WO2018121314A1 - 一种非晶态合金整形方法 - Google Patents

一种非晶态合金整形方法 Download PDF

Info

Publication number
WO2018121314A1
WO2018121314A1 PCT/CN2017/116799 CN2017116799W WO2018121314A1 WO 2018121314 A1 WO2018121314 A1 WO 2018121314A1 CN 2017116799 W CN2017116799 W CN 2017116799W WO 2018121314 A1 WO2018121314 A1 WO 2018121314A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
casting
amorphous
temperature
mold
Prior art date
Application number
PCT/CN2017/116799
Other languages
English (en)
French (fr)
Inventor
申曦
朱勤旺
侯玉婷
朱秀娟
Original Assignee
常州世竟液态金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州世竟液态金属有限公司 filed Critical 常州世竟液态金属有限公司
Publication of WO2018121314A1 publication Critical patent/WO2018121314A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects

Definitions

  • the invention relates to an amorphous alloy shaping method, in particular to a shaping method for improving the dimensional accuracy of an amorphous alloy product.
  • Amorphous alloys are widely used in mechanical parts due to their unique structure, long-range disorder and short-range disorder, and many excellent mechanical properties, such as high strength and hardness.
  • large amorphous alloys have been obtained in more than ten kinds of systems such as Zr-based, La-based, Mg-based, Fe-based, Cu-based, Ni-based, and rare-earth based, among which Zr-based amorphous alloys are strong.
  • the amorphous forming ability and excellent mechanical properties have attracted much attention and have been widely used.
  • the molding technology of the amorphous alloy mostly adopts a pressure casting molding process to perform near-end molding, and the process has the advantages of high production efficiency, and is easy to produce high-precision and complicated product parts.
  • the amorphous alloy due to the poor compactness of the surface of the amorphous alloy casting prepared by the casting process, the amorphous alloy has the characteristics of high strength and high hardness, so that it is difficult to cut the amorphous alloy casting product once it is formed. , surface polishing and the like, so it is difficult to obtain a high surface quality amorphous alloy product in the prior art.
  • the technical problem to be solved by the present invention is that the amorphous alloy casting has the problem of poor dimensional accuracy in the prior art, and the invention provides a shaping method for improving the dimensional accuracy of the amorphous alloy product, which can solve the dimensional accuracy of the amorphous alloy casting. Problem with amorphous alloy shaping methods.
  • the technical solution for realizing the invention is: an amorphous alloy shaping method, comprising the following steps:
  • the amorphous alloy casting with casting allowance is placed in the finishing mold, and the temperature T of the amorphous alloy casting is raised to: Tg by using the overall heating instantaneous temperature rising method. ⁇ T ⁇ Tx, where Tg is an amorphous transition temperature and Tx is a crystallization temperature;
  • the amorphous alloy casting to be cast is cast into a casting blank having a machining allowance of 0.1 to 1 mm before the step (1).
  • the vacuum condition of the above vacuum condition is less than 10 -3 atmospheres.
  • the above-described overall heating instantaneous temperature rising method is high frequency induction heating or hydraulic oil heating.
  • the thermal conductivity of the above mold is not less than 20 W/M ⁇ K.
  • the above mold is a copper mold.
  • the above mold is a copper alloy mold.
  • the above instantaneous cooling time is 1-2S.
  • the invention provides a shaping method for improving the dimensional accuracy of an amorphous alloy product, and an amorphous alloy shaping method capable of solving the problem of poor dimensional accuracy of an amorphous alloy casting.
  • the amorphous alloy shaping method of the invention can realize the structure that the original casting process is not easy to realize, and can only rely on the CNC, such as a small hole having a size of less than 1 mm, an inverted structure or a side structure.
  • the amorphous alloy shaping method of the invention can ensure that the amorphous alloy casting having the machining allowance can be cast by a multi-cavity method during the casting process, and the amorphous alloy shaping method provided by the invention is utilized. Shaping and finishing to obtain the final size of the casting.
  • the amorphous alloy shaping method of the invention can effectively increase the density of the surface of the casting and reduce casting defects.
  • Embodiment 1 is a schematic view showing the surface shape of a casting of Embodiment 1 of an amorphous alloy shaping method of the present invention
  • Embodiment 2 is a schematic view showing the shape of a casting of Embodiment 2 of an amorphous alloy shaping method of the present invention
  • Figure 3 is a schematic view showing the shape of a casting obtained in the step (1) of Embodiment 2 of the amorphous alloy shaping method of the present invention.
  • the amorphous alloy is exemplified by a zirconium-based amorphous alloy Zr 52.5 Cu 18 Ni 14.5 Ti 5 Al 10 .
  • the target casting has a shape of 30*30*3, and the sheet has 100 uniformly distributed concave holes on one surface thereof, and has a diameter of 0.80 ⁇ 0.01 mm and a depth of 0.4 ⁇ 0.01 mm, as shown in FIG.
  • An amorphous alloy shaping method includes the following steps:
  • step (2) placing the amorphous alloy casting cast in step (1) into a copper alloy finishing mold under a vacuum condition of a vacuum degree of less than 10 -3 atmospheres, and using an high frequency induction heating method to mold the amorphous alloy.
  • the temperature T is raised to: Tg ⁇ T ⁇ Tx, wherein Tg is an amorphous transition temperature, and Tx is a crystallization temperature;
  • the sheet having a shape of 30*30*3 was directly cast using a copper alloy finishing die having 100 uniformly distributed recessed holes on one surface having a diameter of 0.80 ⁇ 0.01 mm and a depth of 0.4 ⁇ 0.01 mm.
  • a casting of the final size was obtained, with 100 uniformly distributed holes having a diameter of 0.80 ⁇ 0.03 mm on the surface of the casting, wherein the depth of the recess was 0.4 ⁇ 0.03 mm.
  • the shape of the target casting is as shown in Fig. 2, which is a bulk amorphous alloy.
  • the amorphous alloy has a groove 3, and the upper side wall of the groove 3 has an inverted structure 1 having a height H of 1 ⁇ 0.01 mm.
  • An amorphous alloy shaping method includes the following steps:
  • the amorphous alloy casting with casting allowance is placed in the copper finishing mold, and the temperature of the amorphous alloy casting is raised to Tg ⁇ T by using hydraulic oil heating.
  • Tg is an amorphous transition temperature
  • Tx is a crystallization temperature
  • the height H of the inverted buckle structure 1 is 1 ⁇ 0.01 mm.
  • the shape of the target casting is as shown in Fig. 2, which is a bulk amorphous alloy.
  • the amorphous alloy has a groove 3, and the upper side wall of the groove 3 has an inverted structure 1 having a height H of 1 ⁇ 0.01 mm.
  • the undercut structure 1 cannot be obtained by directly using a copper alloy finishing die casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

