WO2018088632A1 - Perovskite solar cell module and manufacturing method therefor - Google Patents

Perovskite solar cell module and manufacturing method therefor Download PDF

Info

Publication number
WO2018088632A1
WO2018088632A1 PCT/KR2017/000865 KR2017000865W WO2018088632A1 WO 2018088632 A1 WO2018088632 A1 WO 2018088632A1 KR 2017000865 W KR2017000865 W KR 2017000865W WO 2018088632 A1 WO2018088632 A1 WO 2018088632A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
transport layer
layer
cell module
hole transport
Prior art date
Application number
PCT/KR2017/000865
Other languages
French (fr)
Korean (ko)
Inventor
김동환
강윤묵
이해석
김성탁
배수현
이상원
조경진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018088632A1 publication Critical patent/WO2018088632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/12Electrical configurations of PV cells, e.g. series connections or parallel connections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a perovskite solar cell module and a method of manufacturing the same.
  • a solar cell is a device that converts solar energy into electrical energy and generates a current-voltage using a photovoltaic effect. These solar cells are receiving worldwide attention as an alternative to fossil energy in the face of resource depletion and environmental problems. Since high purity materials must be used for high efficiency, much energy is consumed for the purification of raw materials. In addition, since expensive process equipment is used in the process of single crystal or thin film, the manufacturing cost is considerable, which impedes utilization of solar cells.
  • organic-inorganic hybrid perovskite solar cell disclosed in Korean Patent Document KR2016-0015723.
  • the organic-inorganic hybrid perovskite solar cell utilizes a material having a perovskite crystal structure by combining inorganic and organic materials.
  • Perovskite has a very special structure with superconducting phenomena as well as insulator, semiconductor and conductor properties.
  • a conventional perovskite solar cell includes a substrate 1, a transparent electrode 2, an electron transfer layer 3, a light absorption layer 4, a hole transfer layer 5, and a metal electrode.
  • (6) consists of a laminated structure sequentially.
  • indium tin oxide (ITO) or fluorine doped tin oxide (FTO) having a low work function is used as the transparent electrode 2
  • Au or Ag having a high work function is used as the metal electrode 6.
  • a solar cell module is manufactured by patterning a unit solar cell.
  • laser scribing technology is used.
  • Laser scribing is a laser processing using a high power laser and is mainly used for the process of cutting and dividing a substrate or a thin film.
  • high heat is generated in the patterning process by laser scribing, the perovskite and the hole transport layer are damaged by the high heat, thereby causing a problem of deterioration of solar cell efficiency.
  • an aspect of the present invention is the electron transport layer, the absorption layer, and the hole transport layer is sequentially stacked between two opposing damage prevention layer formed on the first electrode
  • an aspect of the present invention is the electron transport layer, the absorption layer, and the hole transport layer is sequentially stacked between two opposing damage prevention layer formed on the first electrode
  • the perovskite solar cell module comprises a transparent substrate to which sunlight is incident; A plurality of first electrodes spaced apart from each other on the transparent substrate; An electron transport layer stacked over a pair of first electrodes adjacent to each other among the first electrodes; An absorption layer formed by disposing a perovskite material on the electron transport layer; A hole transport layer formed on the absorber layer; A pair of first damage preventing layers disposed on each of the pair of first electrodes and covering both sides of the electron transport layer, the absorption layer, and the hole transport layer; And a second electrode formed on the hole transport layer.
  • the perovskite solar cell module according to the present invention, at least one of both ends of the second electrode is formed to surround the first damage preventing film.
  • the first damage preventing film has an electrical insulation.
  • the first damage preventing film is made of at least one selected from the group consisting of a curing agent (resin), resin (epoxy), polymer, oxide, and nitride. .
  • the oxide is at least one selected from the group consisting of O 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , and SrO.
  • the nitride is at least one selected from the group consisting of SiNx, and Si 3 N 4 .
  • the first damage preventing film is formed as a damage preventing layer, and is divided by laser scribing to pattern the solar cell, thereby providing the laser scribing. To prevent damage to the solar cell.
  • an electron transport layer, an absorption layer, and a hole transport layer are sequentially stacked on any one of the first electrodes, and the electron transport layer is sequentially stacked.
  • a pair of second damage preventing films disposed at both ends of the absorbing layer and the hole transport layer.
  • the second electrode is connected to the hole transport layer in the pair of the first damage prevention film, and the hole transport layer in the pair of the second damage prevention film. It is formed continuously over.
  • a step is formed in the electron transfer layer, the absorption layer, and the hole transfer layer so that the height of both sides is higher than the center portion.
  • the method of manufacturing a perovskite solar cell module comprises the steps of (a) coating a first electrode layer on a transparent substrate; (b) cutting the first electrode layer to form a plurality of first electrodes through laser scribing; (c) forming at least two damage preventing layers on each of the first electrodes; (d) sequentially stacking an electron transport layer, an absorption layer, and a hole transport layer between adjacent damage preventing layers; (e) patterning any one of the at least two damage preventing layers to form a solar cell; And (f) coating a second electrode on a space between the upper surface of the hole transport layer and the pair of damage preventing films formed by patterning the damage preventing layer.
  • the step (f) after the step (f), at least two or more of the damage prevention layer, the step of patterning the other one coated with the second electrode; It includes more.
  • the step (e) is patterned by using laser scribing.
  • the solar cell after forming a damage preventing layer on each of a plurality of first electrodes stacked on a transparent substrate, and sequentially laminating an electron transfer layer, an absorbing layer, and a hole transport layer between two opposing damage preventing layers, By cutting and dividing the damage prevention layer by scribing to pattern the solar cell, the solar cell is prevented from being damaged by the high power laser.
  • the damage prevention layer formed by dividing the damage prevention layer is disposed on both sides of the absorption layer and the electron transfer layer by using the damage prevention layer having insulation characteristics, one end of the second electrode formed on the hole transport layer is formed of perovskite or the like. The electrical shunt generated by contact with the electron transport layer can be prevented.
  • FIG. 1 is an exploded perspective view of a conventional perovskite solar cell.
  • FIG. 2 is a cross-sectional view of a perovskite solar cell module according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a perovskite solar cell module according to another embodiment of the present invention.
  • Figure 4 is a process chart showing a method of manufacturing a perovskite solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a perovskite solar cell module according to an embodiment of the present invention.
  • the perovskite solar cell module includes a plurality of first electrodes 20 spaced apart from each other on the transparent substrate 10 and the transparent substrate 10 to which sunlight is incident. ); Perovskite materials are formed on the electron transport layer 30 and the electron transport layer 30 stacked over the pair of first electrodes 20a and 20b adjacent to each other among the first electrodes 20. Disposed in each of the absorption layer 40, the hole transport layer 50 formed on the absorption layer 40, the pair of first electrodes 20a and 20b, and the electron transfer layer 30, the absorption layer 40, and And a pair of first damage preventing films 60 covering both sides of the hole transport layer 50, and a second electrode 70 formed on the hole transport layer 50.
  • Perovskite solar cells using materials that have a perovskite crystal structure by combining inorganic and organic materials are in the spotlight as the next generation thin film solar cells because they are inexpensive to manufacture and thin films can be manufactured by a solution process.
  • a plurality of solar cells are used in the form of a solar cell module arrayed and packaged.
  • the solar cell module is manufactured by forming a layer constituting the solar cell on one transparent substrate 10 and patterning the unit solar cell using laser scribing technology.
  • the transparent substrate 10 In the perovskite solar cell module according to the present invention, the transparent substrate 10, the first electrode 20, the electron transport layer 30, the absorber layer 40, the hole transport layer 50, and the first damage preventing film 60 are described. ), And a second electrode 70.
  • the transparent substrate 10 may be a glass substrate or a polymer substrate, and sunlight is incident through one surface of the substrate.
  • the other surface of the transparent substrate 10 is divided into a plurality of cell regions, and a perovskite solar cell is formed in each of the cell regions.
  • the perovskite solar cell is basically the first electrode 20, the electron transport layer 30, the absorption layer 40, the hole transport layer 50, and the second electrode 70 is sequentially stacked Made of structure.
  • the first electrode 20 is a transparent electrode disposed on the transparent substrate 10 and may be formed of, for example, a transparent conductive oxide such as ITO, FTO, ZnO, ATO, PTO, AZO, IZO.
  • the material of the first electrode 20 is not necessarily limited to the above-described oxide, and includes all known thin films that are transparent, conductive, and electrons can flow.
  • the first electrode 20 is a plurality, the plurality of first electrodes 20 are spaced apart from each other at a predetermined interval.
  • the electron transport layer 30 is disposed over the first electrodes 20a and 20b adjacent to each other.
  • the electron transport layer 30 is made of a material having an energy band capable of moving electrons formed in the perovskite to the first electrode 20, for example, may be TiO 2 , PCBM, or the like.
  • the electron transport layer 30 is stacked on the pair of first electrodes 20a and 20b adjacent to each other to form a structure in which the pair of first electrodes 20a and 20b are connected to each other. That is, the electron transport layer 30 is continuously disposed on the upper surface of the pair of first electrodes 20a and 20b and the outer surface of the transparent substrate 10 between the pair of first electrodes 20a and 20b.
  • the absorption layer 40 is disposed on the electron transport layer 30 disposed as described above.
  • Absorption layer 40 is formed by coating the perovskite material on the electron transport layer 30, where the perovskite material is ABX 3 It may be made of a structure.
  • A is at least one material selected from an alkyl group of CnH 2n + 1 , and inorganic materials such as Cs, Ru, etc. capable of forming the perovskite solar cell structure
