WO2022114268A1 - Solar cell including perovskite - Google Patents

Solar cell including perovskite Download PDF

Info

Publication number
WO2022114268A1
WO2022114268A1 PCT/KR2020/016957 KR2020016957W WO2022114268A1 WO 2022114268 A1 WO2022114268 A1 WO 2022114268A1 KR 2020016957 W KR2020016957 W KR 2020016957W WO 2022114268 A1 WO2022114268 A1 WO 2022114268A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
region
solar cell
transparent conductive
conductive layer
Prior art date
Application number
PCT/KR2020/016957
Other languages
French (fr)
Korean (ko)
Inventor
장윤희
이도권
김인호
이하람
정증현
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2022114268A1 publication Critical patent/WO2022114268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an encapsulation structure in a solar cell containing perovskite.
  • the perovskite solar cell recorded a high photoelectric conversion efficiency of 25.5% and achieved rapid development within a short period of time. It is considered to be highly probable.
  • Perovskite is being used as a tandem solar cell (Si/perovskite, CIGS/perovskite, perovskite/perovskite, etc.), and these perovskite tandem solar cells are expected to be commercialized in the near future, Research and mass production for the commercialization of perovskite-based tandem solar cells are being spurred.
  • an aspect of the present invention is a solar cell comprising a perovskite, the substrate; a lower transparent conductive layer, a perovskite absorption region, and an upper metal electrode sequentially formed on the substrate; and an encapsulation cap structure bonded to the substrate through an adhesive material while encapsulating at least the perovskite absorption region, wherein the upper metal electrode extends past an end of the encapsulation cap structure in a first direction to the outside.
  • the lower transparent conductive layer is a perovskite having a structure in which the lower transparent conductive layer is separated by an insulating region so as to have a strip shape in order to withdraw the electrode to the outside in a second direction intersecting the first direction It provides a solar cell comprising a.
  • the encapsulation cap structure and the substrate are adhered through an adhesive material, and in order to prevent the adhesive material from permeating into the cavity area, a groove through which the adhesive material can flow is provided at a portion where the encapsulation cap structure comes into contact with the substrate has been
  • the perovskite absorption region may be a single cell or a tandem cell including a perovskite absorption layer.
  • the perovskite absorption region may have a structure connected to a plurality of cells, and in this case, a separation region is provided in the lower transparent conductive layer.
  • the recombination layer for bonding the upper cell and the lower cell is preferably formed in a smaller area than the stacked upper layer.
  • the insulating region is filled with an insulating material, and the insulating material is selectively etched on the lower transparent conductive layer to a predetermined line width, and the insulating material is transferred to the etched region using a laser transfer method.
  • the problem of short circuit does not occur by configuring so that the upper and lower electrodes do not directly contact.
  • the perovskite absorption layer deterioration due to the adhesive material is prevented by including the encapsulation cap structure provided with the groove through which the adhesive material can flow.
  • FIG. 1 is a plan view of a solar cell including perbroskite according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA′ of FIG. 1 .
  • FIG. 3 is a view illustrating a process of forming an insulating region and filling an insulating material in the manufacturing process of FIG. 1 .
  • FIG. 4 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
  • FIG. 1 is a plan view of a solar cell including a perbroskite according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line AA′ of FIG. 1 .
  • the perovskite solar cell includes a lower transparent conductive layer 120 stacked on the substrate 110 , and has a perovskite absorption region 150 on the lower transparent conductive layer 120 .
  • the perovskite absorption region 150 means a stacked structure including a perovskite absorption layer, and may be a single perovskite absorption layer, or an absorption layer other than the perovskite absorption layer is added. It is also possible
  • the substrate 110 may be formed of a transparent material through which light may pass.
  • the substrate 110 may be formed of glass or a transparent polymer material.
  • the transparent polymer material is polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (poly propylene, PP), polyimide (poly imide, PI), triacetyl cellulose (TAC), or a copolymer thereof, and the like.
  • the lower transparent conductive layer 120 is a transparent conductive oxide (Transparent Conductive Oxide, TCO), for example, indium tin oxide (Indium Tin Oxide, ITO), fluorine tin oxide (FTO), zinc oxide (Zinc oxide) ), tin oxide, and the like.
  • TCO Transparent Conductive Oxide
  • ITO Indium Tin Oxide
  • FTO fluorine tin oxide
  • Zinc oxide zinc oxide
  • tin oxide tin oxide
  • FIG. 2 shows a structure in which a thin film is formed in the order of a hole transport layer 150a, a metal halide perovskite 150b, an electron transport layer 150c, and a transparent electrode 150d.
  • the thin film deposition process solution processes such as spin coating and blade coating, sputtering, and vacuum deposition such as thermal evaporation can be used.
  • the perovskite absorption region 150 is not limited to this structure, and may be a tandem cell in which a lower cell and an upper cell are stacked.
  • the lower solar cell is not particularly limited, such as a thin film solar cell or a silicon solar cell
  • the upper solar cell may be a perovskite solar cell.
  • the hole transport layer 150a is formed between the lower transparent conductive layer 120 and the perovskite material 150b, and any hole transport material applied in the technical field of the present invention may be applied without limitation, for example, PEDOT :PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), PTAA (poly[bis(4-phenyl)(2,4,6-trimethylphenyl), P30T (poly(3- Octylthiophene)), P3DT (poly(3-decylthiophene)), TPD (N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]- 4,4'-diamine), P3DDT (poly (3-dodecylthiophene), polythiophenylenevinylene), polyvinylcarbazole (polyvinylcarbazole), polyparaphenyleneviny
  • the perovskite material 150b is a compound having a perovskite crystal structure such as CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbI 2 Cl, CH 3 NH 3 PbI 2 Br, etc. can be formed.
  • a method of forming the hole transport layer and the perovskite material is not particularly limited.
  • the perovskite material may be formed by applying a precursor solution of the perovskite material to the surface of the hole transport layer.
  • the perovskite material is CH 3 NH 3 PbI 3
  • a mixed solution of dimethyl sulfoxide and gamma-butyrolactone in which PbI 2 and CH 3 NH 3 I are dissolved is applied to the hole transport layer to CH 3
  • the perovskite material may be formed by crystallizing it.
  • Electron transport layer 150c C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC71BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, indene C60, indene C70, endohydral fullerene , perylene, PTCDA, PTCBI, BCP (bathocuproine), Bphen (4, 7-diphenyl-1,10-phenanthroline), TpPyPB and DPPS may be formed of a material containing at least one selected from the group consisting of.
  • a method of forming the electron transport layer 150c is not particularly limited.
  • a buffer layer (not shown) for minimizing damage by a transparent electrode layer may be additionally formed on the surface of the electron transport layer, and the buffer layer is zinc oxide (ZnO), tin oxide (SnO 2 ), aluminum doped zinc oxide (Al: It may be metal oxide nanoparticles such as ZnO), or a thin film, and the method of forming the buffer layer is not particularly limited, such as spin coating, atomic layer deposition, and thermal evaporation.
  • the transparent electrode layer 150d may use the same material as the lower transparent conductive layer 120 , and it is also possible to use a material different from the lower transparent conductive layer 120 as the above-mentioned transparent conductive material.
  • the perovskite absorption region 150 is shown as a single cell in FIG. 1, the present invention is not limited thereto, and the perovskite absorption region may have a structure in which a plurality of cells are connected in series or parallel. do. This will be described later.
  • An upper metal electrode 160 for collecting current is formed on the upper transparent electrode.
  • the upper metal electrode 160 extends across the region where the encapsulation cap structure 170 is formed so that the electrode can be withdrawn to the outside.
  • the encapsulation cap structure 170 is manufactured in a separate structure shape, is a structure for sealing the perovskite absorption region 150 with a material such as glass or plastic, and includes a cavity therein.
  • the encapsulation cap structure 170 includes at least the encapsulation cap structure 170 that is bonded to the substrate 110 through the adhesive material 180 while sealing the perovskite absorption region 150 .
  • the optical characteristics of the encapsulation cap structure 170 may not cause optical loss of the encapsulated perovskite solar cell because there is almost no light absorption in the visible and infrared regions.
  • the process may be performed in an inert gas atmosphere such as argon or nitrogen in a closed space such as a glove box.
  • an inert gas may be included in the inner cavity of the encapsulation cap structure 170 .
  • the refractive index of the additional anti-reflection film may be a single layer or a double layer composed of a material having a refractive index smaller than that of the sealing glass (about 1.5) and larger than that of air (about 1).
  • the lower transparent conductive layer 120 intersects the direction in which the upper metal electrode 160 is formed, for example, in order to draw the electrode out in a substantially vertical direction, the lower transparent conductive layer 120 is insulated to have a strip shape It has a structure of the lower transparent electrode 120a separated by the region 130 .
  • a polymer insulating material such as polystyrene, poly(methyl methancrylate), or polydimetylsiloxane having a melting point of 150°C or higher may be used.
  • the insulating region 130 is filled with an insulating material, and the insulating material selectively etches the lower transparent conductive layer 120 to a predetermined line width to form the lower transparent electrode 120a, a UV laser pulse in the etched region. can be used to transfer the insulating material.
  • a groove 190 through which an adhesive material can flow is provided in a portion where the encapsulation cap structure 170 contacts the upper metal electrode line, the lower transparent electrode 120, and the like.
  • the groove 190 is formed in a band shape having a predetermined width in the entire region where the encapsulation cap structure 170 contacts the substrate 110 (see FIG. 1 ).
  • the lower transparent conductive layer was etched to prevent the deterioration of the perovskite outside the encapsulation cap structure and the direct contact of the upper/lower electrodes.
  • the lower transparent electrode can be etched to have a line width of several tens of ⁇ m using a chemical method or a laser scribing method. / It was confirmed that direct contact of the lower electrode can be prevented.
  • the inventors confirmed that the distance (d in FIG. 1) between the ends of the insulating region 130 and the perovskite absorption region 150 is an important factor. If the length of d in FIG. 1 is 2000 to 5000 ⁇ m or more, deterioration of the perovskite may occur due to contact with the adhesive material. There are problems with which this can happen. Accordingly, the distance between the insulating region 130 and the end of the perovskite absorption region 150 is preferably in the range of 1000 to 2000 ⁇ m.
  • the perovskite absorption region is formed outside the etch line (insulation region), complete insulation may not be achieved by the conductive hole transport layer or the perovskite absorption layer, and also the surface of the hole transport layer or the perovskite solution If the formation of the film is incomplete due to the wetting characteristics according to the tension and rheological characteristics, a short circuit may occur due to direct contact between the upper and lower electrodes.
  • a short circuit in the etched region may be further prevented by transferring the insulating material to the etched region of the lower transparent electrode using a laser transfer method.
  • FIG. 3 is a view illustrating a process of forming an insulating region and filling an insulating material in the manufacturing process of FIG. 1 .
  • a transparent conductive layer 220 is formed on a substrate 210 . Thereafter, the transparent conductive layer 220 is selectively etched using a laser. Then, a process of transferring the insulating material using a laser is performed.
  • the laser transfer process uses a transfer substrate in which a laser absorption layer 320 and an insulating material 330 are formed on a transparent substrate 310 . And, by using the same laser alignment coordinates as the etching, it may be implemented so that a laser alignment step for an additional transfer process is not required.
  • the applicable insulating material may be a polymer insulating material such as polystyrene, poly(methyl methancrylate), or polydimetylsiloxane having a melting point of 150 degrees or more.
  • a laser energy absorbing layer (320) for absorbing the energy of the laser and reducing the laser energy to transfer the insulating material without damage may be additionally provided, which is titanium (titanium), triazene polymer (triazene) polymers), indium tin oxide, or polyimide.
  • FIG. 4 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
  • the solar cell of FIG. 4 is a case in which the perovskite absorption region 150 of FIG. 1 has a tandem structure composed of a lower cell CIGS cell and an upper cell perovskite cell. Accordingly, a description of the overlapping region with FIG. 1 will be omitted.
  • the present solar cell includes a lower transparent conductive layer 320 stacked on a substrate 310 and has perovskite absorption regions 350 (350a to 350i) on the lower transparent conductive layer 320 .
  • the upper cell, the perovskite cell may be a structure in which a thin film is formed in the order of a hole transport layer 350a, a metal halide perovskite 350b, an electron transport layer 350c, a buffer layer 350d, and a transparent electrode 350e. .
  • the lower cell CIGS cell includes a CIGS absorption layer 350f, a buffer layer 350g, a transparent window 350h, and a recombination layer 350i on the lower transparent electrode layer 320 .
  • the buffer layer 350g may include cadmium sulfide, zinc sulfide, indium oxide, or the like, and may alleviate a difference in interlayer bandgap energy and a lattice constant between the CIGS absorption layer 350f and the transparent window layer 350h.
  • the transparent window layer 350h may include a metal oxide doped with p-type or n-type impurities.
  • the metal oxide may include at least one material selected from zinc oxide, gallium oxide, aluminum oxide, indium oxide, lead oxide, copper oxide, titanium oxide, tin oxide, iron oxide, and indium tin oxide.
  • the recombination layer 350i may include a transparent conductive oxide having high long-wavelength transmittance in order to minimize electrical and optical loss between the upper and lower cells.
  • At least one oxide of indium, tin, and zinc for example, indium tin oxide, indium zinc oxide, zinc tin oxide, or aluminum zinc oxide, including aluminum, boron, hydrogen, zirconium zinc oxide, zinc boron oxide, indium hydride It may include at least one material selected from oxide or zirconium tin oxide.
  • the recombination layer 350i of the tandem has a smaller area than the upper hole transport layer 350a in order to prevent a short circuit due to contact with the extended upper electrode 360. It is preferable to form
  • FIG. 5 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
  • the solar cell of FIG. 5 is a case in which the perovskite absorption region 150 of FIG. 1 is connected to a plurality of cells. A description of the overlapping region with FIG. 1 will be omitted.
  • the solar cell of FIG. 5 includes a lower transparent conductive layer 420 stacked on a substrate 410, and a perovskite absorption region 450; 450a, b, c, d) on the lower transparent conductive layer 420.
  • the perovskite absorption region 450 means a stacked structure including a perovskite absorption layer, and in FIG. 5 , it consists of cells of three regions.
  • the hole transport layer 450a, the metal halide perovskite 450b, the electron transport layer 450c, and the buffer layer 450d are formed in this order, and the upper electrode 460 is additionally The formed structure is shown.
  • the lower transparent conductive layer 420 is formed with the first isolation region P1 .
  • the isolation region P1 is cut by a laser process after the lower transparent conductive layer 420 is formed. Then, by forming the hole transport layer 450a in the entire region where the first isolation region P1 is formed, the hole transport layer 450a is also filled in the isolation region P1.
  • the lower transparent conductive layer 420 was etched to prevent a short circuit due to direct contact between the upper and lower electrodes.
  • a second isolation region P2 is formed as shown in FIG. 5 .
  • an upper transparent electrode 460 is additionally formed over the entire region including the second isolation region, and a third isolation region P3 is formed to form a unit cell.
  • the lower transparent conductive layer 420 is implemented to be separated by the isolation regions P1 and the insulating region 430 , respectively.
  • the lead-out terminal of the lower electrode is an external exposed region of the lower transparent conductive layer 420
  • the upper electrode contact region is a region where the upper transparent electrode 460 extends to the outside.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell including perovskite, the solar cell comprising: a substrate; a lower transparent conductive layer, a perovskite absorption region, and an upper metal electrode, which are sequentially formed on the substrate; and an encapsulation cap structure encapsulating at least the perovskite absorption region and bonded to the substrate by means of an adhesive material, wherein the upper metal electrode extends in a first direction to pass through an end of the encapsulation cap structure, so that the electrode protrudes to the outside, and the lower transparent conductive layer is separated as stripes by an insulating region, to pull out an electrode to the outside in a second direction intersecting the first direction.