涉及一种提高非晶态合金产品尺寸精度的整形方法,包括如下步骤:(1)在惰性气体保护或真空条件下,将铸造成型具有加工余量的非晶合金铸件置入精加工模具中,使用整体加热瞬间升温方法,将非晶合金铸件温度T升高至:Tg<T<Tx,其中Tg为非晶转变温度,Tx为晶化温度;(2)停止加热,并使用精加工模具冷压,使非晶合金铸件的温度瞬间冷却至非晶合金晶化温度以下,获得最终尺寸的铸件。提供的一种提高非晶态合金产品尺寸精度的整形方法,可以解决非晶合金铸件尺寸精度差的问题的非晶态合金整形方法。

Description

一种非晶态合金整形方法 技术领域
本发明涉及一种非晶态合金整形方法,特别是一种提高非晶态合金产品尺寸精度的整形方法。
背景技术
非晶合金由于其独特的结构一长程无序而短程无序,而具有许多优异的力学性能,如高强度和硬度等特点,被广泛用于机械部件。近年来,人们在Zr 基,La 基,Mg 基,Fe基,Cu 基,Ni 基,稀土基等十余种体系中获得了大块非晶合金,其中Zr 基非晶合金因其具有较强的非晶形成能力和优异的力学性能而备受关注,并得到了较为广泛的应用。
现有技术中,非晶合金的成型技术多采用压力铸造成型工艺,进行近终成型,该工艺具有生产效率高的优点,易于生产高精度复杂产品部件。但是,由于采用铸造工艺制备得到的非晶合金铸件表面的致密性较差,而非晶合金又具有高强度、高硬度的特点,使得非晶合金铸件产品一旦成型后就很难对其进行切割、表面抛光等处理,所以现有技术中很难得到高表面质量的非晶合金产品。
技术问题
本发明所要解决的技术问题是现有技术中非晶合金铸件存在尺寸精度差的问题,本发明提供一种提高非晶态合金产品尺寸精度的整形方法,可以解决非晶合金铸件尺寸精度差的问题的非晶态合金整形方法。
技术解决方案
实现本发明的技术方案是:一种非晶态合金整形方法,包括如下步骤:
(1)在惰性气体保护或真空条件下,将铸造成型具有加工余量的非晶合金铸件置入精加工模具中,使用整体加热瞬间升温方法,将非晶合金铸件温度T升高至:Tg<T<Tx,其中Tg为非晶转变温度,Tx为晶化温度;
(2)停止加热,并使用精加工模具冷压,使非晶合金铸件的温度瞬间冷却至非晶合金非晶转变温度以下,获得最终尺寸的铸件。
其中在步骤(1)之前先将需要铸造的非晶合金铸件铸造成具有0.1-1mm加工余量的铸件坯料。
具体地,上述真空条件的真空度小于10 -3个大气压。
具体地,上述整体加热瞬间升温方法为高频感应加热或液压油加热。
具体地,上述模具的热导率不小于20W/M·K。
具体地,上述模具为铜模具。
具体地,上述模具为铜合金模具。
具体地,上述瞬间冷却时间为1-2S。
有益效果
本发明提供一种提高非晶态合金产品尺寸精度的整形方法,可以解决非晶合金铸件尺寸精度差的问题的非晶态合金整形方法。
本发明的一种非晶态合金整形方法,可以实现原本铸造工艺不易实现,只能依靠CNC实现的结构,如尺寸小于1mm的小孔,倒扣结构或侧边结构。
本发明的一种非晶态合金整形方法,可以保证在具有加工余量的非晶合金铸件在铸造过程中可以用一模多腔的方法铸造,再利用本发明提供的非晶态合金整形方法进行整形,精加工,从而获得最终尺寸的铸件。
