WO2018079943A1 - Perovskite solar cell using diffusion barrier film and manufacturing method therefor - Google Patents
Perovskite solar cell using diffusion barrier film and manufacturing method therefor Download PDFInfo
- Publication number
- WO2018079943A1 WO2018079943A1 PCT/KR2017/000863 KR2017000863W WO2018079943A1 WO 2018079943 A1 WO2018079943 A1 WO 2018079943A1 KR 2017000863 W KR2017000863 W KR 2017000863W WO 2018079943 A1 WO2018079943 A1 WO 2018079943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- layer
- perovskite solar
- hole transport
- electrode
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 41
- 230000004888 barrier function Effects 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 74
- 230000005525 hole transport Effects 0.000 claims abstract description 66
- 230000031700 light absorption Effects 0.000 claims abstract description 35
- 150000002500 ions Chemical class 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 32
- 239000011248 coating agent Substances 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 23
- 229910044991 metal oxide Inorganic materials 0.000 claims description 22
- 150000004706 metal oxides Chemical class 0.000 claims description 22
- 230000000903 blocking effect Effects 0.000 claims description 19
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 15
- 239000002105 nanoparticle Substances 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 11
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 239000002019 doping agent Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 6
- 229910004613 CdTe Inorganic materials 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 6
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 229910052745 lead Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 230000027756 respiratory electron transport chain Effects 0.000 claims description 6
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 4
- QXAIDADUIMVTPS-UHFFFAOYSA-N 9-(9h-fluoren-9-yl)-9h-fluorene Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1C1C2=CC=CC=C2C2=CC=CC=C21 QXAIDADUIMVTPS-UHFFFAOYSA-N 0.000 claims description 4
- 125000005259 triarylamine group Chemical group 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims 2
- 230000008569 process Effects 0.000 description 9
- 230000032258 transport Effects 0.000 description 9
- 239000010409 thin film Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 150000002367 halogens Chemical group 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/85—Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/87—Light-trapping means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/86—Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a perovskite solar cell and a method of manufacturing the same.
- a solar cell is a device that converts solar energy into electrical energy and generates a current-voltage using a photovoltaic effect. These solar cells are receiving worldwide attention as an alternative to fossil energy in the face of resource depletion and environmental problems. Since high purity materials must be used for high efficiency, much energy is consumed for the purification of raw materials. In addition, since expensive process equipment is used in the process of single crystal or thin film, the manufacturing cost is considerable, which impedes utilization of solar cells.
- organic-inorganic hybrid perovskite solar cell disclosed in Korean Patent Document KR2016-0015723.
- the organic-inorganic hybrid perovskite solar cell utilizes a material having a perovskite crystal structure by combining inorganic and organic materials.
- Perovskite has a very special structure with superconducting phenomena as well as insulator, semiconductor and conductor properties.
- a conventional perovskite solar cell includes a substrate 1, a transparent electrode 2, an electron transfer layer 3, a light absorption layer 4, a hole transfer layer 5, and a metal electrode.
- (6) consists of a laminated structure sequentially.
- indium tin oxide (ITO) or fluorine doped tin oxide (FTO) having a low work function is used as the transparent electrode 2
- Au or Ag having a high work function is used as the metal electrode 6.
- the conventional perovskite solar cell has a very low activation energy of internal ion migration, and thus, a material is decomposed by ion migration in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer and the outside to decrease stability, and reach the hole transport layer to cause degradation of the hole transport layer.
- an aspect of the present invention is a perovskite structure is arranged between the light absorption layer and the hole transport layer to block the movement of ions in the perovskite material structurally To provide a skylight solar cell.
- the perovskite solar cell comprises a first electrode formed of a transparent conductive substrate; A second electrode formed of a metal and opposed to the first electrode; A light absorption layer formed by disposing a perovskite material between the first electrode and the second electrode; A hole transport layer disposed between the light absorption layer and the second electrode; And a diffusion barrier layer disposed between the light absorption layer and the hole transport layer to prevent ions in the light absorption layer from diffusing into the hole transport layer.
- the valence band edge of the diffusion barrier layer is between the HOMO level of the perovskite material and the HOMO level of the hole transport layer. Has an energy level.
- the valence band edge of the diffusion barrier layer is lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer Has an energy level.
- the diffusion barrier layer is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe It consists of one or more substances selected from the group consisting of.
- the diffusion barrier layer is GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and One or more materials selected from the group consisting of ZnS.
- the thickness of the diffusion barrier layer is 1 to 20 nm, preferably 1 to 5 nm.
- a blocking layer formed by coating the metal oxide nanoparticles on the first electrode further includes.
- an electron transport layer formed of a porous metal oxide further includes.
- the perovskite material is represented by the following formula (1).
- A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
- B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
- X is a material that is halogen.
- the hole transport layer is 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene ( spiro-OMeTAD), and poly-triarylamine (PTAA).
- the hole transport layer further comprises at least one material selected from the group consisting of Li-based dopant, Co-based dopant, and 4-tert-butylpyridine (TBP). Include.
- the method of manufacturing a perovskite solar cell (a) coating a metal oxide nanoparticles on the first electrode formed of a transparent conductive substrate to form a blocking layer; (b) forming a porous electron transport layer by coating a metal oxide paste including metal oxide nanoparticles on the blocking layer; (c) depositing a perovskite material on the electron transport layer to form a light absorption layer; (d) forming a diffusion barrier layer on the light absorption layer; (e) coating a hole transport material on the diffusion barrier layer to form a hole transport layer; And (f) depositing a metal on the hole transport layer to form a second electrode.
- the perovskite material is represented by the following formula (1).
- A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
- B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
- X is a material that is halogen.
- AX and BX 2 is dissolved in an organic solvent in a 1: 1 ratio and coated, and then heat-treated at 40 to 160 ° C.
- the step (c) is a step of dissolving BX 2 in an organic solvent and coating, heat treatment at 40 ⁇ 120 °C; And coating AX dissolved in an organic solvent on the coated BX 2 and heat-treating at 40 to 160 ° C.
- the step (d) is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS , One or more materials selected from the group consisting of PbSe, and PbSSe, or one selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS The above material is deposited.
- the step (e) is coated after dissolving the hole transport material in an organic solvent.
- the diffusion barrier layer is formed between the light absorption layer and the hole transport layer, thereby preventing ions in the perovskite material of the light absorption layer from diffusing to the hole transport layer and the outside, thereby reducing the stability of the perovskite solar cell. At the same time, it is possible to prevent deterioration of the hole transport layer due to diffused ions.
- FIG. 1 is an exploded perspective view of a conventional perovskite solar cell.
- FIG. 2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
- FIG. 3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
- the perovskite solar cell includes a first electrode 10 formed of a transparent conductive substrate and a second electrode 20 formed of a metal and opposing the first electrode 10. ), A hole disposed between the first electrode 10 and the second electrode 20, and a light absorbing layer 30 formed between the perovskite material and the light absorbing layer 30 and the second electrode 20. A diffusion barrier layer 50 disposed between the transfer layer 40 and the light absorbing layer 30 and the hole transport layer 40 to prevent ions in the light absorbing layer 30 from diffusing into the hole transport layer 40. Include.
- Perovskite solar cells using materials that have a perovskite crystal structure by combining inorganic and organic materials are in the spotlight as the next generation thin film solar cells because they are inexpensive to manufacture and thin films can be manufactured by solution process.
- Skyt photovoltaic cells have a very low activation energy of internal ion transport, and thus, materials are decomposed by ion transport in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer 40 and the outside to decrease stability, and reach the hole transport layer 40 to cause degradation of the hole transport layer 40. Accordingly, in order to solve the problems of the conventional perovskite solar cell, the perovskite solar cell according to the present invention has been devised.
- the perovskite solar cell according to the present invention includes a first electrode 10, a second electrode 20, a light absorption layer 30, a hole transport layer 40, and a diffusion barrier layer 50.
- the first electrode 10 is formed of a transparent conductive substrate, specifically, a structure in which a transparent electrode having a low work function is disposed on the substrate.
- the transparent electrode may generally use indium tin oxide (ITO) or fluorine doped tin oxide (FTO).
- the transparent electrode is not necessarily limited thereto, and a transparent electrode having a multilayer structure in which a metal layer is disposed on a pair of oxide layers. It may be.
- the substrate may be a rigid substrate or a flexible substrate that is flexibly curved. In the case of a flexible substrate, there is an advantage of implementing a flexible solar cell and mass production of the solar cell in a short time through a roll-to-roll process.
- the flexible substrate is a polymer substrate, for example, at least one of polyether sulfone (PES), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), and polyethylene naphthalate (PEN) Can be made.
- PES polyether sulfone
- PET polyethylene terephthalate
- PC polycarbonate
- PI polyimide
- PEN polyethylene naphthalate
- the material of the polymer substrate is not necessarily limited thereto, and the substrate is not necessarily limited to the flexible substrate, and thus may be made of glass, silicon, or the like.
- the first electrode 10 is disposed to face the second electrode 20.
- the second electrode 20 is formed of a metal, wherein the metal is at least one selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg
- the metal which comprises the 2nd electrode 20 is not necessarily limited to the said metal.
