WO2018090586A1 - 硅片的表面钝化技术 - Google Patents

硅片的表面钝化技术 Download PDF

Info

Publication number
WO2018090586A1
WO2018090586A1 PCT/CN2017/084580 CN2017084580W WO2018090586A1 WO 2018090586 A1 WO2018090586 A1 WO 2018090586A1 CN 2017084580 W CN2017084580 W CN 2017084580W WO 2018090586 A1 WO2018090586 A1 WO 2018090586A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
sulfonic acid
polystyrene sulfonic
passivation
acid film
Prior art date
Application number
PCT/CN2017/084580
Other languages
English (en)
French (fr)
Inventor
麦耀华
沈艳娇
陈兵兵
郭建新
许颖
陈剑辉
Original Assignee
河北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北大学 filed Critical 河北大学
Publication of WO2018090586A1 publication Critical patent/WO2018090586A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of photovoltaic solar cells, in particular to a surface passivation technology of silicon wafers.
  • the inside of the silicon material is a very neat and ordered atomic arrangement, and the lattice has periodicity.
  • the carriers have good migration and transmission capabilities inside.
  • a large number of dangling bonds are generated due to the periodic discontinuity of the crystal lattice, and these dangling bonds become the recombination center of the carriers, that is, the surface recombination.
  • Surface recombination is a fatal effect on solar cells, and strong surface recombination directly leads to extremely poor performance of silicon solar cells.
  • the effect of surface recombination is also very important in the microelectronics industry, such as thin-film silicon transistors, interface defect states at the drain, which have a significant impact on device performance.
  • passivation technologies such as silicon dioxide, silicon nitride, aluminum oxide and amorphous silicon.
  • Some of these passivation technologies require high temperature (around 800 °C) conditions, some require high vacuum (10 -4 -10 -6 Pa), and some even require dangerous gas sources (such as silicon nitride and amorphous silicon).
  • Flammable and explosive silanes, alumina requires very dangerous trimethylaluminum).
  • silica and amorphous silicon have the best passivation effect, and both passivated can obtain minority lifetimes in the order of milliseconds, such as high temperature oxidized silicon dioxide passivated high resistance silicon wafers.
  • the above-mentioned techniques such as high-temperature vacuum are not applicable due to high cost and complicated operation.
  • Commonly used is the passivation method of hydrofluoric acid and iodine soaking.
  • the important disadvantage of this technique is that the passivation effect is poor.
  • the minority carrier life after the hydrofluoric acid passivation is generally less than 0.1 millisecond, and the iodine is passivated.
  • the minority carrier life is usually less than 1 millisecond.
  • the object of the present invention is to provide a surface passivation technology for a silicon wafer, which is a new technology.
  • Type polymer polystyrene sulfonic acid (PSS) film passivation technology PSS
  • the present invention is achieved by a surface passivation technique for a silicon wafer in which a polystyrene sulfonic acid film is prepared on the surface of the silicon wafer to effect passivation of the surface of the silicon wafer.
  • the PSS film has a very good passivation effect on the surface of the silicon wafer.
  • the polystyrene sulfonic acid film has a thickness on the order of nanometers.
  • the preparation process of the polystyrene sulfonic acid film can be various, for example, a spin coating method, an evaporation method, a printing method, a spray method, and the like.
  • step b baking the spin-coated polystyrene sulfonic acid film in step b to remove moisture inside the polystyrene sulfonic acid film.
  • the temperature at which the polystyrene sulfonic acid film is baked in step c is from 100 ° C to 200 ° C.
  • the present invention achieves passivation of the surface of the silicon wafer by preparing a polystyrene sulfonic acid film on the surface of the silicon wafer. After the polystyrene sulfonic acid film is passivated to the surface of the silicon wafer, a high-quality passivation effect can be obtained, and the minority carrier lifetime can reach more than 20 ms.
  • the polystyrene sulfonic acid film can be prepared by a spin coating method, an evaporation method, a printing method or a spray method. In addition to the evaporation method, the spin coating method, the printing method, and the spray method all have a passivation technique, and the process is simple, no vacuum is required, and High temperature, safe and easy to operate. Although the evaporation method requires a vacuum condition, the evaporation method does not require a high vacuum environment as compared with the severe conditions of the prior art high vacuum (10 -4 -10 -6 Pa), and the required vacuum environment is relatively easy to realize.
  • the PSS film passivation technology provided by the invention has very important application value for silicon material detection and surface passivation of silicon solar cells.
  • FIG. 1 is a schematic view showing the structure of preparing a polystyrene sulfonic acid film (i.e., PSS film) as a passivation layer on both the front surface and the back surface of a silicon wafer in the embodiment of the present invention.
  • PSS film polystyrene sulfonic acid film
  • Figure 2 is a graph showing the minority lifetime of a silicon wafer after passivating the front surface of a silicon wafer using a polystyrene sulfonic acid film in the present invention.
  • the passivation layer may be a surface covering the silicon wafer in a comprehensive manner, or may partially cover the surface of the silicon wafer, that is, the PSS film may be in partial contact with the surface of the silicon wafer, for example, preparing a gate type.
  • the structured PSS film acts as a passivation layer.
  • the PSS film formed on the surface of the silicon wafer for use as a passivation may be prepared by various processes such as spin coating, evaporation, printing or spray coating.
  • the spin coating method is taken as an example to describe the process of preparing a PSS film on the front surface of a silicon wafer, as follows:
  • a polystyrene sulfonic acid aqueous solution is spin-coated on the front surface of the silicon wafer to form a polystyrene sulfonic acid film.
  • the thickness of the formed polystyrene sulfonic acid film was controlled to be on the order of nanometers by controlling the spin coating time and the spin coating speed.
  • the formed polystyrene sulfonic acid film contains moisture and belongs to a wet film.
  • the spin-coated polystyrene sulfonic acid film in step b is baked at a temperature of 100 ° C to 200 ° C to remove moisture inside the polystyrene sulfonic acid film to form a cured polystyrene sulfonic acid dry film. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种硅片(1)的表面钝化技术,通过在硅片(1)的表面制备聚苯乙烯磺酸薄膜(2),以实现对硅片(1)表面的钝化。在硅片(1)表面所制备的聚苯乙烯磺酸薄膜(2)的厚度为纳米量级。聚苯乙烯磺酸薄膜(2)钝化硅片(1)表面后,可获得高质量的钝化效果,少子寿命可达到20ms以上。且制备聚苯乙烯磺酸薄膜(2)可通过旋涂法、喷涂法或印刷法等来实现,钝化技术工艺简单,无需真空,无需高温,安全且便于操作。所提供的钝化技术对于硅材料检测和硅太阳能电池的表面钝化具有非常重要的应用价值。

