WO2018088655A1 - 배터리 열교환기 및 그를 갖는 배터리 팩 - Google Patents

배터리 열교환기 및 그를 갖는 배터리 팩 Download PDF

Info

Publication number
WO2018088655A1
WO2018088655A1 PCT/KR2017/005479 KR2017005479W WO2018088655A1 WO 2018088655 A1 WO2018088655 A1 WO 2018088655A1 KR 2017005479 W KR2017005479 W KR 2017005479W WO 2018088655 A1 WO2018088655 A1 WO 2018088655A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
branch
upper plate
junction
Prior art date
Application number
PCT/KR2017/005479
Other languages
English (en)
French (fr)
Inventor
김민정
김봉준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2018088655A1 publication Critical patent/WO2018088655A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery heat exchanger and a battery pack having the same, and more particularly, to a battery heat exchanger for cooling the battery module and a battery pack having the same.
  • the vehicle may be provided with a battery for supplying electricity to the electric motor, a motor controller for controlling the electric motor, and the like.
  • the battery installed in the vehicle may be charged from a renewable power source or a charger, and may supply electric power to the electric motor when the vehicle is driven.
  • the performance of a battery can be largely determined by its temperature, and the temperature rises during charging and discharging.
  • electrolyte decomposition may occur, degrading battery performance and gradually decreasing its lifespan.
  • the battery may include a plurality of battery modules, and the plurality of battery modules may be managed to minimize the temperature difference between each other.
  • the vehicle may be provided with a battery cooling device for cooling the battery module to prevent the battery module from overheating to maintain the performance of the battery module.
  • the battery cooler may be classified into an air-cooled battery cooler, a water-cooled battery cooler, and a refrigerant battery cooler according to a cooling method.
  • the refrigerant type battery cooling device includes a compressor for compressing a refrigerant, a condenser for condensing the refrigerant compressed in the compressor, an expansion valve for expanding the refrigerant condensed in the condenser, and a refrigerant expanded by the expansion valve to be in contact with the battery module. It may include a battery module heat exchanger.
  • the refrigerant compressed in the compressor may be sequentially passed through the condenser, the expansion valve, and the battery heat exchanger, and then sucked into the compressor, and the refrigerant may absorb heat of the battery module while passing through the battery heat exchanger.
  • An object of the present invention is to provide a battery heat exchanger and a battery pack having the same, in which the providing process is simple and the number of parts can be minimized.
  • Battery heat exchanger according to an embodiment of the present invention and the top plate is formed with a flat surface on which the battery module is mounted; Refrigerant flow path portion is coupled to the plate and the refrigerant flow path is guided to the lower side is pressed to include a lower plate is formed in the junction portion joined to the upper plate in addition to the refrigerant flow path portion, the refrigerant flow path portion is formed with a refrigerant flow path of 7 to 10 times the width do.
  • the coolant flow path part may include a plurality of branch flow paths through which the refrigerant is dispersed, and at least one of the branch flow path parts may have a partition wall having an upper contact end contacting a bottom surface of the upper plate.
  • Refrigerant flow path portion and a plurality of first branch flow path portion formed on the lower plate An inlet flow passage connected to one side of each of the plurality of first branch flow passages; A plurality of second branch channel portions parallel to the first branch channel portions; An outlet flow path part connected to one side of the plurality of second branch flow path parts; It may include a return flow path connected to the other side of the plurality of first branch flow path and the other side of the plurality of second branch flow path.
  • the upper plate may have a coolant inlet through which a coolant flows in an area facing the inlet flow path, and a coolant outlet through which coolant flows out in a region facing the outlet flow path.
  • a coolant inlet tube for guiding the coolant to the coolant inlet and a coolant outlet tube for guiding the coolant to the coolant outlet may be disposed on the upper plate.
  • a battery pack having a battery heat exchanger includes a battery heat exchanger having a refrigerant passage through which a refrigerant passes; At least one battery module mounted on the battery heat exchanger, wherein the battery heat exchanger includes: a top plate having a seating surface on which the battery module is mounted; A lower plate which is joined to the upper plate and is pressed to protrude downward to form a coolant flow path that forms a coolant flow path and is joined to the top plate in addition to the coolant flow path; A refrigerant inlet tube coupled to the seating surface of the upper plate to supply the refrigerant to the refrigerant passage; In addition to the seating surface of the upper plate and includes a refrigerant outlet tube for discharging the refrigerant to the refrigerant flow path, the refrigerant flow path is 7 to 10 times the width of the height.
  • the coolant flow path part may include a plurality of branch flow path parts in which the refrigerant is dispersed in the coolant flow path part, and at least one of the branch flow path parts may have a partition wall having an upper contact end contacting the bottom surface of the upper plate.
  • the top plate may have a flat top surface.
  • the refrigerant flow passage part is formed to be elongated in the longitudinal direction of the lower plate and spaced in a direction orthogonal to the longitudinal direction of the lower plate, the inlet flow passage part connected to one side of the plurality of first branch flow path parts, and the first branch.
  • the junction portion includes an inner junction portion located between a group of the plurality of first branch channel portions and a group of the plurality of second branch channel portions; A first outer junction positioned opposite the inner junction with respect to the plurality of first branch passages; A second outer junction positioned opposite the inner junction with respect to the plurality of second branch passages; The third outer junction may be positioned opposite to the inner junction and the fourth outer junction may be disposed on the opposite side of the third outer junction.
  • the manufacturing process is simple while the number of parts can be minimized by forming a refrigerant passage through which the refrigerant passes by the two members of the upper plate and the lower plate, and the width of the refrigerant passage is an optimal ratio to the height of the refrigerant passage. Since it is possible to secure a sufficient breakdown strength, there is an advantage of high reliability.
  • FIG. 1 is a cross-sectional view showing a battery heat exchanger and a battery pack according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the battery heat exchanger shown in FIG.
  • FIG. 3 is an exploded perspective view of the battery heat exchanger illustrated in FIG. 1;
  • FIG. 4 is a plan view showing a lower plate according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 6 is a cross-sectional view taken along line B-B of FIG.
  • FIG. 7 is a view showing the pressure resistance strength according to the ratio of the nub and the height of the refrigerant passage according to an embodiment of the present invention
  • FIG. 8 is a view showing a temperature deviation between the battery module and the maximum temperature of the battery module according to the ratio of the nub and the height of the refrigerant passage according to an embodiment of the present invention
  • FIG. 9 is a cross-sectional view of a battery heat exchanger according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a battery heat exchanger and a battery pack according to an embodiment of the present invention
  • Figure 2 is a perspective view of the battery heat exchanger shown in Figure 1
  • Figure 3 is a view of the battery heat exchanger shown in Figure 1 4 is an exploded perspective view
  • FIG. 4 is a plan view showing a lower plate according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 2
  • FIG. 6 is a cross-sectional view taken along line BB of FIG. 2.
  • the battery heat exchanger 1 may be disposed in contact with the battery module 2 to absorb heat of the battery module 2.
  • the battery heat exchanger 1 may form a battery pack P together with the battery module 2.
  • the battery pack P may further include a carrier 3 mounted on the vehicle, and the battery heat exchanger 1 may be mounted on the carrier 3.
  • the battery pack P may further include a top cover 4 covering an upper surface of the carrier 3.
  • the carrier 3 and the top cover 4 may form an appearance of the battery pack P, and a space for accommodating the battery heat exchanger 1 and the battery module 2 may be formed therebetween.
  • the battery heat exchanger 1 may be connected to a refrigeration cycle device provided in the vehicle by a refrigerant pipe, and the refrigerant of the refrigeration cycle device may flow into the battery heat exchanger 1 and pass through the battery heat exchanger 1.
  • the refrigerant may absorb heat transferred from the battery module 2 while passing through the battery heat exchanger 1.
  • the refrigeration cycle apparatus to which the battery heat exchanger 1 is connected may include a compressor, a condenser, an expansion mechanism, and an evaporator.