Description

페로브스카이트를 포함하는 태양전지Solar cell containing perovskite
본 발명은 페로브스카이트를 포함한 태양전지에서 봉지 구조에 관한 것이다.The present invention relates to an encapsulation structure in a solar cell containing perovskite.
페로브스카이트(perovskite) 태양전지는 25.5%의 높은 광전변환효율을 기록하며 단기간 내에 비약적인 발전을 이루었으며, 향후 태양광 사업 분야에서 기존 실리콘 태양전지를 대체할 중요한 게임 체인저(game changer)가 될 가능성이 높을 것으로 평가받고 있다.The perovskite solar cell recorded a high photoelectric conversion efficiency of 25.5% and achieved rapid development within a short period of time. It is considered to be highly probable.
페로브스카이트는 탠덤 태양전지(Si/perovskite, CIGS/perovskite, perovskite/perovskite 등)로 이용되고 있는데, 이러한 페로브스카이트 탠덤태양전지는 가까운 시일 내에 상용화될 것으로 전망되고 있으며, 영국, 한국 등에서는 페로브스카이트 기반의 탠덤 태양전지 상용화를 위한 연구 및 양산에 박차를 가하고 있는 실정이다. Perovskite is being used as a tandem solar cell (Si/perovskite, CIGS/perovskite, perovskite/perovskite, etc.), and these perovskite tandem solar cells are expected to be commercialized in the near future, Research and mass production for the commercialization of perovskite-based tandem solar cells are being spurred.
다만 페로브스카이트 태양전지 및 탠덤 태양전지가 상용화 가능한 효율에 근접하고 있다 하더라도, 상용화를 위해서는 페로브스카이트 태양전지의 낮은 내구성 문제를 해결해야 한다.However, even if perovskite solar cells and tandem solar cells are close to commercially available efficiencies, it is necessary to solve the problem of low durability of perovskite solar cells for commercialization.
이를 위해, 페로브스카이트 소재 자체의 안정성을 확대하는 것은 물론, 실질적 응용을 위해서는 페로브스카이트 태양전지 봉지기술에 대해서도 지속적인 연구가 필요한 실정이다.To this end, as well as expanding the stability of the perovskite material itself, continuous research is needed on perovskite solar cell encapsulation technology for practical application.
종래 기술에 의한 페로브스카이트 태양전지 봉지기술을 설명한다. 태양전지를 제조함에 있어서, 상/하부 전극 컨택은 봉지셀 외부에서 이루어져야 하기 때문에 상부전극의 연장이 불가피 하게 된다. 따라서, 상부 전극을 연장하게 되면 봉지셀 외부에 페로브스카이트 태양전지의 일부분이 노출되고, 노출된 영역에서 페로브스카이트의 열화가 발생함에 따라 페로브스카이트 태양전지의 효율이 급격히 저하되는 문제점이 발생하였다. A technology for encapsulating perovskite solar cells according to the prior art will be described. In manufacturing a solar cell, since the upper/lower electrode contact has to be made outside the encapsulation cell, the extension of the upper electrode is unavoidable. Therefore, when the upper electrode is extended, a part of the perovskite solar cell is exposed to the outside of the encapsulation cell, and as the perovskite degradation occurs in the exposed area, the efficiency of the perovskite solar cell rapidly decreases. A problem occurred.
이러한 문제를 방지하기 위해 봉지셀 외부로 노출된 페로브스카이트 흡수층을 제거하게 되면, 상/하부 전극이 직접 접촉하게 되면서 단락의 문제가 발생할 수 있는 등 봉지셀과 외부로 노출되는 전극들 구조에 대한 연구가 필요한 실정이다. In order to prevent this problem, if the perovskite absorption layer exposed to the outside of the encapsulation cell is removed, the upper/lower electrodes come into direct contact and a short circuit problem may occur. There is a need for research on it.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
한국 특허공개번호 10-2017-0139826Korean Patent Publication No. 10-2017-0139826
본 발명의 목적은 페로브스카이트가 노출된 영역에서 페로브스카이트의 열화가 발생함에 따라 페로브스카이트 태양전지의 효율이 급격히 저하되는 문제점을 해결하기 위한 것이다.It is an object of the present invention to solve a problem in that the efficiency of a perovskite solar cell is rapidly reduced as the perovskite deteriorates in a region to which the perovskite is exposed.
상술한 문제점을 해결하기 위한 수단으로서, 본 발명의 일측면은 페로브스카이트를 포함하는 태양전지에 있어서, 기판; 상기 기판 상에 차례로 형성된 하부투명도전층, 페로브스카이트 흡수영역, 및 상부금속전극; 및 적어도 상기 페로브스카이트 흡수영역을 봉지하면서 상기 기판과 접착물질을 통해서 접착되는 봉지캡 구조물을 포함하되, 상기 상부금속전극은 제1방향으로 상기 봉지캡 구조물의 단부를 지나 연장되어 외부로 전극이 인출되며, 상기 하부투명도전층은 상기 제1방향과 교차하는 제2방향으로 외부로 전극을 인출하기 위해서, 상기 하부투명도전층은 스트립 형상을 갖도록 절연영역에 의해 분리되는 구조를 가지는 페로브스카이트를 포함하는 태양전지를 제공한다.As a means for solving the above-described problems, an aspect of the present invention is a solar cell comprising a perovskite, the substrate; a lower transparent conductive layer, a perovskite absorption region, and an upper metal electrode sequentially formed on the substrate; and an encapsulation cap structure bonded to the substrate through an adhesive material while encapsulating at least the perovskite absorption region, wherein the upper metal electrode extends past an end of the encapsulation cap structure in a first direction to the outside. is drawn out, and the lower transparent conductive layer is a perovskite having a structure in which the lower transparent conductive layer is separated by an insulating region so as to have a strip shape in order to withdraw the electrode to the outside in a second direction intersecting the first direction It provides a solar cell comprising a.
바람직하게는, 상기 봉지캡 구조물과 상기 기판은 접착물질을 통해서 접착되고 접착물질이 캐비티 영역으로 스며드는 것을 방지하기 위하여, 상기 봉지캡 구조물이 상기 기판과 접촉하는 부위에 접착물질이 유입가능한 홈이 설치되어 있다.Preferably, the encapsulation cap structure and the substrate are adhered through an adhesive material, and in order to prevent the adhesive material from permeating into the cavity area, a groove through which the adhesive material can flow is provided at a portion where the encapsulation cap structure comes into contact with the substrate has been
페로브스카이트 흡수영역은 페로브스카이트 흡수층이 포함된 단일셀 또는 탠덤셀일 수 있다. The perovskite absorption region may be a single cell or a tandem cell including a perovskite absorption layer.
페로브스카이트 흡수영역은 복수개의 셀로 연결된 구조를 가질 수 있으며, 이 경우는 상기 하부투명도전층에 분리영역을 가진다. The perovskite absorption region may have a structure connected to a plurality of cells, and in this case, a separation region is provided in the lower transparent conductive layer.
페로브스카이트 흡수영역이 탠덤셀인 경우, 상부셀과 하부셀을 결합시키는 재결합층은 적층되는 상부층 보다 작은 면적으로 형성되는 것이 바람직하다. When the perovskite absorption region is a tandem cell, the recombination layer for bonding the upper cell and the lower cell is preferably formed in a smaller area than the stacked upper layer.
바람직하게는, 상기 절연영역에는 절연물질이 충전되어 있고, 상기 절연물질은, 하부투명도전층을 선택적으로 소정의 선폭으로 식각하고, 식각된 영역에 레이저 전사법을 이용하여 절연물질을 전사시킨다. Preferably, the insulating region is filled with an insulating material, and the insulating material is selectively etched on the lower transparent conductive layer to a predetermined line width, and the insulating material is transferred to the etched region using a laser transfer method.
본 발명에 의하면, 페로브스카이트가 노출된 영역에서 페로브스카이트의 열화가 발생함에 따라 페로브스카이트 태양전지의 효율이 급격히 저하되는 문제점을 해결할 수 있는 효과가 있다. According to the present invention, there is an effect that can solve the problem that the efficiency of the perovskite solar cell rapidly decreases as the deterioration of the perovskite occurs in the area where the perovskite is exposed.
또한, 본 발명의 봉지구조에 의하면, 상/하부 전극의 직접 접촉하지 않도록 구성하여 단락의 문제가 발생하지 않게 된다.In addition, according to the encapsulation structure of the present invention, the problem of short circuit does not occur by configuring so that the upper and lower electrodes do not directly contact.