Description

硅片的表面钝化技术 技术领域
本发明涉及光伏太阳能电池领域,具体地说是一种硅片的表面钝化技术。
背景技术
硅材料内部是非常整齐有序的原子排列结构,晶格具有周期性。载流子在其内部具有很好的迁移和传输能力。但是在硅片表面,由于晶格周期性的间断,导致大量的悬挂键产生,这些悬挂键成为载流子的复合中心,即表面复合。表面复合对于太阳能电池是致命的影响,强烈的表面复合直接导致硅太阳能电池极差的性能。表面复合的影响在微电子工业中也是非常重要的,例如薄膜硅晶体管、漏极处界面缺陷态,对器件性能有很重要的影响。
钝化技术便是相应的解决方案,所谓钝化,就是用另一种原子与硅表面的悬挂键结合,形成化学键,进而减少表面悬挂键的产生,抑制表面复合。关于这一技术的成功与否,有一个表征指标,叫做有效少子寿命(或简称少子寿命)。有效少子寿命的高低反映了钝化效果的好坏。
目前比较常用的钝化技术有:二氧化硅、氮化硅、氧化铝和非晶硅等钝化技术。这些钝化技术有的需要高温(800℃左右)条件、有的需要高真空(10-4-10-6Pa)环境,有的甚至需要危险的气源(如氮化硅和非晶硅需要易燃易爆的硅烷,氧化铝需要非常危险的三甲基铝)。就钝化效果而言,目前二氧化硅和非晶硅的钝化效果最好,两者钝化后都可以获得毫秒量级的少子寿命,例如高温氧化的二氧化硅钝化高阻硅片可以获得20毫秒以上的少子寿命,采用硅烷作为气源,真空设备PECVD制备的非晶硅薄膜可以获得10毫秒以上的少子寿命。这些钝化技术一般都应用于硅太阳能电池的表面钝化。
另外,如果仅仅测试硅片的少子寿命,为硅材料的检测和筛选提供数据的话,上述的高温真空等技术则由于成本高、操作复杂等问题不适用。常用的是氢氟酸和碘酒浸泡的方法钝化,这种技术的重要缺点是钝化效果较差,例如氢氟酸钝化后的少子寿命一般在0.1毫秒以下,碘酒钝化后的少子寿命通常低于1毫秒。
发明内容
本发明的目的就是提供一种硅片的表面钝化技术,该钝化技术为一种新 型的聚合物聚苯乙烯磺酸(PSS)薄膜钝化技术。
本发明是这样实现的:一种硅片的表面钝化技术,在硅片的表面制备聚苯乙烯磺酸薄膜,以实现对硅片表面的钝化。PSS薄膜对硅片表面可起到非常好的钝化作用。
优选的,所述聚苯乙烯磺酸薄膜的厚度为纳米量级。
更优选的,所述聚苯乙烯磺酸薄膜的厚度为30nm-1000nm。
聚苯乙烯磺酸薄膜的制备工艺可以有多种,例如:旋涂法、蒸发法、印刷法、喷涂法等。
以旋涂法为例介绍聚苯乙烯磺酸薄膜的制备工艺,具体如下:
a、配制聚苯乙烯磺酸水溶液;
b、将聚苯乙烯磺酸水溶液旋涂在硅片表面形成聚苯乙烯磺酸薄膜;
c、将步骤b中旋涂好的聚苯乙烯磺酸薄膜进行烘烤,去除聚苯乙烯磺酸薄膜内部的水分。