  • the battery heat exchanger 1 and the evaporator may have refrigerant pipes connected in parallel or in series.
  • the two-phase refrigerant expanded by the expansion mechanism may flow into the battery heat exchanger 1 to cool the battery heat exchanger 1.
  • the refrigeration cycle apparatus to which the battery heat exchanger 1 is connected includes a compressor, a condenser, and an expansion mechanism, but does not include a separate evaporator, the battery heat exchanger 1 is disposed between the expansion mechanism and the compressor in the refrigerant flow direction.
  • the battery heat exchanger 1 is disposed between the expansion mechanism and the compressor in the refrigerant flow direction.
  • the battery pack P may include a plurality of battery modules 2. At least one of the plurality of battery modules 2 may be mounted on the battery heat exchanger 1 and cooled by the battery heat exchanger 1. The plurality of battery modules 2 are preferably mounted on the battery heat exchanger 1, and the battery heat exchanger 1 may cool the plurality of battery modules 2 simultaneously or sequentially.
  • At least one battery module 2 may be mounted on the battery heat exchanger 1, and the battery heat exchanger 1 may cool at least one battery module 2 positioned above the battery heat exchanger 1.
  • the battery heat exchanger 1 may not include a separate refrigerant tube through which the refrigerant passes, and may include a double plate of the upper plate 100 and the lower plate 110, and thus the upper plate 100 and the lower plate 11.
  • Battery heat exchanger 1 comprising a may be configured as a plate heat exchanger.
  • a refrigerant passage T through which a refrigerant passes may be formed, and the refrigerant passage T may be formed between the upper plate 100 and the lower plate 110.
  • the battery heat exchanger 1 includes an upper plate 110; The lower plate 120 is coupled to the upper plate 110.
  • the battery heat exchanger 1 may have a refrigerant passage 130 forming a refrigerant passage T on at least one of the upper plate 110 and the lower plate 120.
  • the upper surface 111 of the upper plate 110 may include a flat plane on which the battery module 2 is placed.
  • the upper plate 110 is a battery module seating plate on which the battery module 2 is seated, preferably a groove or a protrusion is not formed on the upper surface thereof, and the portion on which the battery module 2 is mounted is preferably configured as flat as possible. .
  • the top plate 110 is a plate shape that does not form a bent portion or protruding portion or recessed portion It is preferable to make.
  • the upper surface 111 of the upper plate 110 is a non-seating area where the seating surface 111A, which is the area where the battery module 1 is seated, and the area where the battery module 1 is not seated, depending on whether the battery module 1 is seated or not. It may be divided into a seating surface 111B.
  • the mounting surface 111A is comprised in the whole plane.
  • the seating surface 111A may be an upper surface center portion of the upper plate 110, and the non-seating surface 111B may be an upper edge portion of the upper plate 110.
  • the upper plate 110 may have a lower surface 112 facing the lower plate 120 in the same plane as the upper surface.
  • the upper plate 110 may be formed of a metal material such as iron or aluminum.
  • the lower plate 120 may not be in direct contact with the battery module 2, and the coolant flow path 130 through which the refrigerant is guided may be formed at the lower plate 120 which is not in direct contact with the battery module 2.
  • the refrigerant passage 130 may be pressed to protrude downward on the lower plate 120.
  • the lower plate 120 may be partially pressed by a press device, and the pressed portion may be a refrigerant passage 130.
  • the lower plate 120 may be pressed to protrude only a portion of the lower side, and the rest may not protrude downward.
  • the lower plate 120 does not contact the lower surface of the upper plate 110 with the refrigerant passage 130 formed by being pressed by the press device, and the refrigerant passage T is between the refrigerant passage 130 and the lower surface of the upper plate 110. Can be formed on.
  • the lower plate 120 may be in contact with the lower surface of the upper plate 110, a portion that is not pressed by the press device.
  • the lower plate 120 may be formed with a junction 140 to be bonded to the upper plate 110 in addition to the refrigerant flow path 130.
  • the bonding portion 140 may be a portion bonded to the lower surface of the upper plate 110 without being pressed downward by the press device.
  • the lower plate 120 may be formed of metal such as iron or aluminum.
  • the lower plate 120 may also be formed by aluminum die casting, of course.
  • the refrigerant flow passage 130 may have an open top surface and a bottom surface of the refrigerant flow passage 130. As shown in FIG. 5, the refrigerant passage 130 may include a lower wall 123A having the lowest height among the lower plates 120, and a plurality of side walls 123B standing on the lower wall 123A.
  • the lower plate 120 may be bonded to the upper plate 110 by brazing bonding.
  • the coolant flow path 130 may be in non-contact with the lower surface of the upper plate 110, and the bonding portion 140 may be brazed to the lower surface of the upper plate 110.
  • the coolant flow path 130 may be formed to be elongated in the longitudinal direction of the lower plate 120, and may be formed to be bent at least once.
  • the refrigerant flow path 130 is preferably formed such that the battery heat exchanger 1 can secure a sufficient pressure resistance while cooling the plurality of battery modules 2 as uniformly as possible.
  • the lower plate 120 may have different internal pressure strengths according to the width W of the refrigerant passage T and the height H of the refrigerant passage T, and the plurality of battery modules 2 may have the refrigerant passage T.
  • the temperature difference may vary depending on the width (W) of the and the height (H) of the refrigerant passage (T).
  • the width W of the refrigerant passage T is a length in a direction orthogonal to the flow direction of the refrigerant.
  • the width W of the coolant flow path T may be the length of the front and rear directions of the coolant flow path T.
  • the width W of the coolant flow path T may be the left and right lengths of the coolant flow path T.
  • the width (W) of the refrigerant passage (T) and the height (H) of the refrigerant passage (T) are appropriate ratios (W / H) that can secure sufficient pressure resistance strength and manage the temperature difference between the battery modules to be below the appropriate temperature difference. Is preferably determined by
  • the width W of the refrigerant passage T is preferably 7 to 10 times the height H of the refrigerant passage T when referring to FIGS. 7 and 8.
  • the proper ratio (W / H) of the width W of the refrigerant passage T and the height H of the refrigerant passage T will be described in detail later.
  • the refrigerant passage 130 may include a plurality of branch passages 121 and 123 in which the refrigerant of the refrigerant passage 130 is dispersed.
  • Each of the branch passages 121 and 123 may have the same width W and the same height H.
  • the refrigerant passage 130 includes a plurality of first branch passages 121 formed on the lower plate 110; An inlet passage 122 connected to one side of each of the plurality of first branch passages 121; A plurality of second branch channel portions 123 parallel to the first branch channel portions 121; An outlet passage part 124 to which one side of the plurality of second branch passage parts 123 is connected; It includes a return flow path unit 125 is connected to the other side of the plurality of first branch flow path portion 121 and the other side of the plurality of second branch flow path portion 123.
  • the refrigerant flow passage 130 may have the same height H as a whole. And a plurality of first branch flow paths 121; The plurality of second branch channel portions 123 may have the same width (W). An inlet passage 122; An outlet passage part 124; Each of the return flow paths 125 includes a plurality of first branch flow paths 121; The plurality of second branch channel portions 123 and the width W may be the same.
  • Each of the plurality of first branch channel parts 121 and the plurality of second branch channel parts 123 may be formed to be long in the longitudinal direction X of the lower plate 120, and the plurality of first branch channel parts 121 may be formed. And a plurality of second branch flow paths 123 may be spaced apart in a direction Y orthogonal to the longitudinal direction X of the lower plate 120.
  • Each of the inlet passage 122, the plurality of first branch passages 121, the return passage 125, the plurality of second branch passages 123, and the outlet passage 124 are each a lower wall 123A. And a pair of side walls 123B standing on the lower wall 123A, and the refrigerant may flow in a horizontal direction while passing between the pair of side walls 123B.
  • the length of the refrigerant passage T may be at least three times greater than the width W of the refrigerant passage T.
  • the interval between the plurality of first branch channel parts 121 may be shorter or longer than the width W of the refrigerant channel T, and the interval between the plurality of first branch channel parts 121 may be the refrigerant channel T. It may be 0.7 to 1.5 times the width (W) of.
  • the interval between the plurality of second branch passageways 123 may be shorter or longer than the width W of the refrigerant passage T, and the interval between the plurality of second branch passageways 123 may be the refrigerant passage ( It may be 0.7 to 1.5 times the width (W) of T).
