WO2018088423A1 - Optical inspection device - Google Patents

Optical inspection device Download PDF

Info

Publication number
WO2018088423A1
WO2018088423A1 PCT/JP2017/040231 JP2017040231W WO2018088423A1 WO 2018088423 A1 WO2018088423 A1 WO 2018088423A1 JP 2017040231 W JP2017040231 W JP 2017040231W WO 2018088423 A1 WO2018088423 A1 WO 2018088423A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
light
light emitting
region
coaxial illumination
Prior art date
Application number
PCT/JP2017/040231
Other languages
French (fr)
Japanese (ja)
Inventor
米澤 良
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to JP2018550225A priority Critical patent/JP6912824B2/en
Priority to KR1020197009783A priority patent/KR102339677B1/en
Priority to CN201780062143.7A priority patent/CN109804238B/en
Publication of WO2018088423A1 publication Critical patent/WO2018088423A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Definitions

  • the present invention relates to an optical inspection apparatus.
  • Patent Document 1 a plurality of illumination devices are arranged such that light that is irradiated on an object to be inspected and incident on a one-dimensional imaging unit becomes specularly reflected light, diffusely reflected light, and transmitted light, respectively.
  • An imaging optical inspection apparatus that changes the lighting timing for each transfer of the one-dimensional imaging means and accumulates the image data transferred from the one-dimensional imaging means for each image data that is lit by the same illumination device, thereby creating integrated image data Is disclosed.
  • Patent Document 1 is for inspecting a transparent plate-shaped inspection object.
  • a transparent plate-shaped object to be inspected for example, a cover glass used for a portable terminal or the like can be mentioned.
  • the cover glass has a substantially rectangular shape, and the end surface is polished.
  • defects for example, chipping of the end face
  • end face processing such as cover glass, it is necessary to apply light to all end faces in the same manner and make the reflected light enter the imaging means.
  • the optical axis of the one-dimensional imaging means is inclined by about 45 degrees with respect to the normal line of the inspection object. Therefore, in the invention described in Patent Document 1, light reflected by a part of the end face (referred to as end face I) is incident on the imaging means, but light reflected from an end face other than end face I (referred to as end face II) is imaged. There is a risk of not entering the means.
  • the end face II has a problem that a defect cannot be imaged, that is, the defect cannot be detected.
  • the present invention has been made in view of such circumstances, and an optical inspection apparatus capable of inspecting a defect with one apparatus and one inspection regardless of the position of the defect on the end face of the non-inspection object.
  • the purpose is to provide.
  • an optical inspection apparatus includes, for example, a placement unit that places an object to be inspected in a horizontal direction and an object to be inspected placed on the placement unit in the transport direction.
  • a one-dimensional imaging unit configured to image the inspection object from substantially vertically upward, a one-dimensional imaging unit arranged so that a longitudinal direction thereof is substantially orthogonal to the conveyance direction, and the object to be inspected
  • a light irradiating unit having a plurality of light emitting units for irradiating light to the inspection object, and the light irradiating unit has a central axis positioned on a central plane that is a substantially vertical plane including the one-dimensional imaging means.
  • a first region of a semi-cylindrical surface, and a second region and a third region of a substantially hemispherical surface or a substantially semi-elliptical spherical surface formed at both ends of the first region, and in the first region, the conveyance A plurality of band-shaped light emitting portions in which the light emitting portions are arranged along a direction substantially orthogonal to the direction, The band-shaped light emitting portion is provided in a region other than the vicinity of the central surface in the first region, and the light emitting portions are arranged on the central surface in the second region and the third region.
  • the central axis is on the central plane that is the substantially vertical plane including the one-dimensional imaging means. From the first region of the substantially semi-cylindrical surface where the is located, and the plurality of light irradiation portions provided in the second region and the third region of the substantially hemispherical surface or the substantially semi-elliptical spherical surface formed at both ends of the first region Irradiate objects with light. In the first area, the light emitting units are arranged in an area other than the vicinity of the center plane along a direction substantially perpendicular to the conveyance direction of the inspection object.
  • the light reflected by the front end surface and the rear end surface of the inspection object can be made incident on the one-dimensional imaging means.
  • the light emitting units are arranged at positions on the center plane. Therefore, the light reflected by the left and right end surfaces of the object to be inspected can be incident on the one-dimensional imaging means. Therefore, regardless of the position of the defect on the end face of the non-inspection object, the defect can be inspected by one apparatus and one inspection.
  • the belt-like light emitting part is provided so that an optical axis and an intersection line between the central plane and the upper surface of the mounting part intersect, and the belt-like light emitting part includes the optical axis and the central plane.
  • the conveyance unit is controlled so as to convey the inspection object at a constant speed
  • the one-dimensional imaging unit is driven so as to capture images at a constant interval
  • the one-dimensional imaging unit In synchronization with the imaging, a first light emitting region that is a half region divided by the central plane of the first region, a second light emitting region other than the first light emitting region in the first region, the second You may provide the control part which irradiates separately the 3rd light emission area
  • the light irradiation unit may include a cylindrical lens disposed between the belt-like light emitting unit and a line of intersection between the center plane and the upper surface of the mounting unit.
  • belt-shaped light emission part can be condensed, and the imaging frequency of a one-dimensional imaging means can be made high (imaging time is shortened).
  • the conveyance unit is controlled so as to convey the inspection object at a constant speed, and a first imaging unit provided above or below the placement unit, and an optical axis of the first imaging unit A first image pickup means and a second image pickup means provided on the opposite side of the mounting portion so as to coincide with the optical axis; and a first coaxial for irradiating the inspection object with parallel light from a normal direction.
  • the imaging means has light irradiated from the second coaxial illumination and specularly reflected by the inspection object, and the first coaxial Emitted from a light, the light transmitted through the object to be inspected may enter.
  • the first form in which the first coaxial illumination is irradiated with the first intensity the second form in which the second coaxial illumination is applied with the first intensity, and the first coaxial illumination with the second intensity.
  • the first coaxial illumination or the second coaxial illumination is irradiated with the three irradiation patterns of the third form to be irradiated, and an image is acquired by the first imaging unit in accordance with the irradiation of the first form.
  • the first imaging unit and the second imaging unit acquire an image in accordance with the irradiation of the second form, and acquire an image by the second imaging unit in accordance with the irradiation of the third form.
  • the second imaging means provided on the opposite side across the mounting portion and the one-dimensional imaging means so that the optical axis coincides with the optical axis of the one-dimensional imaging means, and the inspection object 1st coaxial illumination which irradiates parallel light from a normal line direction,
  • the 1st coaxial illumination which is the coaxial illumination of the said one-dimensional imaging means, and the said 1st coaxial illumination and provided in the other side on both sides of the said mounting part
  • a second coaxial illumination that is a coaxial illumination of the second imaging unit, and the light irradiation unit is provided between the one-dimensional imaging unit and the transport unit.
  • the one-dimensional imaging means is irradiated with the light irradiated from the light irradiator or the first coaxial illumination and regularly reflected by the inspection object, and the second imaging means is supplied with the second coaxial illumination.
  • Irradiated and specularly reflected by the object to be inspected, and irradiated from the first coaxial illumination, ⁇ may enter the light transmitted through the.
  • the transport unit is controlled so as to transport the inspection object at a constant speed, and the first coaxial illumination is irradiated with the first intensity at the first intensity, and the second coaxial illumination is the first. Irradiating the first coaxial illumination or the second coaxial illumination with three irradiation patterns of the second form irradiating with the intensity of the second, and the third form irradiating the first coaxial illumination with the second intensity, and
  • the image is acquired by the one-dimensional imaging unit in accordance with the irradiation of the first form, the image is acquired by the second imaging unit in accordance with the irradiation of the second form, and is adjusted in accordance with the irradiation of the third form.
  • the light irradiation unit may include a light diffusing plate that is provided adjacent to the light emitting unit and diffuses light emitted from the light emitting unit.
  • the light irradiated from the several light emission part can be made into an elongate surface light source with a light diffusing plate, and the malfunction that the dotted
  • a focal length adjustment optical element for adjusting a focal length of the one-dimensional imaging means and a reflecting mirror provided adjacent to the mounting portion, the focal length adjustment optical element and the reflection are provided.
  • the mirror is provided on the center plane, and in a plan view, a placement area that is an area on the placement portion on which the inspection object is placed is positioned below the one-dimensional imaging unit in the vertical direction.
  • the reflecting mirror is provided at a position outside the mounting area and adjacent to the mounting area in a direction substantially orthogonal to the transport direction, and the reflecting surface of the reflecting mirror is substantially flat.
  • the reflection surface extends substantially along the transport direction so that a line intersecting the center plane is inclined with respect to a horizontal plane
  • the optical element for adjusting the focal length includes the one-dimensional imaging unit. Even if it is arranged to overlap the line connecting the reflector There. Thereby, even if it is a cover glass which has a partial cylindrical shape or elliptical cylindrical shape on the side surface, it is possible to inspect for defects on the side surface in one inspection. That is, the image of the side surface of the inspection object is reflected by the reflecting mirror and guided to the one-dimensional imaging means, and the focal length of the one-dimensional imaging means is extended by the optical element for adjusting the focal length. You can focus on the bottom side.