优选的,步骤c中对聚苯乙烯磺酸薄膜进行烘烤的温度为100℃-200℃。
本发明通过在硅片的表面制备聚苯乙烯磺酸薄膜,实现了对硅片表面的钝化。聚苯乙烯磺酸薄膜钝化硅片表面后,可获得高质量的钝化效果,少子寿命可达到20ms以上。聚苯乙烯磺酸薄膜可通过旋涂法、蒸发法、印刷法或喷涂法等来制备,除蒸发法外,旋涂法、印刷法和喷涂法均具有钝化技术工艺简单,无需真空,无需高温,安全且便于操作的优点。蒸发法虽然需要真空条件,但是与现有技术中高真空(10-4-10-6Pa)的苛刻条件相比,蒸发法无需高真空环境,其所需真空环境相对容易实现。
本发明所提供的PSS薄膜钝化技术对于硅材料检测和硅太阳能电池的表面钝化具有非常重要的应用价值。
附图说明
图1是本发明实施例中在硅片的正表面和背表面均制备聚苯乙烯磺酸薄膜(即PSS薄膜)作为钝化层的结构示意图。
图2是本发明中采用聚苯乙烯磺酸薄膜钝化硅片正表面后硅片的少子寿命曲线图。
具体实施方式
如图1所示,在硅片1的正表面以及背表面均制备有钝化层2,该钝化层2为PSS薄膜,通过PSS薄膜,可以对硅片1的表面起到非常好的钝化作用。PSS薄膜的厚度为纳米量级,优选的,PSS薄膜的厚度为30nm-1000nm。图1中所示的只是一个具体的例子,其他实施例中,也可以只在硅片的一个表面上形成PSS薄膜以作为钝化层。所形成的PSS薄膜作为钝化层时,该钝化层可以是全面覆盖硅片的表面,也可以是局部覆盖硅片表面,即:PSS薄膜可以与硅片表面局部接触,例如:制备栅型结构的PSS薄膜作为钝化层。
在硅片表面所形成的用作起钝化作用的PSS薄膜,其制备工艺可以有很多种,例如:旋涂法、蒸发法、印刷法或喷涂法等制备工艺。下面以旋涂法为例介绍在硅片的正表面制备PSS薄膜的过程,具体如下:
a、配制聚苯乙烯磺酸水溶液。
b、将聚苯乙烯磺酸水溶液旋涂在硅片正表面形成聚苯乙烯磺酸薄膜。通过控制旋涂时间及旋涂速度,控制所形成的聚苯乙烯磺酸薄膜的厚度在纳米量级。刚旋涂结束后,所形成的聚苯乙烯磺酸薄膜内含有水分,属于湿膜。
c、将步骤b中旋涂好的聚苯乙烯磺酸薄膜在100℃-200℃的温度下进行烘烤,去除聚苯乙烯磺酸薄膜内部的水分,形成固化的聚苯乙烯磺酸干膜。
采用聚苯乙烯磺酸薄膜对硅片的正表面进行钝化后,对硅片的少子寿命进行检测,所得少子寿命的曲线图如图2所示。由图2可知,采用本发明中聚苯乙烯磺酸薄膜对硅片的正表面进行钝化后,硅片的少子寿命可达20毫秒以上,因此本发明采用聚苯乙烯磺酸薄膜对硅片的表面进行钝化后具有非常优良的钝化效果。且聚苯乙烯磺酸薄膜制备时,工艺简单,不需要苛刻的条件,可在低温下进行,简单安全。