  • B is Pb, Sn, Ti, Nb, Zr, and Ce
  • One or more materials selected from the group consisting of, X may be a halogen material.
  • the hole transport layer 50 is formed by coating a hole transport material on the absorber layer 40.
  • the hole transport material is a material having an energy band capable of moving holes formed in the perovskite to the second electrode 70, and may include a single molecule material or a polymer material.
  • the hole transport material may include a single molecule material or a polymer material.
  • an additive may be added, where the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP).
  • the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP).
  • Li-bis (trifluoromethanesulfonyl) imide (Li-TFSI) and TBP may be mixed with the hole transport material.
  • the hole transport material is dissolved in an organic solvent and coated.
  • the first damage prevention layer 60 is disposed on both sides of the electron transfer layer 30, the absorption layer 40, and the hole transfer layer 50 stacked in this manner.
  • the first damage prevention film 60 is formed in pairs, one on each of the adjacent pair of first electrodes 20a and 20b and disposed to face each other.
  • the electron transfer layer 30, the absorbing layer 40, and the hole transfer layer 50 are sequentially stacked between the pair of opposing first damage preventing films 60.
  • the first damage preventing layer 60 is disposed on both sides of the electron transport layer 30, the absorbing layer 40, and the hole transport layer 50, and covers both sides.
  • the first damage preventing film 60 is formed as a damage preventing layer in a solar cell manufacturing process, and is a film formed by being divided by laser scribing in a process of patterning a solar cell. That is, the first damage preventing film 60 is derived from a damage preventing layer that prevents damage of the electron transport layer 30, the absorbing layer 40, and the hole transport layer 50 due to high heat during the laser scribing process. And partition adjacent solar cells.
  • the second electrode 70 is formed on the hole transport layer 50.
  • the second electrode 70 may be formed of at least one metal selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg, The material is not necessarily limited thereto.
  • the first damage prevention layer 60 may be an oxide such as a hardener (resin), a resin (epoxy), a polymer, SiO 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , SrO, etc., which may electrically serve as an insulator. It may include, but is not limited to, nitrides such as SiNx, Si 3 N 4 .
  • the second electrode 70 is a perovskite material of the absorption layer 40 or an electron transfer layer ( 30) Do not touch directly. Therefore, the second electrode 70 may prevent electrical shunt that may occur when the second electrode 70 meets the perovskite material or the electron transport layer 30.
  • a damage preventing layer is formed on each of the plurality of first electrodes 20 stacked on the transparent substrate 10, and the electron transfer layer 30 and the absorbing layer ( 40) After sequentially stacking the hole transport layer 50, the damage prevention layer is cut and divided by laser scribing to pattern the solar cell, thereby preventing the solar cell from being damaged by the high power laser process. Improves its stability.
  • the first damage prevention layer 60 formed by dividing the damage prevention layer is disposed on both sides of the absorption layer 40 and the electron transfer layer 30 by using the damage prevention layer having insulating properties,
  • One end of the second electrode 70 is formed to prevent the perovskite material of the absorbing layer 40 or the electrical shunt generated by directly contacting the electron transfer layer 30.
  • the perovskite solar cell module according to the present invention may further include a second damage prevention film (80).
  • the second damage prevention film 80 is disposed so that a pair is formed to face each other on the first electrode 20 on which the first damage prevention film 60 is disposed, and between the pair of second damage prevention films 80.
  • the electron transport layer 30a, the absorbing layer 40a, and the hole transport layer 50a are sequentially stacked, and the second layer is disposed on both sides of the electron transport layer 30a, the absorbing layer 40a, and the hole transport layer 50a.
  • Damage prevention film 80 is disposed one by one.
  • the electron transport layer 30a, the absorption layer 40a, and the hole transport layer 50a stacked thereon are present.
  • the second electrode 70 spans the hole transport layer 50 disposed in the pair of first damage preventing films 60 and the hole transport layer 50a disposed in the pair of second damage preventing films 80. Is formed. Therefore, the second electrode 70 is an upper surface exposed to the outside of the hole transport layer 50 in the first damage prevention film 60, the outer surface of the first damage prevention film 60 covering the hole transport layer 50, An outer surface of the first electrode 20 exposed between the first damage preventing film 60 and the second damage preventing film 80, an outer surface of the second damage preventing film 80 facing the first damage preventing film 60, and 2 is formed by continuously coating on the upper surface of the hole transport layer (50a) covered by the damage prevention film (80).
  • FIG 3 is a cross-sectional view of a perovskite solar cell module according to another embodiment of the present invention.
  • the perovskite solar cell module according to another embodiment of the present invention has an electron transfer layer 30 and an absorption layer 40 sequentially stacked between a pair of first damage preventing layers 60. ), And a step may be formed in the hole transport layer 50.
  • the height of both sides is higher than that of the center of the electron transport layer 30, the absorption layer 40, and the hole transport layer 50. In this case, the height refers to the length measured from the transparent substrate (10).
  • Figure 4 is a process chart showing a method of manufacturing a perovskite solar cell module according to an embodiment of the present invention.
  • the method for manufacturing a perovskite solar cell module according to the present invention includes coating a first electrode layer, forming a first electrode, forming a damage preventing layer, and forming a solar cell layer. Laminating, patterning a solar cell, and coating a second electrode.
  • the method of manufacturing the perovskite solar cell module is a method of manufacturing the perovskite solar cell module according to the present invention described above, details that overlap with the above-mentioned details will be omitted or simply described. Describe.
  • the perovskite solar cell module according to the present invention is manufactured through the following process.
  • the transparent substrate is prepared, and after the substrate is washed, the first electrode layer is coated.
  • the transparent substrate may be a glass substrate or a polymer substrate
  • the first electrode layer is made of a transparent and conductive material, for example, a transparent conductive oxide such as ITO, FTO, ZnO, ATO, PTO, AZO, IZO Can be.
  • the first electrode layer is cut to form a first electrode.
  • the plurality of first electrodes are spaced apart from each other on the transparent substrate.
  • the damage prevention layer is a hardener (resin), a resin (epoxy), a polymer, an oxide such as SiO 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , SrO, which may serve as an insulator, SiNx, Si It may include a nitride such as 3 N 4 , but is not necessarily limited thereto.
  • the damage prevention layer may be formed using a mask or using a printing-based technology.
  • Mask-based patterning can include shadow masks and screens, vacuum deposition using stencil masks, spray, (aerojol, cold, etc.), screen printing (screen-priting), inkjet-printing, roll-to-roll printing, doctor blading, and dispensing methods, but are not limited thereto. It is not.
  • the damage prevention layer is formed in order to minimize the laser damage that the cell may suffer in the subsequent patterning of the cell.
  • the anti-damage layer may have a thickness of tens of nm to hundreds of um, preferably at a width wider than the resolution of the laser during laser scribing. It is desirable to have a similar or thicker thickness. However, the thickness is not necessarily limited thereto.
  • the adjacent damage preventing layers include damage preventing layers formed on the same first electrode as well as damage preventing layers respectively formed on different first electrodes.
  • the electron transport layer is formed by coating the metal oxide nanoparticles and then heat treatment. At this time, it may be formed of a porous metal oxide layer using a metal oxide paste containing metal oxide nanoparticles.
  • the perovskite material is coated at least once to form an absorbing layer, and the hole transport material is dissolved in an organic solvent and coated on the absorbing layer to produce a hole transporting layer.
  • one of two or more damage preventing layers disposed on the same first electrode is patterned using a laser scribing process or the like.
  • the damage prevention layer is cut, a pair of damage prevention films facing each other are formed, and the first cell and the second cell are divided based on the space provided between the pair of damage protection films.
  • the second electrode is coated.
  • the second electrode is continuously coated on the upper surface exposed to the outside of the hole transport layer and the space between the pair of anti-corrosion film.
  • the second electrode connects the first solar cell and the second solar cell adjacent to each other. That is, the second electrode is continuously connected to the upper surface of the hole transport layer of the first solar cell, the outer surface of the first electrode exposed between the pair of damage preventing films, and the upper surface of the hole transport layer of the second solar cell.
  • a damage prevention layer is disposed on the first electrodes of the first and second solar cells and is not patterned.
  • a second electrode is also formed on an upper surface of the damage prevention layer.
  • the damage prevention layer coated with the second electrode without being patterned may be patterned.
  • patterning is by laser scribing. As a result, a solar cell module in which a plurality of solar cells are arranged on one transparent substrate can be manufactured.
  • the present invention prevents the solar cell from being damaged by the high power laser, and an electrical shunt generated by contacting one side of the second electrode formed on the hole transport layer with the perovskite or the electron transport layer. Prevents industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a perovskite solar cell module and a manufacturing method therefor, and the perovskite solar cell module, according to the present invention, comprises: a transparent substrate (10) to which sunlight is incident; a plurality of first electrodes (20) arranged on the transparent substrate (10) so as to be spaced apart from each other; an electron transport layer (30), which is stacked over one pair of first electrodes (20) adjacent to each other among the first electrodes (20); an absorption layer (40) formed by disposing a perovskite material on the electron transport layer (30); a hole transport layer (50) formed on the absorption layer (40); one pair of first damage prevention films (60) respectively disposed on the one pair of first electrodes (20) to cover both sides of the electron transport layer (30), the absorption layer (40), and the hole transport layer; and a second electrode (70) formed on the hole transport layer.