- the second electrode 20 may reach the second electrode 20 without loss by moving the hole transport layer 40 in consideration of the work functions of the hole transport layer 40 and the second electrode 20. It should be formed so that it can As the method for forming the second electrode 20, screen printing, vacuum thermal evaporation, electron beam evaporation, plating, sputtering, or the like may be used.
- the hole transport layer 40, the diffusion barrier layer 50, and the light absorption layer 30 are disposed between the second electrode 20 and the first electrode 10.
- the light absorption layer 30 is a layer formed by placing the perovskite material.
- the perovskite material is a material capable of absorbing light in the infrared, visible and ultraviolet wavelength range, preferably ABX 3 It may be made of a structure.
- A is at least one material selected from an alkyl group of CnH 2n +1 , and inorganic materials such as Cs, Ru, etc. capable of perovskite solar cell structure formation
- B is Pb, Sn, Ti, Nb, Zr, and Ce
- One or more materials selected from the group consisting of, X may be a material that is halogen.
- Perovskite structures together with their insulators, semiconductors, and conductors, have a very special structure that shows superconducting phenomena, resulting in high charge transport mobility and long diffusion distances.
- sunlight is absorbed by the light absorbing layer 30, electrons are excited, and the excited electrons move to the electron transport layer 70, and the holes move to the hole transport layer 40, wherein the perovskite
- the structure allows the generated electrons and holes to travel farther without losing energy, thus absorbing more light.
- the hole transport layer 40 is disposed between the light absorption layer 30 and the second electrode 20.
- the hole transport layer 40 may include a single molecule material or a polymer material, for example, 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9- bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA).
- an additive may be added, where the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP).
- the diffusion barrier layer 50 is disposed between the light absorption layer 30 and the hole transport layer 40.
- the diffusion barrier layer 50 is formed on the light absorption layer 30 to block ions in the perovskite material from entering the hole transport layer 40.
- the diffusion barrier layer 50 may be formed of two types of diffusion barrier layer 50 according to the energy band gap.
- the valence band edge of the diffusion barrier layer 50 is located between the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40.
- the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer 40.
- the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe.
- the valence band edge of the diffusion barrier layer 50 has an energy level lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40.
- the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS.
- the thickness of the diffusion barrier layer 50 is 1 to 20 nm, preferably 1 to 5 nm in thickness.
- the diffusion barrier layer 50 is formed between the light absorption layer 30 and the hole transport layer 40, the ions in the perovskite material of the light absorption layer 30 to the hole transport layer 40 Since the diffusion barrier layer 50 blocks the diffusion to and from the outside, the stability of the perovskite solar cell is improved and the degradation of the hole transport layer 40 due to the diffused ions is prevented.
- the perovskite solar cell according to the present invention may further include a blocking layer (60).
- the blocking layer 60 is formed on the first electrode 10 and is disposed between the first electrode 10 and the light absorbing layer 30.
- the blocking layer 60 may be formed by coating and thermally treating metal oxide nanoparticles on the first electrode 10. The blocking layer 60 formed as described above prevents electron transfer back to the first electrode 10.
- the perovskite solar cell according to the present invention may further include an electron transfer layer 70 disposed between the blocking layer 60 and the light absorbing layer 30, wherein the electron transfer layer 70 is blocked.
- the metal oxide paste including the metal oxide nanoparticles may be coated on the layer 60 and heat treated to form a porous metal oxide layer.
- FIG. 3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
- the method for manufacturing a perovskite solar cell according to the present invention includes forming a blocking layer (S100), forming an electron transport layer (S200), and forming a light absorbing layer ( S300), forming a diffusion barrier layer (S400), forming a hole transport layer (S500), and forming a second electrode (S600).
- the manufacturing method of the perovskite solar cell is a method of manufacturing the perovskite solar cell according to the present invention described above, the first electrode, blocking layer, electron transfer layer, light absorption layer, diffusion barrier layer, hole transport layer
- the first electrode, blocking layer, electron transfer layer, light absorption layer, diffusion barrier layer, hole transport layer The overlapping portions in the contents of, and the second electrode will not be described in detail, or simply described.
- the perovskite solar cell according to the present invention is manufactured through the following process.
- a blocking layer is formed by coating metal oxide nanoparticles on a first electrode formed of a transparent conductive substrate.
- the blocking layer may be formed by coating the metal oxide nanoparticles, followed by heat treatment at 450 to 550 ° C. for 10 to 60 minutes, preferably at 450 to 500 ° C. for 10 to 30 minutes, in air.
- the metal oxide paste including the metal oxide nanoparticles is coated on the blocking layer, and then heat-treated to form a porous electron transport layer.
- the heat treatment is preferably in the air for 10 to 120 minutes at 450 ⁇ 550 °C, preferably 500 to 550 °C for 30 to 60 minutes.
- the perovskite material is a material that absorbs light in the infrared, visible and ultraviolet wavelength range, preferably having an ABX 3 structure
- A is an alkyl group of CnH 2n + 1
- B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce
- X is a material that is halogen. .
- the light absorption layer is formed by heat treatment at 40 ⁇ 160 °C.
- BX 2 is first dissolved in an organic solvent and coated on the electron transport layer, followed by heat treatment at 40 to 120 ° C., followed by coating AX dissolved in the organic solvent, followed by heat treatment at 40 to 160 ° C.
- CH 3 NH 3 I and PbI 2 may form and deposit a CH 3 NH 3 PbI 3 perovskite material.
- a diffusion barrier layer is formed on the light absorption layer.
- MoO X , MoS 2 , Sb 2 S 3 such that the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer.
- deposition may be performed through various processes such as a solution process and a vacuum deposition process.
- the hole transport layer includes a single molecule or a polymer material.
- the hole transport layer includes a single molecule or a polymer material.
- one or more substances selected from the group consisting of 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD) and poly-triarylamine (PTAA) may include.
- an additive may be added to the hole transport layer.
- the additive may include one or more materials selected from the group consisting of a Li-based dopant, a Co-based dopant, and 4-tert-butylpyridine (TBP).
- Li-bis (trifluoromethanesulfonyl) imide Li-TFSI
- TBP trifluoromethanesulfonyl
- the hole transport material is dissolved in an organic solvent and then coated on the diffusion barrier layer.
- the perovskite solar cell according to the present invention can be manufactured by depositing a metal on the hole transport layer to form a second electrode.
- a metal selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg may be screen printed, vacuum thermal evaporated, electron beam evaporated, or plated.
- the second electrode should be formed to allow the hole to reach the second electrode without loss by considering the work function of the hole transport layer and the second electrode.
- the present invention can improve the stability of the perovskite solar cell and prevent the degradation of the hole transport layer due to diffused ions, there is industrial applicability.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention relates to a perovskite solar cell and a manufacturing method therefor, and the perovskite solar cell according to the present invention comprises: a first electrode (10) formed as a transparent conductive substrate; a second electrode (20) formed of metal and facing the first electrode (10); a light absorption layer (30) formed such that a perovskite material is disposed between the first electrode (10) and the second electrode (20); a hole transport layer (40) disposed between the light absorption layer (30) and the second electrode (20); and a diffusion barrier layer (50) disposed between the light absorption layer (30) and the hole transport layer (40) so as to prevent ions in the light absorption layer (30) from being dispersed into the hole transport layer (40).
Description
본 발명은 페로브스카이트 태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to a perovskite solar cell and a method of manufacturing the same.
태양전지는 태양에너지를 전기에너지로 변환하는 장치로서, 광기전 효과를 이용하여 전류-전압을 생성한다. 이러한 태양전지는 자원의 고갈 및 환경문제에 직면한 화석 에너지의 대체 에너지로 세계적인 관심을 받고 있는데, 고효율화를 위해 매우 순도가 높은 소재를 사용해야 하므로, 원소재의 정제에 많은 에너지가 소모된다. 또한, 단결정 혹은 박막화하는 과정에서 고가의 공정 장비가 사용되므로, 그 제조에 상당한 비용이 소요되어 태양전지의 활용에 장애가 되고 있다.A solar cell is a device that converts solar energy into electrical energy and generates a current-voltage using a photovoltaic effect. These solar cells are receiving worldwide attention as an alternative to fossil energy in the face of resource depletion and environmental problems. Since high purity materials must be used for high efficiency, much energy is consumed for the purification of raw materials. In addition, since expensive process equipment is used in the process of single crystal or thin film, the manufacturing cost is considerable, which impedes utilization of solar cells.
이러한 태양전지의 문제 해결을 위해서 고안된 것 중 하나가 대한민국 특허문헌 KR2016-0015723에 개시된 유무기 하이브리드 페로브스카이트 태양전지이다. 유무기 하이브리드 페로브스카이트 태양전지는 무기물과 유기물이 결합하여 페로브스카이트 결정 구조를 가지는 소재를 활용한다. 페로브스카이트는 부도체·반도체·도체 성질과 함께 초전도 현상까지 보이는 매우 특별한 구조를 갖는다. One of the things devised to solve the problem of such a solar cell is an organic-inorganic hybrid perovskite solar cell disclosed in Korean Patent Document KR2016-0015723. The organic-inorganic hybrid perovskite solar cell utilizes a material having a perovskite crystal structure by combining inorganic and organic materials. Perovskite has a very special structure with superconducting phenomena as well as insulator, semiconductor and conductor properties.