  • the optical element for adjusting the focal length is a glass plate, and may be provided so that both end faces substantially orthogonal to the plate thickness direction are horizontal. Accordingly, light is refracted in the process of entering the focal length adjusting optical element and in the process of emitting the light from the focal length adjusting optical element, and the focal position of the one-dimensional imaging unit can be extended.
  • the moving unit that moves the one-dimensional imaging unit in the vertical direction the height acquiring unit that acquires the height of the inspection object, and the moving unit based on the information acquired by the height acquiring unit
  • a movement control unit that controls and moves the one-dimensional imaging unit in a vertical direction in accordance with a height change of the inspection object passing under the one-dimensional imaging unit.
  • the height acquisition unit includes a surface light source that emits light in a direction substantially orthogonal to the transport direction, a side surface imaging unit that receives light that has been irradiated from the surface light source and passed through the inspection object, You may have.
  • the height of the object to be inspected can be accurately obtained by capturing an image such as a shadow image in which the light is blocked by the object to be inspected and the other part being bright.
  • the light irradiation unit includes a light emitting block in which the light emitting units are arranged in a row in the second region and the third region, a second cylindrical lens through which light emitted from the light emitting unit passes,
  • the extending direction of the light emitting block is inclined with respect to the horizontal direction, and in the second region and the third region, the light emitting block extends.
  • the extending direction of the second cylindrical lens may be inclined with respect to the installation direction.
  • the focus of the light irradiated from the 2nd field and the 3rd field can be matched with a to-be-inspected object.
  • the second region and the third region can supplement the first region, and the number of light emitting units included in the band-like light emitting unit in the first region can be reduced.
  • the light irradiation unit may include a heat radiating member formed of a material having high thermal conductivity, and the light emitting unit may be provided on the heat radiating member. Thereby, the heat generated from the light emitting unit can be efficiently radiated.
  • the heat dissipation member includes a blower that sends air to the heat dissipation member, and the heat dissipation member includes a plurality of plates on which the light emitting unit is provided, and the plate extends in a direction substantially orthogonal to the transport direction.
  • the said ventilation part may send the wind of the direction along the extending direction of the said plate.
  • the second imaging unit is provided below the placement unit, a circular polarizing filter is provided above the second imaging unit, and the circular polarizing filter is substantially orthogonal to the thickness direction.
  • the plane in the direction to be inclined may be provided so as to be slightly inclined with respect to the direction substantially orthogonal to the optical axis of the second imaging means.
  • the defect can be inspected with one apparatus and one inspection regardless of the position of the end face of the non-inspection object.
  • FIG. 3 is a diagram showing details of the three-dimensional illumination unit 30.
  • FIG. It is a schematic diagram which shows the detail of the strip
  • 3 is a schematic plan view of a three-dimensional illumination unit 30.
  • FIG. 4 is a block diagram for explaining electrical connection between an output unit 73 and each component of the optical inspection apparatus 1.
  • FIG. It is a figure explaining the signal output to the 1st camera 11, the 2nd camera 12, and the coaxial illumination part 20 from the output part 73.
  • FIG. 10 is a timing chart in the process shown in FIG. 9. It is a figure explaining the signal output to the 3rd camera 13 and the three-dimensional illumination part 30 from the output part 73.
  • FIG. It is a figure which shows a response
  • FIG. 12 is a timing chart in the processing shown in FIG. 11. It is an example of the transmission image of the cover glass G. It is an example of the regular reflection image of the cover glass G. It is an example of the image (partial enlarged view) which the defect in the P inner surface of the front-end
  • FIG. 1 It is a figure which shows typically the light emission block 30b-1 concerning a modification
  • (A) is a side view
  • (B) is the figure which looked at the state shown to (A) from the downward direction in the figure.
  • It is a front view which shows the outline of the optical inspection apparatus 2 which concerns on 2nd Embodiment.
  • FIG. It is a front view which shows the outline of the optical inspection apparatus 3 which concerns on 3rd Embodiment.
  • FIG. It is a figure which shows schematic structure in the state which cut
  • FIG. 1 It is a figure which shows the relationship between the position of the cover glass G1, and the image imaged with the 3rd camera 13, (A) is an enlarged view of the side part of the cover glass G1, (B) is imaged with the 3rd camera 13. A part of the image to be displayed is shown. It is a figure which shows a mode that the height of cover glass G1 is measured, and is the figure seen from the direction substantially orthogonal to the conveyance direction F. FIG. It is a figure which shows a mode that the height of cover glass G1 is measured, and is the figure seen along the conveyance direction F.
  • FIG. It is a perspective view which shows the outline of the three-dimensional illumination part 30A with which the optical inspection apparatus which concerns on 3rd Embodiment is provided.
  • FIG. 4 is a schematic diagram showing details of a band-shaped light emitting unit 31a-1.
  • FIG. 6 is a schematic diagram showing details of a band-shaped light emitting unit 32a-1. It is a figure explaining the path
  • the present invention is an optical inspection apparatus for inspecting a cover glass G of a portable terminal or the like that is an object to be inspected. Based on the image captured by the optical inspection device, it is possible to inspect defects such as scratches and uneven polishing on the end surface, front surface, and back surface of the cover glass G, and defects such as uneven printing and chipping on the portion printed on the cover glass G. It is.
  • the optical inspection apparatus inspects the cover glass G of the mobile terminal or the like is illustrated, but the inspection object inspected by the optical inspection apparatus is not limited to the cover glass.
  • the cover glass G is polished so that the entire circumference is a curved surface. Further, the back surface of the cover glass G is partially printed.
  • the circular arc-shaped polished surface of the peripheral surface is referred to as a polished surface (hereinafter referred to as P surface).
  • the printed portion of the cover glass G is a monochromatic print in which a monochromatic organic paint is applied, or a transparent pigment containing a pearl pigment in which a monochromatic pigment as a base color is applied and translucent particles are covered with transparent titanium dioxide or the like. Pearl coating is applied in which layers are applied in layers.
  • FIG. 1 is a front view showing an outline of an optical inspection apparatus 1 according to the first embodiment.
  • the optical inspection apparatus 1 mainly includes an imaging unit 10, a coaxial illumination unit 20, a three-dimensional illumination unit 30, a placement unit 40, and a transport unit 50 (see FIG. 8).
  • the mounting unit 40 includes a plurality of rollers 40a, and a cover glass G is mounted on the upper side.
  • the conveyance part 50 moves the cover glass G provided in the mounting part 40 to the conveyance direction F (here, x direction), for example, has an actuator (not shown) etc. which rotate the roller 40a. Since the mounting part 40 and the conveyance part 50 are already well-known, description is abbreviate
  • the imaging unit 10 mainly includes a first camera 11, a second camera 12, a third camera 13 (in the present embodiment, the first imaging unit, the second imaging unit, and the primary, respectively, of the present invention).
  • Original imaging means The first camera 11, the second camera 12, and the third camera 13 mainly include imaging lenses 11a, 12a, and 13a, and line sensors 11b, 12b, and 13b such as line CCD and CMOS.
  • the line sensors 11b, 12b, and 13b are arranged so that the longitudinal direction is substantially orthogonal to the transport direction F of the cover glass G (that is, along the y direction). Since the imaging unit 10 is already known, a description thereof will be omitted.
  • the first camera 11 is provided on the upper side (+ z side) of the placement unit 40, and images the cover glass G from substantially vertically upward (+ z direction).
  • the second camera 12 is provided on the opposite side (the lower side ( ⁇ z side) of the mounting unit 40) across the first camera 11 and the mounting unit 40, and the cover glass G faces substantially vertically downward ( ⁇ z direction). Take an image from The first camera 11 and the second camera 12 are provided so that the optical axes oax coincide.
  • the third camera 13 is provided on the upper side (+ z side) of the placement unit 40, and images the cover glass G from substantially vertically upward.
  • the third camera 13 is arranged so that the position in the horizontal direction (position in a plane parallel to the xy plane) is different from that of the first camera 11 and the second camera 12.
  • the coaxial illumination unit 20 includes an upper coaxial illumination 21 that is the coaxial illumination of the first camera 11 and a lower coaxial illumination 22 that is the coaxial illumination of the second camera 12.
  • the upper coaxial illumination 21 and the lower coaxial illumination 22 are so-called Koehler illuminations, and irradiate the cover glass G with parallel light from the normal direction (z direction).
  • the upper coaxial illumination 21 and the lower coaxial illumination 22 are opposite to each other with the mounting portion 40 therebetween so that the optical axes oax coincide (the upper coaxial illumination 21 is the + z side of the mounting portion 40, and the lower coaxial illumination 22 is It is provided on the ⁇ z side of the mounting portion 40.
  • the configuration of the upper coaxial illumination 21 and the lower coaxial illumination 22 will be described.
  • the upper coaxial illumination 21 and the lower coaxial illumination 22 are the light sources 21a and 22a, the glass integrators 21b and 22b that uniformize the illuminance distribution, the condenser lenses 21c and 22c, and the condenser lenses 21c and 22c, respectively.
  • Apertures 21d and 22d provided at positions substantially coincident with the focal point, collimator lenses 21e and 22e that convert light into parallel light, mirrors 21f and 22f that bend the optical path, and parallel linear grooves, and linearly align the light. It has Fresnel lenses 21g and 22g that condense on top, and half mirrors 21h and 22h that bend the optical path.