Description

페로브스카이트 태양전지 모듈 및 이의 제조방법Perovskite solar cell module and manufacturing method thereof
본 발명은 페로브스카이트 태양전지 모듈 및 이의 제조방법에 관한 것이다.The present invention relates to a perovskite solar cell module and a method of manufacturing the same.
태양전지는 태양에너지를 전기에너지로 변환하는 장치로서, 광기전 효과를 이용하여 전류-전압을 생성한다. 이러한 태양전지는 자원의 고갈 및 환경문제에 직면한 화석 에너지의 대체 에너지로 세계적인 관심을 받고 있는데, 고효율화를 위해 매우 순도가 높은 소재를 사용해야 하므로, 원소재의 정제에 많은 에너지가 소모된다. 또한, 단결정 혹은 박막화하는 과정에서 고가의 공정 장비가 사용되므로, 그 제조에 상당한 비용이 소요되어 태양전지의 활용에 장애가 되고 있다.A solar cell is a device that converts solar energy into electrical energy and generates a current-voltage using a photovoltaic effect. These solar cells are receiving worldwide attention as an alternative to fossil energy in the face of resource depletion and environmental problems. Since high purity materials must be used for high efficiency, much energy is consumed for the purification of raw materials. In addition, since expensive process equipment is used in the process of single crystal or thin film, the manufacturing cost is considerable, which impedes utilization of solar cells.
이러한 태양전지의 문제 해결을 위해서 고안된 것 중 하나가 대한민국 특허문헌 KR2016-0015723에 개시된 유무기 하이브리드 페로브스카이트 태양전지이다. 유무기 하이브리드 페로브스카이트 태양전지는 무기물과 유기물이 결합하여 페로브스카이트 결정 구조를 가지는 소재를 활용한다. 페로브스카이트는 부도체·반도체·도체 성질과 함께 초전도 현상까지 보이는 매우 특별한 구조를 갖는다. One of the things devised to solve the problem of such a solar cell is an organic-inorganic hybrid perovskite solar cell disclosed in Korean Patent Document KR2016-0015723. The organic-inorganic hybrid perovskite solar cell utilizes a material having a perovskite crystal structure by combining inorganic and organic materials. Perovskite has a very special structure with superconducting phenomena as well as insulator, semiconductor and conductor properties.
이러한 유무기 하이브리드 페로브스카이트 태양전지는 제조비용이 저렴하고 용액공정으로 박막제작이 가능하므로 현재 차세대 박막 태양전지로 각광받고 있다. 도 1에 도시된 바와 같이, 종래 페로브스카이트 태양전지는 기판(1), 투명전극(2), 전자전달층(3), 광흡수층(4), 정공전달층(5), 및 금속전극(6)이 순차적으로 적층된 구조로 이루어진다. 여기서, 투명전극(2)으로는 일함수가 낮은 ITO(Indium Tin Oxide) 또는 FTO(Fluorine doped Tin Oxide)가, 금속전극(6)으로는 높은 일함수를 갖는 Au 또는 Ag 등이 사용된다. These organic-inorganic hybrid perovskite solar cells are in the spotlight as the next-generation thin film solar cells because the manufacturing cost is low and the thin film can be manufactured by the solution process. As shown in FIG. 1, a conventional perovskite solar cell includes a substrate 1, a transparent electrode 2, an electron transfer layer 3, a light absorption layer 4, a hole transfer layer 5, and a metal electrode. (6) consists of a laminated structure sequentially. Here, indium tin oxide (ITO) or fluorine doped tin oxide (FTO) having a low work function is used as the transparent electrode 2, and Au or Ag having a high work function is used as the metal electrode 6.
다만, 페로브스카이트 태양전지 하나가 얻을 수 있는 전압과 전류 값은 한계가 있다. 따라서, 원하는 출력을 얻기 위해 다수의 태양전지들을 어레이하고 패키징하여 사용하는데, 이러한 형태를 태양전지 모듈이라고 한다. 일반적인 태양전지 모듈은 단위 태양전지 셀을 패터닝하여 제작되는데, 이 과정에서 레이저 스크라이빙(laser scribing) 기술이 사용된다. 레이저 스크라이빙은 고출력의 레이저를 사용하는 레이저 가공으로서, 기판 또는 박막을 절단하여 분할하는 공정에 주로 사용된다. 그러나 레이저 스크라이빙에 의한 패터닝 과정에서 고열이 발생하므로, 페로브스카이트, 및 정공전달층이 고열에 의해 손상되어 태양전지 효율이 저하되는 문제가 발생한다.However, the voltage and current values that can be obtained by one perovskite solar cell are limited. Therefore, a plurality of solar cells are arrayed and packaged to obtain a desired output, which is called a solar cell module. In general, a solar cell module is manufactured by patterning a unit solar cell. In this process, laser scribing technology is used. Laser scribing is a laser processing using a high power laser and is mainly used for the process of cutting and dividing a substrate or a thin film. However, since high heat is generated in the patterning process by laser scribing, the perovskite and the hole transport layer are damaged by the high heat, thereby causing a problem of deterioration of solar cell efficiency.
이에 종래 페로브스카이트 태양전지 모듈화에 대한 문제점을 해결하기 위한 방안이 절실히 요구되고 있다.Therefore, there is an urgent need for a method for solving the problems of conventional perovskite solar cell modularization.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 제1 전극 상에 형성된 대향하는 2개의 손상방지층 사이에 전자전달층, 흡수층, 및 정공전달층이 순차적으로 적층되고, 레이저 스크라이빙에 의해 손상방지층이 절단 분할되어 태양전지 셀이 패터닝되는 페로브스카이트 태양전지 모듈을 제공하는 것이다.The present invention is to solve the above-mentioned problems of the prior art, an aspect of the present invention is the electron transport layer, the absorption layer, and the hole transport layer is sequentially stacked between two opposing damage prevention layer formed on the first electrode In order to provide a perovskite solar cell module in which a damage prevention layer is cut and divided by laser scribing to pattern a solar cell.
본 발명에 따른 페로브스카이트 태양전지 모듈은 태양광이 입사하는 투명기판; 상기 투명기판 상에 서로 이격되어 배치되는 다수의 제1 전극; 상기 제1 전극 중 서로 인접하는 한 쌍의 제1 전극에 걸쳐 적층되는 전자전달층; 상기 전자전달층 상에, 페로브스카이트 물질이 배치되어 형성되는 흡수층; 상기 흡수층 상에 형성되는 정공전달층; 기 한 쌍의 제1 전극 각각에 배치되어, 상기 전자전달층, 흡수층, 및 정공전달층의 양측을 커버하는 한 쌍의 제1 손상방지막; 및 기 정공전달층 상에 형성되는 제2 전극;을 포함한다. The perovskite solar cell module according to the present invention comprises a transparent substrate to which sunlight is incident; A plurality of first electrodes spaced apart from each other on the transparent substrate; An electron transport layer stacked over a pair of first electrodes adjacent to each other among the first electrodes; An absorption layer formed by disposing a perovskite material on the electron transport layer; A hole transport layer formed on the absorber layer; A pair of first damage preventing layers disposed on each of the pair of first electrodes and covering both sides of the electron transport layer, the absorption layer, and the hole transport layer; And a second electrode formed on the hole transport layer.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 제2 전극의 양측단 중 적어도 하나는 상기 제1 손상방지막을 감싸도록 형성된다.In addition, in the perovskite solar cell module according to the present invention, at least one of both ends of the second electrode is formed to surround the first damage preventing film.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 제1 손상방지막은 전기절연성을 가진다.Further, in the perovskite solar cell module according to the present invention, the first damage preventing film has an electrical insulation.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 제1 손상방지막은 경화제(resin), 수지(epoxy), 고분자, 산화물, 및 질화물로 구성된 군으로부터 선택되는 적어도 어느 하나 이상으로 이루어진다.In addition, in the perovskite solar cell module according to the present invention, the first damage preventing film is made of at least one selected from the group consisting of a curing agent (resin), resin (epoxy), polymer, oxide, and nitride. .
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 산화물은 O2, Al2O3, MgO, CaO, Y2O3, 및 SrO로 구성된 군으로부터 선택되는 적어도 어느 하나 이상으로 이루어지고, 상기 질화물은 SiNx, 및 Si3N4 로 구성된 군으로부터 선택되는 적어도 어느 하나 이상으로 이루어진다.In addition, in the perovskite solar cell module according to the present invention, the oxide is at least one selected from the group consisting of O 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , and SrO. The nitride is at least one selected from the group consisting of SiNx, and Si 3 N 4 .
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 제1 손상방지막은 손상방지층으로 형성되었다가, 태양전지 셀을 패터닝하는 레이저 스크라이빙에 의해 분할되어, 상기 레이저 스크라이빙에 의한 상기 태양전지 셀의 손상을 방지한다.In the perovskite solar cell module according to the present invention, the first damage preventing film is formed as a damage preventing layer, and is divided by laser scribing to pattern the solar cell, thereby providing the laser scribing. To prevent damage to the solar cell.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 어느 하나의 상기 제1 전극 상에, 전자전달층, 흡수층, 및 정공전달층이 순차적으로 적층되고, 순차적으로 적층된 상기 전자전달층, 흡수층, 및 정공전달층 양측단에 배치되는 한 쌍의 제2 손상방지막;을 더 포함한다.In the perovskite solar cell module according to the present invention, an electron transport layer, an absorption layer, and a hole transport layer are sequentially stacked on any one of the first electrodes, and the electron transport layer is sequentially stacked. And a pair of second damage preventing films disposed at both ends of the absorbing layer and the hole transport layer.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 제2 전극은 한 쌍의 상기 제1 손상방지막 내의 상기 정공전달층, 및 한 쌍의 상기 제2 손상방지막 내의 상기 정공전달층에 걸쳐 연속으로 형성된다.Further, in the perovskite solar cell module according to the present invention, the second electrode is connected to the hole transport layer in the pair of the first damage prevention film, and the hole transport layer in the pair of the second damage prevention film. It is formed continuously over.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈에 있어서, 상기 전자전달층, 흡수층, 및 정공전달층에 중심부보다 양측의 높이가 더 높도록 단차가 형성된다.In addition, in the perovskite solar cell module according to the present invention, a step is formed in the electron transfer layer, the absorption layer, and the hole transfer layer so that the height of both sides is higher than the center portion.
한편, 본 발명에 따른 페로브스카이트 태양전지 모듈의 제조방법은 (a) 투명기판 상에 제1 전극층을 코팅하는 단계; (b) 레이저 스크라이빙을 통해, 상기 제1 전극층을 절단하여 다수의 제1 전극을 형성하는 단계; (c) 상기 제1 전극 각각에 적어도 2개 이상의 손상방지층을 형성하는 단계; (d) 인접하는 상기 손상방지층 사이에, 전자전달층, 흡수층, 및 정공전달층을 순차적으로 적층하는 단계; (e) 적어도 2개 이상의 상기 손상방지층 중 어느 하나를 패터닝하여, 태양전지 셀을 형성하는 단계; 및 (f) 상기 정공전달층 상면, 및 손상방지층이 패터닝되어 형성된 한 쌍의 손상방지막 사이 공간에 연속적으로 제2 전극을 코팅하는 단계;를 포함한다. On the other hand, the method of manufacturing a perovskite solar cell module according to the present invention comprises the steps of (a) coating a first electrode layer on a transparent substrate; (b) cutting the first electrode layer to form a plurality of first electrodes through laser scribing; (c) forming at least two damage preventing layers on each of the first electrodes; (d) sequentially stacking an electron transport layer, an absorption layer, and a hole transport layer between adjacent damage preventing layers; (e) patterning any one of the at least two damage preventing layers to form a solar cell; And (f) coating a second electrode on a space between the upper surface of the hole transport layer and the pair of damage preventing films formed by patterning the damage preventing layer.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈의 제조방법에 있어서, 상기 (f) 단계 이후에, 적어도 2개 이상의 상기 손상방지층 중 상기 제2 전극이 코팅된 다른 하나를 패터닝하는 단계;를 더 포함한다.In addition, in the method of manufacturing a perovskite solar cell module according to the present invention, after the step (f), at least two or more of the damage prevention layer, the step of patterning the other one coated with the second electrode; It includes more.