Claims (6)

  1. 一种硅片的表面钝化技术,其特征是,在硅片的表面制备聚苯乙烯磺酸薄膜,以实现对硅片表面的钝化。
  2. 根据权利要求1所述的硅片的表面钝化技术,其特征是,所述聚苯乙烯磺酸薄膜的厚度为纳米量级。
  3. 根据权利要求2所述的硅片的表面钝化技术,其特征是,所述聚苯乙烯磺酸薄膜的厚度为30nm-1000nm。
  4. 根据权利要求1所述的硅片的表面钝化技术,其特征是,所述聚苯乙烯磺酸薄膜通过旋涂法、蒸发法、印刷法或喷涂法来制备。
  5. 根据权利要求4所述的硅片的表面钝化技术,其特征是,所述聚苯乙烯磺酸薄膜通过旋涂法来制备;在硅片的表面制备聚苯乙烯磺酸薄膜的步骤如下:
    a、配制聚苯乙烯磺酸水溶液;
    b、将聚苯乙烯磺酸水溶液旋涂在硅片表面形成聚苯乙烯磺酸薄膜;
    c、将步骤b中旋涂好的聚苯乙烯磺酸薄膜进行烘烤,去除聚苯乙烯磺酸薄膜内部的水分。
  6. 根据权利要求5所述的硅片的表面钝化技术,其特征是,步骤c中对聚苯乙烯磺酸薄膜进行烘烤的温度为100℃-200℃。
PCT/CN2017/084580 2016-11-15 2017-05-16 硅片的表面钝化技术 WO2018090586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611003636.7A CN106601866A (zh) 2016-11-15 2016-11-15 硅片的表面钝化技术
CN201611003636.7 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018090586A1 true WO2018090586A1 (zh) 2018-05-24

Family

ID=58590975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084580 WO2018090586A1 (zh) 2016-11-15 2017-05-16 硅片的表面钝化技术

Country Status (2)

Country Link
CN (1) CN106601866A (zh)
WO (1) WO2018090586A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748241A (zh) * 2020-06-19 2020-10-09 河北大学 太阳电池用的墨及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601866A (zh) * 2016-11-15 2017-04-26 河北大学 硅片的表面钝化技术
CN111599922B (zh) * 2020-05-11 2023-11-24 暨南大学 一种调控pedot:pss薄膜组分纵向分布的方法及其薄膜与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003081A1 (ja) * 2002-06-27 2004-01-08 Nihon Yamamura Glass Co., Ltd. 有機−無機複合イオン伝導膜
CN101792564A (zh) * 2010-03-04 2010-08-04 吉林大学 一种抗刮擦涂层及其制备方法
CN103165773A (zh) * 2011-12-15 2013-06-19 日立电线株式会社 氮化物半导体模板和发光二极管
CN103346260A (zh) * 2013-07-24 2013-10-09 苏州大学 有机薄膜钝化的有机-无机杂化太阳能电池及其制备方法
CN106601866A (zh) * 2016-11-15 2017-04-26 河北大学 硅片的表面钝化技术