이러한 유무기 하이브리드 페로브스카이트 태양전지는 제조비용이 저렴하고 용액공정으로 박막제작이 가능하므로 현재 차세대 박막 태양전지로 각광받고 있다. 도 1에 도시된 바와 같이, 종래 페로브스카이트 태양전지는 기판(1), 투명전극(2), 전자전달층(3), 광흡수층(4), 정공전달층(5), 및 금속전극(6)이 순차적으로 적층된 구조로 이루어진다. 여기서, 투명전극(2)으로는 일함수가 낮은 ITO(Indium Tin Oxide) 또는 FTO(Fluorine doped Tin Oxide)가, 금속전극(6)으로는 높은 일함수를 갖는 Au 또는 Ag 등이 사용된다. These organic-inorganic hybrid perovskite solar cells are in the spotlight as the next-generation thin film solar cells because the manufacturing cost is low and the thin film can be manufactured by the solution process. As shown in FIG. 1, a conventional perovskite solar cell includes a substrate 1, a transparent electrode 2, an electron transfer layer 3, a light absorption layer 4, a hole transfer layer 5, and a metal electrode. (6) consists of a laminated structure sequentially. Here, indium tin oxide (ITO) or fluorine doped tin oxide (FTO) having a low work function is used as the transparent electrode 2, and Au or Ag having a high work function is used as the metal electrode 6.
그러나 종래 페로브스카이트 태양전지는 내부 이온 이동의 활성화에너지가 매우 낮아, 다양한 외부 환경에서 이온 이동에 의해 재료가 분해되는 문제가 있다. 이온 이동이 쉬운 페로브스카이트 물질 내의 이온들이 정공전달층 및 외부로 확산되어 안정성을 떨어뜨리고, 정공전달층에 도달하여 정공전달층의 열화를 발생시키는 것이다.However, the conventional perovskite solar cell has a very low activation energy of internal ion migration, and thus, a material is decomposed by ion migration in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer and the outside to decrease stability, and reach the hole transport layer to cause degradation of the hole transport layer.
이에, 종래 페로브스카이트 태양전지의 이온 이동에 따른 문제점을 해결하기 위한 방안이 절실히 요구되고 있다.Therefore, there is an urgent need for a method for solving the problems caused by ion migration of the conventional perovskite solar cell.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 일 측면은 광흡수층과 정공전달층 사이에 확산방지층이 배치되어 구조적으로 페로브스카이트 물질 내 이온의 이동을 차단하는 페로브스카이트 태양전지를 제공하는 것이다.The present invention is to solve the above problems of the prior art, an aspect of the present invention is a perovskite structure is arranged between the light absorption layer and the hole transport layer to block the movement of ions in the perovskite material structurally To provide a skylight solar cell.
본 발명의 실시예에 따른 페로브스카이트 태양전지는 투명 전도성 기판으로 형성된 제1 전극; 금속으로 형성되고, 상기 제1 전극에 대향하는 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에, 페로브스카이트 물질이 배치되어 형성된 광흡수층; 상기 광흡수층과 상기 제2 전극 사이에 배치되는 정공전달층; 및 상기 광흡수층과 상기 정공전달층 사이에 배치되어, 상기 광흡수층 내의 이온이 상기 정공전달층으로 확산되는 것을 방지하는 확산방지층;을 포함한다.The perovskite solar cell according to the embodiment of the present invention comprises a first electrode formed of a transparent conductive substrate; A second electrode formed of a metal and opposed to the first electrode; A light absorption layer formed by disposing a perovskite material between the first electrode and the second electrode; A hole transport layer disposed between the light absorption layer and the second electrode; And a diffusion barrier layer disposed between the light absorption layer and the hole transport layer to prevent ions in the light absorption layer from diffusing into the hole transport layer.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨과 상기 정공전달층의 HOMO 레벨 사이의 에너지 레벨을 가진다.Further, in the perovskite solar cell according to an embodiment of the present invention, the valence band edge of the diffusion barrier layer is between the HOMO level of the perovskite material and the HOMO level of the hole transport layer. Has an energy level.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨 및 상기 정공전달층의 HOMO 레벨보다 낮은 에너지 레벨을 가진다.Further, in the perovskite solar cell according to the embodiment of the present invention, the valence band edge of the diffusion barrier layer is lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer Has an energy level.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층은 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어진다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the diffusion barrier layer is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe It consists of one or more substances selected from the group consisting of.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어진다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the diffusion barrier layer is GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and One or more materials selected from the group consisting of ZnS.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 확산방지층의 두께는 1 ~ 20 nm, 바람직하게는 1 ~ 5 nm이다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the thickness of the diffusion barrier layer is 1 to 20 nm, preferably 1 to 5 nm.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 제1 전극 상에 금속 산화물 나노입자가 코팅되어 형성되는 블로킹층;을 더 포함한다.In addition, the perovskite solar cell according to an embodiment of the present invention, a blocking layer formed by coating the metal oxide nanoparticles on the first electrode; further includes.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 블로킹층과 상기 광흡수층 사이에, 다공성 금속 산화물로 형성되는 전자전달층;을 더 포함한다.In addition, in the perovskite solar cell according to an embodiment of the present invention, between the blocking layer and the light absorbing layer, an electron transport layer formed of a porous metal oxide; further includes.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 페로브스카이트 물질은 하기 화학식 1로 표시된다.In addition, in the perovskite solar cell according to an embodiment of the present invention, the perovskite material is represented by the following formula (1).
[화학식 1][Formula 1]
ABX3
ABX 3
상기 화학식 1에서,In Chemical Formula 1,
A는 CnH2n
+1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
X는 할로겐인 물질이다. X is a material that is halogen.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 정공전달층은 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함한다. In addition, in the perovskite solar cell according to an embodiment of the present invention, the hole transport layer is 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene ( spiro-OMeTAD), and poly-triarylamine (PTAA).
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지에 있어서, 상기 정공전달층은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질을 더 포함한다.Further, in the perovskite solar cell according to an embodiment of the present invention, the hole transport layer further comprises at least one material selected from the group consisting of Li-based dopant, Co-based dopant, and 4-tert-butylpyridine (TBP). Include.
한편, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법은 (a) 투명 전도성 기판으로 형성된 제1 전극 상에 금속 산화물 나노입자를 코팅하여 블로킹층을 형성하는 단계; (b) 상기 블로킹층 상에 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 코팅하여 다공성 전자전달층을 형성하는 단계; (c) 상기 전자전달층 상에 페로브스카이트 물질을 증착하여 광흡수층을 형성하는 단계; (d) 광흡수층 상에 확산방지층을 형성하는 단계; (e) 상기 확산방지층 상에 정공전달물질을 코팅하여 정공전달층을 형성하는 단계; 및 (f) 상기 정공전달층 상에 금속을 증착하여 제2 전극을 형성하는 단계;를 포함한다. On the other hand, the method of manufacturing a perovskite solar cell according to an embodiment of the present invention (a) coating a metal oxide nanoparticles on the first electrode formed of a transparent conductive substrate to form a blocking layer; (b) forming a porous electron transport layer by coating a metal oxide paste including metal oxide nanoparticles on the blocking layer; (c) depositing a perovskite material on the electron transport layer to form a light absorption layer; (d) forming a diffusion barrier layer on the light absorption layer; (e) coating a hole transport material on the diffusion barrier layer to form a hole transport layer; And (f) depositing a metal on the hole transport layer to form a second electrode.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (a) 단계는 상기 금속 산화물 나노입자를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 60 분간 열처리하는 단계;를 포함한다. In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (a) after the coating the metal oxide nanoparticles, heat treatment for 10 to 60 minutes at 450 ~ 550 ℃; It includes.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (b) 단계는 상기 금속 산화물 페이스트를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 120 분간 열처리하는 단계;를 포함한다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (b) after the coating the metal oxide paste, heat treatment for 10 to 120 minutes at 450 ~ 550 ℃; Include.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 페로브스카이트 물질은 하기 화학식 1로 표시된다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the perovskite material is represented by the following formula (1).
[화학식 1][Formula 1]
ABX3
ABX 3
상기 화학식 1에서,In Chemical Formula 1,
A는 CnH2n
+1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n +1 , and an inorganic substance,
B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,
X는 할로겐인 물질이다.X is a material that is halogen.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, AX와 BX2를 1:1 비율로 유기용매에 용해하여 코팅한 후에, 40 ~ 160 ℃로 열처리한다. In addition, in the method for manufacturing a perovskite solar cell according to an embodiment of the present invention, AX and BX 2 is dissolved in an organic solvent in a 1: 1 ratio and coated, and then heat-treated at 40 to 160 ° C.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (c) 단계는 BX2를 유기 용매에 용해하여 코팅하고, 40 ~ 120 ℃에서 열처리하는 단계; 및 코팅된 상기 BX2에, 유기 용매에 용해된 AX를 코팅하고, 40 ~ 160 ℃에서 열처리하는 단계;를 포함한다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (c) is a step of dissolving BX 2 in an organic solvent and coating, heat treatment at 40 ~ 120 ℃; And coating AX dissolved in an organic solvent on the coated BX 2 and heat-treating at 40 to 160 ° C.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (d) 단계는 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질, 또는 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질을 증착한다. In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (d) is MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS , One or more materials selected from the group consisting of PbSe, and PbSSe, or one selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS The above material is deposited.
