WO2018079943A1 - Perovskite solar cell using diffusion barrier film and manufacturing method therefor - Google Patents

Perovskite solar cell using diffusion barrier film and manufacturing method therefor Download PDF

Info

Publication number
WO2018079943A1
WO2018079943A1 PCT/KR2017/000863 KR2017000863W WO2018079943A1 WO 2018079943 A1 WO2018079943 A1 WO 2018079943A1 KR 2017000863 W KR2017000863 W KR 2017000863W WO 2018079943 A1 WO2018079943 A1 WO 2018079943A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
perovskite solar
hole transport
electrode
Prior art date
Application number
PCT/KR2017/000863
Other languages
French (fr)
Korean (ko)
Inventor
김동환
강윤묵
이해석
김성탁
배수현
이상원
조경진
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2018079943A1 publication Critical patent/WO2018079943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a perovskite solar cell and a method of manufacturing the same.
  • a solar cell is a device that converts solar energy into electrical energy and generates a current-voltage using a photovoltaic effect. These solar cells are receiving worldwide attention as an alternative to fossil energy in the face of resource depletion and environmental problems. Since high purity materials must be used for high efficiency, much energy is consumed for the purification of raw materials. In addition, since expensive process equipment is used in the process of single crystal or thin film, the manufacturing cost is considerable, which impedes utilization of solar cells.
  • organic-inorganic hybrid perovskite solar cell disclosed in Korean Patent Document KR2016-0015723.
  • the organic-inorganic hybrid perovskite solar cell utilizes a material having a perovskite crystal structure by combining inorganic and organic materials.
  • Perovskite has a very special structure with superconducting phenomena as well as insulator, semiconductor and conductor properties.
  • a conventional perovskite solar cell includes a substrate 1, a transparent electrode 2, an electron transfer layer 3, a light absorption layer 4, a hole transfer layer 5, and a metal electrode.
  • (6) consists of a laminated structure sequentially.
  • indium tin oxide (ITO) or fluorine doped tin oxide (FTO) having a low work function is used as the transparent electrode 2
  • Au or Ag having a high work function is used as the metal electrode 6.
  • the conventional perovskite solar cell has a very low activation energy of internal ion migration, and thus, a material is decomposed by ion migration in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer and the outside to decrease stability, and reach the hole transport layer to cause degradation of the hole transport layer.
  • an aspect of the present invention is a perovskite structure is arranged between the light absorption layer and the hole transport layer to block the movement of ions in the perovskite material structurally To provide a skylight solar cell.
  • the perovskite solar cell comprises a first electrode formed of a transparent conductive substrate; A second electrode formed of a metal and opposed to the first electrode; A light absorption layer formed by disposing a perovskite material between the first electrode and the second electrode; A hole transport layer disposed between the light absorption layer and the second electrode; And a diffusion barrier layer disposed between the light absorption layer and the hole transport layer to prevent ions in the light absorption layer from diffusing into the hole transport layer.
  • the valence band edge of the diffusion barrier layer is between the HOMO level of the perovskite material and the HOMO level of the hole transport layer. Has an energy level.
  • the valence band edge of the diffusion barrier layer is lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer Has an energy level.
  • the diffusion barrier layer is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe It consists of one or more substances selected from the group consisting of.
  • the diffusion barrier layer is GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and One or more materials selected from the group consisting of ZnS.
  • the thickness of the diffusion barrier layer is 1 to 20 nm, preferably 1 to 5 nm.
  • a blocking layer formed by coating the metal oxide nanoparticles on the first electrode further includes.
  • an electron transport layer formed of a porous metal oxide further includes.
  • the perovskite material is represented by the following formula (1).
  • A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
  • B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
  • X is a material that is halogen.
  • the hole transport layer is 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene ( spiro-OMeTAD), and poly-triarylamine (PTAA).
  • the hole transport layer further comprises at least one material selected from the group consisting of Li-based dopant, Co-based dopant, and 4-tert-butylpyridine (TBP). Include.
  • the method of manufacturing a perovskite solar cell (a) coating a metal oxide nanoparticles on the first electrode formed of a transparent conductive substrate to form a blocking layer; (b) forming a porous electron transport layer by coating a metal oxide paste including metal oxide nanoparticles on the blocking layer; (c) depositing a perovskite material on the electron transport layer to form a light absorption layer; (d) forming a diffusion barrier layer on the light absorption layer; (e) coating a hole transport material on the diffusion barrier layer to form a hole transport layer; And (f) depositing a metal on the hole transport layer to form a second electrode.
  • the perovskite material is represented by the following formula (1).
  • A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
  • B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
  • X is a material that is halogen.
  • AX and BX 2 is dissolved in an organic solvent in a 1: 1 ratio and coated, and then heat-treated at 40 to 160 ° C.
  • the step (c) is a step of dissolving BX 2 in an organic solvent and coating, heat treatment at 40 ⁇ 120 °C; And coating AX dissolved in an organic solvent on the coated BX 2 and heat-treating at 40 to 160 ° C.
  • the step (d) is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS , One or more materials selected from the group consisting of PbSe, and PbSSe, or one selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS The above material is deposited.
  • the step (e) is coated after dissolving the hole transport material in an organic solvent.
  • the diffusion barrier layer is formed between the light absorption layer and the hole transport layer, thereby preventing ions in the perovskite material of the light absorption layer from diffusing to the hole transport layer and the outside, thereby reducing the stability of the perovskite solar cell. At the same time, it is possible to prevent deterioration of the hole transport layer due to diffused ions.
  • FIG. 1 is an exploded perspective view of a conventional perovskite solar cell.
  • FIG. 2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
  • the perovskite solar cell includes a first electrode 10 formed of a transparent conductive substrate and a second electrode 20 formed of a metal and opposing the first electrode 10. ), A hole disposed between the first electrode 10 and the second electrode 20, and a light absorbing layer 30 formed between the perovskite material and the light absorbing layer 30 and the second electrode 20. A diffusion barrier layer 50 disposed between the transfer layer 40 and the light absorbing layer 30 and the hole transport layer 40 to prevent ions in the light absorbing layer 30 from diffusing into the hole transport layer 40. Include.
  • Perovskite solar cells using materials that have a perovskite crystal structure by combining inorganic and organic materials are in the spotlight as the next generation thin film solar cells because they are inexpensive to manufacture and thin films can be manufactured by solution process.
  • Skyt photovoltaic cells have a very low activation energy of internal ion transport, and thus, materials are decomposed by ion transport in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer 40 and the outside to decrease stability, and reach the hole transport layer 40 to cause degradation of the hole transport layer 40. Accordingly, in order to solve the problems of the conventional perovskite solar cell, the perovskite solar cell according to the present invention has been devised.
  • the perovskite solar cell according to the present invention includes a first electrode 10, a second electrode 20, a light absorption layer 30, a hole transport layer 40, and a diffusion barrier layer 50.
  • the first electrode 10 is formed of a transparent conductive substrate, specifically, a structure in which a transparent electrode having a low work function is disposed on the substrate.
  • the transparent electrode may generally use indium tin oxide (ITO) or fluorine doped tin oxide (FTO).
  • the transparent electrode is not necessarily limited thereto, and a transparent electrode having a multilayer structure in which a metal layer is disposed on a pair of oxide layers. It may be.
  • the substrate may be a rigid substrate or a flexible substrate that is flexibly curved. In the case of a flexible substrate, there is an advantage of implementing a flexible solar cell and mass production of the solar cell in a short time through a roll-to-roll process.
  • the flexible substrate is a polymer substrate, for example, at least one of polyether sulfone (PES), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), and polyethylene naphthalate (PEN) Can be made.
  • PES polyether sulfone
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • PEN polyethylene naphthalate