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978564B2 (ja) * 2011-05-26 2016-08-24 日立化成株式会社 半導体基板用パッシベーション膜形成用材料、半導体基板用パッシベーション膜及びその製造方法、並びに太陽電池素子及びその製造方法
DE102014001155A1 (de) * 2014-01-31 2015-08-06 Hochschule Kaiserslautern Vorrichtung und Verfahren zur Herstellung biologischer und/oder elektronischer Eigenschaften einer Probe sowie Verwendungen derselben

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003081A1 (ja) * 2002-06-27 2004-01-08 Nihon Yamamura Glass Co., Ltd. 有機−無機複合イオン伝導膜
CN101792564A (zh) * 2010-03-04 2010-08-04 吉林大学 一种抗刮擦涂层及其制备方法
CN103165773A (zh) * 2011-12-15 2013-06-19 日立电线株式会社 氮化物半导体模板和发光二极管
CN103346260A (zh) * 2013-07-24 2013-10-09 苏州大学 有机薄膜钝化的有机-无机杂化太阳能电池及其制备方法
CN106601866A (zh) * 2016-11-15 2017-04-26 河北大学 硅片的表面钝化技术

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748241A (zh) * 2020-06-19 2020-10-09 河北大学 太阳电池用的墨及其制备方法和应用

Also Published As

Publication number Publication date
CN106601866A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
EP4027395A1 (en) Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
WO2018090586A1 (zh) 硅片的表面钝化技术
Angermann et al. Wet-chemical preparation and spectroscopic characterization of Si interfaces
Angermann et al. Wet-chemical passivation and characterization of silicon interfaces for solar cell applications
US20130298984A1 (en) Passivation of silicon surfaces using intermediate ultra-thin silicon oxide layer and outer passivating dielectric layer
Bordihn et al. High surface passivation quality and thermal stability of ALD Al2O3 on wet chemical grown ultra-thin SiO2 on silicon
CN107026218B (zh) 制造太阳能电池的方法
Angermann Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements
RU2013105449A (ru) Солнечная батарея и способ ее изготовления
Iftiquar et al. Fabrication of crystalline silicon solar cell with emitter diffusion, SiNx surface passivation and screen printing of electrode
US20130252427A1 (en) Method for cleaning textured silicon wafers
Wan et al. On the surface passivation of textured C-Si by PECVD silicon nitride
CN104143590B (zh) 一种简单快速的硅表面钝化方法
Kang et al. Ambipolar passivated back surface field layer for silicon photovoltaics
WO2019007189A1 (zh) 单面polo电池及其制备方法
CN102181940B (zh) 一种多晶硅绒面的制备方法
CN107833927A (zh) 一种氧化物薄膜晶体管及其制备方法
KR101635970B1 (ko) 저압 화학기상증착법을 이용한 게르마늄 단결정 박막 제조 방법
CN109004054B (zh) 一种硫化钼薄膜异质结太阳能电池及其制造方法
Dao et al. Optimized surface passivation of n and p type silicon wafers using hydrogenated SiNx layers
JP2016051892A (ja) 半導体基板、太陽電池、太陽電池の製造方法及びその製造装置
Garcia-Hernansanz et al. Deposition of Intrinsic a-Si: H by ECR-CVD to Passivate the Crystalline Silicon Heterointerface in HIT Solar Cells
Lee et al. Deposition heating effect on CdS thin films prepared by thermal evaporation for CdTe solar cells
Takakura et al. Effect of plasma pretreatment on fixed charge at the silicon nitride/silicon interface
Nemeth et al. Self-assembled monolayers for silicon passivated contacts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871888

Country of ref document: EP

Kind code of ref document: A1