또한, 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법에 있어서, 상기 (e) 단계는 상기 정공전달물질을 유기 용매에 용해한 후에 코팅한다.In addition, in the method of manufacturing a perovskite solar cell according to an embodiment of the present invention, the step (e) is coated after dissolving the hole transport material in an organic solvent.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims are not to be interpreted in a conventional and dictionary sense, and the inventors may appropriately define the concept of terms in order to best describe their own invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따르면, 광흡수층과 정공전달층 사이에 확산방지층이 형성됨으로써, 광흡수층의 페러브스카이트 물질 내 이온들이 정공전달층과 외부로 확산되는 것을 차단하므로, 페로브스카이트 태양전지의 안정성을 향상시키는 동시에 확산된 이온에 의한 정공전달층의 열화를 방지할 수 있다.According to the present invention, the diffusion barrier layer is formed between the light absorption layer and the hole transport layer, thereby preventing ions in the perovskite material of the light absorption layer from diffusing to the hole transport layer and the outside, thereby reducing the stability of the perovskite solar cell. At the same time, it is possible to prevent deterioration of the hole transport layer due to diffused ions.
도 1은 종래 페르브스카이트 태양전지의 분해 사시도이다.1 is an exploded perspective view of a conventional perovskite solar cell.
도 2는 본 발명의 실시예에 따른 페로브스카이트 태양전지의 단면도이다.2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법의 순서도이다.3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings. In the present specification, in adding reference numerals to the components of each drawing, it should be noted that the same components as possible, even if displayed on different drawings have the same number as possible. In addition, terms such as “first” and “second” are used to distinguish one component from another component, and the component is not limited by the terms. In the following description, detailed descriptions of related well-known techniques that may unnecessarily obscure the subject matter of the present invention will be omitted.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시예에 따른 페로브스카이트 태양전지의 단면도이다.2 is a cross-sectional view of a perovskite solar cell according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명에 따른 페로브스카이트 태양전지는 투명 전도성 기판으로 형성된 제1 전극(10), 금속으로 형성되고, 제1 전극(10)에 대향하는 제2 전극(20), 제1 전극(10)과 제2 전극(20) 사이에, 페로브스카이트 물질이 배치되어 형성된 광흡수층(30), 광흡수층(30)과 제2 전극(20) 사이에 배치되는 정공전달층(40), 및 광흡수층(30)과 정공전달층(40) 사이에 배치되어, 광흡수층(30) 내의 이온이 정공전달층(40)으로 확산되는 것을 방지하는 확산방지층(50)을 포함한다.As shown in FIG. 2, the perovskite solar cell according to the present invention includes a first electrode 10 formed of a transparent conductive substrate and a second electrode 20 formed of a metal and opposing the first electrode 10. ), A hole disposed between the first electrode 10 and the second electrode 20, and a light absorbing layer 30 formed between the perovskite material and the light absorbing layer 30 and the second electrode 20. A diffusion barrier layer 50 disposed between the transfer layer 40 and the light absorbing layer 30 and the hole transport layer 40 to prevent ions in the light absorbing layer 30 from diffusing into the hole transport layer 40. Include.
무기물과 유기물이 결합하여 페로브스카이트 결정 구조를 가지는 소재를 활용한 페로브스카이트 태양전지는 제조비용이 저렴하고 용액공정으로 박막제작이 가능하므로 차세대 박막 태양전지로 각광받고 있는데, 종래 페로브스카이트 태양전지는 내부 이온 이동의 활성화에너지가 매우 낮아, 다양한 외부 환경에서 이온 이동에 의해 재료가 분해되는 문제가 있다. 이온 이동이 쉬운 페로브스카이트 물질 내의 이온들이 정공전달층(40) 및 외부로 확산되어 안정성을 떨어뜨리고, 정공전달층(40)에 도달하여 정공전달층(40)의 열화를 발생시키는 것이다. 이에, 종래 페로브스카이트 태양전지의 문제점을 해결하기 위해서 본 발명에 따른 페로브스카이트 태양전지가 안출되었다.Perovskite solar cells using materials that have a perovskite crystal structure by combining inorganic and organic materials are in the spotlight as the next generation thin film solar cells because they are inexpensive to manufacture and thin films can be manufactured by solution process. Skyt photovoltaic cells have a very low activation energy of internal ion transport, and thus, materials are decomposed by ion transport in various external environments. Ions in the perovskite material, which are easily ion-transferred, diffuse to the hole transport layer 40 and the outside to decrease stability, and reach the hole transport layer 40 to cause degradation of the hole transport layer 40. Accordingly, in order to solve the problems of the conventional perovskite solar cell, the perovskite solar cell according to the present invention has been devised.
본 발명에 따른 페로브스카이트 태양전지는 제1 전극(10), 제2 전극(20), 광흡수층(30), 정공전달층(40), 확산방지층(50)을 포함한다.The perovskite solar cell according to the present invention includes a first electrode 10, a second electrode 20, a light absorption layer 30, a hole transport layer 40, and a diffusion barrier layer 50.
여기서, 제1 전극(10)은 투명 전도성 기판으로 형성되는데, 구체적으로는 기판에 일함수가 낮은 투명전극이 배치되는 구조이다. 여기서, 투명전극은 일반적으로 ITO(Indium Tin Oxide) 또는 FTO(Fluorine doped Tin Oxide) 등을 사용할 수 있지만, 반드시 이에 한정되는 것은 아니고, 한 쌍의 산화물층에 금속층이 배치되는 다층 구조의 투명전극 등이어도 무방하다. 여기서, 기판은 지지체로서, 리지드(rigid) 기판 또는 유연하게 휘어지는 플렉시블(flexible) 기판일 수 있다. 플렉시블 기판의 경우는 유연한 태양전지를 구현하고, 롤투롤 공정 등을 통해 단시간에 태양전지를 대량생산할 수 있는 장점이 있다. 이때, 플렉시블 기판은 폴리머 기판으로서, 예를 들어, 폴리에테르술폰(PES), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리이미드(PI), 및 폴리에틸렌나프탈레이트(PEN) 중 어느 하나 이상으로 이루어질 수 있다. 다만, 폴리머 기판의 재료가 반드시 이에 한정되는 것은 아니고, 기판이 반드시 플렉서블 기판에 한정되는 것도 아니므로, 글라스(glass), 실리콘(Si) 등으로 제조될 수도 있다. 한편, 제1 전극(10)은 제2 전극(20)과 대향하여, 마주보도록 배치된다.Here, the first electrode 10 is formed of a transparent conductive substrate, specifically, a structure in which a transparent electrode having a low work function is disposed on the substrate. Here, the transparent electrode may generally use indium tin oxide (ITO) or fluorine doped tin oxide (FTO). However, the transparent electrode is not necessarily limited thereto, and a transparent electrode having a multilayer structure in which a metal layer is disposed on a pair of oxide layers. It may be. In this case, the substrate may be a rigid substrate or a flexible substrate that is flexibly curved. In the case of a flexible substrate, there is an advantage of implementing a flexible solar cell and mass production of the solar cell in a short time through a roll-to-roll process. At this time, the flexible substrate is a polymer substrate, for example, at least one of polyether sulfone (PES), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), and polyethylene naphthalate (PEN) Can be made. However, the material of the polymer substrate is not necessarily limited thereto, and the substrate is not necessarily limited to the flexible substrate, and thus may be made of glass, silicon, or the like. The first electrode 10 is disposed to face the second electrode 20.
여기서, 제2 전극(20)은 금속으로 형성되는데, 이때 금속은 Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, 및 Mg로 구성된 군으로부터 선택된 적어도 하나 이상의 금속일 수 있지만, 제2 전극(20)을 구성하는 금속이 반드시 상기 금속에 한정되는 것은 아니다. 이때, 제2 전극(20)은 정공전달층(40)과 제2 전극(20)의 일함수를 고려하여 정공이 정공전달층(40)을 이동하여 제2 전극(20)에 손실 없이 도달할 수 있도록 형성되어야 한다. 여기서 제2 전극(20)을 형성하기 위한 방법으로, 스크린 인쇄법, 진공 열 증착법, 전자빔 증착법, 도금, 스퍼터링 등을 사용할 수 있다. 이러한 제2 전극(20)과 제1 전극(10) 사이에는 정공전달층(40), 확산방지층(50), 광흡수층(30)이 배치된다. Here, the second electrode 20 is formed of a metal, wherein the metal is at least one selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg Although it may be the above metal, the metal which comprises the 2nd electrode 20 is not necessarily limited to the said metal. In this case, the second electrode 20 may reach the second electrode 20 without loss by moving the hole transport layer 40 in consideration of the work functions of the hole transport layer 40 and the second electrode 20. It should be formed so that it can As the method for forming the second electrode 20, screen printing, vacuum thermal evaporation, electron beam evaporation, plating, sputtering, or the like may be used. The hole transport layer 40, the diffusion barrier layer 50, and the light absorption layer 30 are disposed between the second electrode 20 and the first electrode 10.