  • the junction 140 may be the whole other than the coolant flow path 130 of the lower plate 120.
  • the junction portion 140 may include any one of the first branch channel portions 123 that are closest to the plurality of second branch channel portions 123, and the plurality of second branch channel portions 123. It may include an inner junction (140A) connecting any one of the second branch flow path portion closest to the plurality of first branch flow path (121).
  • the inner junction 140A may be located between the group of the plurality of first branch channel parts 121 and the group of the plurality of second branch channel parts 123.
  • the junction 140 may include a first outer junction 140B positioned opposite to the inner junction 140A based on the plurality of first branch flow paths 121.
  • the junction 140 may include a second outer junction 140C positioned on the opposite side of the inner junction 140A based on the plurality of second branch passageways 121.
  • the junction 140 may include a third outer junction 140D positioned on the opposite side of the inner junction 140A based on the return flow path 125.
  • the junction 140 may include a fourth outer junction 140E connected to the inner junction 140A and positioned opposite the third outer junction 140D.
  • the lower plate 120 may be bonded to the upper plate 110 around the refrigerant passage 130.
  • the upper plate 110 may have a coolant inlet 113 through which a coolant flows in a region facing the inlet flow path 122.
  • the upper plate 110 may have a refrigerant outlet 114 through which refrigerant flows out in an area facing the outlet passage 124.
  • the coolant inlet 113 and the coolant outlet 114 may be formed on the non-seating surface 111B where the battery module 2 is not seated.
  • the battery heat exchanger 1 may further include a refrigerant inlet tube 150 for guiding the refrigerant to the refrigerant inlet 113 and a refrigerant outlet tube 160 for guiding the refrigerant flowing out to the refrigerant outlet 114.
  • the coolant inlet tube 150 and the coolant outlet tube 160 are integrally formed on the top plate 110, the coolant inlet tube 150 and the coolant outlet tube 160 are non-seating surfaces 111B of the top plate 110. It may be formed to protrude in the upward direction.
  • the refrigerant inlet tube 150 and the refrigerant outlet tube 160 are separately fixed to the upper plate 110, the refrigerant inlet tube 150 is coupled to the refrigerant passage T by being coupled to the seating surface 111A of the upper plate 110. Refrigerant can be supplied.
  • coolant outlet tube 160 may be coupled to the coolant inlet tube 150 to be spaced apart from the seating surface 111A of the upper plate 110 to discharge the coolant in the coolant flow path T.
  • the plurality of battery modules 2 are located on the upper side of the plurality of first branch flow path portion 121 of the upper plate 110, the region located on the upper side of the inner junction of the upper plate 110, and the upper plate ( It is preferable to be disposed long over a region located above the plurality of second branch flow path portions 123.
  • the plurality of battery modules 2 may be elongated in a direction parallel to the width direction of each of the plurality of branch flow paths 121 and 123.
  • each of the first branch channel part 121 and the second branch channel part 123 is formed to be long in the left and right directions
  • the plurality of battery modules 2 are long in the front and rear directions on the upper surface of the upper plate 110. Can be arranged.
  • the plurality of battery modules 2 may be disposed long in the left-right direction on the upper surface of the upper plate 110. have.
  • FIG 7 is a view showing the pressure resistance according to the ratio of the nub and the height of the refrigerant passage according to an embodiment of the present invention
  • Figure 8 is a view of the nub and height of the refrigerant passage according to an embodiment of the present invention The temperature deviation between the battery module maximum temperature and the battery module according to the ratio is shown.
  • FIG. 7 shows the pressure resistance when the lower plate 120 is brazed to the upper plate 110 and the pressure resistance when the lower plate 120 is before the braze bonding to the upper plate 110.
  • the heat exchange performance of the battery heat exchanger 1 is improved as the width W of the refrigerant passage T is longer, and when the width W of the refrigerant passage T is too long, the lower wall 123A of the refrigerant passage 130 is formed. Deflection may occur, and the pressure resistance may be lowered.
  • the width W of the refrigerant passage T is preferably set in a range capable of ensuring proper breakdown voltage.
  • the width W of the refrigerant passage T is preferably 10 times or less than the height H of the refrigerant passage T.
  • the breakdown strength is less than 30 bar. It may be lower, in which case the reliability may be low.
  • the breakdown strength is More than 30 bar can be secured.
  • the width (W) of the refrigerant passage (T) is preferably at least seven times the height (H) of the refrigerant passage (T).
  • the maximum temperature of the plurality of battery modules is too high, such as 30 ° C. or more, and the plurality of battery modules. (2) It can be confirmed that the temperature deviation between each other is 3 ° C or more.
  • the width W of the refrigerant passage T is 7 times or more the height H of the refrigerant passage T
  • the maximum temperature of the plurality of battery modules is lower than 30 ° C.
  • the plurality of battery modules 2 mutually It can be confirmed that the temperature deviation is less than 3 ° C.
  • the battery heat exchanger 1 has a width (W) of the refrigerant flow path T so as to minimize the temperature deviation between the plurality of battery modules 2 while ensuring sufficient pressure resistance. Most preferably, it is the range which is 7 times or more and 10 times or less of H).
  • the width W of the refrigerant passage T may be 7,7 mm to 11 mm.
  • the manufacturer presses the plate-shaped lower plate with a press machine, thereby forming the refrigerant passage 130 with a width W of the refrigerant passage T being 7 times or more and 10 times or less than the height H of the refrigerant passage T.
  • the lower plate 120 having the coolant flow path 130 formed thereon may be brazed to the plate-shaped upper plate 110.
  • the manufacturer may manufacture the battery heat exchanger 1 in which the coolant flow path T is formed by pressing the lower plate 120 and brazing-bonding the lower plate 120 to the bottom surface of the upper plate 110.
  • the two-phase refrigerant expanded by the expansion mechanism may flow into the refrigerant inlet tube 150.
  • the refrigerant introduced into the refrigerant inlet tube 150 may flow into the refrigerant passage 130 and flow along the refrigerant passage 130, and flow along the refrigerant passage 130 to form the upper plate 110 and the lower plate 120. Can absorb the heat.
  • the refrigerant passing through the refrigerant inlet tube 150 may be dispersed in the plurality of first branch passage 121 in the inlet flow passage 122, the refrigerant is a plurality of While passing through each of the branch passages 121, the heat of the plurality of first branch passages 121 and the upper plate 110 may be absorbed.
  • the refrigerant that has passed through the plurality of first branch channel parts 121 flows into the return channel part 125 and is mixed, and the flow direction thereof is changed in the return channel part 125 so that the plurality of second branch channel parts 123 are provided. Can be dispersed as.
  • the refrigerant may absorb heat from the plurality of second branch flow path parts 123 and the upper plate 110 while passing through the plurality of second branch flow path parts 123, and may flow into the outlet flow path part 124. .
  • the refrigerant introduced into the outlet flow part 125 may be mixed in the outlet flow part 125 and flow into the refrigerant outlet tube 160.
  • FIG. 9 is an enlarged cross-sectional view of a battery heat exchanger according to another embodiment of the present invention.
  • the partition wall 138 protrudes from at least one of the branch passage passages 121 and 123.
  • the partition wall 138 may have an upper contact end 139 contacting the bottom surface 112 of the upper plate 110.
  • the partition wall 138 may be formed to protrude from the lower wall 123A forming the branch flow paths 121 and 123 and the upper surface of the lower wall 123A among the sidewalls 123B.
  • the partition wall 138 may be located between the pair of side walls 123B and may be spaced apart from each of the pair of side walls 123B.
  • a plurality of partitions 138 may be formed between the pair of side walls 123B, and in this case, the plurality of partitions 138 may be spaced apart from each other in the width direction of the refrigerant passage T.
  • one partition wall 138 When one partition wall 138 is formed between the pair of side walls 123B, one partition wall 138 may be spaced apart from each other by the same distance as each of the pair of side walls 123B.
  • the partition wall 138 may be formed parallel to the side wall 123B, and may be equal to or shorter than the horizontal length of the side wall 123B.
  • the partition wall 138 may have an upper contact end 139 joined to the lower surface 112 of the upper plate 110 when brazing the lower plate 120 and the upper plate 110, and the lower wall 123A may be struck downward. Can be prevented, and the strength of the plurality of branch flow paths 121 and 123 can be reinforced.