  • the light sources 21a and 22a have a light emitting member surface-mounted on a metal plate such as aluminum.
  • a heat radiating plate heat sink
  • the light emitting member is a white LED (for example, a color temperature of 5700 K), and its irradiation angle is about 120 degrees.
  • the light sources 21a and 22a and the integrators 21b and 22b are provided adjacent to each other. Since light is emitted from the LED in a relatively wide area, some light leaks without being incident on the integrators 21b and 22b, but most of the light is incident on the integrators 21b and 22b and enters the cover glass G. Irradiated.
  • the half mirror 21 h is provided on the optical axis of the first camera 11. Therefore, the light reflected by the half mirror 21 h is irradiated perpendicularly to the cover glass G, and the light regularly reflected by the cover glass G enters the first camera 11. In addition, the light reflected by the half mirror 21 h passes through the cover glass G and enters the second camera 12.
  • the half mirror 22h is provided on the optical axis of the second camera 12. Therefore, the light reflected by the half mirror 22h is irradiated perpendicularly to the cover glass G, and the light regularly reflected by the cover glass G enters the second camera 12.
  • the three-dimensional illumination unit 30 irradiates light to the cover glass G from a plurality of directions.
  • FIG. 2 is a diagram illustrating details of the three-dimensional illumination unit 30.
  • the third camera 13 (the imaging lens 13 a and the line sensor 13 b) is indicated by a dotted line, and the visual field position 13 c of the third camera 13 and the light path to the third camera 13 are indicated by a two-dot chain line.
  • the three-dimensional illumination unit 30 includes a first region 31 having a substantially semi-cylindrical surface, and a second region 32 and a third region 33 having a substantially hemispherical surface or a substantially semi-elliptical spherical surface.
  • the second region 32 and the third region 33 have the same shape and are disposed at both ends of the first region 31.
  • the light emitting unit 30a is provided on a substantially semi-cylindrical surface.
  • the light emitting unit 30a is similar to the light sources 21a and 22a, and includes a white LED and a heat dissipation member.
  • the central axis ax of the first region 31 is located on the central plane S ⁇ b> 1 that is a substantially vertical plane including the third camera 13.
  • the light emitting unit 30a is provided on a substantially hemispherical surface or a substantially semielliptical spherical surface.
  • the center points of the second region 32 and the third region 33 are located on the center plane S1.
  • the second region 32 and the third region 33 are substantially hemispherical surfaces, but the shape of the second region 32 and the third region 33 is not limited to this.
  • the light emitting unit is disposed between the third camera 13 and the placement unit 40, that is, in a region other than the vicinity of the center plane S ⁇ b> 1 along a direction substantially orthogonal to the transport direction F (that is, the y direction).
  • 30a are arranged.
  • the light emitting sections 30a arranged along the y direction are assumed to be strip-shaped light emitting sections 31a, 31b, 31c, 32d, 31e, 31f, 31g (detailed later).
  • the ten strip-shaped light emitting sections 31a to 31j are provided, but the number of strip-shaped light emitting sections is not limited to this.
  • FIG. 3 is a schematic diagram showing details of the strip-shaped light emitting portion 31a. Since the belt-like light emitting portions 31a to 31j have the same configuration, only the belt-like light emitting portion 31a will be described, and the description of the belt-like light emitting portions 31b to 31j is omitted.
  • the belt-like light emitting portion 31a has a total length of 3L, and has three light emitting blocks 30b in which the light emitting portions 30a are arranged in a row so that the length in the longitudinal direction is L.
  • the light emitting unit 30a has a lateral width w of about 3.4 mm and a length h of about 3.4 mm, and the distance between adjacent light emitting units 30a is about 0.2 mm.
  • the length L of the light emitting block 30b is approximately 50 mm, about 13 light emitting units 30a are arranged in one light emitting block 30b. Thereby, the strip-shaped (line-shaped) light is emitted from the strip-shaped light emitting portion 31a.
  • a white LED is used as the light emitting unit 30a, but the light emitting unit 30a is not limited to the white LED.
  • the light emitting unit 30a is, for example, one of a combination of a blue or ultraviolet LED and a yellow phosphor, a combination of red, green and blue three-color chips, or a combination of a blue LED and red and green fluorescent agents. May be used.
  • FIG. 4 is a diagram schematically showing a cross section of the optical inspection apparatus 1 when the optical inspection apparatus 1 is cut along a plane parallel to the xz plane so as to include the first region 31.
  • the path of light emitted from the band-like light emitting portions 31a to 31j is indicated by a two-dot chain line.
  • the central axis ax of the first region 31 is located in the vicinity of the upper surface of the cover glass G, and the belt-like light emitting portions 31a to 31j are provided on the circumference of the radius R centered on the central axis ax (see the dotted line in FIG. 4). It is done.
  • the position of the upper surface of the cover glass G substantially coincides with the line of intersection between the center plane S1 and the upper surface of the mounting portion 40 (not shown in FIG. 4).
  • the radius R is substantially the same as the length 3L of the band-like light emitting portions 31a to 31j.
  • the optical axis (see the alternate long and short dash line in FIG. 4) is an intersection line between the center plane S1 and the mounting portion 40 (intersection line between the center plane S1 and the cover glass G), that is, the center axis ax. Provided to intersect.
  • the band-like light emitting portions 31a to 31e are located on the + x side from the central plane S1, and the band-like light emitting portions 31f to 31j are located on the ⁇ x side from the central plane S1.
  • the belt-like light emitting portions 31a and 31f are provided at positions closest to the center plane S1.
  • An angle ⁇ 1 formed by the optical axis of the band-shaped light emitting portions 31a and 31f and the center plane S1 is approximately 8 degrees.
  • the strip-shaped light emitting portions 31b and 31g are provided outside the strip-shaped light emitting portions 31a and 31f and adjacent to the strip-shaped light emitting portions 31a and 31f.
  • An angle ⁇ 2 formed by the optical axis of the band-shaped light emitting portions 31b and 31g and the center plane S1 is approximately 17 degrees.
  • the strip-shaped light emitting portions 31c and 31h are provided outside the strip-shaped light emitting portions 31b and 31g and adjacent to the strip-shaped light emitting portions 31b and 31g.
  • An angle ⁇ 3 formed by the optical axis of the band-shaped light emitting portions 31c and 31h and the center plane S1 is approximately 26 degrees.
  • the strip-shaped light emitting portions 31d and 31i are provided outside the strip-shaped light emitting portions 31c and 31h and adjacent to the strip-shaped light emitting portions 31c and 31h.
  • An angle ⁇ 4 formed by the optical axis of the band-shaped light emitting portions 31d and 31i and the center plane S1 is approximately 35 degrees.
  • the strip light emitting portions 31e and 31j are provided outside the strip light emitting portions 31d and 31i and adjacent to the strip light emitting portions 31d and 31i.
  • An angle ⁇ 5 formed by the optical axis of the belt-like light emitting portions 31e and 31j and the center plane S1 is approximately 44 degrees.
  • the belt-like light emitting portions 31a to 31j have a cylindrical lens 30c provided on the optical axis.
  • the cylindrical lens 30c is formed by, for example, cutting an acrylic bar along the central axis and polishing the cut surface.
  • the cylindrical lens 30c is provided between the light emitting unit 30a and the central axis ax, and condenses light emitted from the light emitting unit 30a in the vicinity of the central axis ax.
  • FIG. 5 is a schematic plan view of the three-dimensional illumination unit 30.
  • the visual field position 13c of the third camera 13 is indicated by a dotted line.
  • the light emitting block 30 d (detailed later) is indicated by a broken line.
  • the second region 32 and the third region 33 have strip-like light emitting portions 32a to 32i and 33a to 33i in which the light emitting portions 30a are arranged in a line.
  • each of the nine strip-like light emitting portions 32a to 32i and 33a to 33i is provided, but the number of the strip-like light emitting portions is not limited to this.
  • the strip-like light emitting portions 32a and 33a are provided on the center plane S1.
  • the strip-shaped light emitting portions 32b to 32e and 33b to 33e are provided on the extended lines of the strip-shaped light emitting portions 31a to 31d, respectively.
  • the strip-shaped light emitting portions 32f to 32i and 33f to 33i are provided on the extended lines of the strip-shaped light emitting portions 31f to 31i, respectively.
  • FIG. 6 is a schematic diagram showing details of the band-like light emitting part 32a. Since the belt-like light emitting portions 32a to 32i and 33a to 33i have substantially the same configuration, only the belt-like light emitting portion 32a will be described, and description of the belt-like light emitting portions 32b to 32i and 33a to 33i will be omitted.
  • the strip-shaped light emitting unit 32a includes a plurality of light emitting blocks 30d in which the light emitting units 30a are arranged in a line.
  • the length l of the light emitting block 30d is approximately 18.5 mm and the distance between the adjacent light emitting units 30a is approximately 0.2 mm, five light emitting units 30a are included in one light emitting block 30d.
  • the light emitting blocks 30d are arranged adjacent to each other so that the light emitting portion 30a is positioned on a substantially cylindrical surface having a radius R (see the dotted line in FIG. 6).