  • the material of the polymer substrate is not necessarily limited thereto, and the substrate is not necessarily limited to the flexible substrate, and thus may be made of glass, silicon, or the like.
  • the first electrode 10 is disposed to face the second electrode 20.
  • the second electrode 20 is formed of a metal, wherein the metal is at least one selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg
  • the metal which comprises the 2nd electrode 20 is not necessarily limited to the said metal.
  • the second electrode 20 may reach the second electrode 20 without loss by moving the hole transport layer 40 in consideration of the work functions of the hole transport layer 40 and the second electrode 20. It should be formed so that it can As the method for forming the second electrode 20, screen printing, vacuum thermal evaporation, electron beam evaporation, plating, sputtering, or the like may be used.
  • the hole transport layer 40, the diffusion barrier layer 50, and the light absorption layer 30 are disposed between the second electrode 20 and the first electrode 10.
  • the light absorption layer 30 is a layer formed by placing the perovskite material.
  • the perovskite material is a material capable of absorbing light in the infrared, visible and ultraviolet wavelength range, preferably ABX 3 It may be made of a structure.
  • A is at least one material selected from an alkyl group of CnH 2n +1 , and inorganic materials such as Cs, Ru, etc. capable of perovskite solar cell structure formation
  • B is Pb, Sn, Ti, Nb, Zr, and Ce
  • One or more materials selected from the group consisting of, X may be a material that is halogen.
  • Perovskite structures together with their insulators, semiconductors, and conductors, have a very special structure that shows superconducting phenomena, resulting in high charge transport mobility and long diffusion distances.
  • sunlight is absorbed by the light absorbing layer 30, electrons are excited, and the excited electrons move to the electron transport layer 70, and the holes move to the hole transport layer 40, wherein the perovskite
  • the structure allows the generated electrons and holes to travel farther without losing energy, thus absorbing more light.
  • the hole transport layer 40 is disposed between the light absorption layer 30 and the second electrode 20.
  • the hole transport layer 40 may include a single molecule material or a polymer material, for example, 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9- bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA).
  • an additive may be added, where the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP).
  • the diffusion barrier layer 50 is disposed between the light absorption layer 30 and the hole transport layer 40.
  • the diffusion barrier layer 50 is formed on the light absorption layer 30 to block ions in the perovskite material from entering the hole transport layer 40.
  • the diffusion barrier layer 50 may be formed of two types of diffusion barrier layer 50 according to the energy band gap.
  • the valence band edge of the diffusion barrier layer 50 is located between the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40.
  • the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer 40.
  • the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe.
  • the valence band edge of the diffusion barrier layer 50 has an energy level lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40.
  • the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS.
  • the thickness of the diffusion barrier layer 50 is 1 to 20 nm, preferably 1 to 5 nm in thickness.
  • the diffusion barrier layer 50 is formed between the light absorption layer 30 and the hole transport layer 40, the ions in the perovskite material of the light absorption layer 30 to the hole transport layer 40 Since the diffusion barrier layer 50 blocks the diffusion to and from the outside, the stability of the perovskite solar cell is improved and the degradation of the hole transport layer 40 due to the diffused ions is prevented.
  • the perovskite solar cell according to the present invention may further include a blocking layer (60).
  • the blocking layer 60 is formed on the first electrode 10 and is disposed between the first electrode 10 and the light absorbing layer 30.
  • the blocking layer 60 may be formed by coating and thermally treating metal oxide nanoparticles on the first electrode 10. The blocking layer 60 formed as described above prevents electron transfer back to the first electrode 10.
  • the perovskite solar cell according to the present invention may further include an electron transfer layer 70 disposed between the blocking layer 60 and the light absorbing layer 30, wherein the electron transfer layer 70 is blocked.
  • the metal oxide paste including the metal oxide nanoparticles may be coated on the layer 60 and heat treated to form a porous metal oxide layer.
  • FIG. 3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
  • the method for manufacturing a perovskite solar cell according to the present invention includes forming a blocking layer (S100), forming an electron transport layer (S200), and forming a light absorbing layer ( S300), forming a diffusion barrier layer (S400), forming a hole transport layer (S500), and forming a second electrode (S600).
  • the manufacturing method of the perovskite solar cell is a method of manufacturing the perovskite solar cell according to the present invention described above, the first electrode, blocking layer, electron transfer layer, light absorption layer, diffusion barrier layer, hole transport layer
  • the first electrode, blocking layer, electron transfer layer, light absorption layer, diffusion barrier layer, hole transport layer The overlapping portions in the contents of, and the second electrode will not be described in detail, or simply described.
  • the perovskite solar cell according to the present invention is manufactured through the following process.
  • a blocking layer is formed by coating metal oxide nanoparticles on a first electrode formed of a transparent conductive substrate.
  • the blocking layer may be formed by coating the metal oxide nanoparticles, followed by heat treatment at 450 to 550 ° C. for 10 to 60 minutes, preferably at 450 to 500 ° C. for 10 to 30 minutes, in air.
  • the metal oxide paste including the metal oxide nanoparticles is coated on the blocking layer, and then heat-treated to form a porous electron transport layer.
  • the heat treatment is preferably in the air for 10 to 120 minutes at 450 ⁇ 550 °C, preferably 500 to 550 °C for 30 to 60 minutes.
  • the perovskite material is a material that absorbs light in the infrared, visible and ultraviolet wavelength range, preferably having an ABX 3 structure
  • A is an alkyl group of CnH 2n + 1
  • B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce
  • X is a material that is halogen. .
  • the light absorption layer is formed by heat treatment at 40 ⁇ 160 °C.
  • BX 2 is first dissolved in an organic solvent and coated on the electron transport layer, followed by heat treatment at 40 to 120 ° C., followed by coating AX dissolved in the organic solvent, followed by heat treatment at 40 to 160 ° C.
  • CH 3 NH 3 I and PbI 2 may form and deposit a CH 3 NH 3 PbI 3 perovskite material.
  • a diffusion barrier layer is formed on the light absorption layer.
  • MoO X , MoS 2 , Sb 2 S 3 such that the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer.
  • deposition may be performed through various processes such as a solution process and a vacuum deposition process.
  • the hole transport layer includes a single molecule or a polymer material.
  • the hole transport layer includes a single molecule or a polymer material.
  • one or more substances selected from the group consisting of 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD) and poly-triarylamine (PTAA) may include.
  • an additive may be added to the hole transport layer.
  • the additive may include one or more materials selected from the group consisting of a Li-based dopant, a Co-based dopant, and 4-tert-butylpyridine (TBP).
  • Li-bis (trifluoromethanesulfonyl) imide Li-TFSI
  • TBP trifluoromethanesulfonyl
  • the hole transport material is dissolved in an organic solvent and then coated on the diffusion barrier layer.
  • the perovskite solar cell according to the present invention can be manufactured by depositing a metal on the hole transport layer to form a second electrode.
  • a metal selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg may be screen printed, vacuum thermal evaporated, electron beam evaporated, or plated.
  • the second electrode should be formed to allow the hole to reach the second electrode without loss by considering the work function of the hole transport layer and the second electrode.
  • the present invention can improve the stability of the perovskite solar cell and prevent the degradation of the hole transport layer due to diffused ions, there is industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a perovskite solar cell and a manufacturing method therefor, and the perovskite solar cell according to the present invention comprises: a first electrode (10) formed as a transparent conductive substrate; a second electrode (20) formed of metal and facing the first electrode (10); a light absorption layer (30) formed such that a perovskite material is disposed between the first electrode (10) and the second electrode (20); a hole transport layer (40) disposed between the light absorption layer (30) and the second electrode (20); and a diffusion barrier layer (50) disposed between the light absorption layer (30) and the hole transport layer (40) so as to prevent ions in the light absorption layer (30) from being dispersed into the hole transport layer (40).