또한, 본 발명의 봉지구조에 의하면, 접착물질이 유입가능한 홈이 설치된 봉지캡 구조물을 포함하여 접착물질에 의한 페로브스카이트 흡수층 열화를 방지하게 된다. In addition, according to the encapsulation structure of the present invention, the perovskite absorption layer deterioration due to the adhesive material is prevented by including the encapsulation cap structure provided with the groove through which the adhesive material can flow.
도 1은 본 발명의 실시예에 따른 페브로스카이트를 포함한 태양전지의 평면도이고, 도 2는 도 1의 AA'의 절단 단면도이다.1 is a plan view of a solar cell including perbroskite according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA′ of FIG. 1 .
도 3은 도 1의 제조과정에서 절연영역을 형성하고 절연물질을 채우는 과정을 도시한 도면들이다.3 is a view illustrating a process of forming an insulating region and filling an insulating material in the manufacturing process of FIG. 1 .
도 4는 본 발명의 다른 실시예에 따른 페브로스카이트를 포함한 태양전지의 절단 단면도이다.4 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 페브로스카이트를 포함한 태양전지의 절단 단면도이다.5 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
본 명세서에 개시된 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 명세서가 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 명세서의 개시가 완전하도록 하고, 본 명세서가 속하는 기술 분야의 통상의 기술자(이하 '당업자')에게 본 명세서의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 명세서의 권리 범위는 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the invention disclosed herein, and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present specification is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the disclosure of the present specification to be complete, and those of ordinary skill in the art to which this specification belongs. It is provided to fully inform those skilled in the art (hereinafter, 'those skilled in the art') the scope of the present specification, and the scope of the present specification is only defined by the scope of the claims.
도 1은 본 발명의 일 실시예에 따른 페브로스카이트를 포함한 태양전지의 평면도이고, 도 2는 도 1의 AA'의 절단 단면도이다.1 is a plan view of a solar cell including a perbroskite according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA′ of FIG. 1 .
페브로스카이트 태양전지는 기판(110) 상부에 적층된 하부투명도전층(120)을 구비하고, 하부투명도전층(120)의 상부에 페로브스카이트 흡수영역(150)을 구비한다. 페로브스카이트 흡수영역(150)은 페로브스카이트 흡수층을 포함하여 적층된 구조물을 의미하는 것으로, 페로브스카이트 흡수층이 단일로 형성된 것일 수도 있고, 페로브 스카이트 흡수층 이외에 다른 흡수층이 추가되는 것도 가능하다. The perovskite solar cell includes a lower transparent conductive layer 120 stacked on the substrate 110 , and has a perovskite absorption region 150 on the lower transparent conductive layer 120 . The perovskite absorption region 150 means a stacked structure including a perovskite absorption layer, and may be a single perovskite absorption layer, or an absorption layer other than the perovskite absorption layer is added. It is also possible
기판(110)은 광이 투과할 수 있는 투명 물질로 형성될 수 있다. 예를 들면, 상기 기판(110)은 글라스 또는 투명 고분자 물질로 형성될 수 있다. 상기 투명 고분자 물질은 폴리에틸렌테레프탈레이트(poly ethyleneterephthalate, PET), 폴리에틸렌 나프탈레이트(poly ethylene naphthalate, PEN), 폴리카보네이트(poly carbonate, PC), 폴리프로필렌(poly propylene, PP), 폴리이미드(poly imide, PI), 트리아세틸 셀룰로오스(tri acetyl cellulose, TAC) 또는 이들의 공중합체 등을 포함할 수 있다.The substrate 110 may be formed of a transparent material through which light may pass. For example, the substrate 110 may be formed of glass or a transparent polymer material. The transparent polymer material is polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polypropylene (poly propylene, PP), polyimide (poly imide, PI), triacetyl cellulose (TAC), or a copolymer thereof, and the like.
하부투명도전층(120)은 투명 전도성 산화물(Transparent Conductive Oxide, TCO), 예를 들면, 인듐 틴 옥사이드(Indium Tin Oxide, ITO), 플루오린 틴 옥사이드(Fluorine Tin Oxide, FTO), 아연 산화물(Zinc oxide), 주석 산화물(Tin Oxide) 등으로 형성될 수 있다.The lower transparent conductive layer 120 is a transparent conductive oxide (Transparent Conductive Oxide, TCO), for example, indium tin oxide (Indium Tin Oxide, ITO), fluorine tin oxide (FTO), zinc oxide (Zinc oxide) ), tin oxide, and the like.
예를 들어, 도 2의 도시에는 정공수송층(150a), 금속할라이드 페로브스카이트(150b), 전자수송층(150c), 그리고 투명전극(150d) 순서로 박막이 형성된 구조물을 도시하고 있다. 박막 증착공정으로 스핀코팅, 블레이드 코팅과 같은 용액공정, 스퍼터, 열 증발증착과 같은 진공증착을 이용할 수 있다. 그러나 페로브스카이트 흡수영역(150)은 이러한 구조에 한정되지 않고, 하부셀과 상부셀이 적층된 구조물인 탠덤셀도 될 수 있다. 탠덤 태양전지의 예로서 하부 태양전지셀은 박막 태양전지, 실리콘 태양전지 등 특별히 한정되지 않고, 상부 태양전지셀은 페로브스카이트 태양전지일 수 있다. For example, FIG. 2 shows a structure in which a thin film is formed in the order of a hole transport layer 150a, a metal halide perovskite 150b, an electron transport layer 150c, and a transparent electrode 150d. As the thin film deposition process, solution processes such as spin coating and blade coating, sputtering, and vacuum deposition such as thermal evaporation can be used. However, the perovskite absorption region 150 is not limited to this structure, and may be a tandem cell in which a lower cell and an upper cell are stacked. As an example of the tandem solar cell, the lower solar cell is not particularly limited, such as a thin film solar cell or a silicon solar cell, and the upper solar cell may be a perovskite solar cell.
정공수송층(150a)은, 하부투명도전층(120)과 페로브스카이트 물질(150b) 사이에 형성되고, 본 발명의 기술 분야에서 적용되는 정공 전달 물질이라면 제한 없이 적용될 수 있으며, 예를 들어, PEDOT:PSS(폴리(3,4-에틸렌디옥시티오펜):폴리(스티렌설포네이트)), PTAA(폴리[비스(4-페닐)(2,4,6-트리메틸페닐), P30T(폴리(3-옥틸티오펜)), P3DT(폴리(3-데실티오펜)), TPD(N, N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1'-비페닐]-4,4'-디아민), P3DDT(폴리 (3-도데실티오펜), 폴리티오페닐렌비닐렌(polyhiophenylenevinylene), 폴리비닐카바졸(polyvinylcarbazole), 폴리파라페닐렌비닐렌(poly-p-phenylenevinylene) 및 이들의 유도체, 스피로(Spiro) 물질, spiro-OMeTAD(piro-MeOTAD[2,2',7,7'-tetrakis- N,N-di-p-methoxyphenyl- mine)-9,9'-spirobifluoren]), 스피로-DPVBi(Spiro-4,4'-bis 2,2-diphenylethenyl)-1,1' biphenyl), 몰리브덴 옥사이드(MoO x), 니켈 옥사이드(NiO x), 바나듐 옥사이드(예를 들어, V 2O 5), 텅스텐 옥사이드(WO x) 등의 금속산화물 반도체 등일 수 있다.The hole transport layer 150a is formed between the lower transparent conductive layer 120 and the perovskite material 150b, and any hole transport material applied in the technical field of the present invention may be applied without limitation, for example, PEDOT :PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), PTAA (poly[bis(4-phenyl)(2,4,6-trimethylphenyl), P30T (poly(3- Octylthiophene)), P3DT (poly(3-decylthiophene)), TPD (N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]- 4,4'-diamine), P3DDT (poly (3-dodecylthiophene), polythiophenylenevinylene), polyvinylcarbazole (polyvinylcarbazole), polyparaphenylenevinylene (poly-p-phenylenevinylene) and their derivatives, spiro substances, spiro-OMeTAD (piro-MeOTAD[2,2',7,7'-tetrakis-N,N-di-p-methoxyphenyl-mine)-9,9'-spirobifluoren ]), spiro-DPVBi(Spiro-4,4'-bis 2,2-diphenylethenyl)-1,1' biphenyl), molybdenum oxide (MoO x ), nickel oxide (NiO x ), vanadium oxide (eg, V 2 O 5 ), tungsten oxide (WO x ), etc. may be a metal oxide semiconductor.