Abstract

본 실시예는 상면에 배터리모듈이 올려지는 평면이 형성된 상판과; 상판에 결합되고 냉매가 안내되는 냉매유로부가 하측으로 돌출되게 프레싱되고 냉매유로부 이외에 상판과 접합되는 접합부가 형성된 하판을 포함하고, 냉매유로부는 너비가 높이의 7배 내지 10배인 냉매유로가 형성되어, 부품수를 최소화할 수 있을 뿐만 아니라 제조공정이 간단하고, 충분한 내압강도를 확보하여 신뢰성이 높은 이점이 있다.

Description

배터리 열교환기 및 그를 갖는 배터리 팩
본 발명은 배터리 열교환기 및 그를 갖는 배터리 팩에 관한 것으로, 더욱 상세하게는 배터리모듈을 냉각시키는 배터리 열교환기 및 그를 갖는 배터리 팩에 관한 것이다.
차량에는 전기모터에 전기를 공급하는 배터리, 전기모터를 제어하는 모터 제어기 등이 구비될 수 있다.
차량에 설치된 배터리는 재생 동력원이나 충전기로부터 충전될 수 있고, 차량의 주행시 전기모터로 전력을 공급할 수 있다.
배터리는 그 온도에 따라 성능이 크게 결정될 수 있고, 충전과 방전시 온도가 상승한다.
배터리는 그 사용이 계속됨에 따라 전해질 분해가 일어나 배터리의 성능이 떨어지고 수명이 점차 단축된다.
배터리는 다수의 배터리모듈을 포함할 수 있고, 다수의 배터리모듈은 서로 간의 온도차가 최소화되게 관리되는 것이 바람직하다.
차량에는 이러한 배터리모듈의 과열을 방지하여 배터리모듈의 성능을 유지시키기 위해 배터리모듈을 냉각시키는 배터리 냉각장치가 설치될 수 있다.
배터리 냉각장치는 냉각 방식에 따라, 공랭식 배터리 냉각장치, 수냉식 배터리 냉각장치 및 냉매식 배터리 냉각장치로 구분될 수 있다.
냉매식 배터리 냉각장치는 냉매를 압축하는 압축기, 압축기에서 압축된 냉매가 응축되는 응축기와, 응축기에서 응축된 냉매를 팽창시키는 팽창밸브와, 팽창밸브에 의해 팽창된 냉매가 통과하고 배터리모듈과 접촉된 배터리모듈 열교환기를 포함할 수 있다.
압축기의 구동시, 압축기에서 압축된 냉매는 응축기와 팽창밸브와 배터리 열교환기를 순차적으로 통과한 후 압축기로 흡입될 수 있고, 냉매는 배터리 열교환기를 통과하면서 배터리모듈의 열을 흡열할 수 있다.
본 발명은 제공 공정이 간단하고 부품수가 최소화될 수 있는 배터리 열교환기 및 그를 갖는 배터리 팩을 제공하는데 그 목적이 있다.
본 발명의 실시 예에 따른 배터리 열교환기는 면에 배터리모듈이 올려지는 평면이 형성된 상판과; 판에 결합되고 냉매가 안내되는 냉매유로부가 하측으로 돌출되게 프레싱되고 냉매유로부 이외에 상판과 접합되는 접합부가 형성된 하판을 포함하고, 냉매유로부에는 너비가 높이의 7배 내지 10배인 냉매유로가 형성된다.
냉매유로부는 냉매가 분산되는 복수개의 분지유로부를 포함하고, 복수개의 분지유로부 중 적어도 하나에는 상판의 저면에 접촉되는 상부 접촉단이 형성된 격벽이 돌출될 수 있다.
냉매유로부는 상기 하판에 형성된 복수개 제1분지유로부와; 복수개 제1분지유로부 각각의 일측이 연결된 입구유로부와; 제1분지유로부와 나란한 복수개 제2분지유로부와; 복수개 제2분지유로부의 일측이 연결된 출구유로부와; 복수개 제1분지유로부의 타측과 복수개 제2분지유로부의 타측이 연결된 리턴유로부를 포함할 수 있다.
상판은 입구유로부를 마주보는 영역에는 냉매가 유입되는 냉매입구가 형성될 수 있고, 출구유로부를 마주보는 영역에 냉매가 유출되는 냉매출구가 형성될 수 있다. 상판에는 냉매입구로 냉매를 안내하는 냉매 인렛 튜브와, 냉매출구로 냉매를 안내하는 냉매 아웃렛 튜브가 배치될 수 있다.
본 발명의 실시 예에 따른 배터리 열교환기를 갖는 배터리 팩은 냉매가 통과하는 냉매유로가 형성된 배터리 열교환기와; 배터리 열교환기에 올려진 적어도 하나의 배터리모듈을 포함하고, 배터리 열교환기는 상면에 배터리모듈이 올려지는 안착면이 형성된 상판과; 상판에 결합되고 냉매유로를 형성하는 냉매유로부가 하측으로 돌출되게 프레싱되고 냉매유로부 이외에 상판과 접합되는 접합부가 형성된 하판과; 상판 중 안착면 이외에 결합되어 냉매유로로 냉매를 공급하는 냉매 인렛 튜브와; 상판 중 상기 안착면 이외에 결합되고 냉매유로의 냉매가 토출되는 냉매 아웃렛 튜브를 포함하고, 냉매유로는 너비가 높이의 7배 내지 10배이다.
냉매유로부는 상기 냉매유로부의 냉매가 분산되는 복수개의 분지유로부를 포함할 수 있고, 복수개의 분지유로부 중 적어도 하나에는 상판의 저면에 접촉되는 상부 접촉단이 형성된 격벽이 돌출될 수 있다.
상판은 상면 전체가 평면일 수 있다.
냉매유로부는 상기 하판의 길이방향으로 길게 형성되고 하판의 길이방향과 직교한 방향으로 이격된 복수개의 제1분지유로부와, 복수개의 제1분지유로부의 일측이 연결된 입구유로부와, 제1분지유로부와 나란한 복수개의 제2분지유로부와, 복수개의 제2분지유로의 일측이 연결된 출구유로부와, 복수개의 제1분지유로부의 타측과 복수개의 제2분지유로부의 타측이 연결된 리턴유로부를 포함할 수 있다.
접합부는 복수개의 제1분지유로부의 군과 복수개 제2분지유로부의 군 사이에 위치되는 이너 접합부와; 복수개의 제1분지유로부를 기준으로 이너 접합부의 반대편에 위치하는 제1아우터 접합부와; 복수개의 제2분지유로부를 기준으로 이너 접합부의 반대편에 위치하는 제2아우터 접합부와; 리턴 유로부를 기준으로 이너 접합부의 반대편에 위치하는 제3아우터 접합부 및 이너 접합부와 연결되고 제3아우터 접합부의 반대편에 위치하는 제4아우터 접합부를 포함할 수 있다.
본 발명의 실시 예에 따르면, 상판과 하판의 2개 부재에 의해 냉매가 통과하는 냉매유로를 형성하여 부품수가 최소화될 수 있으면서 제조 공정이 단순하고, 냉매유로의 너비가 냉매유로의 높이 대비 최적 비율을 갖기 때문에, 충분한 내압 강도를 확보할 수 있어 신뢰성이 높은 이점이 있다.
또한, 복수개의 배터리모듈 상호간의 온도 편차를 최소화할 수 있어 배터리모듈 상호간의 온도 편차가 클 때 발생되는 성능 저하를 최소화할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시 예에 따른 배터리 열교환기 및 배터리 팩이 도시된 단면도,
도 2는 도 1에 도시된 배터리 열교환기의 사시도,
도 3은 도 1에 도시된 배터리 열교환기의 분해 사시도,
도 4는 본 발명의 일 실시 예에 따른 하판이 도시된 평면도,
도 5는 도 2의 A-A 선 단면도,
도 6은 도 2의 B-B 선 선단면도,
도 7은 본 발명의 일 실시 예에 따른 냉매유로의 너브와 높이의 비에 따른 내압강도가 도시된 도,
도 8은 도 7은 본 발명의 일 실시 예에 따른 냉매유로의 너브와 높이의 비에 따른 배터리모듈의 최고온도와 배터리모듈간 온도편차가 도시된 도,
도 9는 본 발명의 다른 실시 예에 따른 배터리 열교환기의 단면도이다.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다.
도 1은 본 발명의 일 실시 예에 따른 배터리 열교환기 및 배터리 팩이 도시된 단면도이고, 도 2는 도 1에 도시된 배터리 열교환기의 사시도이고, 도 3은 도 1에 도시된 배터리 열교환기의 분해 사시도이며, 도 4는 본 발명의 일 실시 예에 따른 하판이 도시된 평면도이고, 도 5는 도 2의 A-A 선 단면도이며, 도 6은 도 2의 B-B 선 선단면도이다.
배터리 열교환기(1)는 배터리모듈(2)과 접촉되게 배치되어 배터리모듈(2)의 열을 흡열할 수 있다. 배터리 열교환기(1)는 배터리모듈(2)과 함께 배터리 팩(P)을 구성할 수 있다.
배터리 팩(P)은 차량에 장착되는 캐리어(3)를 더 포함할 수 있고, 배터리 열교환기(1)는 캐리어(3)에 올려질 수 있다.
배터리 팩(P)은 캐리어(3)의 상면을 덮는 탑 커버(4)를 더 포함할 수 있다.
캐리어(3)와 탑 커버(4)는 배터리 팩(P)의 외관을 형성할 수 있고, 그 사이에는 배터리 열교환기(1)와 배터리모듈(2)이 수용되는 공간이 형성될 수 있다.
배터리 열교환기(1)는 차량에 구비된 냉동사이클 장치에 냉매배관으로 연결될 수 있고, 냉동사이클 장치의 냉매는 배터리 열교환기(1)로 유입되어 배터리 열교환기(1)를 통과할 수 있다. 냉매는 배터리 열교환기(1)를 통과하면서 배터리모듈(2)로부터 전달된 열을 흡열할 수 있다.