Description

확산 방지막을 이용한 페로브스카이트 태양전지 및 이의 제조방법Perovskite Solar Cell Using Diffusion Barrier and Manufacturing Method Thereof
본 발명은 페로브스카이트 태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to a perovskite solar cell and a method of manufacturing the same.
태양전지는 태양에너지를 전기에너지로 변환하는 장치로서, 광기전 효과를 이용하여 전류-전압을 생성한다. 이러한 태양전지는 자원의 고갈 및 환경문제에 직면한 화석 에너지의 대체 에너지로 세계적인 관심을 받고 있는데, 고효율화를 위해 매우 순도가 높은 소재를 사용해야 하므로, 원소재의 정제에 많은 에너지가 소모된다. 또한, 단결정 혹은 박막화하는 과정에서 고가의 공정 장비가 사용되므로, 그 제조에 상당한 비용이 소요되어 태양전지의 활용에 장애가 되고 있다.A solar cell is a device that converts solar energy into electrical energy and generates a current-voltage using a photovoltaic effect. These solar cells are receiving worldwide attention as an alternative to fossil energy in the face of resource depletion and environmental problems. Since high purity materials must be used for high efficiency, much energy is consumed for the purification of raw materials. In addition, since expensive process equipment is used in the process of single crystal or thin film, the manufacturing cost is considerable, which impedes utilization of solar cells.
이러한 태양전지의 문제 해결을 위해서 고안된 것 중 하나가 대한민국 특허문헌 KR2016-0015723에 개시된 유무기 하이브리드 페로브스카이트 태양전지이다. 유무기 하이브리드 페로브스카이트 태양전지는 무기물과 유기물이 결합하여 페로브스카이트 결정 구조를 가지는 소재를 활용한다. 페로브스카이트는 부도체·반도체·도체 성질과 함께 초전도 현상까지 보이는 매우 특별한 구조를 갖는다. One of the things devised to solve the problem of such a solar cell is an organic-inorganic hybrid perovskite solar cell disclosed in Korean Patent Document KR2016-0015723. The organic-inorganic hybrid perovskite solar cell utilizes a material having a perovskite crystal structure by combining inorganic and organic materials. Perovskite has a very special structure with superconducting phenomena as well as insulator, semiconductor and conductor properties.
이러한 유무기 하이브리드 페로브스카이트 태양전지는 제조비용이 저렴하고 용액공정으로 박막제작이 가능하므로 현재 차세대 박막 태양전지로 각광받고 있다. 도 1에 도시된 바와 같이, 종래 페로브스카이트 태양전지는 기판(1), 투명전극(2), 전자전달층(3), 광흡수층(4), 정공전달층(5), 및 금속전극(6)이 순차적으로 적층된 구조로 이루어진다. 여기서, 투명전극(2)으로는 일함수가 낮은 ITO(Indium Tin Oxide) 또는 FTO(Fluorine doped Tin Oxide)가, 금속전극(6)으로는 높은 일함수를 갖는 Au 또는 Ag 등이 사용된다. These organic-inorganic hybrid perovskite solar cells are in the spotlight as the next-generation thin film solar cells because the manufacturing cost is low and the thin film can be manufactured by the solution process. As shown in FIG. 1, a conventional perovskite solar cell includes a substrate 1, a transparent electrode 2, an electron transfer layer 3, a light absorption layer 4, a hole transfer layer 5, and a metal electrode. (6) consists of a laminated structure sequentially. Here, indium tin oxide (ITO) or fluorine doped tin oxide (FTO) having a low work function is used as the transparent electrode 2, and Au or Ag having a high work function is used as the metal electrode 6.
그러나 종래 페로브스카이트 태양전지는 내부 이온 이동의 활성화에너지가 매우 낮아, 다양한 외부 환경에서 이온 이동에 의해 재료가 분해되는 문제가 있다. 이온 이동이 쉬운 페로브스카이트 물질 내의 이온들이 정공전달층 및 외부로 확산되어 안정성을 떨어뜨리고, 정공전달층에 도달하여 정공전달층의 열화를 발생시키는 것이다.However, the conventional perovskite solar cell has a very low activation energy of internal ion migration, and thus, a material is decomposed by ion migration in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer and the outside to decrease stability, and reach the hole transport layer to cause degradation of the hole transport layer.
이에, 종래 페로브스카이트 태양전지의 이온 이동에 따른 문제점을 해결하기 위한 방안이 절실히 요구되고 있다.Therefore, there is an urgent need for a method for solving the problems caused by ion migration of the conventional perovskite solar cell.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 광흡수층과 정공전달층 사이에 확산방지층이 배치되어 구조적으로 페로브스카이트 물질 내 이온의 이동을 차단하는 페로브스카이트 태양전지를 제공하는 것이다.The present invention is to solve the above problems of the prior art, an aspect of the present invention is a perovskite structure is arranged between the light absorption layer and the hole transport layer to block the movement of ions in the perovskite material structurally To provide a skylight solar cell.
본 발명의 실시예에 따른 페로브스카이트 태양전지는 투명 전도성 기판으로 형성된 제1 전극; 금속으로 형성되고, 상기 제1 전극에 대향하는 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에, 페로브스카이트 물질이 배치되어 형성된 광흡수층; 상기 광흡수층과 상기 제2 전극 사이에 배치되는 정공전달층; 및 상기 광흡수층과 상기 정공전달층 사이에 배치되어, 상기 광흡수층 내의 이온이 상기 정공전달층으로 확산되는 것을 방지하는 확산방지층;을 포함한다.The perovskite solar cell according to the embodiment of the present invention comprises a first electrode formed of a transparent conductive substrate; A second electrode formed of a metal and opposed to the first electrode; A light absorption layer formed by disposing a perovskite material between the first electrode and the second electrode; A hole transport layer disposed between the light absorption layer and the second electrode; And a diffusion barrier layer disposed between the light absorption layer and the hole transport layer to prevent ions in the light absorption layer from diffusing into the hole transport layer.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨과 상기 정공전달층의 HOMO 레벨 사이의 에너지 레벨을 가진다.Further, in the perovskite solar cell according to an embodiment of the present invention, the valence band edge of the diffusion barrier layer is between the HOMO level of the perovskite material and the HOMO level of the hole transport layer. Has an energy level.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨 및 상기 정공전달층의 HOMO 레벨보다 낮은 에너지 레벨을 가진다.Further, in the perovskite solar cell according to the embodiment of the present invention, the valence band edge of the diffusion barrier layer is lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer Has an energy level.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층은 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어진다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the diffusion barrier layer is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe It consists of one or more substances selected from the group consisting of.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어진다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the diffusion barrier layer is GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and One or more materials selected from the group consisting of ZnS.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층의 두께는 1 ~ 20 nm, 바람직하게는 1 ~ 5 nm이다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the thickness of the diffusion barrier layer is 1 to 20 nm, preferably 1 to 5 nm.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 제1 전극 상에 금속 산화물 나노입자가 코팅되어 형성되는 블로킹층;을 더 포함한다.In addition, the perovskite solar cell according to an embodiment of the present invention, a blocking layer formed by coating the metal oxide nanoparticles on the first electrode; further includes.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 블로킹층과 상기 광흡수층 사이에, 다공성 금속 산화물로 형성되는 전자전달층;을 더 포함한다.In addition, in the perovskite solar cell according to an embodiment of the present invention, between the blocking layer and the light absorbing layer, an electron transport layer formed of a porous metal oxide; further includes.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 페로브스카이트 물질은 하기 화학식 1로 표시된다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the perovskite material is represented by the following formula (1).
[화학식 1][Formula 1]
ABX3 ABX 3
상기 화학식 1에서,In Chemical Formula 1,
A는 CnH2n +1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
X는 할로겐인 물질이다. X is a material that is halogen.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 정공전달층은 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함한다. In addition, in the perovskite solar cell according to an embodiment of the present invention, the hole transport layer is 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene ( spiro-OMeTAD), and poly-triarylamine (PTAA).
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 정공전달층은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질을 더 포함한다.Further, in the perovskite solar cell according to an embodiment of the present invention, the hole transport layer further comprises at least one material selected from the group consisting of Li-based dopant, Co-based dopant, and 4-tert-butylpyridine (TBP). Include.