또한, 본 발명에 따른 페로브스카이트 태양전지 모듈의 제조방법에 있어서, 상기 (e) 단계는 레이저 스크라이빙(laser scribing)을 사용하여 패터닝한다.In addition, in the method of manufacturing a perovskite solar cell module according to the present invention, the step (e) is patterned by using laser scribing.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims are not to be interpreted in a conventional and dictionary sense, and the inventors may appropriately define the concept of terms in order to best describe their own invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따르면, 투명기판 상에 적층된 다수의 제1 전극 각각에 손상방지층을 형성하고, 대향하는 2개의 손상방지층 사이에 전자전달층, 흡수층, 및 정공전달층을 순차적으로 적층한 후에, 레이저 스크라이빙에 의해 손상방지층을 절단하고 분할하여 태양전지 셀을 패터닝함으로써, 태양전지가 고출력 레이저에 의해 손상되는 것을 방지한다.According to the present invention, after forming a damage preventing layer on each of a plurality of first electrodes stacked on a transparent substrate, and sequentially laminating an electron transfer layer, an absorbing layer, and a hole transport layer between two opposing damage preventing layers, By cutting and dividing the damage prevention layer by scribing to pattern the solar cell, the solar cell is prevented from being damaged by the high power laser.
또한, 절연 특성이 있는 손상방지층을 사용함으로써, 손상방지층이 분할되어 형성된 손상방지막이 흡수층 및 전자전달층 양측에 배치되므로, 정공전달층 상에 형성되는 제2 전극의 일측단이 페로브스카이트 또는 전자전달층과 접촉하여 발생하는 전기적인 션트(shunt)를 방지할 수 있다.In addition, since the damage prevention layer formed by dividing the damage prevention layer is disposed on both sides of the absorption layer and the electron transfer layer by using the damage prevention layer having insulation characteristics, one end of the second electrode formed on the hole transport layer is formed of perovskite or the like. The electrical shunt generated by contact with the electron transport layer can be prevented.
도 1은 종래 페르브스카이트 태양전지의 분해 사시도이다.1 is an exploded perspective view of a conventional perovskite solar cell.
도 2는 본 발명의 실시예에 따른 페로브스카이트 태양전지 모듈의 단면도이다.2 is a cross-sectional view of a perovskite solar cell module according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 페로브스카이트 태양전지 모듈의 단면도이다.3 is a cross-sectional view of a perovskite solar cell module according to another embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 페로브스카이트 태양전지 모듈의 제조방법을 도시한 공정도이다.Figure 4 is a process chart showing a method of manufacturing a perovskite solar cell module according to an embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, terms such as “first” and “second” are used to distinguish one component from another component, and the component is not limited by the terms. In the following description, detailed descriptions of related well-known techniques that may unnecessarily obscure the subject matter of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시예에 따른 페로브스카이트 태양전지 모듈의 단면도이다.2 is a cross-sectional view of a perovskite solar cell module according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명에 따른 페로브스카이트 태양전지 모듈은 태양광이 입사하는 투명기판(10), 투명기판(10) 상에 서로 이격되어 배치되는 다수의 제1 전극(20); 제1 전극(20) 중 서로 인접하는 한 쌍의 제1 전극(20a, 20b)에 걸쳐 적층되는 전자전달층(30), 전자전달층(30) 상에, 페로브스카이트 물질이 배치되어 형성되는 흡수층(40), 흡수층(40) 상에 형성되는 정공전달층(50), 한 쌍의 제1 전극(20a, 20b) 각각에 배치되어, 전자전달층(30), 흡수층(40), 및 정공전달층(50)의 양측을 커버하는 한 쌍의 제1 손상방지막(60), 및 정공전달층(50) 상에 형성되는 제2 전극(70)을 포함한다.As shown in FIG. 2, the perovskite solar cell module according to the present invention includes a plurality of first electrodes 20 spaced apart from each other on the transparent substrate 10 and the transparent substrate 10 to which sunlight is incident. ); Perovskite materials are formed on the electron transport layer 30 and the electron transport layer 30 stacked over the pair of first electrodes 20a and 20b adjacent to each other among the first electrodes 20. Disposed in each of the absorption layer 40, the hole transport layer 50 formed on the absorption layer 40, the pair of first electrodes 20a and 20b, and the electron transfer layer 30, the absorption layer 40, and And a pair of first damage preventing films 60 covering both sides of the hole transport layer 50, and a second electrode 70 formed on the hole transport layer 50.
무기물과 유기물이 결합하여 페로브스카이트 결정 구조를 가지는 소재를 활용한 페로브스카이트 태양전지는 제조비용이 저렴하고 용액공정으로 박막제작이 가능하여 차세대 박막 태양전지로 각광받고 있다. 다만, 이러한 태양전지 한 개로 얻을 수 있는 전압과 전류 값에 한계가 있어, 실제로는 다수의 태양전지를 어레이하고 패키징한 태양전지 모듈 형태로 사용한다. 태양전지 모듈은 하나의 투명기판(10)에 태양전지를 구성하는 층(layer)을 형성하고, 레이저 스크라이빙(laser scribing) 기술을 사용해 단위 태양전지 셀을 패터닝하여 제조된다. 그런데 고출력의 레이저를 사용하는 레이저 스크라이빙 공정시에 고열이 발생하여, 태양전지를 구성하는 페로브스카이트, 및 정공전달층 등이 손상되고, 이로 인해 태양전지의 효율이 저하되는 문제가 발생한다. 이에 이러한 문제점을 해결하기 위해서, 본 발명에 따른 페로브스카이트 태양전지 모듈 및 이의 제조방법이 안출되었다.Perovskite solar cells using materials that have a perovskite crystal structure by combining inorganic and organic materials are in the spotlight as the next generation thin film solar cells because they are inexpensive to manufacture and thin films can be manufactured by a solution process. However, there is a limit in the voltage and current values obtained with one solar cell, and in practice, a plurality of solar cells are used in the form of a solar cell module arrayed and packaged. The solar cell module is manufactured by forming a layer constituting the solar cell on one transparent substrate 10 and patterning the unit solar cell using laser scribing technology. However, high heat is generated during the laser scribing process using a high-power laser, resulting in damage to the perovskite constituting the solar cell, the hole transport layer, and the like, resulting in a decrease in the efficiency of the solar cell. do. In order to solve this problem, a perovskite solar cell module and a method for manufacturing the same according to the present invention have been devised.
본 발명에 따른 페로브스카이트 태양전지 모듈은 투명기판(10), 제1 전극(20), 전자전달층(30), 흡수층(40), 정공전달층(50), 제1 손상방지막(60), 및 제2 전극(70)을 포함한다.In the perovskite solar cell module according to the present invention, the transparent substrate 10, the first electrode 20, the electron transport layer 30, the absorber layer 40, the hole transport layer 50, and the first damage preventing film 60 are described. ), And a second electrode 70.
여기서, 투명기판(10)은 유리 기판 또는 고분자 기판일 수 있고, 그 기판의 일면을 통해 태양광이 입사된다. 투명기판(10)의 타면은 복수의 셀 영역들로 구분되고, 그 셀 영역 각각에 페로브스카이트 태양전지 셀이 형성된다. 여기서, 페로브스카이트 태양전지 셀은 기본적으로 제1 전극(20), 전자전달층(30), 흡수층(40), 정공전달층(50), 및 제2 전극(70)이 순차적으로 적층되는 구조로 이루어진다.Here, the transparent substrate 10 may be a glass substrate or a polymer substrate, and sunlight is incident through one surface of the substrate. The other surface of the transparent substrate 10 is divided into a plurality of cell regions, and a perovskite solar cell is formed in each of the cell regions. Here, the perovskite solar cell is basically the first electrode 20, the electron transport layer 30, the absorption layer 40, the hole transport layer 50, and the second electrode 70 is sequentially stacked Made of structure.
제1 전극(20)은 투명기판(10) 상에 배치되는 투명전극으로서, 예를 들어, ITO, FTO, ZnO, ATO, PTO, AZO, IZO 와 같은 투명 전도성 산화물로 이루어 질 수 있다. 다만, 제1 전극(20)의 소재가 반드시 상술한 산화물에 한정되는 것은 아니고, 투명하면서 전도성을 갖고 전자가 흐를 수 있는 공지의 박막을 모두 포함한다. 여기서, 제1 전극(20)은 다수 개이고, 다수의 제1 전극(20)은 소정의 간격을 두고 서로 이격되어 배치된다. 이때, 서로 인접하는 제1 전극(20a, 20b)에 걸쳐 전자전달층(30)이 배치된다.The first electrode 20 is a transparent electrode disposed on the transparent substrate 10 and may be formed of, for example, a transparent conductive oxide such as ITO, FTO, ZnO, ATO, PTO, AZO, IZO. However, the material of the first electrode 20 is not necessarily limited to the above-described oxide, and includes all known thin films that are transparent, conductive, and electrons can flow. Here, the first electrode 20 is a plurality, the plurality of first electrodes 20 are spaced apart from each other at a predetermined interval. In this case, the electron transport layer 30 is disposed over the first electrodes 20a and 20b adjacent to each other.
전자전달층(30)은 페로브스카이트에서 형성되는 전자를 제1 전극(20)으로 이동해 줄 수 있는 에너지 밴드를 갖는 물질로 이루어지는데, 예를 들어 TiO2, PCBM 등일 수 있다. 여기서, 전자전달층(30)은 서로 인접하는 한 쌍의 제1 전극(20a, 20b) 상에 적층되어, 그 한 쌍의 제1 전극(20a, 20b)을 서로 연결하는 구조로 형성된다. 즉, 전자전달층(30)은 한 쌍의 제1 전극(20a, 20b) 상면, 및 그 한 쌍의 제1 전극(20a, 20b) 사이의 투명기판(10) 외면에 연속적으로 배치된다. 이렇게 배치된 전자전달층(30) 위에는 흡수층(40)이 배치된다.The electron transport layer 30 is made of a material having an energy band capable of moving electrons formed in the perovskite to the first electrode 20, for example, may be TiO 2 , PCBM, or the like. Here, the electron transport layer 30 is stacked on the pair of first electrodes 20a and 20b adjacent to each other to form a structure in which the pair of first electrodes 20a and 20b are connected to each other. That is, the electron transport layer 30 is continuously disposed on the upper surface of the pair of first electrodes 20a and 20b and the outer surface of the transparent substrate 10 between the pair of first electrodes 20a and 20b. The absorption layer 40 is disposed on the electron transport layer 30 disposed as described above.