페로브스카이트 물질(150b)은 CH 3NH 3PbI 3, CH 3NH 3PbBr 3, CH 3NH 3PbI 2Cl, CH 3NH 3PbI 2Br 등의 페로브스카이트 결정 구조를 갖는 화합물로 형성될 수 있다. 상기 정공수송층 상기 페로브스카이트 물질을 형성하는 방법은 특별히 제한되지 않는다. 일 실시예로, 상기 정공수송층 표면에 상기 페로브스카이트 물질의 전구체 용액을 도포하여 상기 페로브스카이트 물질을 형성할 수 있다. 예를 들면, 상기 페로브스카이트 물질이 CH 3NH 3PbI 3인 경우, PbI 2 및 CH 3NH 3I가 용해된 디메틸술폭사이드와 감마부티롤락톤 혼합용액을 상기 정공수송층에 도포하여 CH 3NH 3PbI 3을 형성한 후 이를 결정화시킴으로써 상기 페로브스카이트 물질을 형성할 수 있다.The perovskite material 150b is a compound having a perovskite crystal structure such as CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , CH 3 NH 3 PbI 2 Cl, CH 3 NH 3 PbI 2 Br, etc. can be formed. A method of forming the hole transport layer and the perovskite material is not particularly limited. In one embodiment, the perovskite material may be formed by applying a precursor solution of the perovskite material to the surface of the hole transport layer. For example, when the perovskite material is CH 3 NH 3 PbI 3 , a mixed solution of dimethyl sulfoxide and gamma-butyrolactone in which PbI 2 and CH 3 NH 3 I are dissolved is applied to the hole transport layer to CH 3 After forming NH 3 PbI 3 , the perovskite material may be formed by crystallizing it.
전자수송층(150c)은, C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC71BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, 인덴 C60, 인덴 C70, 엔도히드럴 풀러렌, 페릴렌, PTCDA, PTCBI, BCP(bathocuproine), Bphen(4, 7-diphenyl-1,10-phenanthroline), TpPyPB 및 DPPS으로 이루어진 군에서 선택된 적어도 어느 하나를 포함 물질로 형성될 수 있다. 전자수송층(150c)을 형성하는 방법은 특별히 제한되지 않는다. Electron transport layer 150c, C60, C70, C71, C76, C78, C80, C82, C84, C92 PC60BM, PC61BM, PC71BM, ICBA, BCP, PC70BM, IC70BA, PC84BM, indene C60, indene C70, endohydral fullerene , perylene, PTCDA, PTCBI, BCP (bathocuproine), Bphen (4, 7-diphenyl-1,10-phenanthroline), TpPyPB and DPPS may be formed of a material containing at least one selected from the group consisting of. A method of forming the electron transport layer 150c is not particularly limited.
상기 전자수송층 표면에 투명전극층에 의해 손상을 최소화하기위한 버퍼층(미도시)을 추가로 형성할 수 있으며, 버퍼층은 산화아연(ZnO), 산화주석(SnO 2), 알루미늄 도핑된 산화아연(Al:ZnO) 등의 금속산화물 나노입자, 또는 박막일 수 있으며, 버퍼층을 형성하는 방법은 스핀코팅, 원자층 증착법, 열증착법 등 특별히 제한되지 않는다. A buffer layer (not shown) for minimizing damage by a transparent electrode layer may be additionally formed on the surface of the electron transport layer, and the buffer layer is zinc oxide (ZnO), tin oxide (SnO 2 ), aluminum doped zinc oxide (Al: It may be metal oxide nanoparticles such as ZnO), or a thin film, and the method of forming the buffer layer is not particularly limited, such as spin coating, atomic layer deposition, and thermal evaporation.
투명전극층(150d)은 하부투명도전층(120)과 동일한 재료를 이용하는 것도 가능하고 상기에서 언급한 투명한 도전물질로서 하부투명도전층(120)과 다른 물질을 사용하는 것도 가능하다.The transparent electrode layer 150d may use the same material as the lower transparent conductive layer 120 , and it is also possible to use a material different from the lower transparent conductive layer 120 as the above-mentioned transparent conductive material.
한편, 도 1에서는 페로브스카이트 흡수영역(150)이 하나의 셀로 도시되어있으나 본 발명은 이에 한정되지 않고, 페로브스카이트 흡수영역은 직렬 또는 병렬로 다수개의 셀이 연결된 구조를 가지는 것도 가능하다. 이에 대해서는 후술한다. On the other hand, although the perovskite absorption region 150 is shown as a single cell in FIG. 1, the present invention is not limited thereto, and the perovskite absorption region may have a structure in which a plurality of cells are connected in series or parallel. do. This will be described later.
상부 투명전극에 전류 수집을 위한 상부금속전극(160)을 형성한다. 상부금속전극(160)은 봉지캡 구조물(170)이 형성되어 있는 영역을 가로질러 지나서 연장하여 외부로 전극이 인출될 수 있도록 생성된다. 봉지캡 구조물(170)은 별도의 구조물 형상으로 제조되어 있으며 유리, 플라스틱 등의 재질로 페로브스카이트 흡수영역(150)을 봉지하기 위한 구조물이고 내부에 캐비티를 포함한다. 봉지캡 구조물(170)은 적어도 페로브스카이트 흡수영역(150)을 봉지하면서 기판(110)과 접착물질(180)을 통해서 접착되는 봉지캡 구조물(170)을 포함한다. 한편, 봉지캡 구조물(170)의 광학특성은 가시광 및 적외선 영역에서 광흡수가 거의 없어 봉지된 페로브스카이트 태양전지의 광학손실을 발생시키지 않을 수 있다. 봉지캡 구조물(170)은 접착물질(180)을 이용하여 하부 기판 구조물에 부착하는 봉지 공정의 수행시에 예컨대 글로브 박스 등의 밀폐된 공간에서 아르곤, 질소 등의 불활성 기체 분위기에서 공정을 진행할 수 있다. 이러한 공정 진행에 의하면 봉지캡 구조물(170)의 내부 캐비티에는 불활성 기체가 포함될 수 있다. An upper metal electrode 160 for collecting current is formed on the upper transparent electrode. The upper metal electrode 160 extends across the region where the encapsulation cap structure 170 is formed so that the electrode can be withdrawn to the outside. The encapsulation cap structure 170 is manufactured in a separate structure shape, is a structure for sealing the perovskite absorption region 150 with a material such as glass or plastic, and includes a cavity therein. The encapsulation cap structure 170 includes at least the encapsulation cap structure 170 that is bonded to the substrate 110 through the adhesive material 180 while sealing the perovskite absorption region 150 . On the other hand, the optical characteristics of the encapsulation cap structure 170 may not cause optical loss of the encapsulated perovskite solar cell because there is almost no light absorption in the visible and infrared regions. When performing the encapsulation process of attaching the encapsulation cap structure 170 to the lower substrate structure using the adhesive material 180, the process may be performed in an inert gas atmosphere such as argon or nitrogen in a closed space such as a glove box. . According to this process, an inert gas may be included in the inner cavity of the encapsulation cap structure 170 .
한편, 봉지캡 구조물(170)의 상부에는 추가 반사 방지막(미도시)을 포함하는 것도 가능하다. 이 경우, 추가 반사 방지막(미도시)의 굴절률은 봉지글라스 (약 1.5) 보다 작고 공기 (약 1) 보다 큰 물질로 구성된 단일층 또는 이중층일 수 있다. On the other hand, it is also possible to include an additional anti-reflection film (not shown) on the upper portion of the encapsulation cap structure 170 . In this case, the refractive index of the additional anti-reflection film (not shown) may be a single layer or a double layer composed of a material having a refractive index smaller than that of the sealing glass (about 1.5) and larger than that of air (about 1).
하부투명도전층(120)은 상부금속전극(160)이 형성된 방향과는 교차하는, 예를 들어 실질적으로 수직인 방향으로 외부로 전극을 인출하기 위해서, 하부투명도전층(120)은 스트립 형상을 갖도록 절연영역(130)에 의해 분리되는 하부투명전극(120a)구조를 가진다. 절연영역(130)에 채워지는 절연물질은 150도 이상의 녹는점을 갖는 polystyrene, poly(methyl methancrylate), 또는 polydimetylsiloxane 등의 고분자 절연재료를 이용할 수 있다. 절연영역(130)에는 절연물질이 충전되어 있고, 절연물질은, 하부투명도전층(120)을 선택적으로 소정의 선폭으로 식각하여 하부투명전극(120a)를 형성하기 위해, 식각된 영역에 UV 레이저 펄스를 이용하여 절연물질을 전사시킬 수 있다.The lower transparent conductive layer 120 intersects the direction in which the upper metal electrode 160 is formed, for example, in order to draw the electrode out in a substantially vertical direction, the lower transparent conductive layer 120 is insulated to have a strip shape It has a structure of the lower transparent electrode 120a separated by the region 130 . As the insulating material filled in the insulating region 130 , a polymer insulating material such as polystyrene, poly(methyl methancrylate), or polydimetylsiloxane having a melting point of 150°C or higher may be used. The insulating region 130 is filled with an insulating material, and the insulating material selectively etches the lower transparent conductive layer 120 to a predetermined line width to form the lower transparent electrode 120a, a UV laser pulse in the etched region. can be used to transfer the insulating material.