한편, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법은 (a) 투명 전도성 기판으로 형성된 제1 전극 상에 금속 산화물 나노입자를 코팅하여 블로킹층을 형성하는 단계; (b) 상기 블로킹층 상에 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 코팅하여 다공성 전자전달층을 형성하는 단계; (c) 상기 전자전달층 상에 페로브스카이트 물질을 증착하여 광흡수층을 형성하는 단계; (d) 광흡수층 상에 확산방지층을 형성하는 단계; (e) 상기 확산방지층 상에 정공전달물질을 코팅하여 정공전달층을 형성하는 단계; 및 (f) 상기 정공전달층 상에 금속을 증착하여 제2 전극을 형성하는 단계;를 포함한다. On the other hand, the method of manufacturing a perovskite solar cell according to an embodiment of the present invention (a) coating a metal oxide nanoparticles on the first electrode formed of a transparent conductive substrate to form a blocking layer; (b) forming a porous electron transport layer by coating a metal oxide paste including metal oxide nanoparticles on the blocking layer; (c) depositing a perovskite material on the electron transport layer to form a light absorption layer; (d) forming a diffusion barrier layer on the light absorption layer; (e) coating a hole transport material on the diffusion barrier layer to form a hole transport layer; And (f) depositing a metal on the hole transport layer to form a second electrode.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (a) 단계는 상기 금속 산화물 나노입자를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 60 분간 열처리하는 단계;를 포함한다. In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (a) after the coating the metal oxide nanoparticles, heat treatment for 10 to 60 minutes at 450 ~ 550 ℃; It includes.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (b) 단계는 상기 금속 산화물 페이스트를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 120 분간 열처리하는 단계;를 포함한다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (b) after the coating the metal oxide paste, heat treatment for 10 to 120 minutes at 450 ~ 550 ℃; Include.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 페로브스카이트 물질은 하기 화학식 1로 표시된다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the perovskite material is represented by the following formula (1).
[화학식 1][Formula 1]
ABX3 ABX 3
상기 화학식 1에서,In Chemical Formula 1,
A는 CnH2n +1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
X는 할로겐인 물질이다.X is a material that is halogen.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, AX와 BX2를 1:1 비율로 유기용매에 용해하여 코팅한 후에, 40 ~ 160 ℃로 열처리한다. In addition, in the method for manufacturing a perovskite solar cell according to an embodiment of the present invention, AX and BX 2 is dissolved in an organic solvent in a 1: 1 ratio and coated, and then heat-treated at 40 to 160 ° C.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (c) 단계는 BX2를 유기 용매에 용해하여 코팅하고, 40 ~ 120 ℃에서 열처리하는 단계; 및 코팅된 상기 BX2에, 유기 용매에 용해된 AX를 코팅하고, 40 ~ 160 ℃에서 열처리하는 단계;를 포함한다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (c) is a step of dissolving BX 2 in an organic solvent and coating, heat treatment at 40 ~ 120 ℃; And coating AX dissolved in an organic solvent on the coated BX 2 and heat-treating at 40 to 160 ° C.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (d) 단계는 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질, 또는 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질을 증착한다. In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (d) is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS , One or more materials selected from the group consisting of PbSe, and PbSSe, or one selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS The above material is deposited.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (e) 단계는 상기 정공전달물질을 유기 용매에 용해한 후에 코팅한다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (e) is coated after dissolving the hole transport material in an organic solvent.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims are not to be interpreted in a conventional and dictionary sense, and the inventors may appropriately define the concept of terms in order to best describe their own invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따르면, 광흡수층과 정공전달층 사이에 확산방지층이 형성됨으로써, 광흡수층의 페러브스카이트 물질 내 이온들이 정공전달층과 외부로 확산되는 것을 차단하므로, 페로브스카이트 태양전지의 안정성을 향상시키는 동시에 확산된 이온에 의한 정공전달층의 열화를 방지할 수 있다.According to the present invention, the diffusion barrier layer is formed between the light absorption layer and the hole transport layer, thereby preventing ions in the perovskite material of the light absorption layer from diffusing to the hole transport layer and the outside, thereby reducing the stability of the perovskite solar cell. At the same time, it is possible to prevent deterioration of the hole transport layer due to diffused ions.
도 1은 종래 페르브스카이트 태양전지의 분해 사시도이다.1 is an exploded perspective view of a conventional perovskite solar cell.
도 2는 본 발명의 실시예에 따른 페로브스카이트 태양전지의 단면도이다.2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법의 순서도이다.3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, terms such as “first” and “second” are used to distinguish one component from another component, and the component is not limited by the terms. In the following description, detailed descriptions of related well-known techniques that may unnecessarily obscure the subject matter of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시예에 따른 페로브스카이트 태양전지의 단면도이다.2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명에 따른 페로브스카이트 태양전지는 투명 전도성 기판으로 형성된 제1 전극(10), 금속으로 형성되고, 제1 전극(10)에 대향하는 제2 전극(20), 제1 전극(10)과 제2 전극(20) 사이에, 페로브스카이트 물질이 배치되어 형성된 광흡수층(30), 광흡수층(30)과 제2 전극(20) 사이에 배치되는 정공전달층(40), 및 광흡수층(30)과 정공전달층(40) 사이에 배치되어, 광흡수층(30) 내의 이온이 정공전달층(40)으로 확산되는 것을 방지하는 확산방지층(50)을 포함한다.As shown in FIG. 2, the perovskite solar cell according to the present invention includes a first electrode 10 formed of a transparent conductive substrate and a second electrode 20 formed of a metal and opposing the first electrode 10. ), A hole disposed between the first electrode 10 and the second electrode 20, and a light absorbing layer 30 formed between the perovskite material and the light absorbing layer 30 and the second electrode 20. A diffusion barrier layer 50 disposed between the transfer layer 40 and the light absorbing layer 30 and the hole transport layer 40 to prevent ions in the light absorbing layer 30 from diffusing into the hole transport layer 40. Include.
무기물과 유기물이 결합하여 페로브스카이트 결정 구조를 가지는 소재를 활용한 페로브스카이트 태양전지는 제조비용이 저렴하고 용액공정으로 박막제작이 가능하므로 차세대 박막 태양전지로 각광받고 있는데, 종래 페로브스카이트 태양전지는 내부 이온 이동의 활성화에너지가 매우 낮아, 다양한 외부 환경에서 이온 이동에 의해 재료가 분해되는 문제가 있다. 이온 이동이 쉬운 페로브스카이트 물질 내의 이온들이 정공전달층(40) 및 외부로 확산되어 안정성을 떨어뜨리고, 정공전달층(40)에 도달하여 정공전달층(40)의 열화를 발생시키는 것이다. 이에, 종래 페로브스카이트 태양전지의 문제점을 해결하기 위해서 본 발명에 따른 페로브스카이트 태양전지가 안출되었다.Perovskite solar cells using materials that have a perovskite crystal structure by combining inorganic and organic materials are in the spotlight as the next generation thin film solar cells because they are inexpensive to manufacture and thin films can be manufactured by solution process. Skyt photovoltaic cells have a very low activation energy of internal ion transport, and thus, materials are decomposed by ion transport in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer 40 and the outside to decrease stability, and reach the hole transport layer 40 to cause degradation of the hole transport layer 40. Accordingly, in order to solve the problems of the conventional perovskite solar cell, the perovskite solar cell according to the present invention has been devised.
본 발명에 따른 페로브스카이트 태양전지는 제1 전극(10), 제2 전극(20), 광흡수층(30), 정공전달층(40), 확산방지층(50)을 포함한다.The perovskite solar cell according to the present invention includes a first electrode 10, a second electrode 20, a light absorption layer 30, a hole transport layer 40, and a diffusion barrier layer 50.
여기서, 제1 전극(10)은 투명 전도성 기판으로 형성되는데, 구체적으로는 기판에 일함수가 낮은 투명전극이 배치되는 구조이다. 여기서, 투명전극은 일반적으로 ITO(Indium Tin Oxide) 또는 FTO(Fluorine doped Tin Oxide) 등을 사용할 수 있지만, 반드시 이에 한정되는 것은 아니고, 한 쌍의 산화물층에 금속층이 배치되는 다층 구조의 투명전극 등이어도 무방하다. 여기서, 기판은 지지체로서, 리지드(rigid) 기판 또는 유연하게 휘어지는 플렉시블(flexible) 기판일 수 있다. 플렉시블 기판의 경우는 유연한 태양전지를 구현하고, 롤투롤 공정 등을 통해 단시간에 태양전지를 대량생산할 수 있는 장점이 있다. 이때, 플렉시블 기판은 폴리머 기판으로서, 예를 들어, 폴리에테르술폰(PES), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리이미드(PI), 및 폴리에틸렌나프탈레이트(PEN) 중 어느 하나 이상으로 이루어질 수 있다. 다만, 폴리머 기판의 재료가 반드시 이에 한정되는 것은 아니고, 기판이 반드시 플렉서블 기판에 한정되는 것도 아니므로, 글라스(glass), 실리콘(Si) 등으로 제조될 수도 있다. 한편, 제1 전극(10)은 제2 전극(20)과 대향하여, 마주보도록 배치된다.Here, the first electrode 10 is formed of a transparent conductive substrate, specifically, a structure in which a transparent electrode having a low work function is disposed on the substrate. Here, the transparent electrode may generally use indium tin oxide (ITO) or fluorine doped tin oxide (FTO). However, the transparent electrode is not necessarily limited thereto, and a transparent electrode having a multilayer structure in which a metal layer is disposed on a pair of oxide layers. It may be. In this case, the substrate may be a rigid substrate or a flexible substrate that is flexibly curved. In the case of a flexible substrate, there is an advantage of implementing a flexible solar cell and mass production of the solar cell in a short time through a roll-to-roll process. At this time, the flexible substrate is a polymer substrate, for example, at least one of polyether sulfone (PES), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), and polyethylene naphthalate (PEN) Can be made. However, the material of the polymer substrate is not necessarily limited thereto, and the substrate is not necessarily limited to the flexible substrate, and thus may be made of glass, silicon, or the like. The first electrode 10 is disposed to face the second electrode 20.