광흡수층(30)은 페로브스카이트 물질이 배치되어 형성된 층(layer)이다. 이때, 페로브스카이트 물질은 적외선, 가시광선, 자외선 파장 영역 내에서 광흡수가 가능한 물질인데, 바람직하게는 ABX3
구조로 이루어질 수 있다. 여기서, A는 CnH2n
+1의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질이고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며, X는 할로겐인 물질일 수 있다. 페로브스카이트 구조는 부도체·반도체·도체 성질과 함께 초전도 현상까지 보이는 매우 특별한 구조인데, 이러한 구조로 인해 높은 전하 운반 이동성과 긴 확산거리를 가지게 된다. 광흡수층(30)에 태양광이 흡수되면 전자를 여기(excitation)시키고, 여기된 전자는 전자전달층(70)으로 이동하고, 정공은 정공전달층(40)으로 이동하는데, 이때 페로브스카이트 구조는 생성된 전자와 정공을 에너지 손실 없이 멀리까지 이동할 수 있도록 하므로, 더 많은 광을 흡수하게 한다. The light absorption layer 30 is a layer formed by placing the perovskite material. In this case, the perovskite material is a material capable of absorbing light in the infrared, visible and ultraviolet wavelength range, preferably ABX 3 It may be made of a structure. Here, A is at least one material selected from an alkyl group of CnH 2n +1 , and inorganic materials such as Cs, Ru, etc. capable of perovskite solar cell structure formation, B is Pb, Sn, Ti, Nb, Zr, and Ce One or more materials selected from the group consisting of, X may be a material that is halogen. Perovskite structures, together with their insulators, semiconductors, and conductors, have a very special structure that shows superconducting phenomena, resulting in high charge transport mobility and long diffusion distances. When sunlight is absorbed by the light absorbing layer 30, electrons are excited, and the excited electrons move to the electron transport layer 70, and the holes move to the hole transport layer 40, wherein the perovskite The structure allows the generated electrons and holes to travel farther without losing energy, thus absorbing more light.
여기서, 정공전달층(40)은 광흡수층(30)과 제2 전극(20) 사이에 배치된다. 이때, 정공전달층(40)은 단분자 물질 또는 고분자 물질을 포함할 수 있는데, 예를 들어, 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 또한, 첨가물질이 첨가될 수도 있는데, 이때 첨가물질은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질일 수 있다. 한편, 광흡수층(30)의 페로브스카이트 물질 내의 이온들은 매우 쉽게 이동하므로, 정공전달층(40)으로 확산되어 안정성을 훼손하고, 열화를 유발하는바, 본 발명에 따른 페로브스카이트 태양전지에서는 광흡수층(30)과 정공전달층(40) 사이에 확산방지층(50)이 배치된다.Here, the hole transport layer 40 is disposed between the light absorption layer 30 and the second electrode 20. In this case, the hole transport layer 40 may include a single molecule material or a polymer material, for example, 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9- bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA). In addition, an additive may be added, where the additive may be one or more materials selected from the group consisting of Li-based dopants, Co-based dopants, and 4-tert-butylpyridine (TBP). On the other hand, since the ions in the perovskite material of the light absorption layer 30 moves very easily, it diffuses into the hole transport layer 40, thereby impairing stability and causing deterioration. In the battery, the diffusion barrier layer 50 is disposed between the light absorption layer 30 and the hole transport layer 40.
확산방지층(50)은 광흡수층(30) 상에 형성되어, 페로브스카이트 물질 내 이온들이 정공전달층(40)으로 유입되는 것을 차단한다. 이러한 확산방지층(50)은 에너지 밴드갭에 따라 두 종류의 확산방지층(50)으로 형성될 수 있다.The diffusion barrier layer 50 is formed on the light absorption layer 30 to block ions in the perovskite material from entering the hole transport layer 40. The diffusion barrier layer 50 may be formed of two types of diffusion barrier layer 50 according to the energy band gap.
첫 번째는 확산방지층(50)의 가전자대 에지(valence band edge)가 페로브스카이트 물질의 HOMO 레벨과 정공전달층(40)의 HOMO 레벨 사이에 위치하는 것이다. 즉, 가전자대 에지의 에너지 레벨이 페로브스카이트와 정공전달층(40)의 HOMO 레벨 사이에 존재한다. 이때, 확산방지층(50)은 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. The first is that the valence band edge of the diffusion barrier layer 50 is located between the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40. In other words, the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer 40. In this case, the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe.
두 번째는 확산방지층(50)의 가전자대 에지가 페로브스카이트 물질의 HOMO 레벨 및 정공전달층(40)의 HOMO 레벨보다 낮은 에너지 레벨을 가지는 경우이다. 이때, 확산방지층(50)은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어질 수 있다. 한편, 광흡수층(30)에서 정공전달층(40)으로 정공이 이동하기 위해서는, 확산방지층(50)의 두께는 두께는 1 ~ 20 nm, 바람직하게는 1 ~ 5 nm이 좋다. Second, the valence band edge of the diffusion barrier layer 50 has an energy level lower than the HOMO level of the perovskite material and the HOMO level of the hole transport layer 40. In this case, the diffusion barrier layer 50 may be made of one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS. On the other hand, in order for the hole to move from the light absorption layer 30 to the hole transport layer 40, the thickness of the diffusion barrier layer 50 is 1 to 20 nm, preferably 1 to 5 nm in thickness.
종합적으로, 본 발명에 따르면, 광흡수층(30)과 정공전달층(40) 사이에 확산방지층(50)이 형성됨으로써, 광흡수층(30)의 페러브스카이트 물질 내 이온들이 정공전달층(40)과 외부로 확산되는 것을 확산방지층(50)이 차단하므로, 페로브스카이트 태양전지의 안정성을 향상시키는 동시에 확산된 이온에 의한 정공전달층(40)의 열화를 방지한다.Overall, according to the present invention, the diffusion barrier layer 50 is formed between the light absorption layer 30 and the hole transport layer 40, the ions in the perovskite material of the light absorption layer 30 to the hole transport layer 40 Since the diffusion barrier layer 50 blocks the diffusion to and from the outside, the stability of the perovskite solar cell is improved and the degradation of the hole transport layer 40 due to the diffused ions is prevented.
한편, 본 발명에 따른 페로브스카이트 태양전지는 블로킹층(60)을 더 포함할 수 있다. 여기서, 블로킹층(60)은 제1 전극(10) 상에 형성되어, 제1 전극(10)과 광흡수층(30) 사이에 배치된다. 구체적으로, 블로킹층(60)은 금속 산화물 나노입자를 제1 전극(10) 상에 코팅하고 열처리하여 형성할 수 있다. 이렇게 형성된 블로킹층(60)은 제1 전극(10)으로 전자가 이동되는 전자복귀 현상(back transfer)을 방지한다.On the other hand, the perovskite solar cell according to the present invention may further include a blocking layer (60). Here, the blocking layer 60 is formed on the first electrode 10 and is disposed between the first electrode 10 and the light absorbing layer 30. Specifically, the blocking layer 60 may be formed by coating and thermally treating metal oxide nanoparticles on the first electrode 10. The blocking layer 60 formed as described above prevents electron transfer back to the first electrode 10.
또한, 본 발명에 따른 페로브스카이트 태양전지는 블로킹층(60)과 광흡수층(30) 사이에 배치되는 전자전달층(70)을 더 포함할 수 있는데, 이때 전자전달층(70)은 블로킹층(60) 상에 금속산화물 나노입자를 포함한 금속산화물 페이스트를 코팅하고 열처리하여 다공성 금속산화물층으로 형성할 수 있다. In addition, the perovskite solar cell according to the present invention may further include an electron transfer layer 70 disposed between the blocking layer 60 and the light absorbing layer 30, wherein the electron transfer layer 70 is blocked. The metal oxide paste including the metal oxide nanoparticles may be coated on the layer 60 and heat treated to form a porous metal oxide layer.
이하에서는 본 발명에 따른 페로브스카이트 태양전지의 제조방법에 대해서 설명한다.Hereinafter, a method for manufacturing a perovskite solar cell according to the present invention.
도 3은 본 발명의 실시예에 따른 페로브스카이트 태양전지의 제조방법의 순서도이다.3 is a flowchart of a method of manufacturing a perovskite solar cell according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명에 따른 페로브스카이트 태양전지의 제조방법은 블로킹층을 형성하는 단계(S100), 전자전달층을 형성하는 단계(S200), 광흡수층을 형성하는 단계(S300), 확산방지층을 형성하는 단계(S400), 정공전달층을 형성하는 단계(S500), 제2 전극을 형성하는 단계(S600)를 포함한다.As shown in FIG. 3, the method for manufacturing a perovskite solar cell according to the present invention includes forming a blocking layer (S100), forming an electron transport layer (S200), and forming a light absorbing layer ( S300), forming a diffusion barrier layer (S400), forming a hole transport layer (S500), and forming a second electrode (S600).