또한, 봉지캡 구조물(170)과 기판(110)은 접착물질(180)을 통해서 접착되고, 접착물질(180)이 캐비티 영역(상부금속전극과 봉지캡구조물 사이의 빈공간)으로 스며드는 것을 방지하기 위하여, 봉지캡 구조물(170)이 상부금속전극 라인, 하부투명전극(120) 등과 접촉하는 부위에 접착물질이 유입가능한 홈(190)이 설치된다. 홈(190)은 봉지캡 구조물(170)이 기판(110)과 접촉하는 영역 전체에 소정 너비를 갖는 띠형상으로 형성되어 있다(도 1 참조). In addition, the encapsulation cap structure 170 and the substrate 110 are adhered through the adhesive material 180, and the adhesive material 180 is prevented from permeating into the cavity region (the empty space between the upper metal electrode and the encapsulation cap structure). To this end, a groove 190 through which an adhesive material can flow is provided in a portion where the encapsulation cap structure 170 contacts the upper metal electrode line, the lower transparent electrode 120, and the like. The groove 190 is formed in a band shape having a predetermined width in the entire region where the encapsulation cap structure 170 contacts the substrate 110 (see FIG. 1 ).
본 발명자들은 상부 전극을 연장하게 되면 봉지캡 구조물(170) 외부에 페로브스카이트 태양전지의 일부분이 노출되고, 노출된 영역에서 페로브스카이트의 열화가 발생함에 따라 페로브스카이트 태양전지의 효율이 급격히 저하되는 현상을 목격하였다. 이러한 문제를 방지하기 위해 봉지캡 구조물 외부로 노출된 페로브스카이트 흡수층을 제거하게 되면, 상/하부 전극의 직접 접촉하게 되면서 단락의 문제가 발생하게 되었다. When the upper electrode is extended, a part of the perovskite solar cell is exposed to the outside of the encapsulation cap structure 170, and the deterioration of the perovskite solar cell occurs in the exposed area. A phenomenon in which the efficiency decreases rapidly was observed. When the perovskite absorption layer exposed to the outside of the encapsulation cap structure is removed to prevent such a problem, the upper and lower electrodes come into direct contact with each other, resulting in a short circuit problem.
따라서, 봉지캡 구조물 외부에서의 페로브스카이트 열화 및 상/하부 전극의 직접 접촉을 방지하기 위해 하부 투명도전층의 식각이 필요함을 인지하였다. 하부 투명전극은 화학적 방법 또는 레이저 스크라이빙(laser scribing) 방법을 이용하여 수십 μm의 선폭을 가지도록 식각할 수 있으며, 페로브스카이트 흡수영역이 절연영역(식각영역)의 바깥까지 형성되어야 상/하부 전극의 직접 접촉을 방지할 수 있음을 확인하였다. 이 경우, 발명자들은 절연영역(130)과 페로브스카이트 흡수영역(150) 끝단 사이의 거리(도 1의 d)가 중요한 요인임을 확인하였다. 도 1의 d 길이가 2000 내지 5000 μm 이상으로 길면 접착물질과의 접촉에 의한 페로브스카이트 열화가 일어날 수 있으며, 100 μm 이하로 짧을 경우 식각 라인이 노출되어 상/하부 전극의 접촉에 의한 단락이 일어날 수 있는 문제점이 있다. 따라서, 절연영역(130)과 페로브스카이트 흡수영역(150)의 끝단부 사이의 거리는 1000 내지 2000 μm 범위인 것이 바람직하다. Therefore, it was recognized that the lower transparent conductive layer was etched to prevent the deterioration of the perovskite outside the encapsulation cap structure and the direct contact of the upper/lower electrodes. The lower transparent electrode can be etched to have a line width of several tens of μm using a chemical method or a laser scribing method. / It was confirmed that direct contact of the lower electrode can be prevented. In this case, the inventors confirmed that the distance (d in FIG. 1) between the ends of the insulating region 130 and the perovskite absorption region 150 is an important factor. If the length of d in FIG. 1 is 2000 to 5000 μm or more, deterioration of the perovskite may occur due to contact with the adhesive material. There are problems with which this can happen. Accordingly, the distance between the insulating region 130 and the end of the perovskite absorption region 150 is preferably in the range of 1000 to 2000 μm.
페로브스카이트 흡수영역이 식각 라인(절연영역) 바깥으로 형성된다 하더라도 전도성을 가지는 정공 수송층 또는 페로브스카이트 흡수층에 의해 완전한 절연이 되지 않을 수 있으며, 또한 정공 수송층 또는 페로브스카이트 용액의 표면 장력 및 레올로지 특성에 따른 습윤(wetting) 특성에 따라 막의 형성이 불완전 하게 되면 상/하부 전극의 직접 접촉에 의한 단락이 발생할 수 있다.Even if the perovskite absorption region is formed outside the etch line (insulation region), complete insulation may not be achieved by the conductive hole transport layer or the perovskite absorption layer, and also the surface of the hole transport layer or the perovskite solution If the formation of the film is incomplete due to the wetting characteristics according to the tension and rheological characteristics, a short circuit may occur due to direct contact between the upper and lower electrodes.
이러한 문제를 해결하기 위해 하부 투명전극의 식각 영역에 레이저 전사법을 이용하여 절연물질을 전사시킴으로써 식각 영역에서의 단락을 추가로 방지할 수 있다. In order to solve this problem, a short circuit in the etched region may be further prevented by transferring the insulating material to the etched region of the lower transparent electrode using a laser transfer method.
도 3은 도 1의 제조과정에서 절연영역을 형성하고 절연물질을 채우는 과정을 도시한 도면들이다.3 is a view illustrating a process of forming an insulating region and filling an insulating material in the manufacturing process of FIG. 1 .
도 3을 참조하면, 먼저, 기판(210) 상에 투명도전층(220)이 형성된다. 그 후, 레이저를 이용하여 투명도전층(220)을 선택적으로 식각하게 된다. 그런다음, 레이저를 이용하여 절연물질을 전사하는 공정을 수행하게 된다. 레이저 전사공정은 투명기판(310)에 레이저 흡수층(320)과 절연물질(330)이 형성된 전사 기판을 이용한다. 그리고, 식각과 동일한 레이저 얼라인 좌표를 사용하여, 추가 전사 공정에 대한 레이저 얼라인 단계가 필요하지 않도록 구현할 수 있다.Referring to FIG. 3 , first, a transparent conductive layer 220 is formed on a substrate 210 . Thereafter, the transparent conductive layer 220 is selectively etched using a laser. Then, a process of transferring the insulating material using a laser is performed. The laser transfer process uses a transfer substrate in which a laser absorption layer 320 and an insulating material 330 are formed on a transparent substrate 310 . And, by using the same laser alignment coordinates as the etching, it may be implemented so that a laser alignment step for an additional transfer process is not required.
절연물질은 레이저 전사 공정 중 발생하는 열에 의해 분해되거나 박리되지 않아야 하므로, 적용 가능한 절연 물질은 150도 이상의 녹는점을 갖는 polystyrene, poly(methyl methancrylate), 또는 polydimetylsiloxane 등의 고분자 절연재료 일 수 있다. Since the insulating material should not be decomposed or peeled off by heat generated during the laser transfer process, the applicable insulating material may be a polymer insulating material such as polystyrene, poly(methyl methancrylate), or polydimetylsiloxane having a melting point of 150 degrees or more.
한편, 레이저의 에너지를 흡수, 레이저 에너지를 저감시켜 손상 없이 절연 물질을 전사 시키기 위한 레이저 에너지 흡수층(laser absorbing layer;320)을 추가로 구비할 수 있으며, 이는 타이타늄(titanium), 트리아젠 폴리머(triazene polymers), 인듐주석옥사이드(indium tin oxide), 또는 폴리이미드(polyimide) 일 수 있다. On the other hand, a laser energy absorbing layer (320) for absorbing the energy of the laser and reducing the laser energy to transfer the insulating material without damage may be additionally provided, which is titanium (titanium), triazene polymer (triazene) polymers), indium tin oxide, or polyimide.
도 4는 본 발명의 다른 실시예에 따른 페브로스카이트를 포함한 태양전지의 절단 단면도이다.4 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
도 1과의 차이점을 기준으로 설명하면, 도 4의 태양전지는 도1의 페로브스카이트 흡수영역(150)이 하부셀 CIGS셀과 상부셀 페로브스카이트셀로 구성된 탠덤 구조를 가지는 경우이다. 따라서, 도 1과의 중복되는 영역에 대한 설명은 생략한다.1, the solar cell of FIG. 4 is a case in which the perovskite absorption region 150 of FIG. 1 has a tandem structure composed of a lower cell CIGS cell and an upper cell perovskite cell. Accordingly, a description of the overlapping region with FIG. 1 will be omitted.