여기서, 제2 전극(20)은 금속으로 형성되는데, 이때 금속은 Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, 및 Mg로 구성된 군으로부터 선택된 적어도 하나 이상의 금속일 수 있지만, 제2 전극(20)을 구성하는 금속이 반드시 상기 금속에 한정되는 것은 아니다. 이때, 제2 전극(20)은 정공전달층(40)과 제2 전극(20)의 일함수를 고려하여 정공이 정공전달층(40)을 이동하여 제2 전극(20)에 손실 없이 도달할 수 있도록 형성되어야 한다. 여기서 제2 전극(20)을 형성하기 위한 방법으로, 스크린 인쇄법, 진공 열 증착법, 전자빔 증착법, 도금, 스퍼터링 등을 사용할 수 있다. 이러한 제2 전극(20)과 제1 전극(10) 사이에는 정공전달층(40), 확산방지층(50), 광흡수층(30)이 배치된다. Here, the second electrode 20 is formed of a metal, wherein the metal is at least one selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg Although it may be the above metal, the metal which comprises the 2nd electrode 20 is not necessarily limited to the said metal. In this case, the second electrode 20 may reach the second electrode 20 without loss by moving the hole transport layer 40 in consideration of the work functions of the hole transport layer 40 and the second electrode 20. It should be formed so that it can As the method for forming the second electrode 20, screen printing, vacuum thermal evaporation, electron beam evaporation, plating, sputtering, or the like may be used. The hole transport layer 40, the diffusion barrier layer 50, and the light absorption layer 30 are disposed between the second electrode 20 and the first electrode 10.
광흡수층(30)은 페로브스카이트 물질이 배치되어 형성된 층(layer)이다. 이때, 페로브스카이트 물질은 적외선, 가시광선, 자외선 파장 영역 내에서 광흡수가 가능한 물질인데, 바람직하게는 ABX3 구조로 이루어질 수 있다. 여기서, A는 CnH2n +1의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질이고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며, X는 할로겐인 물질일 수 있다. 페로브스카이트 구조는 부도체·반도체·도체 성질과 함께 초전도 현상까지 보이는 매우 특별한 구조인데, 이러한 구조로 인해 높은 전하 운반 이동성과 긴 확산거리를 가지게 된다. 광흡수층(30)에 태양광이 흡수되면 전자를 여기(excitation)시키고, 여기된 전자는 전자전달층(70)으로 이동하고, 정공은 정공전달층(40)으로 이동하는데, 이때 페로브스카이트 구조는 생성된 전자와 정공을 에너지 손실 없이 멀리까지 이동할 수 있도록 하므로, 더 많은 광을 흡수하게 한다. The light absorption layer 30 is a layer formed by placing the perovskite material. In this case, the perovskite material is a material capable of absorbing light in the infrared, visible and ultraviolet wavelength range, preferably ABX 3 It may be made of a structure. Here, A is at least one material selected from an alkyl group of CnH 2n +1 , and inorganic materials such as Cs, Ru, etc. capable of perovskite solar cell structure formation, B is Pb, Sn, Ti, Nb, Zr, and Ce One or more materials selected from the group consisting of, X may be a material that is halogen. Perovskite structures, together with their insulators, semiconductors, and conductors, have a very special structure that shows superconducting phenomena, resulting in high charge transport mobility and long diffusion distances. When sunlight is absorbed by the light absorbing layer 30, electrons are excited, and the excited electrons move to the electron transport layer 70, and the holes move to the hole transport layer 40, wherein the perovskite The structure allows the generated electrons and holes to travel farther without losing energy, thus absorbing more light.
여기서, 정공전달층(40)은 광흡수층(30)과 제2 전극(20) 사이에 배치된다. 이때, 정공전달층(40)은 단분자 물질 또는 고분자 물질을 포함할 수 있는데, 예를 들어, 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 또한, 첨가물질이 첨가될 수도 있는데, 이때 첨가물질은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질일 수 있다. 한편, 광흡수층(30)의 페로브스카이트 물질 내의 이온들은 매우 쉽게 이동하므로, 정공전달층(40)으로 확산되어 안정성을 훼손하고, 열화를 유발하는바, 본 발명에 따른 페로브스카이트 태양전지에서는 광흡수층(30)과 정공전달층(40) 사이에 확산방지층(50)이 배치된다.Here, the hole transport layer 40 is disposed between the light absorption layer 30 and the second electrode 20. In this case, the hole transport layer 40 may include a single molecule material or a polymer material, for example, 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9- bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA). In addition, an additive may be added, where the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP). On the other hand, since the ions in the perovskite material of the light absorption layer 30 moves very easily, it diffuses into the hole transport layer 40, thereby impairing stability and causing deterioration. In the battery, the diffusion barrier layer 50 is disposed between the light absorption layer 30 and the hole transport layer 40.
확산방지층(50)은 광흡수층(30) 상에 형성되어, 페로브스카이트 물질 내 이온들이 정공전달층(40)으로 유입되는 것을 차단한다. 이러한 확산방지층(50)은 에너지 밴드갭에 따라 두 종류의 확산방지층(50)으로 형성될 수 있다.The diffusion barrier layer 50 is formed on the light absorption layer 30 to block ions in the perovskite material from entering the hole transport layer 40. The diffusion barrier layer 50 may be formed of two types of diffusion barrier layer 50 according to the energy band gap.
첫 번째는 확산방지층(50)의 가전자대 에지(valence band edge)가 페로브스카이트 물질의 HOMO 레벨과 정공전달층(40)의 HOMO 레벨 사이에 위치하는 것이다. 즉, 가전자대 에지의 에너지 레벨이 페로브스카이트와 정공전달층(40)의 HOMO 레벨 사이에 존재한다. 이때, 확산방지층(50)은 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. The first is that the valence band edge of the diffusion barrier layer 50 is located between the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40. In other words, the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer 40. In this case, the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe.
두 번째는 확산방지층(50)의 가전자대 에지가 페로브스카이트 물질의 HOMO 레벨 및 정공전달층(40)의 HOMO 레벨보다 낮은 에너지 레벨을 가지는 경우이다. 이때, 확산방지층(50)은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. 한편, 광흡수층(30)에서 정공전달층(40)으로 정공이 이동하기 위해서는, 확산방지층(50)의 두께는 두께는 1 ~ 20 nm, 바람직하게는 1 ~ 5 nm이 좋다. Second, the valence band edge of the diffusion barrier layer 50 has an energy level lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40. In this case, the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS. On the other hand, in order for the hole to move from the light absorption layer 30 to the hole transport layer 40, the thickness of the diffusion barrier layer 50 is 1 to 20 nm, preferably 1 to 5 nm in thickness.
종합적으로, 본 발명에 따르면, 광흡수층(30)과 정공전달층(40) 사이에 확산방지층(50)이 형성됨으로써, 광흡수층(30)의 페러브스카이트 물질 내 이온들이 정공전달층(40)과 외부로 확산되는 것을 확산방지층(50)이 차단하므로, 페로브스카이트 태양전지의 안정성을 향상시키는 동시에 확산된 이온에 의한 정공전달층(40)의 열화를 방지한다.Overall, according to the present invention, the diffusion barrier layer 50 is formed between the light absorption layer 30 and the hole transport layer 40, the ions in the perovskite material of the light absorption layer 30 to the hole transport layer 40 Since the diffusion barrier layer 50 blocks the diffusion to and from the outside, the stability of the perovskite solar cell is improved and the degradation of the hole transport layer 40 due to the diffused ions is prevented.
한편, 본 발명에 따른 페로브스카이트 태양전지는 블로킹층(60)을 더 포함할 수 있다. 여기서, 블로킹층(60)은 제1 전극(10) 상에 형성되어, 제1 전극(10)과 광흡수층(30) 사이에 배치된다. 구체적으로, 블로킹층(60)은 금속 산화물 나노입자를 제1 전극(10) 상에 코팅하고 열처리하여 형성할 수 있다. 이렇게 형성된 블로킹층(60)은 제1 전극(10)으로 전자가 이동되는 전자복귀 현상(back transfer)을 방지한다.On the other hand, the perovskite solar cell according to the present invention may further include a blocking layer (60). Here, the blocking layer 60 is formed on the first electrode 10 and is disposed between the first electrode 10 and the light absorbing layer 30. Specifically, the blocking layer 60 may be formed by coating and thermally treating metal oxide nanoparticles on the first electrode 10. The blocking layer 60 formed as described above prevents electron transfer back to the first electrode 10.
또한, 본 발명에 따른 페로브스카이트 태양전지는 블로킹층(60)과 광흡수층(30) 사이에 배치되는 전자전달층(70)을 더 포함할 수 있는데, 이때 전자전달층(70)은 블로킹층(60) 상에 금속산화물 나노입자를 포함한 금속산화물 페이스트를 코팅하고 열처리하여 다공성 금속산화물층으로 형성할 수 있다. In addition, the perovskite solar cell according to the present invention may further include an electron transfer layer 70 disposed between the blocking layer 60 and the light absorbing layer 30, wherein the electron transfer layer 70 is blocked. The metal oxide paste including the metal oxide nanoparticles may be coated on the layer 60 and heat treated to form a porous metal oxide layer.