本发明的一种非晶态合金整形方法,可以有效提高铸件表面的致密度,减少铸造缺陷。
附图说明
图1本发明的一种非晶态合金整形方法实施例1的铸件表面形状示意图;
图2是本发明的一种非晶态合金整形方法实施例2的铸件形状示意图;
图3是本发明的一种非晶态合金整形方法实施例2步骤(1)获得的铸件形状示意图。
本发明的实施方式
现在结合具体实施例对本发明作进一步详细的说明。
本发明的所有实施例中非晶态合金均以锆基非晶态合金Zr 52.5Cu 18Ni 14.5Ti 5Al 10为例。
实施例1
目标铸件形状为30*30*3的片材,片材的一个表面上具有100个均匀分布的凹孔,其直径为0.80±0.01mm,深度为0.4±0.01mm,具体如图1所示。
一种非晶态合金整形方法,包括如下步骤:
(1)先将需要铸造的非晶合金铸件铸造成形状为30*30*3的片材,其中片材的一个表面上具有100个均匀分布的直径为0.75±0.03mm的圆形凹孔,其中凹孔深度为0.35±0.03mm的铸件;
(2)在真空度小于10 -3个大气压的真空条件下,将步骤(1)铸造成型的非晶合金铸件置入铜合金精加工模具中,使用高频感应加热方法,将非晶合金铸件温度T升高至:Tg<T<Tx,其中Tg为非晶转变温度,Tx为晶化温度;
(3)停止加热,并使用铜合金精加工模具冷压,使非晶合金铸件的温度1S瞬间冷却至非晶合金非晶转变温度以下,获得最终尺寸的铸件,铸件表面上具有100个均匀分布的孔的直径为0.80±0.01mm,其中凹孔深度为0.4±0.01mm。
对比例1
直接使用铜合金精加工模具铸造形状为30*30*3的片材,片材的一个表面上具有100个均匀分布的凹孔,其直径为0.80±0.01mm,深度为0.4±0.01mm。
获得最终尺寸的铸件,铸件表面上具有100个均匀分布的孔的直径为0.80±0.03mm,其中凹孔深度为0.4±0.03mm。
实施例2
目标铸件形状如图2所示,为块状非晶合金,非晶合金具有一凹槽3,凹槽3的上侧壁具有一高度H为1±0.01mm的倒扣结构1。
一种非晶态合金整形方法,包括如下步骤:
(1)先将需要铸造的非晶合金铸件铸造成形状为无倒扣结构1的块状非晶合金,如图3所示;
(2)在氩气保护的条件下,将铸造成型具有加工余量的非晶合金铸件置入铜精加工模具中,使用液压油加热,将非晶合金铸件温度T升高至:Tg<T<Tx,其中Tg为非晶转变温度,Tx为晶化温度;
(3)停止加热,并使用铜合金精加工模具中的压块2在倒扣结构1处冷压,使非晶合金铸件的温度2S瞬间冷却至非晶合金非晶转变温度以下,获得具有倒扣结构的铸件。
其中,倒扣结构1的高度H为1±0.01mm。
对比例2
目标铸件形状如图2所示,为块状非晶合金,非晶合金具有一凹槽3,凹槽3的上侧壁具有一高度H为1±0.01mm的倒扣结构1。
直接使用铜合金精加工模具铸造不能获得倒扣结构1。
可通过以下方法获得:
(1)先将需要铸造的非晶合金铸件铸造成形状为无倒扣结构1的块状非晶合金;
(2)使用CNC将倒扣结构加工完成。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