흡수층(40)은 페로브스카이트 물질이 전자전달층(30) 상에 코팅되어 형성되는데, 여기서 페로브스카이트 물질은 ABX3 구조로 이루어질 수 있다. 이때, A는 CnH2n+1의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질이고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며, X는 할로겐 물질일 수 있다. 흡수층(40)에 태양광이 흡수되면 전자를 여기(excitation)시키고, 여기된 전자는 전자전달층(30)으로 이동하고, 정공은 정공전달층(50)으로 이동하는데, 이때 페로브스카이트 구조는 생성된 전자와 정공을 에너지 손실 없이 멀리까지 이동할 수 있게 하므로, 더 많은 광을 흡수하게 한다. Absorption layer 40 is formed by coating the perovskite material on the electron transport layer 30, where the perovskite material is ABX 3 It may be made of a structure. In this case, A is at least one material selected from an alkyl group of CnH 2n + 1 , and inorganic materials such as Cs, Ru, etc. capable of forming the perovskite solar cell structure, B is Pb, Sn, Ti, Nb, Zr, and Ce One or more materials selected from the group consisting of, X may be a halogen material. When sunlight is absorbed by the absorption layer 40, electrons are excited, and the excited electrons move to the electron transport layer 30, and holes move to the hole transport layer 50, wherein the perovskite structure Allows the generated electrons and holes to travel farther without losing energy, thus absorbing more light.
여기서, 정공전달층(50)은 흡수층(40) 상에 정공전달 물질이 코팅되어 형성된다. 이때, 정공전달 물질은 페로브스카이트에서 형성되는 정공을 제2 전극(70)으로 이동시킬 수 있는 에너지 밴드를 갖는 물질로서, 단분자 물질 또는 고분자 물질을 포함할 수 있다. 예를 들어, 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 또한, 첨가물질이 첨가될 수도 있는데, 이때 첨가물질은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질일 수 있다. 예를 들어, 상기 정공전달 물질에 Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)와 TBP를 혼합하여 사용할 수 있다. 정공전달 물질은 유기 용매에 용해하여 코팅한다. 이렇게 적층된 전자전달층(30), 흡수층(40), 및 정공전달층(50)의 양측에는 제1 손상방지막(60)이 배치된다.Here, the hole transport layer 50 is formed by coating a hole transport material on the absorber layer 40. In this case, the hole transport material is a material having an energy band capable of moving holes formed in the perovskite to the second electrode 70, and may include a single molecule material or a polymer material. For example, at least one selected from the group consisting of 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA) It may include a substance. In addition, an additive may be added, where the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP). For example, Li-bis (trifluoromethanesulfonyl) imide (Li-TFSI) and TBP may be mixed with the hole transport material. The hole transport material is dissolved in an organic solvent and coated. The first damage prevention layer 60 is disposed on both sides of the electron transfer layer 30, the absorption layer 40, and the hole transfer layer 50 stacked in this manner.
제1 손상방지막(60)은 한 쌍으로, 인접하는 한 쌍의 제1 전극(20a, 20b) 각각에 하나씩 형성되어, 서로 마주보도록 배치된다. 이렇게 대향하는 한 쌍의 제1 손상방지막(60) 사이에서 전자전달층(30), 흡수층(40), 및 정공전달층(50)이 순차적으로 적층된다. 따라서, 전자전달층(30), 흡수층(40), 및 정공전달층(50)의 양측에 제1 손상방지막(60)이 하나씩 배치되어, 그 양측을 커버한다. 실제로 제1 손상방지막(60)은, 태양전지 제조공정에서 손상방지층으로 형성되었다가, 태양전지 셀을 패터닝하는 공정에서 레이저 스크라이빙에 의해 분할되어 형성된 막이다. 즉, 제1 손상방지막(60)은 레이저 스크라이빙 공정 시의 고열에 의한 전자전달층(30), 흡수층(40), 및 정공전달층(50)의 손상을 방지하는 손상방지층에서부터 유래된 것이고, 인접하는 서로 다른 태양전지 셀을 구획한다.The first damage prevention film 60 is formed in pairs, one on each of the adjacent pair of first electrodes 20a and 20b and disposed to face each other. The electron transfer layer 30, the absorbing layer 40, and the hole transfer layer 50 are sequentially stacked between the pair of opposing first damage preventing films 60. Accordingly, the first damage preventing layer 60 is disposed on both sides of the electron transport layer 30, the absorbing layer 40, and the hole transport layer 50, and covers both sides. In fact, the first damage preventing film 60 is formed as a damage preventing layer in a solar cell manufacturing process, and is a film formed by being divided by laser scribing in a process of patterning a solar cell. That is, the first damage preventing film 60 is derived from a damage preventing layer that prevents damage of the electron transport layer 30, the absorbing layer 40, and the hole transport layer 50 due to high heat during the laser scribing process. And partition adjacent solar cells.
한편, 정공전달층(50) 상에는 제2 전극(70)이 형성된다. 이때, 제2 전극(70)은 Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, 및 Mg로 구성된 군으로부터 선택된 적어도 하나 이상의 금속으로 형성될 수 있지만, 그 소재가 반드시 이에 한정되는 것은 아니다.Meanwhile, the second electrode 70 is formed on the hole transport layer 50. In this case, the second electrode 70 may be formed of at least one metal selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg, The material is not necessarily limited thereto.
여기서, 제2 전극(70)의 양측단 중 적어도 어느 하나는 제1 손상방지막(60)을 감싸도록 형성되고, 제1 손상방지막(60)은 전기절연성을 가지는 소재로 형성될 수 있다. 이때 제1 손상방지막(60)은 전기적으로 절연체 역할을 할 수 있는 경화제(resin), 수지(epoxy), 고분자, SiO2, Al2O3, MgO, CaO, Y2O3, SrO 등의 산화물, SiNx, Si3N4 등의 질화물을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다. 여기서, 제1 손상방지막(60)이 절연성을 갖고, 그 외면을 제2 전극(70)이 감싸므로, 제2 전극(70)이 흡수층(40)의 페로브스카이트 물질이나, 전자전달층(30)에 직접 닿지 않는다. 따라서, 제2 전극(70)이 페로브스카이트 물질이나 전자전달층(30)과 만나 발생할 수 있는 전기적인 션트(shunt)를 방지할 수 있다.Here, at least one of both ends of the second electrode 70 may be formed to surround the first damage preventing film 60, and the first damage preventing film 60 may be formed of a material having electrical insulation. In this case, the first damage prevention layer 60 may be an oxide such as a hardener (resin), a resin (epoxy), a polymer, SiO 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , SrO, etc., which may electrically serve as an insulator. It may include, but is not limited to, nitrides such as SiNx, Si 3 N 4 . Here, since the first damage preventing film 60 has an insulating property and the outer surface of the second electrode 70 surrounds the outer surface, the second electrode 70 is a perovskite material of the absorption layer 40 or an electron transfer layer ( 30) Do not touch directly. Therefore, the second electrode 70 may prevent electrical shunt that may occur when the second electrode 70 meets the perovskite material or the electron transport layer 30.
종합적으로, 본 발명에 따르면, 투명기판(10) 상에 적층된 다수의 제1 전극(20) 각각에 손상방지층을 형성하고, 대향하는 2개의 손상방지층 사이에 전자전달층(30), 흡수층(40), 정공전달층(50)을 순차적으로 적층한 후에, 레이저 스크라이빙에 의해 손상방지층을 절단하고 분할하여 태양전지 셀을 패터닝함으로써, 태양전지 셀이 고출력 레이저에 의해 손상되는 것을 방지하므로 공정의 안정성을 향상시킨다. 또한, 절연 특성이 있는 손상방지층을 사용함으로써, 손상방지층이 분할되어 형성된 제1 손상방지막(60)이 흡수층(40) 및 전자전달층(30) 양측에 배치되므로, 정공전달층(50) 상에 형성되는 제2 전극(70)의 일측단이 흡수층(40)인 페로브스카이트 물질이나, 전자전달층(30)에 직접 접촉하여 발생하는 전기적인 션트를 방지한다.Overall, according to the present invention, a damage preventing layer is formed on each of the plurality of first electrodes 20 stacked on the transparent substrate 10, and the electron transfer layer 30 and the absorbing layer ( 40) After sequentially stacking the hole transport layer 50, the damage prevention layer is cut and divided by laser scribing to pattern the solar cell, thereby preventing the solar cell from being damaged by the high power laser process. Improves its stability. In addition, since the first damage prevention layer 60 formed by dividing the damage prevention layer is disposed on both sides of the absorption layer 40 and the electron transfer layer 30 by using the damage prevention layer having insulating properties, One end of the second electrode 70 is formed to prevent the perovskite material of the absorbing layer 40 or the electrical shunt generated by directly contacting the electron transfer layer 30.
한편, 본 발명에 따른 페로브스카이트 태양전지 모듈은 제2 손상방지막(80)을 더 포함할 수 있다. 여기서, 제2 손상방지막(80)은 제1 손상방지막(60)이 배치된 제1 전극(20)에, 한 쌍이 형성되어 서로 마주보도록 배치되고, 그 한 쌍의 제2 손상방지막(80) 사이에는 전자전달층(30a), 흡수층(40a), 및 정공전달층(50a)이 순차적으로 적층되어, 전자전달층(30a), 흡수층(40a), 및 정공전달층(50a)의 양측에 제2 손상방지막(80)이 하나씩 배치된다. 따라서, 동일한 제1 전극(20) 상에는 제1 손상방지막(60)에 의해 커버되는 전자전달층(30), 흡수층(40), 및 정공전달층 이외에, 한 쌍의 제2 손상방지막(80) 사이에 적층된 전자전달층(30a), 흡수층(40a), 및 정공전달층(50a)이 존재하게 된다.On the other hand, the perovskite solar cell module according to the present invention may further include a second damage prevention film (80). Here, the second damage prevention film 80 is disposed so that a pair is formed to face each other on the first electrode 20 on which the first damage prevention film 60 is disposed, and between the pair of second damage prevention films 80. The electron transport layer 30a, the absorbing layer 40a, and the hole transport layer 50a are sequentially stacked, and the second layer is disposed on both sides of the electron transport layer 30a, the absorbing layer 40a, and the hole transport layer 50a. Damage prevention film 80 is disposed one by one. Therefore, on the same first electrode 20, between the pair of second damage preventing films 80, in addition to the electron transport layer 30, the absorbing layer 40, and the hole transport layer covered by the first damage preventing film 60. The electron transport layer 30a, the absorption layer 40a, and the hole transport layer 50a stacked thereon are present.
여기서, 제2 전극(70)은 한 쌍의 제1 손상방지막(60) 내에 배치된 정공전달층(50)과 한 쌍의 제2 손상방지막(80) 내에 배치된 정공전달층(50a)에 걸쳐 형성된다. 따라서, 제2 전극(70)은 제1 손상방지막(60) 내의 정공전달층(50)의 외부로 노출된 상면, 그 정공전달층(50)을 커버하는 제1 손상방지막(60)의 외면, 제1 손상방지막(60)과 제2 손상방지막(80) 사이에 노출된 제1 전극(20)의 외면, 제1 손상방지막(60)과 마주보는 제2 손상방지막(80)의 외면, 및 제2 손상방지막(80)에 의해 커버되는 정공전달층(50a)의 상면에 연속적으로 코팅되어 형성된다.Here, the second electrode 70 spans the hole transport layer 50 disposed in the pair of first damage preventing films 60 and the hole transport layer 50a disposed in the pair of second damage preventing films 80. Is formed. Therefore, the second electrode 70 is an upper surface exposed to the outside of the hole transport layer 50 in the first damage prevention film 60, the outer surface of the first damage prevention film 60 covering the hole transport layer 50, An outer surface of the first electrode 20 exposed between the first damage preventing film 60 and the second damage preventing film 80, an outer surface of the second damage preventing film 80 facing the first damage preventing film 60, and 2 is formed by continuously coating on the upper surface of the hole transport layer (50a) covered by the damage prevention film (80).