이하에서는 본 발명에 따른 페로브스카이트 태양전지의 제조방법에 대해서 설명한다.Hereinafter, a method for manufacturing a perovskite solar cell according to the present invention.
도 3은 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법의 순서도이다.3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명에 따른 페로브스카이트 태양전지의 제조방법은 블로킹층을 형성하는 단계(S100), 전자전달층을 형성하는 단계(S200), 광흡수층을 형성하는 단계(S300), 확산방지층을 형성하는 단계(S400), 정공전달층을 형성하는 단계(S500), 제2 전극을 형성하는 단계(S600)를 포함한다.As shown in FIG. 3, the method for manufacturing a perovskite solar cell according to the present invention includes forming a blocking layer (S100), forming an electron transport layer (S200), and forming a light absorbing layer ( S300), forming a diffusion barrier layer (S400), forming a hole transport layer (S500), and forming a second electrode (S600).
여기서, 페로브스카이트 태양전지의 제조방법은 상술한 본 발명에 따른 페로브스카이트 태양전지를 제조하는 방법이므로, 제1 전극, 블로킹층, 전자전달층, 광흡수층, 확산방지층, 정공전달층, 및 제2 전극에 관한 내용 중 중복되는 부분에 대해서는 자세한 설명을 생략하거나, 간단하게만 설명한다.Here, the manufacturing method of the perovskite solar cell is a method of manufacturing the perovskite solar cell according to the present invention described above, the first electrode, blocking layer, electron transfer layer, light absorption layer, diffusion barrier layer, hole transport layer The overlapping portions in the contents of,, and the second electrode will not be described in detail, or simply described.
본 발명에 따른 페로브스카이트 태양전지는 하기의 과정을 통해 제조된다.The perovskite solar cell according to the present invention is manufactured through the following process.
먼저, 투명 전도성 기판으로 형성된 제1 전극 상에 금속 산화물 나노입자를 코팅하여 블로킹층을 형성한다. 이때, 블로킹층은 금속 산화물 나노입자를 코팅한 후에, 공기 중에서 450 ~ 550℃에서 10 ~ 60분간 열처리, 바람직하게는 450 ~ 500℃에서 10 ~ 30분간 열처리함으로써 형성할 수 있다.First, a blocking layer is formed by coating metal oxide nanoparticles on a first electrode formed of a transparent conductive substrate. In this case, the blocking layer may be formed by coating the metal oxide nanoparticles, followed by heat treatment at 450 to 550 ° C. for 10 to 60 minutes, preferably at 450 to 500 ° C. for 10 to 30 minutes, in air.
블로킹층이 형성되면, 블로킹층 상에 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 코팅한 후, 열처리하여 다공성 전자전달층을 형성한다. 이때, 열처리는 공기 중에서 450 ~ 550℃에서 10 ~ 120분간, 바람직하게는 500 ~ 550℃에서 30 ~ 60분간 열처리하는 것이 좋다.When the blocking layer is formed, the metal oxide paste including the metal oxide nanoparticles is coated on the blocking layer, and then heat-treated to form a porous electron transport layer. At this time, the heat treatment is preferably in the air for 10 to 120 minutes at 450 ~ 550 ℃, preferably 500 to 550 ℃ for 30 to 60 minutes.
다음으로, 전자전달층 상에 페로브스카이트 물질을 증착하여 광흡수층을 형성한다. 이때, 페로브스카이트 물질은 적외선, 가시광선, 자외선 파장 영역 내에서 광흡수를 하는 물질이며, 바람직하게는 ABX3 구조를 갖으면서, A는 CnH2n + 1 의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질이고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며, X는 할로겐인 물질인 것이 좋다. Next, a perovskite material is deposited on the electron transport layer to form a light absorption layer. At this time, the perovskite material is a material that absorbs light in the infrared, visible and ultraviolet wavelength range, preferably having an ABX 3 structure, A is an alkyl group of CnH 2n + 1 , and the perovskite solar One or more materials selected from inorganic materials such as Cs, Ru, etc. capable of cell structure, B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce, X is a material that is halogen. .
페로브스카이트 물질을 코팅(증착)하는 방법은 두 가지 일 수 있는데, 그 중 하나는 AX와 BX2를 AX: BX2 = 1 : 1 비율로 유기 용매에 용해하고, 이 유기 용매를 다공성 전자전달층 상에 코팅(도포)한 후, 40 ~ 160℃에서 열처리함으로써 광흡수층을 형성하는 것이다.There are two ways of coating (depositing) the perovskite material, one of which dissolves AX and BX 2 in an organic solvent in an AX: BX 2 = 1: 1 ratio, and the organic solvent is porous electrons. After coating (coating) on the transfer layer, the light absorption layer is formed by heat treatment at 40 ~ 160 ℃.
다른 방법으로는, BX2를 먼저 유기 용매에 용해하여 전자전달층에 코팅한 후 40 ~ 120℃에서 열처리하고, 이후 유기 용매에 용해된 AX를 코팅한 후 40 ~ 160℃에서 열처리한다. 일례로, CH3NH3I와 PbI2로 CH3NH3PbI3 페로브스카이트 물질을 형성하여 증착할 수 있다.Alternatively, BX 2 is first dissolved in an organic solvent and coated on the electron transport layer, followed by heat treatment at 40 to 120 ° C., followed by coating AX dissolved in the organic solvent, followed by heat treatment at 40 to 160 ° C. For example, CH 3 NH 3 I and PbI 2 may form and deposit a CH 3 NH 3 PbI 3 perovskite material.
이후, 광흡수층 상에 확산방지층을 형성하는데, 상술한 바와 같이, 가전자대 에지의 에너지 레벨이 페로브스카이트와 정공전달층의 HOMO 레벨 사이에 존재하도록, MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질을 광흡수층에 증착하여 형성하거나, 또는 가전자대 에지가 페로브스카이트 물질의 HOMO 레벨 및 정공전달층의 HOMO 레벨보다 낮은 에너지 레벨을 가지게 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질을 증착하여 형성할 수 있다. 이때, 증착은 용액공정, 진공증착공정 등 다양한 공정을 통해 이루어질 수 있다.Thereafter, a diffusion barrier layer is formed on the light absorption layer. As described above, MoO X , MoS 2 , Sb 2 S 3 such that the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer. At least one material selected from the group consisting of GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe, deposited on the light absorbing layer, or the valence band edges of the HOMO levels and holes of the perovskite material. Deposit one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS to have an energy level lower than the HOMO level of the transfer layer Can be formed. In this case, deposition may be performed through various processes such as a solution process and a vacuum deposition process.
다음으로, 확산방지층 상에 정공전달층을 형성한다. 이때, 정공전달층은 단분자 또는 고분자 물질을 포함한다. 예를 들어 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene(spiro-OMeTAD) 및 poly-triarylamine(PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 또한, 정공전달층에 첨가물질을 첨가할 수 있는데, 첨가물질은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine(TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 예를 들어, 정공전달물질에 Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)와 TBP의 혼합하여 사용할 수 있다. 여기서, 정공전달물질은 유기 용매에 용해한 후, 확산방지층 상에 코팅한다.Next, a hole transport layer is formed on the diffusion barrier layer. In this case, the hole transport layer includes a single molecule or a polymer material. For example, one or more substances selected from the group consisting of 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD) and poly-triarylamine (PTAA) It may include. In addition, an additive may be added to the hole transport layer. The additive may include one or more materials selected from the group consisting of a Li-based dopant, a Co-based dopant, and 4-tert-butylpyridine (TBP). For example, a mixture of Li-bis (trifluoromethanesulfonyl) imide (Li-TFSI) and TBP may be used for the hole transport material. Here, the hole transport material is dissolved in an organic solvent and then coated on the diffusion barrier layer.
마지막으로, 정공전달층 상에 금속을 증착하여 제2 전극을 형성함으로써, 본 발명에 따른 페로브스카이트 태양전지를 제조할 수 있다. 여기서, Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, 및 Mg로 구성된 군으로부터 선택된 적어도 하나 이상의 금속을 스크린 인쇄법, 진공 열 증착법, 전자빔 증착법, 도금, 스퍼터링 등을 이용하여 정공전달층에 증착한다. 이때, 제2 전극은 정공전달층과 제2 전극의 일함수를 고려하여 정공이 정공전달층을 이동하여 제2 전극에 손실 없이 도달할 수 있도록 형성되어야 한다. Finally, the perovskite solar cell according to the present invention can be manufactured by depositing a metal on the hole transport layer to form a second electrode. Here, at least one metal selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg may be screen printed, vacuum thermal evaporated, electron beam evaporated, or plated. And deposition on the hole transport layer using sputtering or the like. In this case, the second electrode should be formed to allow the hole to reach the second electrode without loss by considering the work function of the hole transport layer and the second electrode.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, it is intended to describe the present invention in detail, and the present invention is not limited thereto, and should be understood by those skilled in the art within the technical spirit of the present invention. It is obvious that modifications and improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
본 발명은 페로브스카이트 태양전지의 안정성을 향상시키는 동시에 확산된 이온에 의한 정공전달층의 열화를 방지할 수 있으므로, 산업상 이용가능성이 있다.Since the present invention can improve the stability of the perovskite solar cell and prevent the degradation of the hole transport layer due to diffused ions, there is industrial applicability.