본 태양전지는 기판(310) 상부에 적층된 하부투명도전층(320)을 구비하고, 하부투명도전층(320)의 상부에 페로브스카이트 흡수영역(350 ; 350a~350i)을 구비한다. The present solar cell includes a lower transparent conductive layer 320 stacked on a substrate 310 and has perovskite absorption regions 350 (350a to 350i) on the lower transparent conductive layer 320 .
상부셀인 페로브스카이트셀은 정공수송층(350a), 금속할라이드 페로브스카이트(350b), 전자수송층(350c), 버퍼층(350d), 그리고 투명전극(350e) 순서로 박막이 형성된 구조물일 수 있다.The upper cell, the perovskite cell, may be a structure in which a thin film is formed in the order of a hole transport layer 350a, a metal halide perovskite 350b, an electron transport layer 350c, a buffer layer 350d, and a transparent electrode 350e. .
하부셀인 CIGS셀은 하부투명전극층(320) 상에 CIGS흡수층(350f), 버퍼층(350g), 투명윈도우(350h), 그리고, 재결합층(350i)을 포함한다. The lower cell CIGS cell includes a CIGS absorption layer 350f, a buffer layer 350g, a transparent window 350h, and a recombination layer 350i on the lower transparent electrode layer 320 .
버퍼층(350g)은 카드뮴황화물, 아연황화물 또는 인듐산화물 등을 포함할 수 있고, CIGS흡수층(350f)과 투명윈도우층(350h) 사이의 층간 밴드갭 에너지 차이 및 격자 상수 차이를 완화할 수 있다. The buffer layer 350g may include cadmium sulfide, zinc sulfide, indium oxide, or the like, and may alleviate a difference in interlayer bandgap energy and a lattice constant between the CIGS absorption layer 350f and the transparent window layer 350h.
투명윈도우층(350h)은 p형 또는 n형 불순물로 도핑된 금속 산화물을 포함할 수 있다. 금속 산화물은 아연산화물, 갈륨산화물, 알루미늄산화물, 인듐산화물, 납산화물, 구리산화물, 티탄산화물, 주석산화물, 철산화물, 인듐주석산화물 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. The transparent window layer 350h may include a metal oxide doped with p-type or n-type impurities. The metal oxide may include at least one material selected from zinc oxide, gallium oxide, aluminum oxide, indium oxide, lead oxide, copper oxide, titanium oxide, tin oxide, iron oxide, and indium tin oxide.
재결합층(350i)은 상하부셀 사이에서 전기적, 광학적 손실을 최소화하기 위해 장파장 투과도가 높은 투명 전도성 산화물을 포함할 수 있다. 인듐, 주석, 및 아연 중 적어도 하나 이상의 산화물, 예를 들어 인듐주석산화물, 인듐아연산화물, 아연주석산화물로 형성되거나, 알루미늄, 붕소, 수소, 지르코늄을 포함하여 산화알루미늄아연, 산화붕소아연, 수소화인듐산화물, 또는 지르코늄주석산화물 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. The recombination layer 350i may include a transparent conductive oxide having high long-wavelength transmittance in order to minimize electrical and optical loss between the upper and lower cells. At least one oxide of indium, tin, and zinc, for example, indium tin oxide, indium zinc oxide, zinc tin oxide, or aluminum zinc oxide, including aluminum, boron, hydrogen, zirconium zinc oxide, zinc boron oxide, indium hydride It may include at least one material selected from oxide or zirconium tin oxide.
도 4의 태양전지에 있어서, 재결합층(350i)은 연장된 상부전극(360)과의 접촉에 의한 단락을 방지하기 위해서 탠덤의 재결합층(350i)은 상부 정공수송층(350a) 등 보다 작은 면적으로 형성되는 것이 바람직하다. In the solar cell of FIG. 4 , the recombination layer 350i of the tandem has a smaller area than the upper hole transport layer 350a in order to prevent a short circuit due to contact with the extended upper electrode 360. It is preferable to form
도 5는 본 발명의 또 다른 실시예에 따른 페브로스카이트를 포함한 태양전지의 절단 단면도이다.5 is a cross-sectional view of a solar cell including perbroskite according to another embodiment of the present invention.
도 1과의 차이점을 기준으로 설명하면, 도 5의 태양전지는 도1의 페로브스카이트 흡수영역(150)이 복수개의 셀로 연결된 경우이다. 도 1과의 중복되는 영역에 대한 설명은 생략한다.Referring to the difference from FIG. 1, the solar cell of FIG. 5 is a case in which the perovskite absorption region 150 of FIG. 1 is connected to a plurality of cells. A description of the overlapping region with FIG. 1 will be omitted.
도 5의 태양전지는 기판(410) 상부에 적층된 하부투명도전층(420)을 구비하고, 하부투명도전층(420)의 상부에 페로브스카이트 흡수영역(450 ; 450a,b,c,d)을 구비한다. 페로브스카이트 흡수영역(450)은 페로브스카이트 흡수층을 포함하여 적층된 구조물을 의미하는 것으로, 도 5의 도시에서는 3개의 영역의 셀로 이루어져 있다. The solar cell of FIG. 5 includes a lower transparent conductive layer 420 stacked on a substrate 410, and a perovskite absorption region 450; 450a, b, c, d) on the lower transparent conductive layer 420. to provide The perovskite absorption region 450 means a stacked structure including a perovskite absorption layer, and in FIG. 5 , it consists of cells of three regions.
예를 들어, 도 5의 도시에는 정공수송층(450a), 금속할라이드 페로브스카이트(450b), 전자수송층(450c), 버퍼층(450d) 이 순서대로 형성되어 있고, 상부전극(460)이 추가로 형성된 구조물을 도시하고 있다. For example, in FIG. 5 , the hole transport layer 450a, the metal halide perovskite 450b, the electron transport layer 450c, and the buffer layer 450d are formed in this order, and the upper electrode 460 is additionally The formed structure is shown.
도 5에서는 하부투명도전층(420)이 제1 분리영역 P1을 가지고 형성된다. 분리영역 P1은 하부투명도전층(420)을 형성한 후 레이저 공정에 의해 절단된다. 그런 다음, 제1 분리영역 P1이 형성된 전체영역에 정공수송층(450a)을 형성함으로써 분리영역 P1에도 정공수송층(450a)이 채워지게 된다. 제1 분리영역 P1은 상부와 하부전극이 직접 접촉에 의한 단락을 방지하기 위한 하부투명도전층(420)의 식각을 수행하였다.In FIG. 5 , the lower transparent conductive layer 420 is formed with the first isolation region P1 . The isolation region P1 is cut by a laser process after the lower transparent conductive layer 420 is formed. Then, by forming the hole transport layer 450a in the entire region where the first isolation region P1 is formed, the hole transport layer 450a is also filled in the isolation region P1. In the first isolation region P1, the lower transparent conductive layer 420 was etched to prevent a short circuit due to direct contact between the upper and lower electrodes.
또한, 정공수송층(450a), 금속할라이드 페로브스카이트(450b), 전자수송층(450c), 버퍼층(450d)이 형성된 이후 도5의 도시와 같이 제2 분리영역 P2가 형성된다. 그 후 제2 분리영역을 포함한 전체영역 상부에 상부투명전극(460)을 추가로 형성하고, 단위셀을 형성하기 위해 제3 분리영역 P3를 형성한다.In addition, after the hole transport layer 450a, the metal halide perovskite 450b, the electron transport layer 450c, and the buffer layer 450d are formed, a second isolation region P2 is formed as shown in FIG. 5 . Thereafter, an upper transparent electrode 460 is additionally formed over the entire region including the second isolation region, and a third isolation region P3 is formed to form a unit cell.
도 5의 구조에 의하면, 3개의 단위셀에서 하부투명도전층(420)이 각각 분리 영역들 P1과 절연영역(430)에 의해 분리되도록 구현되어 있다. According to the structure of FIG. 5 , in the three unit cells, the lower transparent conductive layer 420 is implemented to be separated by the isolation regions P1 and the insulating region 430 , respectively.
도 5의 구조에서 하부전극의 인출 단자는 하부투명도전층(420)의 외부 노출영역이고, 상부전극 컨택 영역은 상부투명전극(460)이 외부로 연장된 영역이다. In the structure of FIG. 5 , the lead-out terminal of the lower electrode is an external exposed region of the lower transparent conductive layer 420 , and the upper electrode contact region is a region where the upper transparent electrode 460 extends to the outside.
이상, 첨부된 도면을 참조로 하여 본 명세서의 실시예를 설명하였지만, 본 명세서가 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다. As mentioned above, although the embodiments of the present specification have been described with reference to the accompanying drawings, those of ordinary skill in the art to which this specification belongs can realize that the present invention may be embodied in other specific forms without changing the technical spirit or essential features thereof. you will be able to understand Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (8)