배터리 열교환기(1)가 연결되는 냉동사이클 장치는 압축기와, 응축기와, 팽창기구와, 증발기를 포함할 수 있다. 배터리 열교환기(1)와 증발기는 냉매배관이 병렬 또는 직렬로 연결될 수 있다. 팽창기구에 의해 팽창된 2상 냉매는 배터리 열교환기(1)로 유입되어 배터리 열교환기(1)를 냉각시킬 수 잇다.
배터리 열교환기(1)가 연결되는 냉동사이클 장치는 압축기와 응축기와, 팽창기구를 포함하되, 별도의 증발기를 포함하지 않을 경우, 배터리 열교환기(1)는 냉매 유동방향으로 팽창기구 및 압축기의 사이에 배치되어 증발기로 기능하면서 배터리모듈(2)을 냉각하는 것도 가능함은 물론이다.
배터리 팩(P)은 복수의 배터리모듈(2)을 포함할 수 있다. 복수의 배터리모듈(2) 중 적어도 하나는 배터리 열교환기(1) 위에 올려질 수 있으며, 배터리 열교환기(1)에 의해 냉각될 수 있다. 복수개의 배터리모듈(2)은 배터리 열교환기(1)에 올려지는 것이 바람직하고, 배터리 열교환기(1)는 복수개의 배터리모듈(2)을 동시에 또는 순차적으로 냉각할 수 있다.
배터리 열교환기(1)에는 적어도 하나의 배터리모듈(2)이 올려질 수 있고, 배터리 열교환기(1)는 그 상측에 위치하는 적어도 하나의 배터리모듈(2)을 냉각할 수 있다.
배터리 열교환기(1)는 냉매가 통과하는 별도의 냉매튜브를 포함하지 않고, 상판(100)과, 하판(110)의 이중 판을 포함할 수 있고, 이와 같이 상판(100)과 하판(11)을 포함하는 배터리 열교환기(1)는 플레이트형 열교환기로 구성될 수 있다.
배터리 열교환기(1)에는 냉매가 통과하는 냉매유로(T)가 형성될 수 있고, 냉매유로(T)는 상판(100)과 하판(110)의 사이에 형성될 수 있다.
배터리 열교환기(1)는 상판(110)과; 상판(110)에 결합되는 하판(120)을 포함한다.
배터리 열교환기(1)는 냉매유로(T)를 형성하는 냉매유로부(130)가 상판(110)과 하판(120) 중 적어도 하나에 형성될 수 있다.
상판(110)의 상면(111)은 배터리모듈(2)이 올려지는 평평한 평면을 포함할 수 있다. 상판(110)은 배터리모듈(2)이 안착되는 배터리모듈 안착판으로서, 그 상면에 홈부나 돌출부가 형성되지 않는 것이 바람직하고 배터리모듈(2)이 올려지는 부분은 최대한 평면으로 구성되는 것이 바람직하다.
상판(110)에 절곡부나 홈부나 돌출부가 형성될 경우, 상판(110)의 제조 공정은 복잡하게 되고, 상판(110)은 절곡된 부분이나 돌출된 부분이나 함몰된 부분이 형성되지 않는 플레이트 형상으로 이루어지는 것이 바람직하다.
상판(110)의 상면(111)은 배터리모듈(1)의 안착 여부에 따라, 배터리모듈(1)이 안착되는 영역인 안착면(111A)와, 배터리모듈(1)이 안착되지 않는 영역인 비안착면(111B)으로 구분될 수 있다.
안착면(111A)은 그 전체가 평면으로 구성되는 것이 바람직하다.
안착면(111A)는 상판(110)의 상면 중앙부일 수 있고, 비안착면(111B)은 상판(110)의 상면 테두리부일 수 있다.
상판(110)은 하판(120)을 마주보는 하면(112)이 상면과 같은 평면으로 구성될 수 있다.
상판(110)은 철이나 알루미늄 등의 금속 재질로 형성될 수 있다.
하판(120)은 배터리모듈(2)과 직접 접촉되지 않고, 냉매가 안내되는 냉매유로부(130)는 배터리모듈(2)과 직접 접촉되지 않는 하판(120)에 형성되는 것이 바람직하다.
냉매유로부(130)는 하판(120)에 하측으로 돌출되게 프레싱될 수 있고, 이 경우, 하판(120)은 프레스 기기에서 일부가 프레스될 수 있고, 이렇게 프레싱된 부분은 냉매유로부(130)가 될 수 있다.
하판(120)은 일부 영역만 하측으로 돌출되게 프레스될 수 있고, 나머지는 하측으로 돌출되지 않을 수 있다.
하판(120)은 프레스 기기에 의해 프레스되어 형성된 냉매유로부(130)가 상판(110)의 하면에 접촉되지 않고, 냉매유로(T)는 냉매유로부(130)와 상판(110)의 하면 사이에 형성될 수 있다.
하판(120)은 프레스 기기에 의해 프레스되지 않는 부분이 상판(110)의 하면에 접촉될 수 있다. 하판(120)는 냉매유로부(130) 이외에 상판(110)과 접합되는 접합부(140)가 형성될 수 있다. 접합부(140)는 프레스 기기에 의해 하측으로 눌리지 않고, 상판(110)의 하면에 접합되는 부분일 수 있다.
하판(120)은 철이나 알루미늄 등의 금속으로 형성될 수 있다. 하판(120)은 알루미늄 다이캐스팅에 의해 형성되는 것도 가능함은 물론이다.
냉매유로부(130)는 상면이 개방되고, 저면이 막힌 형상일 수 있다. 냉매유로부(130)는 도 5에 도시된 바와 같이, 하판(120) 중 가장 높이가 낮은 하벽(123A)과, 하벽(123A)에 세워진 다수의 측벽(123B)을 포함할 수 있다.
하판(120)는 브레이징 접합에 의해 상판(110)에 접합될 수 있다. 냉매유로부(130)는 상판(110)의 하면과 비접촉되고, 접합부(140)는 상판(110)의 하면에 브레이징 접합될 수 있다.
냉매유로부(130)는 하판(120)의 길이방향으로 길게 형성될 수 있고, 적어도 1회 꺽인 형상으로 형성될 수 있다.
냉매유로부(130)는 배터리 열교환기(1)가 충분한 내압강도를 확보할 수 있으면서 복수개의 배터리모듈(2)을 최대한 균일하게 냉각시킬 수 있게 형성되는 것이 바람직하다.
하판(120)은 냉매유로(T)의 너비(W)와, 냉매유로(T)의 높이(H)에 따라 내압 강도가 상이할 수 있고, 복수개의 배터리모듈(2)은 냉매유로(T)의 너비(W)와, 냉매유로(T)의 높이(H)에 따라 온도차가 상이할 수 있다.
냉매유로(T)의 너비(W)는 냉매의 유동방향과 직교한 방향의 길이이다. 냉매가 냉매유로(T)를 따라 좌우 방향으로 흐를 경우, 냉매유로(T)의 너비(W)는 냉매유로(T)의 전후방향 길이일 수 있다.
반대로, 냉매가 냉매유로(T)를 따라 전후 방향으로 흐를 경우, 냉매유로(T)의 너비(W)는 냉매유로(T)의 좌우 방향 길이일 수 있다.
냉매유로(T)의 너비(W)와 냉매유로(T)의 높이(H)는 충분한 내압강도를 확보할 수 있으면서 배터리모듈 상호간의 온도차를 적정 온도차 이하로 관리할 수 있는 적정비(W/H)로 결정되는 것이 바람직하다.
냉매유로(T)의 너비(W)는 도 7 및 도 8을 참고할 때, 냉매유로(T)의 높이(H)의 7배 내지 10배인 것이 바람직하다. 냉매유로(T)의 너비(W)와 냉매유로(T)의 높이(H)의 적정 비(W/H)에 대해서는 후술하여 상세히 설명한다.
냉매유로부(130)는 도 3 및 도 5에 도시된 바와 같이, 냉매유로부(130)의 냉매가 분산되는 복수개의 분지유로부(121)(123)를 포함할 수 있다.
복수개의 분지유로부(121)(123) 각각은 너비(W)가 동일할 수 있고, 높이(H)가 동일할 수 있다.
냉매유로부(130)는 하판(110)에 형성된 복수개 제1분지유로부(121)와; 복수개 제1분지유로부(121) 각각의 일측이 연결된 입구유로부(122)와; 제1분지유로부(121)와 나란한 복수개 제2분지유로부(123)와; 복수개 제2분지유로부(123)의 일측이 연결된 출구유로부(124)와; 복수개 제1분지유로부(121)의 타측과 복수개 제2분지유로부(123)의 타측이 연결된 리턴유로부(125)를 포함한다.
냉매유로부(130)는 그 전체의 높이(H)가 동일할 수 있다. 그리고, 복수개 제1분지유로부(121)와; 복수개 제2분지유로부(123)는 너비(W)가 동일할 수 있다. 입구유로부(122)와; 출구유로부(124)와; 리턴유로부(125) 각각은 복수개 제1분지유로부(121)와; 복수개 제2분지유로부(123)와 너비(W)가 동일할 수 있다.
복수개의 제1분지유로부(121), 복수개의 제2분지유로부(123) 각각은 하판(120)의 길이방향(X)으로 길게 형성될 수 있고, 복수개의 제1분지유로부(121) 및 복수개의 제2분지유로부(123)은 하판(120)의 길이방향(X)과 직교한 방향(Y)으로 이격될 수 있다.