도 3은 본 발명의 다른 실시예에 따른 페로브스카이트 태양전지 모듈의 단면도이다.3 is a cross-sectional view of a perovskite solar cell module according to another embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 페로브스카이트 태양전지 모듈은 한 쌍의 제1 손상방지막(60) 사이에 순차적으로 적층된 전자전달층(30), 흡수층(40), 및 정공전달층(50)에 단차가 형성될 수 있다. 여기서, 단차는 전자전달층(30), 흡수층(40), 및 정공전달층(50)의 중심부보다 양측의 높이가 더 높게 형성된다. 이때, 높이는 투명기판(10)에서부터 측정한 길이를 의미한다.As shown in FIG. 3, the perovskite solar cell module according to another embodiment of the present invention has an electron transfer layer 30 and an absorption layer 40 sequentially stacked between a pair of first damage preventing layers 60. ), And a step may be formed in the hole transport layer 50. Here, the height of both sides is higher than that of the center of the electron transport layer 30, the absorption layer 40, and the hole transport layer 50. In this case, the height refers to the length measured from the transparent substrate (10).
이하에서는 본 발명에 따른 페로브스카이트 태양전지의 제조방법에 대해서 설명한다.Hereinafter, a method for manufacturing a perovskite solar cell according to the present invention.
도 4는 본 발명의 실시예에 따른 페로브스카이트 태양전지 모듈의 제조방법을 도시한 공정도이다.Figure 4 is a process chart showing a method of manufacturing a perovskite solar cell module according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명에 따른 페로브스카이트 태양전지 모듈의 제조방법은 제1 전극층을 코팅하는 단계, 제1 전극을 형성하는 단계, 손상방지층을 형성하는 단계, 태양전지 층을 적층하는 단계, 태양전지 셀을 패터닝하는 단계, 및 제2 전극을 코팅하는 단계를 포함한다.As shown in FIG. 4, the method for manufacturing a perovskite solar cell module according to the present invention includes coating a first electrode layer, forming a first electrode, forming a damage preventing layer, and forming a solar cell layer. Laminating, patterning a solar cell, and coating a second electrode.
여기서, 페로브스카이트 태양전지 모듈의 제조방법은 상술한 본 발명에 따른 페로브스카이트 태양전지 모듈을 제조하는 방법이므로, 앞서 언급된 내용과 중복되는 사항에 대해서는 자세한 설명을 생략하거나 간단하게만 기술한다.Here, since the method of manufacturing the perovskite solar cell module is a method of manufacturing the perovskite solar cell module according to the present invention described above, details that overlap with the above-mentioned details will be omitted or simply described. Describe.
본 발명에 따른 페로브스카이트 태양전지 모듈은 하기의 과정을 통해 제조된다.The perovskite solar cell module according to the present invention is manufactured through the following process.
먼저, 투명기판을 준비하여, 그 기판을 세척한 후에, 제1 전극층을 코팅한다. 여기서, 투명기판은 유리 기판 또는 고분자 기판일 수 있고, 제1 전극층은 투명하면서 전도성을 갖는 물질로 이루어지는데, 예를 들어 ITO, FTO, ZnO, ATO, PTO, AZO, IZO 와 같은 투명 전도성 산화물일 수 있다. First, a transparent substrate is prepared, and after the substrate is washed, the first electrode layer is coated. Here, the transparent substrate may be a glass substrate or a polymer substrate, the first electrode layer is made of a transparent and conductive material, for example, a transparent conductive oxide such as ITO, FTO, ZnO, ATO, PTO, AZO, IZO Can be.
다음에는 레이저 스크라이빙 공정을 진행함으로써, 제1 전극층을 절단하여 제1 전극을 형성한다. 이때, 투명기판 상에는 다수개의 제1 전극이 서로 이격 배치된다.Next, by performing a laser scribing process, the first electrode layer is cut to form a first electrode. In this case, the plurality of first electrodes are spaced apart from each other on the transparent substrate.
다수개의 제1 전극이 형성되면, 각각의 제1 전극 상에 적어도 2개 이상의 손상방지층을 형성한다. 여기서, 손상방지층은 전기적으로 절연체 역할을 할 수 있는 경화제(resin), 수지(epoxy), 고분자, SiO2, Al2O3, MgO, CaO, Y2O3, SrO 등의 산화물, SiNx, Si3N4 등의 질화물을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다. 이때, 손상방지층은 마스크를 사용하거나 프린팅 기반 기술을 이용하여 형성 할 수 있다. 마스크 기반의 패터닝은 쉐도우(shadow) 마스크 및 스크린(screen), 스텐실(stencil) 마스크를 이용하는 진공 증착(vacuum deposition), 스프레이(spray), (에어로졸(aerojol), 콜드(cold) 등), 스크린 프린팅(screen-priting), 잉크젯 프린팅(inkjet-printing), 롤투롤 프린팅(roll-to-roll printing), 닥터 블레이딩(doctor blading), 토출법(dispensing) 방법을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다. 여기서, 손상방지층은 이후 셀을 패터닝하는 과정에서 셀이 입을 수 있는 레이저 손상을 최소화하기 위해 형성하는 것이다. 또한, 제2 전극과 셀의 흡수층 또는 전자전달층이 맞닿아 발생할 수 있는 전기적인 션트를 방지할 수도 있다. When a plurality of first electrodes are formed, at least two or more damage preventing layers are formed on each first electrode. Here, the damage prevention layer is a hardener (resin), a resin (epoxy), a polymer, an oxide such as SiO 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , SrO, which may serve as an insulator, SiNx, Si It may include a nitride such as 3 N 4 , but is not necessarily limited thereto. At this time, the damage prevention layer may be formed using a mask or using a printing-based technology. Mask-based patterning can include shadow masks and screens, vacuum deposition using stencil masks, spray, (aerojol, cold, etc.), screen printing (screen-priting), inkjet-printing, roll-to-roll printing, doctor blading, and dispensing methods, but are not limited thereto. It is not. Here, the damage prevention layer is formed in order to minimize the laser damage that the cell may suffer in the subsequent patterning of the cell. In addition, it is possible to prevent the electrical shunt that may be caused by the contact between the second electrode and the absorption layer or the electron transfer layer of the cell.
손상방지층은 수십 nm 내지는 수백 um 의 두께(thickness)을 가질 수 있는데, 레이저 스크라이빙 시에 레이저의 레졸루션(resolution) 보다 넓은 폭을 가지는 것이 바람직하고, 일반적으로 페로브스카이트 태양전지의 두께와 유사하거나, 또는 그 보다 두꺼운 두께를 갖는 것이 좋다. 다만, 그 두께가 반드시 이에 한정되어야 하는 것은 아니다.The anti-damage layer may have a thickness of tens of nm to hundreds of um, preferably at a width wider than the resolution of the laser during laser scribing. It is desirable to have a similar or thicker thickness. However, the thickness is not necessarily limited thereto.
다음으로, 인접하는 손상방지층 사이에, 전자전달층, 흡수층, 및 정공전달층을 순차적으로 적층한다. 이때, 인접하는 손상방지층은 서로 다른 제1 전극 상에 각각 형성된 손상방지층뿐만 아니라, 동일한 제1 전극 상에 형성된 손상방지층을 포함한다. Next, an electron transfer layer, an absorption layer, and a hole transfer layer are sequentially stacked between adjacent damage preventing layers. In this case, the adjacent damage preventing layers include damage preventing layers formed on the same first electrode as well as damage preventing layers respectively formed on different first electrodes.
여기서, 전자전달층은 금속 산화물 나노입자를 코팅한 후에 열처리하여 형성한다. 이때, 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 이용하여 다공성 금속산화물층으로 형성할 수도 있다. Here, the electron transport layer is formed by coating the metal oxide nanoparticles and then heat treatment. At this time, it may be formed of a porous metal oxide layer using a metal oxide paste containing metal oxide nanoparticles.
이 후에, 페로브스카이트 물질을 적어도 한번 이상 코팅하여 흡수층을 형성하고, 정공전달물질을 유기 용매에 용해하여 흡수층에 코팅함으로써 정공전달층을 생성한다.Thereafter, the perovskite material is coated at least once to form an absorbing layer, and the hole transport material is dissolved in an organic solvent and coated on the absorbing layer to produce a hole transporting layer.
그 다음에는 제1 태양전지 셀과 제2 태양전지 셀의 영역을 구분하기 위해, 레이저 스크라이빙 공정 등을 이용하여, 동일한 제1 전극 상에 배치된 2개 이상의 손상방지층 중 어느 하나를 패터닝한다. 이때, 손상방지층이 절단되면서, 서로 마주보는 한 쌍의 손상방지막이 형성되고, 그 한 쌍의 손상방지막 사이에 구비된 공간을 기준으로 제1 셀과 제2 셀이 구분된다.Next, to distinguish between the areas of the first solar cell and the second solar cell, one of two or more damage preventing layers disposed on the same first electrode is patterned using a laser scribing process or the like. . At this time, as the damage prevention layer is cut, a pair of damage prevention films facing each other are formed, and the first cell and the second cell are divided based on the space provided between the pair of damage protection films.
이렇게 태양전지 셀이 형성되면, 제2 전극을 코팅한다. 여기서, 제2 전극은 정공전달층의 외부로 노출된 상면, 및 한 쌍의 손상방지막 사이 공간에 연속적으로 코팅된다. 이때, 제2 전극은 서로 인접하는 제1 태양전지 셀과 제2 태양전지 셀을 서로 연결한다. 즉, 제2 전극은 제1 태양전지 셀의 정공전달층의 상면, 한 쌍의 손상방지막 사이에 노출된 제1 전극의 외면, 및 제2 태양전지 셀의 정공전달층의 상면까지 연속적으로 이어진다. 이때, 제1 및 제2 태양전지 셀의 제1 전극 상에 배치되어 패터닝되지 않은 손상방지층이 존재하는데, 그 손상방지층의 상면에도 제2 전극이 형성된다.When the solar cell is formed, the second electrode is coated. Here, the second electrode is continuously coated on the upper surface exposed to the outside of the hole transport layer and the space between the pair of anti-corrosion film. In this case, the second electrode connects the first solar cell and the second solar cell adjacent to each other. That is, the second electrode is continuously connected to the upper surface of the hole transport layer of the first solar cell, the outer surface of the first electrode exposed between the pair of damage preventing films, and the upper surface of the hole transport layer of the second solar cell. In this case, a damage prevention layer is disposed on the first electrodes of the first and second solar cells and is not patterned. A second electrode is also formed on an upper surface of the damage prevention layer.
이 후에, 패터닝되지 않고 제2 전극이 코팅된 손상방지층을 패터닝할 수 있다. 이때, 패터닝은 레이저 스크라이빙에 의한다. 이로써, 다수의 태양전지 셀이 하나의 투명기판에 어레이된 태양전지 모듈을 제작할 수 있다.Thereafter, the damage prevention layer coated with the second electrode without being patterned may be patterned. At this time, patterning is by laser scribing. As a result, a solar cell module in which a plurality of solar cells are arranged on one transparent substrate can be manufactured.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, it is intended to describe the present invention in detail, and the present invention is not limited thereto, and should be understood by those skilled in the art within the technical spirit of the present invention. It is obvious that modifications and improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
본 발명은 태양전지가 고출력 레이저에 의해 손상되는 것을 차단하고, 정공전달층 상에 형성되는 제2 전극의 일측단이 페로브스카이트 또는 전자전달층과 접촉하여 발생하는 전기적인 션트(shunt)를 방지하므로 산업상 이용가능성을 구비한다.The present invention prevents the solar cell from being damaged by the high power laser, and an electrical shunt generated by contacting one side of the second electrode formed on the hole transport layer with the perovskite or the electron transport layer. Prevents industrial applicability.