  1. 페로브스카이트를 포함하는 태양전지,A solar cell comprising perovskite,
    기판; Board;
    상기 기판 상에 차례로 형성된 하부투명도전층, 페로브스카이트 흡수영역, 및 상부금속전극; 및a lower transparent conductive layer, a perovskite absorption region, and an upper metal electrode sequentially formed on the substrate; and
    적어도 상기 페로브스카이트 흡수영역을 봉지하면서 상기 기판과 접착물질을 통해서 접착되는 봉지캡 구조물을 포함하되,and an encapsulation cap structure that is adhered to the substrate through an adhesive material while encapsulating at least the perovskite absorption region;
    상기 상부전극은 제1방향으로 상기 봉지캡 구조물의 단부를 지나 연장되어 외부로 전극이 인출되며,The upper electrode extends past the end of the encapsulation cap structure in the first direction, and the electrode is withdrawn to the outside;
    상기 하부투명도전층은 상기 제1방향과 교차하는 제2방향으로 외부로 전극을 인출하기 위해서, 상기 하부투명도전층은 스트립 형상을 갖도록 절연영역에 의해 분리되는 구조를 가지는 페로브스카이트를 포함하는 태양전지.The lower transparent conductive layer includes perovskite having a structure in which the lower transparent conductive layer is separated by an insulating region so as to have a strip shape in order to withdraw the electrode to the outside in a second direction intersecting the first direction battery.
  2. 제1 항에 있어서,According to claim 1,
    상기 봉지캡 구조물과 상기 기판은 접착물질을 통해서 접착되고,The encapsulation cap structure and the substrate are bonded through an adhesive material,
    접착물질이 캐비티 영역으로 스며드는 것을 방지하기 위하여, 상기 봉지캡 구조물이 상기 기판과 접촉하는 부위에 접착물질이 유입가능한 홈이 설치된 것을 특징으로 하는 페로브스카이트를 포함하는 태양전지.A solar cell comprising a perovskite, characterized in that a groove through which an adhesive material can flow is installed in a portion of the encapsulation cap structure in contact with the substrate in order to prevent the adhesive material from permeating into the cavity region.
  3. 제1 항에 있어서,According to claim 1,
    상기 페로브스카이트 흡수영역은 페로브스카이트 흡수층이 포함된 단일셀 또는 탠덤셀인 것을 특징으로 하는 페로브스카이트를 포함하는 태양전지.The perovskite absorption region is a solar cell comprising perovskite, characterized in that the single cell or tandem cell including the perovskite absorption layer.
  4. 제1 항에 있어서,According to claim 1,
    상기 페로브스카이트 흡수영역은 복수개의 셀로 연결된 구조를 가지며, 이 경우는 상기 하부투명도전층에 분리영역 외에 추가의 절연영역을 가지는 것을 특징으로 하는 페로브스카이트를 포함하는 태양전지. The perovskite absorption region has a structure connected to a plurality of cells, and in this case, a solar cell comprising perovskite, characterized in that the lower transparent conductive layer has an additional insulating region in addition to the isolation region.
  5. 제1 항에 있어서,According to claim 1,
    상기 페로브스카이트 흡수영역이 탠덤셀인 경우, 상부셀과 하부셀을 결합시키는 재결합층은 적층되는 상부층 보다 작은 면적으로 형성되는 것을 특징으로 하는 페로브스카이트를 포함하는 태양전지.When the perovskite absorption region is a tandem cell, the recombination layer for bonding the upper cell and the lower cell is formed in a smaller area than the stacked upper layer.
  6. 제1 항에 있어서,According to claim 1,
    상기 절연영역에는 절연물질이 충전되어 있고, 상기 절연물질은, 하부투명도전층을 선택적으로 소정의 선폭으로 식각하고, 식각된 영역에 레이저 전사법을 이용하여 절연물질을 전사시킴으로써 형성된 페로브스카이트를 포함하는 태양전지.The insulating region is filled with an insulating material, and the insulating material is a perovskite formed by selectively etching the lower transparent conductive layer to a predetermined line width, and transferring the insulating material to the etched region using a laser transfer method. including solar cells.
  7. 제6 항에 있어서,7. The method of claim 6,
    상기 절연물질은 150도 이상의 녹는점을 갖는 polystyrene, poly(methyl methancrylate), 또는 polydimetylsiloxane 등의 고분자 절연재료인 것을 특징으로 하는 페로브스카이트를 포함하는 태양전지.The insulating material is a solar cell including a perovskite, characterized in that the polymer insulating material such as polystyrene, poly(methyl methancrylate), or polydimetylsiloxane having a melting point of 150 degrees or more.
  8. 제1 항에 있어서,According to claim 1,
    상기 절연영역과 상기 페로브스카이트 흡수영역의 끝단부 사이의 거리는 1000 내지 2000 μm 범위인 것을 특징으로 하는 페로브스카이트를 포함하는 태양전지.A solar cell comprising perovskite, characterized in that the distance between the insulating region and the end of the perovskite absorption region is in the range of 1000 to 2000 μm.
PCT/KR2020/016957 2020-11-26 2020-11-26 Solar cell including perovskite WO2022114268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200161033A KR102478481B1 (en) 2020-11-26 2020-11-26 Solar Cell Having Perovskite Material
KR10-2020-0161033 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022114268A1 true WO2022114268A1 (en) 2022-06-02