  • the number of light emitting blocks 30d in the belt-like light emitting portions 32a to 32c, 32f, 32g, 33a to 33c, 33f, and 33g is five, and the number of light emitting blocks 30d in the belt-like light emitting portions 32d, 32h, 33d, and 33h is four. Yes, the number of light emitting blocks 30d in the band-like light emitting units 32e, 32i, 33e, 33i is two, but the number of light emitting blocks 30d in the band-like light emitting units 32a to 32i, 33a to 33i is not limited to this.
  • each light-emitting block 30d in the strip-shaped light-emitting portions 32a and 33a faces the center points O2 and O3 of the second region 32 and the third region 33.
  • the optical axis of each light emitting block 30d in the band-like light emitting portions 32b to 32i and 33a to 33i is directed to the center point O1 of the first region 31.
  • the direction of the optical axis of each light-emitting block 30d in the strip-shaped light-emitting portions 32a to 32i and 33a to 33i is not limited to the form shown in FIG.
  • FIG. 7 is a block diagram showing an electrical configuration of the optical inspection apparatus 1.
  • the optical inspection apparatus 1 includes an integrated circuit 71, an input unit 72, an output unit 73, a power supply unit 74, and a communication interface (I / F) 75.
  • the integrated circuit 71 is, for example, a field-programmable gate array (FPGA), and operates based on a program to control each unit.
  • the integrated circuit 71 has a function of a control unit (including the control unit and the second control unit of the present invention) that controls each unit of the optical inspection apparatus 1.
  • the integrated circuit 71 acquires signals from the input unit 72, the output unit 73, and the like, and generates a signal to be output from the output unit 73 based on the acquired signals.
  • the FPGA that is the integrated circuit 71 stores a program for realizing each function.
  • the integrated circuit 71 is not limited to the FPGA, and the execution method of the program is not limited to this.
  • the input unit 72 receives signals from various sensors such as the position detection sensors 81 and 82.
  • the input unit 72 includes switches for setting the output mode of each channel of the output unit 73, setting the imaging frequency of the imaging unit 10, and the like.
  • the output unit 73 has a plurality of channels, and outputs from different channels to the imaging unit 10, the coaxial illumination unit 20, the stereoscopic illumination unit 30, and the like.
  • the output unit 73 outputs a drive motor pulse to the transport unit 50 and outputs a horizontal synchronization signal, a vertical synchronization signal, and the like to the imaging unit 10.
  • the output unit 73 is an LED that indicates an error display such as a communication error or a timeout, the cover glass G is running, the capture unit 10 is waiting for capture, the coaxial illumination unit 20 or the three-dimensional illumination unit 30 is illuminating, or the like. And the like.
  • FIG. 8 is a block diagram illustrating the electrical connection between the output unit 73 and each component of the optical inspection apparatus 1.
  • the output unit 73 includes an imaging unit 10 (first camera 11, second camera 12, and third camera 13), a coaxial illumination unit 20 (upper coaxial illumination 21 and lower coaxial illumination 22), and a three-dimensional illumination unit 30 (band-shaped). Signals are output to the light emitting units 31a to 31j, 32a to 32i, 33a to 33i) and the transport unit 50.
  • the signal output from the output unit 73 is generated by the integrated circuit 71 based on a horizontal synchronization signal or the like input from the personal computer (PC) 100 via the communication I / F 75.
  • the power supply unit 74 receives, for example, a voltage of 100 VAC and includes a switching power supply that converts the voltage into a necessary voltage.
  • the power supply unit 74 supplies power to the coaxial illumination unit 20 and the three-dimensional illumination unit 30.
  • the communication I / F 75 receives data from an external device and transmits the data to the integrated circuit 71, and transmits data generated by the integrated circuit 71 to other devices.
  • the communication I / F 75 has a connector for programming and debugging the integrated circuit 71.
  • the communication I / F 75 acquires a horizontal synchronization signal, a vertical synchronization signal, a drive motor start signal, and the like from the PC 100 and outputs them to the integrated circuit 71.
  • the communication I / F 75 outputs image data captured by the imaging unit 10 to the PC 100 or the like.
  • Position detection sensors 81 and 82 detect the position of the cover glass G.
  • the position detection sensor 81 detects that the cover glass G has been transported under the first camera 11 and the second camera 12 and has passed under the first camera 11 and the second camera 12.
  • the position detection sensor 82 detects that the cover glass G has been transported under the third camera 13 and has passed under the third camera 13.
  • the PC 100 includes a central processing unit (CPU) 101, a random access memory (RAM) 102, a read only memory (ROM) 103, an input / output interface (I / F) 104, a communication interface (I / F) 105, and the like.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • I / F input / output interface
  • I / F communication interface
  • I / F communication interface
  • the CPU 101 operates based on programs stored in the RAM 102 and the ROM 103, and controls each unit. A signal output from the CPU 101 is output to the optical inspection apparatus 1 via the communication I / F 105.
  • the RAM 102 is a volatile memory.
  • the RAM 102 stores programs executed by the CPU 101, data used by the CPU 101, and the like.
  • the ROM 103 is a non-volatile memory that stores various control programs and the like.
  • the CPU 101 operates based on programs stored in the RAM 102 and the ROM 103, and controls each unit.
  • the ROM 103 stores a boot program executed by the CPU 101 when the PC 100 is started up, a program depending on the hardware of the PC 100, and the like.
  • the CPU 101 controls the input device 111 such as a keyboard and a mouse and the output device 112 such as a display device via the input / output I / F 104.
  • the CPU 101 acquires data from the optical inspection apparatus 1 and other devices via a network or the like via the communication I / F 105 and outputs the generated data to the optical inspection apparatus 1.
  • the CPU 101 Based on the input from the input device 111, the CPU 101 sets the output of the channel of the output unit 73, the order of output of the lighting signal in the integrated circuit 71, the loop setting of the processing, the cover glass G from the edge detection to the start of imaging. Various settings such as setting of the G travel distance (idle travel distance) are performed, and these setting data are generated.
  • the communication I / F 105 outputs the setting data generated by the CPU 101 to the optical inspection device 1.
  • the CPU 101 acquires an image captured by the imaging unit 10 from the optical inspection device 1 and generates an image for inspection. Details of the image generation process will be described later.
  • the media I / F 106 reads the program or data stored in the storage medium 113 and stores it in the RAM 102.
  • the storage medium 113 is, for example, an IC card, an SD card, a DVD, or the like.
  • achieves each function is read from the storage medium 113, for example, is installed in the optical inspection apparatus 1 via RAM102, and is performed by CPU101.
  • the configurations of the optical inspection apparatus 1 and the PC 100 illustrated in FIG. 7 are the main configurations for describing the features of the present embodiment, and do not exclude, for example, configurations included in a general information processing apparatus.
  • the constituent elements of the optical inspection apparatus 1 may be classified into more constituent elements according to the processing content, or one constituent element may execute processing of a plurality of constituent elements.
  • the optical inspection apparatus 1 and the PC 100 are separate apparatuses, but the components of the PC 100 may be included in the optical inspection apparatus 1.
  • the integrated circuit 71 generates a drive motor pulse for driving the roller 40 a of the placement unit 40, and the output unit 73 outputs this to the transport unit 50. Thereby, the cover glass G moves on the mounting part 40 along the conveyance direction F at a constant speed.
  • a detection signal is input from the position detection sensor 81 to the integrated circuit 71 via the input unit 72. Is done.
  • the integrated circuit 71 starts processing for capturing a transmission image and a regular reflection image with the first camera 11 and the second camera 12.
  • processing for capturing a transmission image and a regular reflection image will be described with reference to FIGS.
  • FIG. 9 is a diagram illustrating signals output from the output unit 73 to the first camera 11, the second camera 12, and the coaxial illumination unit 20.
  • Channels (hereinafter referred to as “ch”) are a part of channels of the output unit 73, ch 1 to 3 are outputs to the upper coaxial illumination 21, and ch 4 to 6 are outputs to the lower coaxial illumination 22.
  • ROOP is a signal indicating repetitive processing and is output to the integrated circuit 71. Note that the numerical values described in ch1 to ch6 in FIG. 9 are times for irradiating the upper coaxial illumination 21 and the lower coaxial illumination 22, and the unit is ⁇ sec (microseconds).
  • FIG. 10 is a timing chart in the process shown in FIG.
  • the imaging signal is a signal for driving the first camera 11 and the second camera 12, and is generated in the integrated circuit 71 based on a horizontal synchronization signal input at a constant period.
  • the frequency of the imaging signal is 3 kHz
  • the interval T of the imaging signal is approximately 330 ⁇ sec.
  • the imaging signal is a signal in which the imaging period T1 is High and the blanking period T2 is Low.
  • the coaxial illumination signal is generated in synchronization with the imaging signal.
  • the imaging period T1 is 300 ⁇ sec, but the imaging period T1 is not limited to this.
  • the integrated circuit 71 generates a signal for irradiating the upper coaxial illumination 21 at 5 ⁇ sec, and the output unit 73 outputs this signal to the upper coaxial illumination 21.
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs it to the second camera 12.
  • the output unit 73 outputs it to the second camera 12.
  • light transmitted through the cover glass G enters the second camera 12, and a transmitted image is captured by the second camera 12.
  • it is possible to detect a defect in an opaque portion for example, a scratch on a printed portion, a lack of a printed edge, or the like.