Claims (19)

  1. 투명 전도성 기판으로 형성된 제1 전극;A first electrode formed of a transparent conductive substrate;
    금속으로 형성되고, 상기 제1 전극에 대향하는 제2 전극;A second electrode formed of a metal and opposed to the first electrode;
    상기 제1 전극과 상기 제2 전극 사이에, 페로브스카이트 물질이 배치되어 형성된 광흡수층;A light absorption layer formed by disposing a perovskite material between the first electrode and the second electrode;
    상기 광흡수층과 상기 제2 전극 사이에 배치되는 정공전달층; 및A hole transport layer disposed between the light absorption layer and the second electrode; And
    상기 광흡수층과 상기 정공전달층 사이에 배치되어, 상기 광흡수층 내의 이온이 상기 정공전달층으로 확산되는 것을 방지하는 확산방지층;A diffusion barrier layer disposed between the light absorption layer and the hole transport layer to prevent ions in the light absorption layer from diffusing into the hole transport layer;
    을 포함하는 페로브스카이트 태양전지.Perovskite solar cell comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨과 상기 정공전달층의 HOMO 레벨 사이의 에너지 레벨을 가지는 페로브스카이트 태양전지.A valence band edge of the diffusion barrier layer has an energy level between the HOMO level of the perovskite material and the HOMO level of the hole transport layer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨 및 상기 정공전달층의 HOMO 레벨보다 낮은 에너지 레벨을 가지는 페로브스카이트 태양전지.The valence band edge of the diffusion barrier layer has a lower energy level than the HOMO level of the perovskite material and the HOMO level of the hole transport layer.
  4. 청구항 2에 있어서, The method according to claim 2,
    상기 확산방지층은 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어지는 페로브스카이트 태양전지.The diffusion barrier layer is a perovskite solar cell consisting of one or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 확산방지층은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어지는 페로브스카이트 태양전지.The diffusion barrier layer is a perovskite solar cell consisting of one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 확산방지층의 두께는 1 ~ 20 nm, 바람직하게는 1 ~ 5 nm인 페로브스카이트 태양전지.The diffusion barrier layer has a thickness of 1 to 20 nm, preferably 1 to 5 nm perovskite solar cell.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 전극 상에 금속 산화물 나노입자가 코팅되어 형성되는 블로킹층;A blocking layer formed by coating metal oxide nanoparticles on the first electrode;
    을 더 포함하는 페로브스카이트 태양전지.Perovskite solar cell comprising more.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 블로킹층과 상기 광흡수층 사이에, 다공성 금속 산화물로 형성되는 전자전달층;An electron transfer layer formed of a porous metal oxide between the blocking layer and the light absorption layer;
    을 더 포함하는 페로브스카이트 태양전지.Perovskite solar cell comprising more.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 페로브스카이트 물질은 하기 화학식 1로 표시되는 페로브스카이트 태양전지.The perovskite material is a perovskite solar cell represented by the formula (1).
    [화학식 1][Formula 1]
    ABX3 ABX 3
    상기 화학식 1에서,In Chemical Formula 1,
    A는 CnH2n+1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n + 1 , and an inorganic substance,
    B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
    X는 할로겐인 물질이다.X is a material that is halogen.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 정공전달층은The hole transport layer is
    2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함하는 페로브스카이트 태양전지.2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) containing at least one substance selected from the group consisting of 9,9-bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA) Perovskite solar cell.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 정공전달층은The hole transport layer is
    Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질을 더 포함하는 페로브스카이트 태양전지.A perovskite solar cell further comprising at least one material selected from the group consisting of a Li-based dopant, a Co-based dopant, and 4-tert-butylpyridine (TBP).
  12. (a) 투명 전도성 기판으로 형성된 제1 전극 상에 금속 산화물 나노입자를 코팅하여 블로킹층을 형성하는 단계;(a) coating a metal oxide nanoparticle on a first electrode formed of a transparent conductive substrate to form a blocking layer;
    (b) 상기 블로킹층 상에 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 코팅하여 다공성 전자전달층을 형성하는 단계;(b) forming a porous electron transport layer by coating a metal oxide paste including metal oxide nanoparticles on the blocking layer;
    (c) 상기 전자전달층 상에 페로브스카이트 물질을 증착하여 광흡수층을 형성하는 단계;(c) depositing a perovskite material on the electron transport layer to form a light absorption layer;
    (d) 광흡수층 상에 확산방지층을 형성하는 단계;(d) forming a diffusion barrier layer on the light absorption layer;
    (e) 상기 확산방지층 상에 정공전달물질을 코팅하여 정공전달층을 형성하는 단계; 및(e) coating a hole transport material on the diffusion barrier layer to form a hole transport layer; And
    (f) 상기 정공전달층 상에 금속을 증착하여 제2 전극을 형성하는 단계;(f) depositing a metal on the hole transport layer to form a second electrode;
    를 포함하는 페로브스카이트 태양전지의 제조방법.Method for producing a perovskite solar cell comprising a.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 (a) 단계는Step (a) is
    상기 금속 산화물 나노입자를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 60 분간 열처리하는 단계;After coating the metal oxide nanoparticles, heat treatment at 450 to 550 ° C. for 10 to 60 minutes;
    를 포함하는 페로브스카이트 태양전지의 제조방법.Method for producing a perovskite solar cell comprising a.
  14. 청구항 12에 있어서,The method according to claim 12,
    상기 (b) 단계는Step (b) is
    상기 금속 산화물 페이스트를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 120 분간 열처리하는 단계;After coating the metal oxide paste, heat treatment at 450 to 550 ° C. for 10 to 120 minutes;
    를 포함하는 페로브스카이트 태양전지의 제조방법.Method for producing a perovskite solar cell comprising a.
  15. 청구항 12에 있어서,The method according to claim 12,
    상기 페로브스카이트 물질은 하기 화학식 1로 표시되는 페로브스카이트 태양전지의 제조방법.The perovskite material is a method of manufacturing a perovskite solar cell represented by the formula (1).
    [화학식 1][Formula 1]
    ABX3 ABX 3
    상기 화학식 1에서,In Chemical Formula 1,
    A는 CnH2n+1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n + 1 , and an inorganic substance,
    B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
    X는 할로겐인 물질이다.X is a material that is halogen.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 (c) 단계는Step (c) is
    AX와 BX2를 1:1 비율로 유기용매에 용해하여 코팅한 후에, 40 ~ 160 ℃로 열처리하는 페로브스카이트 태양전지의 제조방법.AX and BX 2 dissolved in an organic solvent in a 1: 1 ratio and coated, followed by heat treatment at 40 ~ 160 ℃ a perovskite solar cell manufacturing method.
  17. 청구항 15에 있어서,The method according to claim 15,
    상기 (c) 단계는Step (c) is
    BX2를 유기 용매에 용해하여 코팅하고, 40 ~ 120 ℃에서 열처리하는 단계; 및Dissolving and coating BX 2 in an organic solvent and heat-treating at 40 to 120 ° C .; And
    코팅된 상기 BX2에, 유기 용매에 용해된 AX를 코팅하고, 40 ~ 160 ℃에서 열처리하는 단계;Coating the BX 2 with AX dissolved in an organic solvent, and heat-treating at 40 to 160 ° C .;
    를 포함하는 페로브스카이트 태양전지의 제조방법. Method for producing a perovskite solar cell comprising a.
  18. 청구항 12에 있어서, The method according to claim 12,
    상기 (d) 단계는Step (d)
    MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질, 또는One or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe, or
    상기 확산방지층은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질을 증착하는 페로브스카이트 태양전지의 제조방법. The diffusion barrier layer is a perovskite solar cell for depositing one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS Manufacturing method.
  19. 청구항 12에 있어서,The method according to claim 12,
    상기 (e) 단계는 Step (e) is
    상기 정공전달물질을 유기 용매에 용해한 후에 코팅하는 페로브스카이트 태양전지의 제조방법.A method of manufacturing a perovskite solar cell which is coated after dissolving the hole transport material in an organic solvent.
PCT/KR2017/000863 2016-10-31 2017-01-25 Perovskite solar cell using diffusion barrier film and manufacturing method therefor WO2018079943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0143385 2016-10-31
KR1020160143385A KR20180047382A (en) 2016-10-31 2016-10-31 Perovskite solar cell using diffusion barrier and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018079943A1 true WO2018079943A1 (en) 2018-05-03