여기서, 페로브스카이트 태양전지의 제조방법은 상술한 본 발명에 따른 페로브스카이트 태양전지를 제조하는 방법이므로, 제1 전극, 블로킹층, 전자전달층, 광흡수층, 확산방지층, 정공전달층, 및 제2 전극에 관한 내용 중 중복되는 부분에 대해서는 자세한 설명을 생략하거나, 간단하게만 설명한다.Here, the manufacturing method of the perovskite solar cell is a method of manufacturing the perovskite solar cell according to the present invention described above, the first electrode, blocking layer, electron transfer layer, light absorption layer, diffusion barrier layer, hole transport layer The overlapping portions in the contents of,, and the second electrode will not be described in detail, or simply described.
본 발명에 따른 페로브스카이트 태양전지는 하기의 과정을 통해 제조된다.The perovskite solar cell according to the present invention is manufactured through the following process.
먼저, 투명 전도성 기판으로 형성된 제1 전극 상에 금속 산화물 나노입자를 코팅하여 블로킹층을 형성한다. 이때, 블로킹층은 금속 산화물 나노입자를 코팅한 후에, 공기 중에서 450 ~ 550℃에서 10 ~ 60분간 열처리, 바람직하게는 450 ~ 500℃에서 10 ~ 30분간 열처리함으로써 형성할 수 있다.First, a blocking layer is formed by coating metal oxide nanoparticles on a first electrode formed of a transparent conductive substrate. In this case, the blocking layer may be formed by coating the metal oxide nanoparticles, followed by heat treatment at 450 to 550 ° C. for 10 to 60 minutes, preferably at 450 to 500 ° C. for 10 to 30 minutes, in air.
블로킹층이 형성되면, 블로킹층 상에 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 코팅한 후, 열처리하여 다공성 전자전달층을 형성한다. 이때, 열처리는 공기 중에서 450 ~ 550℃에서 10 ~ 120분간, 바람직하게는 500 ~ 550℃에서 30 ~ 60분간 열처리하는 것이 좋다.When the blocking layer is formed, the metal oxide paste including the metal oxide nanoparticles is coated on the blocking layer, and then heat-treated to form a porous electron transport layer. At this time, the heat treatment is preferably in the air for 10 to 120 minutes at 450 ~ 550 ℃, preferably 500 to 550 ℃ for 30 to 60 minutes.
다음으로, 전자전달층 상에 페로브스카이트 물질을 증착하여 광흡수층을 형성한다. 이때, 페로브스카이트 물질은 적외선, 가시광선, 자외선 파장 영역 내에서 광흡수를 하는 물질이며, 바람직하게는 ABX3 구조를 갖으면서, A는 CnH2n
+
1 의 알킬기, 및 페로브스카이트 태양전지 구조형성이 가능한 Cs, Ru 등의 무기물로부터 선택된 하나 이상의 물질이고, B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며, X는 할로겐인 물질인 것이 좋다. Next, a perovskite material is deposited on the electron transport layer to form a light absorption layer. At this time, the perovskite material is a material that absorbs light in the infrared, visible and ultraviolet wavelength range, preferably having an ABX 3 structure, A is an alkyl group of CnH 2n + 1 , and the perovskite solar One or more materials selected from inorganic materials such as Cs, Ru, etc. capable of cell structure, B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce, X is a material that is halogen. .
페로브스카이트 물질을 코팅(증착)하는 방법은 두 가지 일 수 있는데, 그 중 하나는 AX와 BX2를 AX: BX2 = 1 : 1 비율로 유기 용매에 용해하고, 이 유기 용매를 다공성 전자전달층 상에 코팅(도포)한 후, 40 ~ 160℃에서 열처리함으로써 광흡수층을 형성하는 것이다.There are two ways of coating (depositing) the perovskite material, one of which dissolves AX and BX 2 in an organic solvent in an AX: BX 2 = 1: 1 ratio, and the organic solvent is porous electrons. After coating (coating) on the transfer layer, the light absorption layer is formed by heat treatment at 40 ~ 160 ℃.
다른 방법으로는, BX2를 먼저 유기 용매에 용해하여 전자전달층에 코팅한 후 40 ~ 120℃에서 열처리하고, 이후 유기 용매에 용해된 AX를 코팅한 후 40 ~ 160℃에서 열처리한다. 일례로, CH3NH3I와 PbI2로 CH3NH3PbI3 페로브스카이트 물질을 형성하여 증착할 수 있다.Alternatively, BX 2 is first dissolved in an organic solvent and coated on the electron transport layer, followed by heat treatment at 40 to 120 ° C., followed by coating AX dissolved in the organic solvent, followed by heat treatment at 40 to 160 ° C. For example, CH 3 NH 3 I and PbI 2 may form and deposit a CH 3 NH 3 PbI 3 perovskite material.
이후, 광흡수층 상에 확산방지층을 형성하는데, 상술한 바와 같이, 가전자대 에지의 에너지 레벨이 페로브스카이트와 정공전달층의 HOMO 레벨 사이에 존재하도록, MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질을 광흡수층에 증착하여 형성하거나, 또는 가전자대 에지가 페로브스카이트 물질의 HOMO 레벨 및 정공전달층의 HOMO 레벨보다 낮은 에너지 레벨을 가지게 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질을 증착하여 형성할 수 있다. 이때, 증착은 용액공정, 진공증착공정 등 다양한 공정을 통해 이루어질 수 있다.Thereafter, a diffusion barrier layer is formed on the light absorption layer. As described above, MoO X , MoS 2 , Sb 2 S 3 such that the energy level of the valence band edge is present between the perovskite and the HOMO level of the hole transport layer. At least one material selected from the group consisting of GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe, deposited on the light absorbing layer, or the valence band edges of the HOMO levels and holes of the perovskite material. Deposit one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS to have an energy level lower than the HOMO level of the transfer layer Can be formed. In this case, deposition may be performed through various processes such as a solution process and a vacuum deposition process.
다음으로, 확산방지층 상에 정공전달층을 형성한다. 이때, 정공전달층은 단분자 또는 고분자 물질을 포함한다. 예를 들어 2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene(spiro-OMeTAD) 및 poly-triarylamine(PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 또한, 정공전달층에 첨가물질을 첨가할 수 있는데, 첨가물질은 Li 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine(TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함할 수 있다. 예를 들어, 정공전달물질에 Li-bis(trifluoromethanesulfonyl) imide (Li-TFSI)와 TBP의 혼합하여 사용할 수 있다. 여기서, 정공전달물질은 유기 용매에 용해한 후, 확산방지층 상에 코팅한다.Next, a hole transport layer is formed on the diffusion barrier layer. In this case, the hole transport layer includes a single molecule or a polymer material. For example, one or more substances selected from the group consisting of 2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD) and poly-triarylamine (PTAA) It may include. In addition, an additive may be added to the hole transport layer. The additive may include one or more materials selected from the group consisting of a Li-based dopant, a Co-based dopant, and 4-tert-butylpyridine (TBP). For example, a mixture of Li-bis (trifluoromethanesulfonyl) imide (Li-TFSI) and TBP may be used for the hole transport material. Here, the hole transport material is dissolved in an organic solvent and then coated on the diffusion barrier layer.
마지막으로, 정공전달층 상에 금속을 증착하여 제2 전극을 형성함으로써, 본 발명에 따른 페로브스카이트 태양전지를 제조할 수 있다. 여기서, Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, 및 Mg로 구성된 군으로부터 선택된 적어도 하나 이상의 금속을 스크린 인쇄법, 진공 열 증착법, 전자빔 증착법, 도금, 스퍼터링 등을 이용하여 정공전달층에 증착한다. 이때, 제2 전극은 정공전달층과 제2 전극의 일함수를 고려하여 정공이 정공전달층을 이동하여 제2 전극에 손실 없이 도달할 수 있도록 형성되어야 한다. Finally, the perovskite solar cell according to the present invention can be manufactured by depositing a metal on the hole transport layer to form a second electrode. Here, at least one metal selected from the group consisting of Pt, Pd, Au, Cu, Cr, Co, Ti, Al, Ag, Fe, Cd, In, and Mg may be screen printed, vacuum thermal evaporated, electron beam evaporated, or plated. And deposition on the hole transport layer using sputtering or the like. In this case, the second electrode should be formed to allow the hole to reach the second electrode without loss by considering the work function of the hole transport layer and the second electrode.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.Although the present invention has been described in detail through specific examples, it is intended to describe the present invention in detail, and the present invention is not limited thereto, and should be understood by those skilled in the art within the technical spirit of the present invention. It is obvious that modifications and improvements are possible.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속한 것으로 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of protection of the present invention will be apparent from the appended claims.
본 발명은 페로브스카이트 태양전지의 안정성을 향상시키는 동시에 확산된 이온에 의한 정공전달층의 열화를 방지할 수 있으므로, 산업상 이용가능성이 있다.Since the present invention can improve the stability of the perovskite solar cell and prevent the degradation of the hole transport layer due to diffused ions, there is industrial applicability.