  • the signal for irradiating the upper coaxial illumination 21 becomes High at the same time as the imaging signal becomes High, and becomes Low after 5 ⁇ sec.
  • the time of 5 ⁇ sec for irradiating the upper coaxial illumination 21 is much shorter than the imaging period of 300 ⁇ sec. In glass, about 4% of light is reflected and the remaining 96% of light is transmitted. Therefore, a transmission image with appropriate brightness can be taken by shortening the time for irradiating the upper coaxial illumination 21.
  • the upper coaxial illumination 21 was irradiated at 5 ⁇ sec and the transmission image was captured by the second camera 12, but the lower coaxial illumination 22 was irradiated at 5 ⁇ sec and the transmission image was captured by the first camera 11. May be.
  • the integrated circuit 71 generates a signal for irradiating the upper coaxial illumination 21 at 100 ⁇ sec, and the output unit 73 outputs this signal to the upper coaxial illumination 21. At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the first camera 11. As a result, the light regularly reflected by the surface of the cover glass G enters the first camera 11, and a regular reflection image is captured by the first camera 11.
  • the upper coaxial illumination 21 irradiates light to the cover glass G from the vertical direction. Therefore, a portion where there is no scratch or foreign matter on the surface of the cover glass G is reflected brightly in the captured image because the light is regularly reflected and enters the first camera 11. On the other hand, the portion where the surface of the cover glass G has scratches, foreign matters, etc. is reflected darkly in the captured image because the light is irregularly reflected and does not enter the first camera 11. In this way, scratches, foreign matters, etc. on the surface of the cover glass G can be detected. It should be noted that the detection of surface scratches, foreign matters, and the like with specularly reflected light is effective only for high reflectance such as mirror surfaces.
  • the integrated circuit 71 generates a signal for irradiating the lower coaxial illumination 22 at 100 ⁇ sec, and the output unit 73 outputs this signal to the lower coaxial illumination 22. At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs it to the second camera 12. Thereby, the light regularly reflected by the back surface of the cover glass G enters the second camera 12, and a reflected image is captured by the second camera 12. In this way, scratches, foreign matters, etc. on the back surface of the cover glass G can be detected.
  • the integrated circuit 71 generates a signal indicating repetition processing at the same time as performing output in order 3.
  • the output unit 73 outputs a signal indicating repetition processing to the integrated circuit 71 simultaneously with outputting a signal to the lower coaxial illumination 22.
  • the integrated circuit 71 receives the signal indicating the repetition process, returns the process to the beginning, and repeats the process of sequentially outputting the signals shown in the order 1 to 3.
  • the signal for irradiating the upper coaxial illumination 21 and the lower coaxial illumination 22 becomes High at the same time as the imaging signal becomes High, and becomes Low after 100 ⁇ sec has elapsed.
  • the time of 100 ⁇ sec for irradiating the upper coaxial illumination 21 in order 2 and the lower coaxial illumination 22 in order 3 is about 1/3 of the imaging period T1 (300 ⁇ sec), which is significantly larger than the irradiation time in order 1 (5 ⁇ sec). Long.
  • T1 300 ⁇ sec
  • the integrated circuit 71 outputs a drive motor pulse to the transport unit 50 via the output unit 73 simultaneously with the signal output of the irradiation patterns in the order 1 to 3 described above.
  • the cover glass G is transported at a constant speed on the mounting portion 40 and the positions of the cover glass G and the first camera 11 and the second camera 12 are relatively changed, while the first camera 11 or the first camera Imaging is performed by the two cameras 12.
  • the integrated circuit 71 continuously outputs drive motor pulses to the transport unit 50 via the output unit 73.
  • a detection signal is input from the position detection sensor 82 to the integrated circuit 71 via the input unit 72.
  • the integrated circuit 71 starts a process of capturing the reflected image with the third camera 13.
  • processing for capturing a reflection image will be described with reference to FIGS.
  • FIG. 11 is a diagram for describing signals output from the output unit 73 to the third camera 13 and the stereoscopic illumination unit 30.
  • the channels 11 to 46 are part of the channels that the output unit 73 has.
  • the numerical values described in ch 11 to 46 are the time for irradiating the three-dimensional illumination unit 30, and the unit is ⁇ sec. In FIG. 11, illustration of some of the channels is omitted.
  • FIG. 12 is a diagram illustrating the correspondence between the signal output illustrated in FIG. 11 and the defects included in the image captured by the third camera 13.
  • FIG. 13 is a diagram showing the state of light on the end face of the cover glass G, and the light path is indicated by a two-dot chain line.
  • FIG. 14 is a timing chart in the processing shown in FIG.
  • ch11 to ch40 are outputs to the band-like light emitting sections 31a to 31j.
  • one channel is assigned to each light emitting block 30b.
  • ch11 to 13 are outputs to the strip-shaped light emitting section 31a (three light-emitting blocks 30d constituting the same, the same applies hereinafter)
  • ch14 to 16 are outputs to the strip-shaped light emitting section 31b
  • ch17 to 19 are strip-shaped.
  • Outputs to the light emitting unit 31c, ch20 to 22 are outputs to the strip light emitting unit 31d
  • ch23 to 25 are outputs to the strip light emitting unit 31e, and
  • ch26 to 28 are outputs to the strip light emitting unit 31f.
  • Ch29 to 31 are outputs to the strip light emitting portion 31g
  • ch32 to 34 are outputs to the strip light emitting portion 31h
  • ch35 to 37 are outputs to the strip light emitting portion 31i
  • ch38 to 40 are strip light emitting portions. This is an output to 31j.
  • ch41 is an output to the strip-shaped light emitting section 32a
  • ch42 is an output to the strip-shaped light emitting sections 32b to 32e
  • ch43 is an output to the strip-shaped light emitting sections 32f to 32i
  • ch44 is an output to the strip-shaped light emitting section 33a
  • ch45 is an output to the strip-shaped light emitting sections 33b to 33e
  • ch46 is an output to the strip-shaped light emitting sections 33f to 33i.
  • the integrated circuit 71 generates signals for irradiating the band-shaped light emitting portion 31f at 100 ⁇ sec, the band-shaped light emitting portion 31g at 120 ⁇ sec, the band-shaped light emitting portion 31h at 150 ⁇ sec, the band-shaped light emitting portion 31i at 180 ⁇ sec, and the band-shaped light emitting portion 31j at 210 ⁇ sec.
  • the output unit 73 outputs this signal to the band-like light emitting units 31f to 31j (see FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated with light that is irradiated from the ⁇ x direction and reflected from the inner surface (hereinafter referred to as “P inner surface”) of the P surface of the front end (+ x side end) of the cover glass G (see FIG. 13).
  • P inner surface the inner surface of the P surface of the front end (+ x side end) of the cover glass G
  • What is imaged by the third camera 13 in order 1 is an image in which defects (printing unevenness, polishing unevenness, scratches, etc.) on the P inner surface of the front end of the cover glass G shine (see FIG. 12).
  • the integrated circuit 71 When the printed part of the cover glass G is pearl-coated, the integrated circuit 71 generates a signal for irradiating the strip-shaped light emitting portion 31b at 300 ⁇ sec and the strip-shaped light emitting portion 31g at 300 ⁇ sec, and outputs the output unit 73. Outputs this signal to the strip-like light emitting portions 31b and 31g (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, light that is irradiated from the + x direction 17 ° and the ⁇ x direction 17 ° and reflected by the printing portion of the cover glass G enters the third camera 13.
  • the integrated circuit 71 When the printed portion of the cover glass G is printed other than pearl paint (single color printing or the like), the integrated circuit 71 outputs a signal for irradiating the strip-shaped light emitting portion 31a at 300 ⁇ sec and the strip-shaped light emitting portion 31f at 300 ⁇ sec.
  • the output unit 73 generates this signal and outputs the signal to the strip light emitting units 31a and 31f.
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • light that is irradiated from the + x direction 8 ° and the ⁇ x direction 8 ° and reflected by the printing part of the cover glass G enters the third camera 13.
  • the image captured by the third camera 13 in order 2 is that the defect (color unevenness, etc.) of the printing part of the cover glass G is different from the other printing part (for example, the defect of the printing part is different from the other printing part).
  • a dark or bright image (see FIG. 12).
  • the integrated circuit 71 generates a signal for irradiating the strip light emitting portion 31a at 100 ⁇ sec, the strip light emitting portion 31b at 120 ⁇ sec, the strip light emitting portion 31c at 150 ⁇ sec, the strip light emitting portion 31d at 180 ⁇ sec, and the strip light emitting portion 31e at 210 ⁇ sec.
  • the output unit 73 outputs this signal to the band-like light emitting units 31a to 31e (see FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated with light that is irradiated from the + x direction and reflected by the inner surface P of the rear end ( ⁇ x side end) of the cover glass G (see FIG. 13).
  • What is imaged by the third camera 13 in order 3 is an image in which defects on the P inner surface at the rear end of the cover glass G are lit (see FIG. 12).
  • the integrated circuit 71 generates a signal for irradiating the band-shaped light emitting unit 32a at 200 ⁇ sec, and the output unit 73 outputs this signal to the band-shaped light emitting unit 32a (see FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated with light irradiated from the ⁇ y direction and reflected from the P inner surface at the left end (+ y side end) of the cover glass G.