Claims (12)

  1. 태양광이 입사하는 투명기판;Transparent substrate to which sunlight is incident;
    상기 투명기판 상에 서로 이격되어 배치되는 다수의 제1 전극;A plurality of first electrodes spaced apart from each other on the transparent substrate;
    상기 제1 전극 중 서로 인접하는 한 쌍의 제1 전극에 걸쳐 적층되는 전자전달층;An electron transport layer stacked over a pair of first electrodes adjacent to each other among the first electrodes;
    상기 전자전달층 상에, 페로브스카이트 물질이 배치되어 형성되는 흡수층;An absorption layer formed by disposing a perovskite material on the electron transport layer;
    상기 흡수층 상에 형성되는 정공전달층;A hole transport layer formed on the absorber layer;
    상기 한 쌍의 제1 전극 각각에 배치되어, 상기 전자전달층, 흡수층, 및 정공전달층의 양측을 커버하는 한 쌍의 제1 손상방지막; 및A pair of first damage preventing layers disposed on each of the pair of first electrodes and covering both sides of the electron transport layer, the absorption layer, and the hole transport layer; And
    상기 정공전달층 상에 형성되는 제2 전극;A second electrode formed on the hole transport layer;
    을 포함하는 페로브스카이트 태양전지 모듈Perovskite solar cell module comprising a
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 전극의 양측단 중 적어도 하나는 At least one of both side ends of the second electrode
    상기 제1 손상방지막을 감싸도록 형성되는 페로브스카이트 태양전지 모듈.Perovskite solar cell module formed to surround the first damage preventing film.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 손상방지막은The first damage prevention film
    전기절연성을 가지는 페로브스카이트 태양전지 모듈.Perovskite solar cell module having electrical insulation.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제1 손상방지막은 The first damage prevention film
    경화제(resin), 수지(epoxy), 고분자, 산화물, 및 질화물로 구성된 군으로부터 선택되는 적어도 어느 하나 이상으로 이루어지는 페로브스카이트 태양전지 모듈.A perovskite solar cell module comprising at least one selected from the group consisting of a hardener, an epoxy, a polymer, an oxide, and a nitride.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 산화물은 O2, Al2O3, MgO, CaO, Y2O3, 및 SrO로 구성된 군으로부터 선택되는 적어도 어느 하나 이상으로 이루어지고, The oxide is at least one selected from the group consisting of O 2 , Al 2 O 3 , MgO, CaO, Y 2 O 3 , and SrO,
    상기 질화물은 SiNx, 및 Si3N4 로 구성된 군으로부터 선택되는 적어도 어느 하나 이상으로 이루어지는 태양전지 모듈.The nitride is at least one selected from the group consisting of SiNx, and Si 3 N 4 solar cell module.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 손상방지막은 The first damage prevention film
    손상방지층으로 형성되었다가, 태양전지 셀을 패터닝하는 레이저 스크라이빙에 의해 분할되어, 상기 레이저 스크라이빙에 의한 상기 태양전지 셀의 손상을 방지하는 태양전지 모듈.A solar cell module which is formed of a damage preventing layer and is divided by laser scribing to pattern a solar cell, thereby preventing damage of the solar cell by the laser scribing.
  7. 청구항 1에 있어서,The method according to claim 1,
    어느 하나의 상기 제1 전극 상에, 전자전달층, 흡수층, 및 정공전달층이 순차적으로 적층되고,On one of the first electrodes, an electron transport layer, an absorption layer, and a hole transport layer are sequentially stacked,
    순차적으로 적층된 상기 전자전달층, 흡수층, 및 정공전달층 양측단에 배치되는 한 쌍의 제2 손상방지막;A pair of second damage preventing films disposed at both ends of the electron transport layer, the absorption layer, and the hole transport layer sequentially stacked;
    을 더 포함하는 페로브스카이트 태양전지 모듈.Perovskite solar cell module further comprising.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 제2 전극은The second electrode
    한 쌍의 상기 제1 손상방지막 내의 상기 정공전달층, 및 한 쌍의 상기 제2 손상방지막 내의 상기 정공전달층에 걸쳐 연속으로 형성되는 페로브스카이트 태양전지 모듈.The perovskite solar cell module formed continuously over the hole transport layer in the pair of the first damage prevention film, and the hole transport layer in the pair of the second damage prevention film.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 전자전달층, 흡수층, 및 정공전달층에The electron transport layer, the absorption layer, and the hole transport layer.
    중심부보다 양측의 높이가 더 높도록 단차가 형성되는 페로브스카이트 태양전지 모듈.Perovskite solar cell module in which a step is formed so that the height of both sides is higher than the center.
  10. (a) 투명기판 상에 제1 전극층을 코팅하는 단계;(a) coating a first electrode layer on the transparent substrate;
    (b) 레이저 스크라이빙을 통해, 상기 제1 전극층을 절단하여 다수의 제1 전극을 형성하는 단계;(b) cutting the first electrode layer to form a plurality of first electrodes through laser scribing;
    (c) 상기 제1 전극 각각에 적어도 2개 이상의 손상방지층을 형성하는 단계;(c) forming at least two damage preventing layers on each of the first electrodes;
    (d) 인접하는 상기 손상방지층 사이에, 전자전달층, 흡수층, 및 정공전달층을 순차적으로 적층하는 단계;(d) sequentially stacking an electron transport layer, an absorption layer, and a hole transport layer between adjacent damage preventing layers;
    (e) 적어도 2개 이상의 상기 손상방지층 중 어느 하나를 패터닝하여, 태양전지 셀을 형성하는 단계; 및(e) patterning any one of the at least two damage preventing layers to form a solar cell; And
    (f) 상기 정공전달층 상면, 및 손상방지층이 패터닝되어 형성된 한 쌍의 손상방지막 사이 공간에 연속적으로 제2 전극을 코팅하는 단계;(f) sequentially coating a second electrode on a space between the upper surface of the hole transport layer and a pair of damage preventing films formed by patterning the damage preventing layer;
    를 포함하는 페로브스카이트 태양전지 모듈의 제조방법.Method of manufacturing a perovskite solar cell module comprising a.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 (f) 단계 이후에,After step (f),
    적어도 2개 이상의 상기 손상방지층 중 상기 제2 전극이 코팅된 다른 하나를 패터닝하는 단계;Patterning another one of the at least two damage preventing layers coated with the second electrode;
    를 더 포함하는 페로브스카이트 태양전지 모듈의 제조방법.Method of manufacturing a perovskite solar cell module further comprising.
  12. 청구항 10에 있어서,The method according to claim 10,
    상기 (e) 단계는 Step (e) is
    레이저 스크라이빙(laser scribing)을 사용하여 패터닝하는 페로브스카이트 태양전지 모듈의 제조방법.A method of manufacturing a perovskite solar cell module patterned by using laser scribing.
PCT/KR2017/000865 2016-11-08 2017-01-25 Perovskite solar cell module and manufacturing method therefor WO2018088632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0147797 2016-11-08
KR1020160147797A KR101903242B1 (en) 2016-11-08 2016-11-08 Perovskite module and fabrication method using laser damage barriers