Family

ID=62025129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000863 WO2018079943A1 (en) 2016-10-31 2017-01-25 Perovskite solar cell using diffusion barrier film and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20180047382A (en)
WO (1) WO2018079943A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638160A (en) * 2018-11-22 2019-04-16 集美大学 Perovskite battery and preparation method thereof of the nanostructure in cathode grating recess
CN109686843A (en) * 2018-11-30 2019-04-26 苏州协鑫纳米科技有限公司 Perovskite solar battery and preparation method thereof
CN111864079A (en) * 2020-08-31 2020-10-30 合肥工业大学 Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof
CN112534596A (en) * 2018-07-24 2021-03-19 西门子能源全球有限两合公司 Metal-organic perovskite solar cell, tandem solar cell and manufacturing method thereof
CN112582543A (en) * 2019-09-30 2021-03-30 上海黎元新能源科技有限公司 Perovskite solar cell
CN112582550A (en) * 2020-12-07 2021-03-30 上海黎元新能源科技有限公司 Perovskite solar cell based on polymer functional layer and preparation method thereof
CN112599679A (en) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 Flexible perovskite solar cell based on stainless steel foil substrate and preparation method thereof
WO2023193065A1 (en) * 2022-04-08 2023-10-12 Australian National University Photovoltaic cell and methods of fabricating same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220141482A (en) * 2021-04-13 2022-10-20 한화솔루션 주식회사 Perovskite solar cell and Manufacturing method thereof
KR20230109832A (en) * 2022-01-14 2023-07-21 한화솔루션 주식회사 Perovskite solar cell and Manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184379A1 (en) * 2013-05-17 2014-11-20 Exeger Sweden Ab A dye-sensitized solar cell and a method for manufacturing the solar cell
WO2015092397A1 (en) * 2013-12-17 2015-06-25 Isis Innovation Limited Photovoltaic device comprising a metal halide perovskite and a passivating agent
WO2015167228A1 (en) * 2014-04-28 2015-11-05 성균관대학교산학협력단 Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor
US20150340632A1 (en) * 2012-12-20 2015-11-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Perovskite Schottky Type Solar Cell
KR20160050456A (en) * 2014-10-29 2016-05-11 고려대학교 산학협력단 Manufacturing method and thin film solar cell using perovskite and dye

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150340632A1 (en) * 2012-12-20 2015-11-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Perovskite Schottky Type Solar Cell
WO2014184379A1 (en) * 2013-05-17 2014-11-20 Exeger Sweden Ab A dye-sensitized solar cell and a method for manufacturing the solar cell
WO2015092397A1 (en) * 2013-12-17 2015-06-25 Isis Innovation Limited Photovoltaic device comprising a metal halide perovskite and a passivating agent
WO2015167228A1 (en) * 2014-04-28 2015-11-05 성균관대학교산학협력단 Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor
KR20160050456A (en) * 2014-10-29 2016-05-11 고려대학교 산학협력단 Manufacturing method and thin film solar cell using perovskite and dye

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534596B (en) * 2018-07-24 2023-09-12 西门子能源全球有限两合公司 Metal organic perovskite solar cell, serial solar cell and manufacturing method thereof
CN112534596A (en) * 2018-07-24 2021-03-19 西门子能源全球有限两合公司 Metal-organic perovskite solar cell, tandem solar cell and manufacturing method thereof
CN109638160B (en) * 2018-11-22 2022-11-15 集美大学 Perovskite battery with nano structure at cathode grating depression and preparation method thereof
CN109638160A (en) * 2018-11-22 2019-04-16 集美大学 Perovskite battery and preparation method thereof of the nanostructure in cathode grating recess
CN109686843A (en) * 2018-11-30 2019-04-26 苏州协鑫纳米科技有限公司 Perovskite solar battery and preparation method thereof
CN109686843B (en) * 2018-11-30 2023-05-26 昆山协鑫光电材料有限公司 Perovskite solar cell and preparation method thereof
CN112582543B (en) * 2019-09-30 2023-05-02 上海黎元新能源科技有限公司 Perovskite solar cell
CN112582543A (en) * 2019-09-30 2021-03-30 上海黎元新能源科技有限公司 Perovskite solar cell
CN111864079B (en) * 2020-08-31 2022-12-06 合肥工业大学 Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof
CN111864079A (en) * 2020-08-31 2020-10-30 合肥工业大学 Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof
CN112582550A (en) * 2020-12-07 2021-03-30 上海黎元新能源科技有限公司 Perovskite solar cell based on polymer functional layer and preparation method thereof
CN112599679A (en) * 2020-12-14 2021-04-02 中国科学院大连化学物理研究所 Flexible perovskite solar cell based on stainless steel foil substrate and preparation method thereof
WO2023193065A1 (en) * 2022-04-08 2023-10-12 Australian National University Photovoltaic cell and methods of fabricating same

Also Published As

Publication number Publication date
KR20180047382A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2018079943A1 (en) Perovskite solar cell using diffusion barrier film and manufacturing method therefor
WO2018088632A1 (en) Perovskite solar cell module and manufacturing method therefor
WO2017105053A1 (en) Monolithic-type module of perovskite solar cell, and manufacturing method therefor
WO2015041470A1 (en) Solar cell
WO2016186317A1 (en) Perovskite solar cell module
WO2011119001A2 (en) Solar cell apparatus and method for manufacturing same
WO2012015151A2 (en) Solar cell and method for manufacturing same
WO2018012825A1 (en) Organic-inorganic composite solar cell
WO2015130054A1 (en) Solid-type thin-film solar battery using perovskite-based dye and method for manufacturing same
WO2012115392A2 (en) Solar cell having a double-sided structure, and method for manufacturing same
EP2911977A1 (en) Doped graphene structure, method for preparing the same, transparent electrode and device
WO2021107184A1 (en) Monolithic tandem solar cell and method for producing same
WO2022215990A1 (en) Perovskite solar cell and tandem solar cell comprising same
WO2012033274A1 (en) Device for generating solar power and method for manufacturing same
WO2013151378A1 (en) Transparent compound semiconductor and production method therefor
WO2012046934A1 (en) Photovoltaic device and method for manufacturing same
KR20190042533A (en) Perovskite solar cell using diffusion barrier and manufacturing method thereof
WO2012015286A2 (en) Device for generating photovoltaic power and manufacturing method for same
WO2014204182A1 (en) Solar cell
WO2012015150A1 (en) Device for generating photovoltaic power and method for manufacturing same
WO2018016886A1 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
WO2018043910A1 (en) Hole transport material for improving perovskite solar cell efficiency
WO2011083995A2 (en) Solar photovoltaic device and a production method for the same
WO2013058521A1 (en) Solar cell and method of fabricating the same
WO2013183949A1 (en) Solar cell and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865669

Country of ref document: EP

Kind code of ref document: A1