  • What is imaged by the third camera 13 in order 4 is an image in which a defect on the inner surface P at the left end of the cover glass G is lit (see FIG. 12).
  • the integrated circuit 71 generates a signal for irradiating the band-shaped light emitting units 33a, 33f to 33i, and 31f to 31j at 3 ⁇ sec, and the output unit 73 outputs this signal to the band-shaped light emitting units 33a, 33f to 33i, 31f to It outputs to 31j (refer FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated from the + y direction and between the + y direction and the ⁇ x direction, and is reflected on the front side of the P surface on the left end and the left rear end side of the cover glass G (hereinafter referred to as the P surface). Is incident (see FIG. 13).
  • the image captured by the third camera 13 in order 5 is an image in which defects on the P surface on the left end and the left rear end side of the cover glass G are reflected (see FIG. 12). In this image, most defects such as scratches and foreign matters on the P surface appear dark.
  • the integrated circuit 71 generates a signal for irradiating the strip-shaped light emitting sections 33b to 33e at 3 ⁇ sec, and the output section 73 outputs this signal to the strip-shaped light emitting sections 33b to 33e (see FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated with light that is irradiated from between the + y direction and the + x direction and reflected from the left end of the cover glass G on the P surface on the front end side.
  • the image captured by the third camera 13 in order 6 is an image in which defects on the P surface on the front end side from the left end of the cover glass G are reflected (see FIG. 12).
  • the integrated circuit 71 generates a signal for irradiating the band-shaped light emitting unit 33a at 200 ⁇ sec, and the output unit 73 outputs this signal to the band-shaped light emitting unit 33a (see FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 As a result, light that is irradiated from the + y direction and reflected by the P inner surface at the right end ( ⁇ y side end) of the cover glass G enters the third camera 13.
  • What is imaged by the third camera 13 in order 7 is an image in which a defect on the P inner surface at the right end of the cover glass G shines (see FIG. 12).
  • the integrated circuit 71 generates a signal for irradiating the strip light emitting sections 32f to 32i at 3 ⁇ sec, and the output section 73 outputs this signal to the strip light emitting sections 32f to 32i (see FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated with light which is irradiated from between the ⁇ y direction and the ⁇ x direction and reflected from the P surface on the rear end side from the right end of the cover glass G.
  • the image captured by the third camera 13 in order 8 is an image in which defects on the P surface on the rear end side from the right end of the cover glass G are reflected (see FIG. 12).
  • the integrated circuit 71 generates a signal for irradiating the strip light emitting units 32a to 32e and 31a to 31e at 3 ⁇ sec, and the output unit 73 outputs the signal to the strip light emitting units 32a to 32e and 31a to 31e. (See FIG. 11).
  • the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13.
  • the third camera 13 is irradiated with light that is irradiated from the ⁇ y direction and between the ⁇ y direction and the + x direction and reflected from the right end of the cover glass G on the P surface on the right end side.
  • What is imaged by the third camera 13 in order 9 is an image in which defects on the P surface on the right end and right tip side of the cover glass G are reflected (see FIG. 12).
  • the integrated circuit 71 generates a signal indicating repetition processing at the same time as performing output in order 9, and the output unit 73 outputs a signal indicating repetition processing to the integrated circuit 71.
  • the integrated circuit 71 receives the signal indicating the repetition process, returns the process to the beginning, and repeats the process of sequentially outputting the signals shown in order 1 to 9.
  • the strip-like light emitting portions 32a and 33a are much longer than when inspecting the P surface in the order 5, 6, 8, and 9. Irradiate. Therefore, in order 4 and 7, the third camera 13 captures a saturated image in which the P surface of the cover glass G shines white.
  • the order 1 to 9 shown in FIGS. 11 and 12 is an example, and the order of examination parts and examination contents can be arbitrarily determined. Further, the inspection of the inner surface P at the front end of the cover glass G shown in order 1 and the inspection of the P surface from the left end to the front end side of the cover glass G shown in order 6 are unnecessary at the center part and the rear end part of the cover glass G. In addition, the inspection of the P inner surface at the rear end of the cover glass G shown in order 3 and the inspection of the P surface from the right end to the rear end side of the cover glass G shown in order 8 are performed at the front end portion and the central portion of the cover glass G. It is unnecessary.
  • the integrated circuit 71 calculates the number of drive motor pulses from the information indicating the length of the cover glass G, obtains the position of the cover glass G based on the output drive motor pulse number, and in order 1 according to the position of the cover glass G. 3, 6, and 8 may be omitted.
  • FIG. 14 is a timing chart in the processing shown in FIG. For order 1, only the signal irradiated at 100 ⁇ sec is displayed.
  • the imaging signal is the same as that shown in FIG.
  • the signal for irradiating the three-dimensional illumination unit 30 becomes High at the same time as the imaging signal becomes High, and becomes Low after the irradiation time elapses.
  • the required amount of light is about 1: 100 when the light reflected by the P surface is incident on the third camera 13 and when the light reflected by the printing unit is incident on the third camera 13. Therefore, the irradiation time of the three-dimensional illumination unit 30 is made different between the case where the light reflected by the P surface is incident on the third camera 13 and the case where the light reflected by the printing unit is incident on the third camera 13.
  • the integrated circuit 71 outputs a drive motor pulse to the transport unit 50 via the output unit 73 simultaneously with the output of the signals in the order 1 to 9.
  • the third camera 13 captures an image while the cover glass G is transported at a constant speed on the placement unit 40 and the positions of the cover glass G and the third camera 13 are relatively changed.
  • the integrated circuit 71 outputs a drive motor pulse to the transport unit 50 by a predetermined number of pulses, and moves the cover glass G to the processing end position. Then, the integrated circuit 71 ends a series of processes.
  • images captured by the first camera 11, the second camera 12, and the third camera 13 are output to the PC 100 via the output unit 73.
  • the CPU 101 generates an inspection image from images captured by the first camera 11, the second camera 12, and the third camera 13.
  • the CPU 101 extracts images picked up with the same illumination pattern from the images picked up by the first camera 11, the second camera 12, and the third camera 13, and connects them to obtain a plane. Generate an image.
  • the image generation process will be described.
  • the CPU 101 generates a transmission image and a regular reflection image from images captured by the first camera 11 and the second camera 12. In the process of capturing a transmission image and a specular reflection image, irradiation of irradiation patterns in order 1 to 3 is repeated as shown in FIGS. Therefore, the CPU 101 extracts every third frame (the first frame, the fourth frame,%) From the image captured by the second camera 12 with the first frame as a reference, and connects these images. A two-dimensional image is generated. Thereby, a transmission image (planar image) of the cover glass G is generated. As shown in FIG. 15, the transmission image is an image in which an opaque printed portion appears dark, and a defective printing portion (dotted circle in FIG. 15) can be confirmed.
  • the CPU 101 extracts every third frame (second frame, fifth frame,%) From the second frame of the image captured by the first camera 11, and connects these images. A two-dimensional image is generated. Thereby, an upper regular reflection image, that is, a regular reflection image (planar image) on the surface of the cover glass G is generated. As shown in FIG. 16, the regular reflection image is an image in which a portion without a defect (a scratch is illustrated in FIG. 16) is bright and a scratch is dark. Even if the scratch overlaps with the printed portion, the reflectance on the glass surface is higher than that of the printed portion, so that the scratch appears darker than the other portions.
  • the CPU 101 extracts every third frame (third frame, sixth frame,%) From the third frame of the image captured by the second camera 12 and connects these images. A two-dimensional image is generated. Thereby, a lower regular reflection image, that is, a regular reflection image (planar image) on the back surface of the cover glass G is generated.
  • the CPU 101 generates a reflection image from the image captured by the third camera 13.
  • irradiation of irradiation patterns 1 to 9 is repeated as shown in FIGS. Therefore, the CPU 101 extracts every nine frames (the first frame, the tenth frame,%) Of the images captured by the third camera 13 with the first frame as a reference, and connects these images.
  • a two-dimensional image is generated. Thereby, as shown in FIG. 17, a planar image of the cover glass G in which the defect on the inner surface P at the tip of the cover glass G is lit is generated.
  • the CPU 101 extracts every nine frames (second frame, eleventh frame,%) From the second frame of the image captured by the third camera 13, and connects these images to form a two-dimensional image. Generate an image of Thereby, as shown in FIG. 18, the plane image of the cover glass G in which the defect of the printing part of the cover glass G appeared darker than other printing parts is produced
  • FIGS. 17 and 18 show an enlarged part of the planar image and display a black line around the defect.