Claims (19)
- 투명 전도성 기판으로 형성된 제1 전극;A first electrode formed of a transparent conductive substrate;금속으로 형성되고, 상기 제1 전극에 대향하는 제2 전극;A second electrode formed of a metal and opposed to the first electrode;상기 제1 전극과 상기 제2 전극 사이에, 페로브스카이트 물질이 배치되어 형성된 광흡수층;A light absorption layer formed by disposing a perovskite material between the first electrode and the second electrode;상기 광흡수층과 상기 제2 전극 사이에 배치되는 정공전달층; 및A hole transport layer disposed between the light absorption layer and the second electrode; And상기 광흡수층과 상기 정공전달층 사이에 배치되어, 상기 광흡수층 내의 이온이 상기 정공전달층으로 확산되는 것을 방지하는 확산방지층;A diffusion barrier layer disposed between the light absorption layer and the hole transport layer to prevent ions in the light absorption layer from diffusing into the hole transport layer;을 포함하는 페로브스카이트 태양전지.Perovskite solar cell comprising a.
- 청구항 1에 있어서,The method according to claim 1,상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨과 상기 정공전달층의 HOMO 레벨 사이의 에너지 레벨을 가지는 페로브스카이트 태양전지.A valence band edge of the diffusion barrier layer has an energy level between the HOMO level of the perovskite material and the HOMO level of the hole transport layer.
- 청구항 1에 있어서,The method according to claim 1,상기 확산방지층의 가전자대 에지(valence band edge)는 상기 페로브스카이트 물질의 HOMO 레벨 및 상기 정공전달층의 HOMO 레벨보다 낮은 에너지 레벨을 가지는 페로브스카이트 태양전지.The valence band edge of the diffusion barrier layer has a lower energy level than the HOMO level of the perovskite material and the HOMO level of the hole transport layer.
- 청구항 2에 있어서, The method according to claim 2,상기 확산방지층은 MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어지는 페로브스카이트 태양전지.The diffusion barrier layer is a perovskite solar cell consisting of one or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe.
- 청구항 3에 있어서,The method according to claim 3,상기 확산방지층은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질로 이루어지는 페로브스카이트 태양전지.The diffusion barrier layer is a perovskite solar cell consisting of one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS.
- 청구항 1에 있어서,The method according to claim 1,상기 확산방지층의 두께는 1 ~ 20 nm, 바람직하게는 1 ~ 5 nm인 페로브스카이트 태양전지.The diffusion barrier layer has a thickness of 1 to 20 nm, preferably 1 to 5 nm perovskite solar cell.
- 청구항 1에 있어서,The method according to claim 1,상기 제1 전극 상에 금속 산화물 나노입자가 코팅되어 형성되는 블로킹층;A blocking layer formed by coating metal oxide nanoparticles on the first electrode;을 더 포함하는 페로브스카이트 태양전지.Perovskite solar cell comprising more.
- 청구항 7에 있어서,The method according to claim 7,상기 블로킹층과 상기 광흡수층 사이에, 다공성 금속 산화물로 형성되는 전자전달층;An electron transfer layer formed of a porous metal oxide between the blocking layer and the light absorption layer;을 더 포함하는 페로브스카이트 태양전지.Perovskite solar cell comprising more.
- 청구항 1에 있어서,The method according to claim 1,상기 페로브스카이트 물질은 하기 화학식 1로 표시되는 페로브스카이트 태양전지.The perovskite material is a perovskite solar cell represented by the formula (1).[화학식 1][Formula 1]ABX3 ABX 3상기 화학식 1에서,In Chemical Formula 1,A는 CnH2n+1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n + 1 , and an inorganic substance,B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,X는 할로겐인 물질이다.X is a material that is halogen.
- 청구항 1에 있어서,The method according to claim 1,상기 정공전달층은The hole transport layer is2,2,7,7-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9-bifluorene (spiro-OMeTAD), 및 poly-triarylamine (PTAA)으로 구성된 군으로부터 선택된 하나 이상의 물질을 포함하는 페로브스카이트 태양전지.2,2,7,7-tetrakis- (N, N-di-p-methoxyphenylamine) containing at least one substance selected from the group consisting of 9,9-bifluorene (spiro-OMeTAD), and poly-triarylamine (PTAA) Perovskite solar cell.
- 청구항 10에 있어서,The method according to claim 10,상기 정공전달층은The hole transport layer isLi 계열 도펀트, Co 계열 도펀트, 및 4-tert-butylpyridine (TBP)으로 구성된 군으로부터 선택된 하나 이상의 물질을 더 포함하는 페로브스카이트 태양전지.A perovskite solar cell further comprising at least one material selected from the group consisting of a Li-based dopant, a Co-based dopant, and 4-tert-butylpyridine (TBP).
- (a) 투명 전도성 기판으로 형성된 제1 전극 상에 금속 산화물 나노입자를 코팅하여 블로킹층을 형성하는 단계;(a) coating a metal oxide nanoparticle on a first electrode formed of a transparent conductive substrate to form a blocking layer;(b) 상기 블로킹층 상에 금속 산화물 나노입자를 포함하는 금속 산화물 페이스트를 코팅하여 다공성 전자전달층을 형성하는 단계;(b) forming a porous electron transport layer by coating a metal oxide paste including metal oxide nanoparticles on the blocking layer;(c) 상기 전자전달층 상에 페로브스카이트 물질을 증착하여 광흡수층을 형성하는 단계;(c) depositing a perovskite material on the electron transport layer to form a light absorption layer;(d) 광흡수층 상에 확산방지층을 형성하는 단계;(d) forming a diffusion barrier layer on the light absorption layer;(e) 상기 확산방지층 상에 정공전달물질을 코팅하여 정공전달층을 형성하는 단계; 및(e) coating a hole transport material on the diffusion barrier layer to form a hole transport layer; And(f) 상기 정공전달층 상에 금속을 증착하여 제2 전극을 형성하는 단계;(f) depositing a metal on the hole transport layer to form a second electrode;를 포함하는 페로브스카이트 태양전지의 제조방법.Method for producing a perovskite solar cell comprising a.
- 청구항 12에 있어서,The method according to claim 12,상기 (a) 단계는Step (a) is상기 금속 산화물 나노입자를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 60 분간 열처리하는 단계;After coating the metal oxide nanoparticles, heat treatment at 450 to 550 ° C. for 10 to 60 minutes;를 포함하는 페로브스카이트 태양전지의 제조방법.Method for producing a perovskite solar cell comprising a.
- 청구항 12에 있어서,The method according to claim 12,상기 (b) 단계는Step (b) is상기 금속 산화물 페이스트를 코팅한 후에, 450 ~ 550 ℃에서 10 ~ 120 분간 열처리하는 단계;After coating the metal oxide paste, heat treatment at 450 to 550 ° C. for 10 to 120 minutes;를 포함하는 페로브스카이트 태양전지의 제조방법.Method for producing a perovskite solar cell comprising a.
- 청구항 12에 있어서,The method according to claim 12,상기 페로브스카이트 물질은 하기 화학식 1로 표시되는 페로브스카이트 태양전지의 제조방법.The perovskite material is a method of manufacturing a perovskite solar cell represented by the formula (1).[화학식 1][Formula 1]ABX3 ABX 3상기 화학식 1에서,In Chemical Formula 1,A는 CnH2n+1의 알킬기, 및 무기물로부터 선택된 하나 이상의 물질이고,A is at least one substance selected from an alkyl group of CnH 2n + 1 , and an inorganic substance,B는 Pb, Sn, Ti, Nb, Zr, 및 Ce으로 구성된 군으로부터 선택된 하나 이상의 물질이며,B is one or more materials selected from the group consisting of Pb, Sn, Ti, Nb, Zr, and Ce,X는 할로겐인 물질이다.X is a material that is halogen.
- 청구항 15에 있어서,The method according to claim 15,상기 (c) 단계는Step (c) isAX와 BX2를 1:1 비율로 유기용매에 용해하여 코팅한 후에, 40 ~ 160 ℃로 열처리하는 페로브스카이트 태양전지의 제조방법.AX and BX 2 dissolved in an organic solvent in a 1: 1 ratio and coated, followed by heat treatment at 40 ~ 160 ℃ a perovskite solar cell manufacturing method.
- 청구항 15에 있어서,The method according to claim 15,상기 (c) 단계는Step (c) isBX2를 유기 용매에 용해하여 코팅하고, 40 ~ 120 ℃에서 열처리하는 단계; 및Dissolving and coating BX 2 in an organic solvent and heat-treating at 40 to 120 ° C .; And코팅된 상기 BX2에, 유기 용매에 용해된 AX를 코팅하고, 40 ~ 160 ℃에서 열처리하는 단계;Coating the BX 2 with AX dissolved in an organic solvent, and heat-treating at 40 to 160 ° C .;를 포함하는 페로브스카이트 태양전지의 제조방법. Method for producing a perovskite solar cell comprising a.