Family

ID=81755775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016957 WO2022114268A1 (en) 2020-11-26 2020-11-26 Solar cell including perovskite

Country Status (2)

Country Link
KR (1) KR102478481B1 (en)
WO (1) WO2022114268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393626A (en) * 2023-10-18 2024-01-12 云谷(固安)科技有限公司 Solar cell device and packaging method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240040478A (en) * 2022-09-21 2024-03-28 서울대학교산학협력단 Method of manufacturing tandem solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114404A (en) * 2010-11-05 2012-06-14 Kataoka Seisakusho:Kk Method and apparatus of manufacturing thin film solar cell
JP2016219793A (en) * 2015-05-25 2016-12-22 パナソニック株式会社 Solar battery and solar battery module
JP2017103450A (en) * 2015-11-24 2017-06-08 パナソニック株式会社 solar battery
JP2019021913A (en) * 2017-07-11 2019-02-07 パナソニック株式会社 Solar battery module
KR20190016927A (en) * 2018-08-23 2019-02-19 고려대학교 산학협력단 Tandem Solar Cell Device
KR20200133000A (en) * 2018-05-16 2020-11-25 엑세거 오퍼레이션스 에이비 Photovoltaic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628952B1 (en) * 2014-10-06 2016-06-13 한국과학기술연구원 Tandem solar cell and manufacturing method thereof
JP6414450B2 (en) * 2014-11-21 2018-10-31 アイシン精機株式会社 Hole transport layer material and solar cell using hole transport layer material
KR20170139826A (en) 2016-06-10 2017-12-20 성균관대학교산학협력단 Method of manufacturing perovskite solar cells and perovskite solar cells manufactured by the method
JP6787180B2 (en) * 2017-02-28 2020-11-18 三菱電機株式会社 Semiconductor devices and their manufacturing methods
KR102229319B1 (en) * 2019-02-27 2021-03-19 한국과학기술연구원 Thin film solar cell for controlling the color and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114404A (en) * 2010-11-05 2012-06-14 Kataoka Seisakusho:Kk Method and apparatus of manufacturing thin film solar cell
JP2016219793A (en) * 2015-05-25 2016-12-22 パナソニック株式会社 Solar battery and solar battery module
JP2017103450A (en) * 2015-11-24 2017-06-08 パナソニック株式会社 solar battery
JP2019021913A (en) * 2017-07-11 2019-02-07 パナソニック株式会社 Solar battery module
KR20200133000A (en) * 2018-05-16 2020-11-25 엑세거 오퍼레이션스 에이비 Photovoltaic device
KR20190016927A (en) * 2018-08-23 2019-02-19 고려대학교 산학협력단 Tandem Solar Cell Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393626A (en) * 2023-10-18 2024-01-12 云谷(固安)科技有限公司 Solar cell device and packaging method

Also Published As

Publication number Publication date
KR20220073185A (en) 2022-06-03
KR102478481B1 (en) 2022-12-19

Similar Documents

Publication Publication Date Title
US11158828B2 (en) Solar cell comprising an oxide-nanoparticle buffer layer and method of fabrication
JP4966653B2 (en) Tandem photovoltaic cell with shared organic electrode and method for manufacturing the same
WO2022114268A1 (en) Solar cell including perovskite
CN109273545B (en) Manufacturing method of cadmium telluride thin-film solar cell module
WO2016186317A1 (en) Perovskite solar cell module
WO2018088632A1 (en) Perovskite solar cell module and manufacturing method therefor
US20190221692A1 (en) Flexible Transparent-Semitransparent Hybrid Solar Window Membrane Module
WO2012115392A2 (en) Solar cell having a double-sided structure, and method for manufacturing same
WO2019103207A1 (en) Monolithic solar cell and manufacturing method therefor
WO2011062457A2 (en) Organic-inorganic hybrid solar cell and manufacturing method thereof
KR20130125737A (en) Organic electrochemical device and fabrication method thereof
WO2018012825A1 (en) Organic-inorganic composite solar cell
WO2022215990A1 (en) Perovskite solar cell and tandem solar cell comprising same
CN114784198A (en) Efficient perovskite solar cell, cell module, cell device and preparation method thereof
WO2021107184A1 (en) Monolithic tandem solar cell and method for producing same
WO2018016886A1 (en) Method for manufacturing laminate for organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell
KR20160082422A (en) Encapsulated organic photovoltaics module and Method for preparing the same
US20170323986A1 (en) Photovoltaic module
CN114665021A (en) Four-terminal perovskite and crystalline silicon laminated cell assembly and preparation method thereof
WO2011071226A1 (en) Solar cell module
CN115867056A (en) Organic solar cell module and preparation method thereof
CN213366623U (en) Four-terminal perovskite and crystalline silicon tandem cell assembly
CN212257421U (en) Perovskite solar module
WO2013081344A1 (en) Solar cell module and method of fabricating the same
KR20190143744A (en) Multi-junction solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963664

Country of ref document: EP

Kind code of ref document: A1