  • the CPU 101 extracts every nine frames (third frame, twelfth frame,%) Of the images captured by the third camera 13 with reference to the third frame, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P inner surface of the rear end of the cover glass G shines is produced
  • the CPU 101 extracts every nine frames (fourth frame, thirteenth frame,%) From the fourth frame of the image captured by the third camera 13 and connects these images to form a two-dimensional image. Generate an image of Thereby, the plane image of the cover glass G in which the defect in the P inner surface of the left end of the cover glass G shined was produced
  • the CPU 101 extracts every nine frames (fifth frame, fourteenth frame,%) Out of the images captured by the third camera 13 with reference to the fifth frame, and connects these images to form a two-dimensional image. Generate an image of Thereby, the plane image of the cover glass G in which the defect in the P surface of the left end of the cover glass G and the rear end side was reflected is produced
  • the CPU 101 extracts every nine frames (sixth frame, fifteenth frame,%) Out of the images captured by the third camera 13 with reference to the sixth frame, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P surface of the front end side from the left end of the cover glass G was reflected is produced
  • the CPU 101 extracts every nine frames (7th frame, 16th frame,%) From the 7th frame of the image captured by the third camera 13, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P inner surface of the right end of the cover glass G was shining is produced
  • the CPU 101 extracts every 9 frames (8th frame, 17th frame,%) From the 8th frame of the image captured by the third camera 13, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P surface on the rear end side from the right end of the cover glass G is reflected is generated.
  • the CPU 101 extracts every nine frames (9th frame, 18th frame,%) From the 9th frame of the image captured by the third camera 13 and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P surface of the right end and front end side of the cover glass G was reflected is produced
  • a single optical inspection apparatus 1 can be used to inspect defects in a single inspection.
  • the light emitting portions 30a are arranged along the y direction in a region other than the vicinity of the center plane S1. Therefore, it is possible to irradiate the cover glass G with the band-shaped light and inspect the region in the vicinity of the central axis ax in the same manner regardless of the position in the y direction.
  • the plurality of strip-like light emitting portions 31a to 31j are provided, it is possible to irradiate light in the vicinity of the central axis ax from various angles. In order to capture the entire image of the defect on the P plane, it is important to irradiate light simultaneously from a light source whose angle between the optical axis and the center plane S1 is about 8 degrees to a light source that is about 44 degrees. Therefore, in order to capture the entire image of the defect on the P surface at the front end or the rear end, it is important to include a plurality of strip-like light emitting portions 31a to 31j. In the second region 32 and the third region 33, since the strip-like light emitting portions 32a and 33a are provided at positions on the center plane S1, it is possible to capture the entire image of the defect on the left and right P surfaces. .
  • the band-like light emitting portions 31b and 31g are arranged so that the angle ⁇ 2 formed by the optical axis and the center plane S1 is approximately 17 degrees, and when the light is reflected by pearl printing.
  • the third camera 13 By capturing the scattered light with the third camera 13, it is possible to capture an image in which the defect contrast is greater than the gloss of the pearl material.
  • the gloss of the pearl material is reflected strongly.
  • the strip-shaped light emitting portions 31c and 31h in which the angle ⁇ 3 formed between the optical axis and the center plane S1 is approximately 26 degrees, or the angle ⁇ 4 formed between the optical axis and the center plane S1 is approximately 35 degrees.
  • the contrast of the defective portion of the pearl coating is reduced.
  • the contrast of the defective part of the pearl paint is low or high with respect to the other parts.
  • the resulting image can be taken, and the gloss of the pearl material is less likely to reach the threshold for defect detection. Therefore, it is possible to easily detect a pearl coating defect based on the captured image.
  • the strip-like light emitting portions 31a and 31f are arranged so that the angle ⁇ 1 formed by the optical axis and the center plane S1 is about 8 degrees, and the angle ⁇ 1 is 8 degrees with respect to the normal direction.
  • the amount of light can be varied depending on the contents of imaging by changing the irradiation time of light from the coaxial illumination unit 20 and the three-dimensional illumination unit 30 without changing the imaging time of the imaging unit 10.
  • a three-dimensional illumination unit 30 is provided corresponding to the third camera 13, and an image captured with the same irradiation pattern is extracted from the images captured with the third camera 13, and each irradiation pattern is extracted.
  • the optical inspection apparatus 1 since the optical inspection apparatus 1 includes both the band-like light emitting parts 31a and 31f and the band-like light emitting parts 31b and 31g, when the pearl pigment is used in the same apparatus, the pearl pigment is not used. In any case, it is possible to capture an image in which color unevenness or the like of the printing unit can be detected.
  • the angle ⁇ 1 formed by the optical axis of the belt-like light emitting portions 31a and 31f and the center plane S1 is approximately 8 degrees, but the angle ⁇ 1 may be approximately 8 to 10 degrees. Further, the angles ⁇ 2 to ⁇ 5 are not limited to the illustrated angles.
  • the defect detection image is generated by the PC 100.
  • the defect of the cover glass G may be detected by the PC 100 based on the generated image.
  • a defect can be detected by comparing a pixel value with a threshold value.
  • a defect can be detected by calculating an average value of a plurality of pixels and comparing the average value with a threshold value.
  • the cylindrical lens 30c is provided on the optical axis of the band-like light emitting portions 31a to 31j.
  • the cylindrical lens 30c is not essential.
  • the cylindrical lens 30c when the cylindrical lens 30c is provided, the light emitted from the light emitting unit 30a by the cylindrical lens 30c can be condensed near the central axis ax, and thereby the amount of light directed to the third camera 13 can be increased. . Therefore, the imaging frequency of the imaging unit 10 can be increased (imaging time is shortened).
  • the strip-shaped light emitting portions 32a, 32b to 32e, and 32f to 32i are connected to different channels, and the strip-shaped light emitting portions 33a, 33b to 33e, and 33f to 33i are respectively different.
  • the relationship between the band-like light emitting portions 32a to 32i and 33a to 33i and the channel is not limited to this.
  • the band-like light emitting units 32b to 32i and 33b to 33i may be connected to one channel, or the band-like light emitting units 32a to 32i and 33a to 33i may be connected to different channels.
  • irradiation time in each irradiation pattern shown to FIG. 9, 10, 11, 13 was shown, irradiation time is an illustration and irradiation time is limited to the value described in these. is not.
  • the irradiation time is specified in ⁇ sec.
  • the irradiation time may be specified as a ratio to the imaging time.
  • the light emitting units 30a have the light emitting blocks 30b and 30d arranged in a line, but the light emitting blocks 30b and 30d may have a light diffusion plate.
  • 19 is a diagram schematically showing a light emitting block 30b-1 according to a modified example, FIG. 19A is a side view, and FIG. 19B is a diagram illustrating the state shown in FIG. It is the figure seen from the downward direction in (A).
  • the light emitting block 30b-1 is provided with a lenticular lens 30e, which is a light diffusing plate, adjacent to the light emitting portion 30a.
  • the lenticular lens 30e is provided so as to cover the plurality of light emitting units 30a.
  • the lenticular lens 30e is formed by arranging a large number of elongated convex lenses having a semi-cylindrical cross section at an equal pitch, and diffuses light components in the same direction as the convex lens arrangement direction (a direction perpendicular to the longitudinal direction of the convex lenses).
  • the arrangement direction of the convex lenses and the light emitting unit 30a are the same.
  • the light emitted from the light emitting unit 30a is diffused by the lenticular lens 30e, and the light emitted from the plurality of light emitting units 30a can be used as one elongated surface light source by the lenticular lens 30e.
  • the lenticular lens 30e when the inspection is performed based on the light regularly reflected by the front end P surface and the rear end P surface of the cover glass G, the light emitting unit 30a is formed on the front end P surface and the rear end P surface. Although dot-like light may be reflected, the occurrence of such a problem can be prevented by providing the lenticular lens 30e so as to cover the light emitting portion 30a.
  • the band-like light emitting portion 31b and the band-like light emitting portion 31g are weakly illuminated, and the light from the band-like light emitting portion 31b and the band-like light emitting portion 31g is reflected on the tip P surface and the rear end P surface. It is possible to use a method to At this time, if the belt-like light emitting portions 31b and 31g do not have the lenticular lens 30e, dot-like light is reflected on the front end P surface and the rear end P surface, and the inspection cannot be performed well.
  • the lenticular lens 30e is provided in the belt-like light emitting portions 31b and 31g, since point-like light is reflected on the front end P surface and the rear end P surface, the front end P depends on whether or not this light is bent. It is possible to inspect defects related to the polishing of the surface and the rear end P surface.
  • one lenticular lens 30e is provided in one light emitting block 30b-1, but the number of lenticular lenses 30e is not limited to this.
  • a plurality of lenticular lenses arranged may be provided so as to cover the plurality of light emitting units 30a.
  • the light diffusion plate is not limited to a lenticular lens.
  • an image using coaxial illumination and an image using stereoscopic illumination are captured by different cameras, but an image using coaxial illumination and an image using stereoscopic illumination are taken. May be taken with the same camera.
  • the second embodiment of the present invention is a mode in which imaging is performed with two cameras.
  • the optical inspection apparatus 2 according to the second embodiment will be described.
  • symbol is attached
  • FIG. 20 is a front view showing an outline of the optical inspection apparatus 2 according to the second embodiment.
  • the optical inspection apparatus 2 mainly includes an imaging unit 10A, a coaxial illumination unit 20, a stereoscopic illumination unit 30, a placement unit 40, and a conveyance unit 50 (not shown).
  • the imaging unit 10A includes a first camera 11 (corresponding to the one-dimensional imaging unit of the present invention in the present embodiment) and a second camera 12 (corresponding to the second imaging unit of the present invention).
  • the arrangement of the first camera 11 and the second camera 12 is the same as that of the optical inspection apparatus 1.
  • the three-dimensional illumination unit 30 is provided between the first camera 11 and the placement unit 40.