입구유로부(122)와, 복수개 제1분지유로부(121)와, 리턴유로부(125)와, 복수개 제2분지유로부(123)와, 출구유로부(124) 각각은 하벽(123A)와, 하벽(123A)에 세워진 한 쌍의 측벽(123B)에 의해 형성될 수 있고, 냉매는 한 쌍의 측벽(123B) 사이를 통과하면서 수평방향으로 유동될 수 있다.
한편, 냉매유로(T)의 길이는 냉매유로(T) 너비(W)의 최소 3배 이상일 수 있다.
복수개의 제1분지유로부(121) 상호간의 간격은 냉매유로(T)의 너비(W) 보다 짧거나 길 수 있고, 복수개의 제1분지유로부(121) 상호간의 간격은 냉매유로(T)의 너비(W)의 0.7배 내지 1.5배일 수 있다.
그리고, 복수개의 제2분지유로부(123) 상호간의 간격은 냉매유로(T)의 너비(W) 보다 짧거나 길 수 있고, 복수개의 제2분지유로부(123) 상호간의 간격은 냉매유로(T)의 너비(W)의 0.7배 내지 1.5배일 수 있다.
접합부(140)는 하판(120) 중 냉매유로부(130) 이외의 나머지 전체일 수 있다.
접합부(140)는 복수개의 제1분지유로부(121) 중 복수개의 제2분지유로부(123)와 가장 근접한 어느 하나의 제1분지유로부와, 복수개의 제2분지유로부(123) 중 복수개의 제1분지유로부(121)와 가장 근접한 어느 하나의 제2분지유로부를 잇는 이너 접합부(140A)를 포함할 수 있다.
이너 접합부(140A)는 복수개의 제1분지유로부(121)의 군과 복수개 제2분지유로부(123)의 군 사이에 위치될 수 있다.
접합부(140)는 복수개의 제1분지유로부(121)를 기준으로 이너 접합부(140A)의 반대편에 위치하는 제1아우터 접합부(140B)를 포함할 수 있다.
접합부(140)는 복수개의 제2분지유로부(121)를 기준으로 이너 접합부(140A)의 반대편에 위치하는 제2아우터 접합부(140C)를 포함할 수 있다.
접합부(140)는 리턴 유로부(125)를 기준으로 이너 접합부(140A)의 반대편에 위치하는 제3아우터 접합부(140D)를 포함할 수 있다.
접합부(140)는 이너 접합부(140A)와 연결되고 제3아우터 접합부(140D)의 반대편에 위치하는 제4아우터 접합부(140E)를 포함할 수 있다.
하판(120)는 냉매유로부(130) 주변이 상판(110)에 접합될 수 있다.
한편, 상판(110)은 입구유로부(122)를 마주보는 영역에 냉매가 유입되는 냉매입구(113)가 형성될 수 있다. 상판(110)은 출구유로부(124)를 마주보는 영역에 냉매가 유출되는 냉매출구(114)가 형성될 수 있다.
냉매입구(113) 및 냉매출구(114)는 배터리모듈(2)이 안착되지 않는 비안착면(111B)에 형성될 수 있다.
배터리 열교환기(1)는 냉매입구(113)로 냉매를 안내하는 냉매 인렛 튜브(150)와, 냉매출구(114)로 유출된 냉매를 안내하는 냉매 아웃렛 튜브(160)를 더 포함할 수 있다.
냉매 인렛 튜브(150)와 냉매 아웃렛 튜브(160)는 상판(110)에 일체로 형성되는 것이 가능하고, 상판(110)과 별도로 제조된 후 상판(110)에 스크류 등의 체결부재나 브레이징 접합 등에 의해 고정되는 것이 가능하다.
냉매 인렛 튜브(150)와 냉매 아웃렛 튜브(160)가 상판(110)에 일체로 형성될 경우, 냉매 인렛 튜브(150)와 냉매 아웃렛 튜브(160)는 상판(110) 중 비안착면(111B)에서 상측 방향으로 돌출되게 형성될 수 있다.
냉매 인렛 튜브(150)와 냉매 아웃렛 튜브(160)가 상판(110)에 별도로 고정될 경우, 냉매 인렛 튜브(150)는 상판(110) 중 안착면(111A) 이외에 결합되어 냉매유로(T)로 냉매를 공급할 수 있다.
그리고, 냉매 아웃렛 튜브(160)는 상판(110) 중 안착면(111A) 이외에 냉매 인렛 튜브(150)와 이격되게 결합되고 냉매유로(T)의 냉매를 토출 안내할 수 있다.
한편, 복수개의 배터리모듈(2)은 상판(110) 중 복수개의 제1분지유로부(121)의 상측에 위치하는 영역과, 상판(110) 중 이너 접합부의 상측에 위치하는 영역과, 상판(110) 중 복수개 제2분지유로부(123)의 상측에 위치하는 영역에 걸쳐 길게 배치되는 것이 바람직하다.
복수개의 배터리모듈(2)은 복수개의 분지유로부(121)(123) 각각의 너비 방향과 나란한 방향으로 길게 배치될 수 있다.
예를 들어, 제1분지유로부(121) 및 제2분지유로부(123) 각각이 좌우 방향으로 길게 형성될 경우, 복수개의 배터리모듈(2)은 상판(110)의 상면에 전후 방향으로 길게 배치될 수 있다.
반대로, 제1분지유로부(121) 및 제2분지유로부(123) 각각이 전후 방향으로 길게 형성될 경우, 복수개의 배터리모듈(2)은 상판(110) 상면에 좌우 방향으로 길게 배치될 수 있다.
도 7은 본 발명의 일 실시 예에 따른 냉매유로의 너브와 높이의 비에 따른 내압강도가 도시된 도이고, 도 8은 도 7은 본 발명의 일 실시 예에 따른 냉매유로의 너브와 높이의 비에 따른 배터리모듈의 최고온도와 배터리모듈간 온도편차가 도시된 도이다.
도 7에는 하판(120)이 상판(110)에 브레이징 접합 완료되었을 때의 내압강도와, 하판(120)이 상판(110)에 브레이징 접합되기 이전일 때의 내압강도가 함께 도시된다.
배터리 열교환기(1)의 열교환 성능은 냉매유로(T)의 너비(W)가 길수록 향상되는데, 냉매유로(T)의 너비(W)가 너무 길 경우 냉매유로부(130)의 하벽(123A)에 쳐짐이 발생될 수 있고, 내압강도가 낮아질 수 있다.
냉매유로(T)의 너비(W)는 적정 내압강도를 확보할 수 있는 범위로 설정되는 것이 바람직하다.
도 7을 참고할 때, 냉매유로(T)의 너비(W)는 냉매유로(T)의 높이(H)의 10배 이하인 것이 바람직하다. 하판(120)이 상판(110)에 브레이징 접합 완료되었을 때, 냉매유로(T)의 너비(W)가 냉매유로(T)의 높이(H)의 10배를 초과하면, 내압강도는 30bar 미만로 낮아질 수 있고, 이 경우 신뢰성이 낮을 수 있다.
반면에, 하판(120)이 상판(110)에 브레이징 접합 완료되었을 때, 냉매유로(T)의 너비(W)가 냉매유로(T)의 높이(H)의 10배를 이하이면, 내압강도는 30bar 이상이 확보될 수 있다.
한편, 도 8을 참고할 때, 냉매유로(T)의 너비(W)는 냉매유로(T)의 높이(H)의 7배 이상인 것이 바람직하다.
도 8을 참고할 때, 냉매유로(T)의 너비(W)가 냉매유로(T)의 높이(H)의 7배 미만인 경우, 복수개 배터리모듈의 최고온도는 30℃ 이상으로 너무 높고, 복수개 배터리모듈(2) 상호간의 온도편차가 3℃ 이상인 것이 확인될 수 있다.
반대로, 냉매유로(T)의 너비(W)가 냉매유로(T)의 높이(H)의 7배 이상인 경우, 복수개 배터리모듈의 최고온도는 30 ℃ 미만으로 낮고, 복수개 배터리모듈(2) 상호간의 온도편차가 3 ℃ 미만인 것이 확인될 수 있다.
즉, 배터리 열교환기(1)는 충분한 내압강도를 확보하면서, 복수개 배터리모듈(2) 상호간의 온도편차를 최소화할 수 있도록 냉매유로(T)의 너비(W)가 냉매유로(T)의 높이(H)의 7배 이상 10배 이하인 범위인 것이 가장 바람직하다.
예를 들어, 냉매유로(T)의 높이(H)가 1.1mm 일 경우, 냉매유로(T)의 너비(W)는 7,7mm 내지 11mm 일 수 있다.
또한, 제조자는 플레이트 형상의 하판를 프레스 기기로 프레싱하여, 냉매유로(T)의 너비(W)가 냉매유로(T)의 높이(H)의 7배 이상 10배 이하인 냉매유로부(130)를 성형할 수 있고, 냉매유로부(130)가 형성된 하판(120)을 플레이트 형상의 상판(110)과 브레이징 접합할 수 있다.
제조자는 하판(120)을 프레스 하는 공정과, 하판(120)을 상판(110)의 저면에 브레이징 접합하는 공정으로 냉매유로(T)가 형성된 배터리 열교환기(1)를 제조할 수 있다.
상기와 같이 구성된 본 발명의 작용을 설명하면 다음과 같다.
차량의 구동시, 냉매 인렛 튜브(150)에는 팽창기구에 의해 팽창된 2상 냉매가 유입될 수 있다. 냉매 인렛 튜브(150)로 유입된 냉매는 냉매유로부(130)으로 유입되어 냉매유로부(130)를 따라 흐를 수 있고, 냉매유로부(130)를 따라 흐르면서 상판(110) 및 하판(120)의 열을 흡열할 수 있다.
