20170259331A1 (en) 2014-11-30 2017-05-27 Method for forming amorphous alloy part

Publications (1)

Publication Number Publication Date
WO2016082561A1 true WO2016082561A1 (zh) 2016-06-02

Family

ID=56073531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083961 WO2016082561A1 (zh) 2014-11-30 2015-07-14 一种非晶态合金构件成形方法

Country Status (4)

Country Link
US (1) US20170259331A1 (zh)
EP (1) EP3225711A4 (zh)
CN (1) CN105710334B (zh)
WO (1) WO2016082561A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735078B (zh) * 2016-11-18 2019-07-05 中国科学院金属研究所 一种非晶合金或其复合材料的连续精密成形设备和工艺
CN106734945B (zh) * 2016-12-30 2019-10-18 常州世竟液态金属有限公司 一种提高非晶态合金致密度的方法
CN107475644B (zh) * 2017-08-07 2019-09-24 南方科技大学 一种确定合金材料非晶形成能力的方法及使用的装置
CN112760503A (zh) * 2020-12-23 2021-05-07 兰州理工大学 一种用于非晶合金的过冷熔体压铸成形方法及其装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095764A (zh) * 1993-05-25 1994-11-30 中国科学院金属研究所 一种块状非晶材料的制备方法
CN1438083A (zh) * 2003-03-07 2003-08-27 江苏大学 利用快速冷却技术制备块体金属玻璃的方法
US20080081213A1 (en) * 2006-09-28 2008-04-03 Fuji Xerox Co., Ltd. Amorphous alloy member, authenticity determining device, authenticity determination method, and process for manufacturing amorphous alloy member
CN102234746A (zh) * 2010-05-04 2011-11-09 中国科学院物理研究所 一种锌基大块非晶合金及其制备方法
CN102529192A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 由非晶合金与异质材料形成的制品及其制造方法
CN102534433A (zh) * 2012-01-12 2012-07-04 北京理工大学 一种非晶合金蜂窝材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185258B1 (en) * 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
US7017645B2 (en) * 2002-02-01 2006-03-28 Liquidmetal Technologies Thermoplastic casting of amorphous alloys
KR100586870B1 (ko) * 2003-04-14 2006-06-07 주식회사 리퀴드메탈코리아 벌크응고 비정질합금의 연속주조방법 및 그 주조물
CN100560776C (zh) * 2007-01-12 2009-11-18 中国科学院金属研究所 非晶态合金球形粒子/非晶态合金基复合材料及制备方法
CN101036943A (zh) * 2007-04-27 2007-09-19 哈尔滨工业大学 一种制备非晶合金管的方法
CN101298097A (zh) * 2007-04-30 2008-11-05 中国科学院金属研究所 大块非晶合金电子产品外壳的加工方法和加工装置
CN101850403B (zh) * 2009-04-01 2012-04-18 中国科学院金属研究所 通过调控熔体温度改善Al基合金非晶形成能力的方法
CN103153502B (zh) * 2010-08-31 2015-04-01 加利福尼亚技术学院 块体金属玻璃的高纵横比部件及其制造方法
CN102029381A (zh) * 2010-11-10 2011-04-27 华中科技大学 一种块体金属玻璃或其复合材料工件的加工成型方法
CN102653849A (zh) * 2011-03-03 2012-09-05 鸿富锦精密工业(深圳)有限公司 锆基非晶合金件及其制造方法
US9507061B2 (en) * 2011-11-16 2016-11-29 California Institute Of Technology Amorphous metals and composites as mirrors and mirror assemblies
JP6417079B2 (ja) * 2012-02-29 2018-10-31 ヘイシンテクノベルク株式会社 金属ガラスの成形装置、及び金属ガラス製棒状部材の成形装置
CN103361501B (zh) * 2013-07-18 2015-08-05 兰州理工大学 形状记忆晶相强韧化Ti基非晶复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095764A (zh) * 1993-05-25 1994-11-30 中国科学院金属研究所 一种块状非晶材料的制备方法
CN1438083A (zh) * 2003-03-07 2003-08-27 江苏大学 利用快速冷却技术制备块体金属玻璃的方法
US20080081213A1 (en) * 2006-09-28 2008-04-03 Fuji Xerox Co., Ltd. Amorphous alloy member, authenticity determining device, authenticity determination method, and process for manufacturing amorphous alloy member
CN102234746A (zh) * 2010-05-04 2011-11-09 中国科学院物理研究所 一种锌基大块非晶合金及其制备方法
CN102529192A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 由非晶合金与异质材料形成的制品及其制造方法
CN102534433A (zh) * 2012-01-12 2012-07-04 北京理工大学 一种非晶合金蜂窝材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3225711A4 *

Also Published As

Publication number Publication date
EP3225711A1 (en) 2017-10-04
CN105710334B (zh) 2017-11-21
US20170259331A1 (en) 2017-09-14
EP3225711A4 (en) 2017-10-25
CN105710334A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016082561A1 (zh) 一种非晶态合金构件成形方法
CN101598585B (zh) 铝合金煤气表端盖的制备方法
US10751792B2 (en) Continuous precision forming device and process for amorphous alloy
CN104264016A (zh) 一种铝硅合金材料及其制备方法
CN105821263A (zh) 铝合金汽车转向器壳体及其超高速铸造制备方法
CN106756254B (zh) 一种获得复杂精密细晶铸件的制备方法
CN104745901A (zh) 变形铝合金铸件的间接挤压铸造方法
CN102719688A (zh) 一种能提高多元锌铝合金热疲劳性能的工艺方法
WO2018121314A1 (zh) 一种非晶态合金整形方法
US20230100782A1 (en) Method for preparing amorphous particle-modified magnesium alloy surface-gradient composites
EP3988228A1 (en) A method for producing ultra-high-silicon aluminium alloy
CN105382240A (zh) 一种薄壁铝合金铸件的精密铸造工艺
RU2710612C2 (ru) Чугунная отливка, способ производства чугунной отливки и оборудование для производства чугунной отливки
CN206869046U (zh) 一种高纯镍、钴及其合金锭真空感应熔铸用装置
CN103934438B (zh) 内冷铁用于厚大铸钢件的铸造方法
CN106734999A (zh) 一种镍铝金属间化合物锭的真空铸造装置
CN102286710A (zh) 铸轧双控法制备合金半固态成型板坯的方法
CN103614591A (zh) 一种铜材料及其制备方法
CN110202121B (zh) 利用双冷却条件获得细小二次枝晶臂间距的合金铸造方法
Liu et al. Coring micron-and milli-scale holes in metallic glasses
Liu et al. Research on the low-pressure casting process of a double suction impeller in 304 austenitic stainless steel with high performance and thin-wall complex structure
CN108878057B (zh) 含锌高韧性复合层铜包铝复合材料的制备方法
Wang et al. Research on semi-solid thixoforming process of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes
CN101941065B (zh) 内生晶体增塑块体非晶基复合材料的成形方法
Chen et al. Analysis of the performance of ordinary die casting and vacuum die casting of magnesium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015862248

Country of ref document: EP