Publications (1)

Publication Number Publication Date
WO2018088632A1 true WO2018088632A1 (en) 2018-05-17

Family

ID=62109535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000865 WO2018088632A1 (en) 2016-11-08 2017-01-25 Perovskite solar cell module and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101903242B1 (en)
WO (1) WO2018088632A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599608A (en) * 2020-12-14 2021-04-02 昆山协鑫光电材料有限公司 All-inorganic perovskite battery and manufacturing method thereof
CN113380957A (en) * 2020-03-10 2021-09-10 杭州纤纳光电科技有限公司 Perovskite photoelectric component and packaging process thereof
CN114080694A (en) * 2019-07-10 2022-02-22 荷兰应用自然科学研究组织Tno Photovoltaic device and method of manufacturing the same
TWI761239B (en) * 2021-06-24 2022-04-11 台灣中油股份有限公司 Perovskite solar module and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130778B1 (en) * 2018-07-10 2020-07-08 울산과학기술원 Perovskite solar cell module
KR102182618B1 (en) * 2018-07-12 2020-11-24 (주)프런티어에너지솔루션 Perovskite solar cell module and method for manufacturing perovskite solar cell module
US11329177B2 (en) 2018-11-08 2022-05-10 Swift Solar Inc Stable perovskite module interconnects
US11631777B2 (en) 2019-03-11 2023-04-18 Swift Solar Inc. Integration of bypass diodes within thin film photovoltaic module interconnects
KR102371199B1 (en) 2020-05-29 2022-03-04 광운대학교 산학협력단 Semitransparent Perovskite Solar Cells Fabricated In Air, Making Method For The Same
KR102472006B1 (en) * 2020-07-23 2022-11-30 군산대학교산학협력단 Perovskite solar module and method for manufacturing thereof
KR102644645B1 (en) * 2022-01-28 2024-03-06 국민대학교산학협력단 Solar cell module manufacturing method using self-assembled monolayer and solar cell module manufactured using the same
KR102632624B1 (en) * 2022-02-25 2024-01-31 전북대학교산학협력단 Perovskite solar cell module capable of controlling current output and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833675B1 (en) * 2007-01-30 2008-05-29 (주)실리콘화일 Semitransparent crystalline thin film solar cell
JP2010103170A (en) * 2008-10-21 2010-05-06 Mitsubishi Electric Corp Method of manufacturing thin film solar cell and device of manufacturing thin film solar cell
JP2013016668A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Manufacturing method of solar cell
KR101415322B1 (en) * 2007-12-26 2014-07-04 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
KR101666748B1 (en) * 2015-05-18 2016-10-17 고려대학교 산학협력단 Perovskite photovoltaic cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833675B1 (en) * 2007-01-30 2008-05-29 (주)실리콘화일 Semitransparent crystalline thin film solar cell
KR101415322B1 (en) * 2007-12-26 2014-07-04 주성엔지니어링(주) Thin film type Solar Cell and Method for manufacturing the same
JP2010103170A (en) * 2008-10-21 2010-05-06 Mitsubishi Electric Corp Method of manufacturing thin film solar cell and device of manufacturing thin film solar cell
JP2013016668A (en) * 2011-07-05 2013-01-24 Fujifilm Corp Manufacturing method of solar cell
KR101666748B1 (en) * 2015-05-18 2016-10-17 고려대학교 산학협력단 Perovskite photovoltaic cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080694A (en) * 2019-07-10 2022-02-22 荷兰应用自然科学研究组织Tno Photovoltaic device and method of manufacturing the same
CN113380957A (en) * 2020-03-10 2021-09-10 杭州纤纳光电科技有限公司 Perovskite photoelectric component and packaging process thereof
CN112599608A (en) * 2020-12-14 2021-04-02 昆山协鑫光电材料有限公司 All-inorganic perovskite battery and manufacturing method thereof
TWI761239B (en) * 2021-06-24 2022-04-11 台灣中油股份有限公司 Perovskite solar module and preparation method thereof

Also Published As

Publication number Publication date
KR20180051019A (en) 2018-05-16
KR101903242B1 (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2018088632A1 (en) Perovskite solar cell module and manufacturing method therefor
WO2016186317A1 (en) Perovskite solar cell module
WO2017105053A1 (en) Monolithic-type module of perovskite solar cell, and manufacturing method therefor
WO2018079943A1 (en) Perovskite solar cell using diffusion barrier film and manufacturing method therefor
WO2011071227A1 (en) Solar cell module
WO2015041470A1 (en) Solar cell
JP2006527490A (en) Tandem solar cell with shared organic electrode
WO2013169047A1 (en) Organic electrochemical device, and method for manufacturing same
WO2018012825A1 (en) Organic-inorganic composite solar cell
WO2012081813A1 (en) Back contact solar cell and method for fabricating same
WO2015130054A1 (en) Solid-type thin-film solar battery using perovskite-based dye and method for manufacturing same
WO2023151209A1 (en) Thin-film solar cell module and manufacturing method therefor, and electrical device
WO2012033274A1 (en) Device for generating solar power and method for manufacturing same
WO2022215990A1 (en) Perovskite solar cell and tandem solar cell comprising same
WO2017043805A1 (en) Thin film-type solar cell and method for manufacturing same
WO2011129503A1 (en) Solar cell and method for manufacturing the same
WO2012015286A2 (en) Device for generating photovoltaic power and manufacturing method for same
WO2012015150A1 (en) Device for generating photovoltaic power and method for manufacturing same
WO2022114268A1 (en) Solar cell including perovskite
WO2012046934A1 (en) Photovoltaic device and method for manufacturing same
WO2018016886A1 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
WO2012046933A1 (en) Solar photovoltaic device and a conveying device comprising the same
WO2011083994A2 (en) Solar photovoltaic device
WO2018043910A1 (en) Hole transport material for improving perovskite solar cell efficiency
WO2013058521A1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869996

Country of ref document: EP

Kind code of ref document: A1