냉매의 유동에 대해 좀 더 상세히 설명하면, 냉매 인렛 튜브(150)를 통과한 냉매는 입구유로부(122)에서 복수개의 제1분지유로부(121)로 분산될 수 있고, 냉매는 복수개의 제1분지유로부(121) 각각을 통과하면서 복수개의 제1분지유로부(121) 및 상판(110)의 열을 흡열할 수 있다.
복수개의 제1분지유로부(121)를 통과한 냉매는 리턴유로부(125)로 유입되어 혼합되고, 리턴 유로부(125)에서 그 유동방향이 전환되어 복수개의 제2분지유로부(123)로 분산될 수 있다. 냉매는 복수개의 제2분지유로부(123) 각각을 통과하면서 복수개의 제2분지유로부(123) 및 상판(110)의 열을 흡열할 수 있고, 출구유로부(124)로 유입될 수 있다. 출구유동부(125)로 유입된 냉매는 출구유동부(125)에서 혼합되고 냉매 아웃렛 튜브(160)로 유동될 수 있다.
도 9는 본 발명의 다른 실시 예에 따른 배터리 열교환기의 확대 단면도이다.
본 실시예는 복수개의 분지유로부(121)(123) 중 적어도 하나에 격벽(138)이 돌출된다.
본 실시예는 격벽(138) 이외의 기타 구성 및 작용이 본 발명 일 실시예와 동일하거나 유사하므로 동일부호를 사용하고 그에 대한 상세한 설명은 생략한다.
격벽(138)은 상판(110)의 하면(112)에 접촉되는 상부 접촉단(139)이 형성될 수 있다.
격벽(138)은 분지유로부(121)(123)을 형성하는 하벽(123A)와, 측벽(123B) 중 하벽(123A)의 상면에 돌출되게 형성될 수 있다.
격벽(138)은 한 쌍의 측벽(123B) 사이에 위치할 수 있고, 한 쌍의 측벽(123B) 각각과 이격될 수 있다.
격벽(138)은 한 쌍의 측벽(123B) 사이에 복수개 형성되는 것도 가능하고, 이 경우 복수개의 격벽(138)은 냉매유로(T)의 너비 방향으로 서로 이격될 수 있다.
격벽(138)이 한 쌍의 측벽(123B) 사이에 하나 형성될 경우, 하나의 격벽(138)은 한 쌍의 측벽(123B) 각각과 동일한 거리를 두고 이격될 수 있다.
격벽(138)는 측벽(123B)와 나란하게 형성될 수 있고, 측벽(123B)의 수평방향 길이와 같거나 짧을 수 있다.
격벽(138)은 하판(120)과 상판(110)의 브레이징 접합시 상부 접촉단(139)이 상판(110)의 하면(112)에 접합될 수 있고, 하벽(123A)이 하측 방향으로 쳐지는 것을 방지할 수 있고, 복수개 분지유로부(121)(123)의 강도를 보강할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 상면에 배터리모듈이 올려지는 평면이 형성된 상판과;
    상기 상판에 결합되고 냉매가 안내되는 냉매유로부가 하측으로 돌출되게 프레싱되고 상기 냉매유로부 이외에 상기 상판과 접합되는 접합부가 형성된 하판을 포함하고,
    상기 냉매유로부에는 너비가 높이의 7배 내지 10배인 냉매유로가 형성된 배터리 열교환기.
  2. 제 1 항에 있어서,
    상기 냉매유로부는 상기 냉매유로부의 냉매가 분산되는 복수개의 분지유로부를 포함하고,
    상기 복수개의 분지유로부 중 적어도 하나에는 상기 상판의 하면에 접촉되는 상부 접촉단이 형성된 격벽이 돌출된 배터리 열교환기.
  3. 제 1 항에 있어서,
    상기 냉매유로부는 상기 하판에 형성된 복수개 제1분지유로부와;
    상기 복수개 제1분지유로부 각각의 일측이 연결된 입구유로부와;
    상기 제1분지유로부와 나란한 복수개 제2분지유로부와;
    상기 복수개 제2분지유로부의 일측이 연결된 출구유로부와;
    상기 복수개 제1분지유로부의 타측과 상기 복수개 제2분지유로부의 타측이 연결된 리턴유로부를 포함하는 배터리 열교환기.
  4. 제 3 항에 있어서,
    상기 상판은 상기 입구유로부를 마주보는 영역에는 냉매가 유입되는 냉매입구가 형성되고,
    상기 출구유로부를 마주보는 영역에 냉매가 유출되는 냉매출구가 형성되며,
    상기 상판에는 상기 냉매입구로 냉매를 안내하는 냉매 인렛 튜브와, 상기 냉매출구로 유출된 냉매를 안내하는 냉매 아웃렛 튜브가 배치된 배터리 열교환기.
  5. 제 3 항에 있어서,
    상기 접합부는
    상기 복수개의 제1분지유로부의 군과 상기 복수개 제2분지유로부의 군 사이에 위치되는 이너 접합부와;
    상기 복수개의 제1분지유로부를 기준으로 상기 이너 접합부의 반대편에 위치하는 제1아우터 접합부와;
    상기 복수개의 제2분지유로부를 기준으로 상기 이너 접합부의 반대편에 위치하는 제2아우터 접합부와;
    상기 리턴 유로부를 기준으로 상기 이너 접합부의 반대편에 위치하는 제3아우터 접합부 및
    상기 이너 접합부와 연결되고 상기 제3아우터 접합부의 반대편에 위치하는 제4아우터 접합부를 포함하는 배터리 열교환기.
  6. 냉매가 통과하는 냉매유로가 형성된 배터리 열교환기와;
    상기 배터리 열교환기에 올려진 적어도 하나의 배터리모듈을 포함하고,
    상기 배터리 열교환기는
    상면에 상기 배터리모듈이 올려지는 안착면이 형성된 상판과;
    상기 상판에 결합되고 상기 냉매유로를 형성하는 냉매유로부가 하측으로 돌출되게 프레싱되고 상기 냉매유로부 이외에 상기 상판과 접합되는 접합부가 형성된 하판과;
    상기 상판 중 상기 안착면 이외에 결합되어 상기 냉매유로로 냉매를 공급하는 냉매 인렛 튜브와,
    상기 상판 중 상기 안착면 이외에 결합되고 상기 냉매유로의 냉매가 유출되는 냉매 아웃렛 튜브를 포함하고,
    상기 냉매유로는 너비가 높이의7배 내지 10배인 배터리 열교환기를 갖는 배터리팩.
  7. 제 6 항에 있어서,
    상기 냉매유로부는 상기 냉매유로부의 냉매가 분산되는 복수개의 분지유로부를 포함하고,
    상기 복수개의 분지유로부 중 적어도 하나에는 상기 상판의 하면에 접촉되는 상부 접촉단이 형성된 격벽이 돌출된 배터리 배터리 열교환기를 갖는 배터리 팩.
  8. 제 6 항에 있어서,
    상기 상판은 상면 전체가 평면인 배터리 열교환기를 갖는 배터리 팩.
  9. 제 6 항에 있어서,
    상기 냉매유로부는 상기 하판의 길이방향으로 길게 형성되고 상기 하판의 길이방향과 직교한 방향으로 이격된 복수개의 제1분지유로부와,
    상기 복수개의 제1분지유로부의 일측이 연결된 입구유로부와,
    상기 제1분지유로부와 나란한 복수개의 제2분지유로부와,
    상기 복수개의 제2분지유로의 일측이 연결된 출구유로부와,
    상기 복수개의 제1분지유로부의 타측과 상기 복수개의 제2분지유로부의 타측이 연결된 리턴유로부를 포함하는 배터리 열교환기를 갖는 배터리 팩.
  10. 제 9 항에 있어서,
    상기 접합부는
    상기 복수개의 제1분지유로부의 군과 상기 복수개 제2분지유로부의 군 사이에 위치되는 이너 접합부와;
    상기 복수개의 제1분지유로부를 기준으로 상기 이너 접합부의 반대편에 위치하는 제1아우터 접합부와;
    상기 복수개의 제2분지유로부를 기준으로 상기 이너 접합부의 반대편에 위치하는 제2아우터 접합부와;
    상기 리턴 유로부를 기준으로 상기 이너 접합부의 반대편에 위치하는 제3아우터 접합부 및
    상기 이너 접합부와 연결되고 상기 제3아우터 접합부의 반대편에 위치하는 제4아우터 접합부를 포함하는 배터리 열교환기를 갖는 배터리 팩.
PCT/KR2017/005479 2016-11-14 2017-05-25 배터리 열교환기 및 그를 갖는 배터리 팩 WO2018088655A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160151407A KR20180054064A (ko) 2016-11-14 2016-11-14 배터리 열교환기 및 그를 갖는 배터리 팩
KR10-2016-0151407 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088655A1 true WO2018088655A1 (ko) 2018-05-17