- 청구항 12에 있어서, The method according to claim 12,상기 (d) 단계는Step (d)MoOX, MoS2, Sb2S3, GaAs, NiO, FeS2, ZnSe, CdTe, PbS, PbSe, 및 PbSSe으로 구성된 군으로부터 선택된 하나 이상의 물질, 또는One or more materials selected from the group consisting of MoO X , MoS 2 , Sb 2 S 3 , GaAs, NiO, FeS 2 , ZnSe, CdTe, PbS, PbSe, and PbSSe, or상기 확산방지층은 GaP, In2S3, WO3, Fe2O3, SnO2, CdS, CdSe, ZnO, TiO2, 및 ZnS으로 구성된 군으로부터 선택된 하나 이상의 물질을 증착하는 페로브스카이트 태양전지의 제조방법. The diffusion barrier layer is a perovskite solar cell for depositing one or more materials selected from the group consisting of GaP, In 2 S 3 , WO 3 , Fe 2 O 3 , SnO 2 , CdS, CdSe, ZnO, TiO 2 , and ZnS Manufacturing method.
- 청구항 12에 있어서,The method according to claim 12,상기 (e) 단계는 Step (e) is상기 정공전달물질을 유기 용매에 용해한 후에 코팅하는 페로브스카이트 태양전지의 제조방법.A method of manufacturing a perovskite solar cell which is coated after dissolving the hole transport material in an organic solvent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0143385 | 2016-10-31 | ||
KR1020160143385A KR20180047382A (en) | 2016-10-31 | 2016-10-31 | Perovskite solar cell using diffusion barrier and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079943A1 true WO2018079943A1 (en) | 2018-05-03 |
Family
ID=62025129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/000863 WO2018079943A1 (en) | 2016-10-31 | 2017-01-25 | Perovskite solar cell using diffusion barrier film and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180047382A (en) |
WO (1) | WO2018079943A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109638160A (en) * | 2018-11-22 | 2019-04-16 | 集美大学 | Perovskite battery and preparation method thereof of the nanostructure in cathode grating recess |
CN109686843A (en) * | 2018-11-30 | 2019-04-26 | 苏州协鑫纳米科技有限公司 | Perovskite solar battery and preparation method thereof |
CN111864079A (en) * | 2020-08-31 | 2020-10-30 | 合肥工业大学 | Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof |
CN112534596A (en) * | 2018-07-24 | 2021-03-19 | 西门子能源全球有限两合公司 | Metal-organic perovskite solar cell, tandem solar cell and manufacturing method thereof |
CN112582543A (en) * | 2019-09-30 | 2021-03-30 | 上海黎元新能源科技有限公司 | Perovskite solar cell |
CN112582550A (en) * | 2020-12-07 | 2021-03-30 | 上海黎元新能源科技有限公司 | Perovskite solar cell based on polymer functional layer and preparation method thereof |
CN112599679A (en) * | 2020-12-14 | 2021-04-02 | 中国科学院大连化学物理研究所 | Flexible perovskite solar cell based on stainless steel foil substrate and preparation method thereof |
WO2023193065A1 (en) * | 2022-04-08 | 2023-10-12 | Australian National University | Photovoltaic cell and methods of fabricating same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220141482A (en) * | 2021-04-13 | 2022-10-20 | 한화솔루션 주식회사 | Perovskite solar cell and Manufacturing method thereof |
KR20230109832A (en) * | 2022-01-14 | 2023-07-21 | 한화솔루션 주식회사 | Perovskite solar cell and Manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014184379A1 (en) * | 2013-05-17 | 2014-11-20 | Exeger Sweden Ab | A dye-sensitized solar cell and a method for manufacturing the solar cell |
WO2015092397A1 (en) * | 2013-12-17 | 2015-06-25 | Isis Innovation Limited | Photovoltaic device comprising a metal halide perovskite and a passivating agent |
WO2015167228A1 (en) * | 2014-04-28 | 2015-11-05 | 성균관대학교산학협력단 | Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor |
US20150340632A1 (en) * | 2012-12-20 | 2015-11-26 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Perovskite Schottky Type Solar Cell |
KR20160050456A (en) * | 2014-10-29 | 2016-05-11 | 고려대학교 산학협력단 | Manufacturing method and thin film solar cell using perovskite and dye |
-
2016
- 2016-10-31 KR KR1020160143385A patent/KR20180047382A/en active Application Filing
-
2017
- 2017-01-25 WO PCT/KR2017/000863 patent/WO2018079943A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150340632A1 (en) * | 2012-12-20 | 2015-11-26 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Perovskite Schottky Type Solar Cell |
WO2014184379A1 (en) * | 2013-05-17 | 2014-11-20 | Exeger Sweden Ab | A dye-sensitized solar cell and a method for manufacturing the solar cell |
WO2015092397A1 (en) * | 2013-12-17 | 2015-06-25 | Isis Innovation Limited | Photovoltaic device comprising a metal halide perovskite and a passivating agent |
WO2015167228A1 (en) * | 2014-04-28 | 2015-11-05 | 성균관대학교산학협력단 | Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor |
KR20160050456A (en) * | 2014-10-29 | 2016-05-11 | 고려대학교 산학협력단 | Manufacturing method and thin film solar cell using perovskite and dye |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112534596B (en) * | 2018-07-24 | 2023-09-12 | 西门子能源全球有限两合公司 | Metal organic perovskite solar cell, serial solar cell and manufacturing method thereof |
CN112534596A (en) * | 2018-07-24 | 2021-03-19 | 西门子能源全球有限两合公司 | Metal-organic perovskite solar cell, tandem solar cell and manufacturing method thereof |
CN109638160B (en) * | 2018-11-22 | 2022-11-15 | 集美大学 | Perovskite battery with nano structure at cathode grating depression and preparation method thereof |
CN109638160A (en) * | 2018-11-22 | 2019-04-16 | 集美大学 | Perovskite battery and preparation method thereof of the nanostructure in cathode grating recess |
CN109686843A (en) * | 2018-11-30 | 2019-04-26 | 苏州协鑫纳米科技有限公司 | Perovskite solar battery and preparation method thereof |
CN109686843B (en) * | 2018-11-30 | 2023-05-26 | 昆山协鑫光电材料有限公司 | Perovskite solar cell and preparation method thereof |
CN112582543B (en) * | 2019-09-30 | 2023-05-02 | 上海黎元新能源科技有限公司 | Perovskite solar cell |
CN112582543A (en) * | 2019-09-30 | 2021-03-30 | 上海黎元新能源科技有限公司 | Perovskite solar cell |
CN111864079B (en) * | 2020-08-31 | 2022-12-06 | 合肥工业大学 | Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof |
CN111864079A (en) * | 2020-08-31 | 2020-10-30 | 合肥工业大学 | Double-electron-transport-layer flexible perovskite solar cell and preparation method thereof |
CN112582550A (en) * | 2020-12-07 | 2021-03-30 | 上海黎元新能源科技有限公司 | Perovskite solar cell based on polymer functional layer and preparation method thereof |
CN112599679A (en) * | 2020-12-14 | 2021-04-02 | 中国科学院大连化学物理研究所 | Flexible perovskite solar cell based on stainless steel foil substrate and preparation method thereof |
WO2023193065A1 (en) * | 2022-04-08 | 2023-10-12 | Australian National University | Photovoltaic cell and methods of fabricating same |
Also Published As
Publication number | Publication date |
---|---|
KR20180047382A (en) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018079943A1 (en) | Perovskite solar cell using diffusion barrier film and manufacturing method therefor | |
WO2018088632A1 (en) | Perovskite solar cell module and manufacturing method therefor | |
WO2017105053A1 (en) | Monolithic-type module of perovskite solar cell, and manufacturing method therefor | |
WO2015041470A1 (en) | Solar cell | |
WO2016186317A1 (en) | Perovskite solar cell module | |
WO2011119001A2 (en) | Solar cell apparatus and method for manufacturing same | |
WO2012015151A2 (en) | Solar cell and method for manufacturing same | |
WO2018012825A1 (en) | Organic-inorganic composite solar cell | |
WO2015130054A1 (en) | Solid-type thin-film solar battery using perovskite-based dye and method for manufacturing same | |
WO2012115392A2 (en) | Solar cell having a double-sided structure, and method for manufacturing same | |
EP2911977A1 (en) | Doped graphene structure, method for preparing the same, transparent electrode and device | |
WO2021107184A1 (en) | Monolithic tandem solar cell and method for producing same | |
WO2022215990A1 (en) | Perovskite solar cell and tandem solar cell comprising same | |
WO2012033274A1 (en) | Device for generating solar power and method for manufacturing same | |
WO2013151378A1 (en) | Transparent compound semiconductor and production method therefor | |
WO2012046934A1 (en) | Photovoltaic device and method for manufacturing same | |
KR20190042533A (en) | Perovskite solar cell using diffusion barrier and manufacturing method thereof | |
WO2012015286A2 (en) | Device for generating photovoltaic power and manufacturing method for same | |
WO2014204182A1 (en) | Solar cell | |
WO2012015150A1 (en) | Device for generating photovoltaic power and method for manufacturing same | |
WO2018016886A1 (en) | Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell | |
WO2018043910A1 (en) | Hole transport material for improving perovskite solar cell efficiency | |
WO2011083995A2 (en) | Solar photovoltaic device and a production method for the same | |
WO2013058521A1 (en) | Solar cell and method of fabricating the same | |
WO2013183949A1 (en) | Solar cell and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17865669 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17865669 Country of ref document: EP Kind code of ref document: A1 |