  1. 一种非晶态合金整形方法,其特征在于包括如下步骤:
    (1)在惰性气体保护或真空条件下,将铸造成型具有加工余量的非晶合金铸件置入精加工模具中,使用整体加热瞬间升温方法,将非晶合金铸件温度T升高至:Tg<T<Tx,其中Tg为非晶转变温度,Tx为晶化温度;
    (2)停止加热,并使用精加工模具冷压,使非晶合金铸件的温度瞬间冷却至非晶合金非晶转变温度以下,获得最终尺寸的铸件。
  2. 根据权利要求1所述的一种非晶态合金整形方法,其特征在于:所述真空条件的真空度小于10 -3个大气压。
  3. 根据权利要求1所述的一种非晶态合金整形方法,其特征在于:所述整体加热瞬间升温方法为高频感应加热或液压油加热。
  4. 根据权利要求1所述的一种非晶态合金整形方法,其特征在于:所述模具的热导率不小于20W/M·K。
  5. 根据权利要求1所述的一种非晶态合金整形方法,其特征在于:所述模具为铜模具。
  6. 根据权利要求5所述的一种非晶态合金整形方法,其特征在于:所述模具为铜合金模具。
  7. 根据权利要求1所述的一种非晶态合金整形方法,其特征在于:所述瞬间冷却时间为1-2S。
PCT/CN2017/116799 2016-12-30 2017-12-17 一种非晶态合金整形方法 WO2018121314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611254456.6 2016-12-30
CN201611254456.6A CN106584012B (zh) 2016-12-30 2016-12-30 一种非晶态合金整形方法

Publications (1)

Publication Number Publication Date
WO2018121314A1 true WO2018121314A1 (zh) 2018-07-05

Family

ID=58581352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116799 WO2018121314A1 (zh) 2016-12-30 2017-12-17 一种非晶态合金整形方法

Country Status (2)