Family

ID=62110587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005479 WO2018088655A1 (ko) 2016-11-14 2017-05-25 배터리 열교환기 및 그를 갖는 배터리 팩

Country Status (2)

Country Link
KR (1) KR20180054064A (ko)
WO (1) WO2018088655A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043960A1 (fr) * 2018-08-30 2020-03-05 Valeo Systemes Thermiques Dispositif de régulation thermique, notamment de refroidissement
CN112640188A (zh) * 2018-11-16 2021-04-09 株式会社Lg化学 包括冷却部件的电池组和包括该电池组的装置
CN114784420A (zh) * 2018-11-21 2022-07-22 宁德时代新能源科技股份有限公司 换热板及电池模组
EP4175020A4 (en) * 2021-06-22 2024-01-24 Lg Energy Solution Ltd BATTERY MODULE AND BATTERY PACK WITH IT

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102373774B1 (ko) 2018-08-21 2022-03-14 에스케이온 주식회사 배터리 모듈 및 이를 포함하는 배터리 팩
KR102293499B1 (ko) * 2019-07-09 2021-08-26 주식회사 성우하이텍 배터리 모듈 하우징과 냉각패널의 접합 방법
KR102205662B1 (ko) * 2019-09-20 2021-01-21 주식회사 성우하이텍 전기 자동차용 배터리 케이스
KR102301441B1 (ko) * 2020-04-01 2021-09-14 주식회사 티앤지 배터리의 냉각 판넬 구조
KR102590294B1 (ko) * 2021-05-07 2023-10-17 (주)화신 전기자동차용 배터리팩 케이스
KR102563184B1 (ko) * 2021-05-11 2023-08-03 주식회사 브이티엑스 배터리 쿨링시스템과 이것을 이용한 배터리팩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112117A (ko) * 2012-04-03 2013-10-14 (주)인벤티오 배터리 냉각 장치 제조 방법 및 이에 의해 제조된 배터리 냉각 장치
KR20150081514A (ko) * 2014-01-06 2015-07-15 희성정밀 주식회사 전기 자동차용 배터리 냉각장치 및 그 제조 방법
KR20150100365A (ko) * 2014-02-25 2015-09-02 엘지전자 주식회사 배터리팩
KR20160024187A (ko) * 2014-08-25 2016-03-04 현대모비스 주식회사 차량용 배터리 냉각장치
JP5893133B2 (ja) * 2012-05-17 2016-03-23 日立オートモティブシステムズ株式会社 電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130112117A (ko) * 2012-04-03 2013-10-14 (주)인벤티오 배터리 냉각 장치 제조 방법 및 이에 의해 제조된 배터리 냉각 장치
JP5893133B2 (ja) * 2012-05-17 2016-03-23 日立オートモティブシステムズ株式会社 電池モジュール
KR20150081514A (ko) * 2014-01-06 2015-07-15 희성정밀 주식회사 전기 자동차용 배터리 냉각장치 및 그 제조 방법
KR20150100365A (ko) * 2014-02-25 2015-09-02 엘지전자 주식회사 배터리팩
KR20160024187A (ko) * 2014-08-25 2016-03-04 현대모비스 주식회사 차량용 배터리 냉각장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020043960A1 (fr) * 2018-08-30 2020-03-05 Valeo Systemes Thermiques Dispositif de régulation thermique, notamment de refroidissement
FR3085544A1 (fr) * 2018-08-30 2020-03-06 Valeo Systemes Thermiques Dispositif de regulation thermique, notamment de refroidissement
CN112640188A (zh) * 2018-11-16 2021-04-09 株式会社Lg化学 包括冷却部件的电池组和包括该电池组的装置
CN114784420A (zh) * 2018-11-21 2022-07-22 宁德时代新能源科技股份有限公司 换热板及电池模组
CN114784420B (zh) * 2018-11-21 2024-02-20 宁德时代新能源科技股份有限公司 换热板及电池模组
EP4175020A4 (en) * 2021-06-22 2024-01-24 Lg Energy Solution Ltd BATTERY MODULE AND BATTERY PACK WITH IT

Also Published As

Publication number Publication date
KR20180054064A (ko) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2018088655A1 (ko) 배터리 열교환기 및 그를 갖는 배터리 팩
KR100229685B1 (ko) 운반형 전원장치 및 그 본체의 제조방법
WO2015130056A1 (ko) 배터리팩
WO2017026634A1 (ko) 전기자동차의 배터리 열교환 장치
WO2017052194A1 (ko) 서로 다른 두께를 가진 쿨링 핀들의 배열을 포함하는 전지 모듈
WO2019112125A1 (ko) 셀 에지 직접 냉각 방식의 배터리 모듈 및 이를 포함하는 배터리 팩
WO2016144007A1 (ko) 전기소자 냉각용 열교환기
WO2018092999A1 (ko) 배터리 열교환기 및 그를 갖는 배터리 팩
WO2016133360A1 (en) Battery pack for electric vehicle
WO2018174484A1 (ko) 컨버터
WO2016043441A1 (ko) 냉매 유로의 절곡이 최소화된 냉각 구조를 포함하는 전지모듈
WO2019027150A1 (ko) 배터리 셀용 카트리지 및 이를 포함하는 배터리 모듈
WO2019221376A1 (ko) 일체형 냉매 회로 부재를 갖는 프레임 프로파일을 포함한 전지 팩
WO2018110948A1 (ko) 배터리 팩
WO2014058181A1 (en) Heat exchanger
KR20140037351A (ko) 차량용 배터리 냉각 장치
WO2016017927A1 (ko) 차량용 에어컨시스템
WO2019004553A1 (ko) 배터리 모듈
WO2014116055A1 (en) Heat exchanger equipped with cold reserving part and manufacturing method thereof
WO2020013348A1 (ko) 냉각 장치
WO2019132302A1 (ko) 친환경 차량의 전력반도체 냉각용 열교환기
WO2017142290A1 (ko) 전지 시스템
WO2019208942A1 (ko) 차량용 열교환 시스템
WO2014073887A1 (ko) 냉매 회로용 열교환기
WO2018038344A1 (ko) 일체형 라디에이터 및 이의 조립 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868834

Country of ref document: EP

Kind code of ref document: A1