Country Link
CN (1) CN106584012B (zh)
WO (1) WO2018121314A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106584012B (zh) * 2016-12-30 2019-07-12 常州世竟液态金属有限公司 一种非晶态合金整形方法
CN110722019B (zh) * 2019-09-05 2021-01-19 东莞市逸昊金属材料科技有限公司 一种用于锆基非晶薄壁件平面度整平方法
CN115283484A (zh) * 2022-07-28 2022-11-04 盘星新型合金材料(常州)有限公司 非晶转轴用变形整形治具及变形整形方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535593A1 (en) * 1991-10-01 1993-04-07 Hitachi, Ltd. Method of manufacturing sintered aluminum alloy parts
CN1456401A (zh) * 2003-06-23 2003-11-19 北京科技大学 一种非晶合金精密零部件超塑性模锻成形装置及方法
CN102242324A (zh) * 2011-07-07 2011-11-16 湖南理工学院 Cu50Zr40Ti10非晶合金粉末热压成型工艺
CN105039761A (zh) * 2015-07-14 2015-11-11 长春工业大学 一种放电等离子烧结制备大块非晶合金的方法
CN105598570A (zh) * 2010-01-04 2016-05-25 科卢斯博知识产权有限公司 非晶态合金密封件和结合件
CN106584012A (zh) * 2016-12-30 2017-04-26 常州世竟液态金属有限公司 一种非晶态合金整形方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771224B2 (ja) * 2002-09-11 2006-04-26 アルプス電気株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コア及び電波吸収体
CN100507064C (zh) * 2007-06-15 2009-07-01 清华大学 一种Pd-Ni-Si-P块体非晶合金系
CN101705457B (zh) * 2009-11-06 2011-10-12 北京科技大学 一种制备大尺寸块体非晶复合材料的方法及装置
WO2013058765A1 (en) * 2011-10-21 2013-04-25 Apple Inc. Joining bulk metallic glass sheets using pressurized fluid forming
WO2013065346A1 (ja) * 2011-11-01 2013-05-10 Jfeスチール株式会社 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535593A1 (en) * 1991-10-01 1993-04-07 Hitachi, Ltd. Method of manufacturing sintered aluminum alloy parts
CN1456401A (zh) * 2003-06-23 2003-11-19 北京科技大学 一种非晶合金精密零部件超塑性模锻成形装置及方法
CN105598570A (zh) * 2010-01-04 2016-05-25 科卢斯博知识产权有限公司 非晶态合金密封件和结合件
CN102242324A (zh) * 2011-07-07 2011-11-16 湖南理工学院 Cu50Zr40Ti10非晶合金粉末热压成型工艺
CN105039761A (zh) * 2015-07-14 2015-11-11 长春工业大学 一种放电等离子烧结制备大块非晶合金的方法
CN106584012A (zh) * 2016-12-30 2017-04-26 常州世竟液态金属有限公司 一种非晶态合金整形方法

Also Published As

Publication number Publication date
CN106584012A (zh) 2017-04-26
CN106584012B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2018121314A1 (zh) 一种非晶态合金整形方法
CN101712115B (zh) 一种电子元件用梯度结构铜散热片的制备方法
CN101907145B (zh) 一种高温合金正弦波纹弹簧的成型方法
CN104015009B (zh) 一种手机中框、后盖的制备方法
CN103192051B (zh) 一种超薄壁轻金属合金外壳或框架的制造方法
JP6584399B2 (ja) 複合体とその製造方法
CN104694895A (zh) 一种W-Ti合金靶材及其制造方法
US10751792B2 (en) Continuous precision forming device and process for amorphous alloy
CN101927348A (zh) 一种气动或电动工具打击块的制造方法
CN104174848A (zh) 一种钛合金汽车连轴杆的粉末热等静压成型方法
WO2016082561A1 (zh) 一种非晶态合金构件成形方法
CN104745901A (zh) 变形铝合金铸件的间接挤压铸造方法
CN103056369A (zh) 粉末冶金制作零件的生产工艺
JP2002537151A (ja) 型及び型作製方法
CN104741577A (zh) 金属型低压铸造生产铝铜合金铸件工艺
CN104190903B (zh) 非金属构件与金属构件的一体成型方法
CN101235473A (zh) 一种制备非晶合金针的方法
CN102601116A (zh) 一种铜基电子封装材料的制备方法
CN104148560A (zh) 铝合金锻件的密闭锻造方法
CN106734945B (zh) 一种提高非晶态合金致密度的方法
JP2002361352A (ja) マグネシウム合金製品の成型加工方法
CN103753150A (zh) 一种镁合金蜂窝状盲孔结构件的制备方法
CN113462995A (zh) 一种高比刚度铝碳化硅结构件的制备方法及高比刚度铝碳化硅结构件
CN112974770B (zh) 一种高强度铝合金及挤压铸造制备方法
CN203357810U (zh) 一种热流道喷嘴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886051

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09.12.19)

122 Ep: pct application non-entry in european phase

Ref document number: 17886051

Country of ref document: EP

Kind code of ref document: A1