  • the three-dimensional illumination unit 30 is provided at a position where the central axis ax intersects the optical axis of the first camera 11. Since the angle ⁇ 1 (see FIG. 4) formed by the optical axis of the strip-shaped light emitting portions 31a and 31f and the center plane S1 is approximately 8 degrees, the light from the upper coaxial illumination 21 is not blocked by the three-dimensional illumination unit 30.
  • the integrated circuit 71 (including the third control unit of the present invention) generates a drive motor pulse for driving the roller 40 a of the mounting unit 40, and the output unit 73 outputs this to the transport unit 50. Thereby, the cover glass G moves on the mounting part 40 along the conveyance direction F at a constant speed.
  • a detection signal is input from the position detection sensor 81 to the integrated circuit 71 via the input unit 72. Is done.
  • the integrated circuit 71 starts processing for capturing a reflected image with the first camera 11 and processing for capturing a transmitted image and a regular reflected image with the first camera 11 and the second camera 12.
  • FIG. 21 is a diagram illustrating the correspondence between the order of the imaging processing and the images captured by the first camera 11 and the second camera 12.
  • Processing for capturing a reflected image with the first camera 11 is performed in the optical inspection apparatus 1 except that the imaging signal generated by the integrated circuit 71 is output to the first camera 11. Since this is the same as the processing (FIGS. 11, 12, and 14), detailed description is omitted.
  • the integrated circuit 71 starts the process of capturing the transmission image and the regular reflection image shown in the order 10 to 12 when the processes in the order 1 to 9 are completed. Since the processes shown in the order 10 to 12 are the same as the processes shown in FIGS. 9 and 10 (the processes in the order 1 to 3), detailed description thereof is omitted.
  • the integrated circuit 71 outputs in order 12 and at the same time generates a signal indicating repetitive processing and outputs the signal to the integrated circuit 71 via the output unit 73.
  • the integrated circuit 71 receives the signal indicating the repetition process, returns the process to the beginning, and repeats the process of sequentially outputting the signals shown in the order 1 to 12.
  • the present embodiment it is possible to inspect a defect by one inspection using one optical inspection apparatus 2. Further, it is possible to capture a reflected image, a transmitted image, and a regular reflection image with a minimum (two) cameras.
  • the half mirror 21h is provided on the optical axis of the first camera 11, the amount of light emitted from the three-dimensional illumination unit 30 and incident on the first camera 11 is determined by the optical inspection apparatus 1.
  • the amount of light that is irradiated from the three-dimensional illumination unit 30 and is incident on the third camera 13 is approximately half. Therefore, it is desirable to brighten the light emitted from the three-dimensional illumination unit 30.
  • the number of images captured by the first camera 11 is larger than that in the first embodiment, the light emitted from the three-dimensional illumination unit 30 can be brightened and the imaging frequency can be increased. desirable.
  • the cover glass G in which the arc-shaped P surface is formed is inspected, but the form of the cover glass is not limited to this. Recently, the curved surface around the cover glass has become deeper, and a cover glass in which the curved surface portion has a partial cylindrical shape or an elliptical cylindrical shape has been used.
  • the third embodiment of the present invention is a mode for inspecting a cover glass having a partial cylindrical shape or an elliptical cylindrical shape around it.
  • an optical inspection apparatus 3 according to the third embodiment will be described.
  • symbol is attached
  • FIG. 22 is a front view showing an outline of the optical inspection apparatus 3 according to the third embodiment.
  • the optical inspection apparatus 3 mainly includes an imaging unit 10, a coaxial illumination unit 20, a three-dimensional illumination unit 30, a placement unit 40, a transport unit 50 (not shown), a side inspection unit 60, and a height acquisition unit. 90.
  • FIG. 23 is an enlarged perspective view of a part of the optical inspection device 3.
  • the side surface inspection unit 60 mainly includes focal length adjusting optical elements 61 and 62 and reflecting mirrors 63 and 64.
  • the focal length adjusting optical elements 61 and 62 and the reflecting mirrors 63 and 64 are located on a substantially vertical center plane S1 including the third camera 13.
  • the focal length adjusting optical elements 61 and 62 are optical elements for adjusting the focal length of the third camera 13.
  • thick glass plates are used as the focal length adjusting optical elements 61 and 62.
  • the focal length adjusting optical elements 61 and 62 are provided such that both end faces substantially orthogonal to the plate thickness direction are horizontal.
  • the focal length adjustment optical element 61 and the focal length adjustment optical element 62 have substantially the same positions in the x direction and the z direction, and face each other with a line ax1 passing through the center of the third camera 13 extending in the z direction. It is provided as follows. Further, the focal length adjustment optical elements 61 and 62 are provided on the upper side (+ z side) of the stereoscopic illumination unit 30.
  • the reflecting mirrors 63 and 64 are members that reflect the image on the side surface of the cover glass G1 and guide it to the third camera 13.
  • the reflecting mirrors 63 and 64 are substantially plate-shaped and are provided adjacent to the placement unit 40. In the present embodiment, it is provided between adjacent rollers 40a.
  • the positions of the reflecting mirror 63 and the reflecting mirror 64 are substantially the same in the x direction and the z direction, and are provided so as to face each other with a line ax1 passing through the center of the third camera 13 extending in the z direction. Further, in plan view, the reflecting mirror 63 and the reflecting mirror 64 are respectively provided at positions outside the placement area and adjacent to the placement area in a direction substantially orthogonal to the transport direction F.
  • the placement area is an area on the placement portion 40 where the cover glass G ⁇ b> 1 is placed, and includes an area on the lower side in the vertical direction of the third camera 13.
  • FIG. 23 illustrates a state where the cover glass G1 is placed on the placement area.
  • FIG. 24 is a diagram showing a schematic configuration in a state in which the optical inspection device 3 is cut along the center plane S1.
  • FIG. 24 shows a state viewed from the downstream side in the transport direction F (+ x direction).
  • a two-dot chain line in FIG. 24 schematically shows a path of light incident on the third camera 13.
  • the reflecting surfaces 63a and 64a of the reflecting mirrors 63 and 64 are substantially flat, and the conveying direction is such that a line intersecting the center plane S1 (a line indicating the reflecting surfaces 63a and 64a in FIG. 24) is inclined with respect to the horizontal plane. It extends substantially along F.
  • the cover glass G ⁇ b> 1 has a plane Ga parallel to the horizontal direction and a side surface Gb inclined with respect to the horizontal direction in a state of being placed on the placement unit 40.
  • the side surface Gb has a partial cylindrical shape or an elliptical cylindrical shape, and the inclination of the side surface Gb with respect to the horizontal direction is approximately 30 to 45 degrees. Further, the ends Ge of the side surfaces Gb on both sides are placed on the roller 40a.
  • the image of the plane Ga is guided to the imaging lens 13a without passing through the focal length adjusting optical elements 61 and 62.
  • the focal length adjusting optical elements 61 and 62 do not exist on the line connecting the imaging lens 13a and the plane Ga.
  • the image of the side surface Gb is reflected by the reflecting surfaces 63a and 64a, passes through the focal length adjusting optical elements 61 and 62, and is guided to the imaging lens 13a.
  • the focal length adjusting optical elements 61 and 62 are arranged so as to overlap with a line connecting the imaging lens 13a and the reflecting surfaces 63a and 64a.
  • the focal length adjustment optical elements 61 and 62 are partially cut away so that the focal length adjustment optical elements 61 and 62 are not positioned on the line connecting the imaging lens 13a and the plane Ga. It is missing.
  • the focal position F1 when not passing through the focal length adjusting optical elements 61 and 62 is the position of the plane Ga of the cover glass G1.
  • the plate thickness of the cover glass G1 is approximately 0.5 mm, and the focal position F1 is preferably located near the center of the plane Ga in the plate thickness direction.
  • the focal position F2 is farther than the focal position F1.
  • the extension of the focal position by passing through the focal length adjusting optical elements 61 and 62 is that the plate pressure of the focal length adjusting optical elements 61 and 62 is T, and the refractive index of the glass is n. Then, it can be expressed as TT / n. For example, if T is 12 mm and n is 1.5, the focal position extends 4 mm by passing through the focal length adjusting optical elements 61 and 62. That is, the focal position F2 is located on the ⁇ z side by 4 mm from the focal position F1.
  • FIG. 25 is a diagram illustrating the relationship between the position of the cover glass G1 and an image captured by the third camera 13, (A) is an enlarged view of a side surface portion of the cover glass G1, and (B) is a third view. A part of the image captured by the camera 13 is shown.
  • the reflecting surface 63a is indicated by a dotted line
  • the path of light reflected by the reflecting surface 63a and incident on the third camera 13 is indicated by a two-dot chain line.
  • the image does not pass through the focal length adjustment optical elements 61 and 62, and the imaging lens 13a.
  • the focal position F1 is at the position of the plane Ga, the image of the region I is a sharp image.
  • the image on the side surface Gb is a blurred image with little focus (see the shaded portion in FIG. 25).
  • the images of the side surface Gb and a partial region (region II) of the plane Ga near the side surface Gb are reflected by the reflecting surface 63a (the same applies to the reflecting surface 64a) and guided to the imaging lens 13a. Therefore, the image of the region II is reversed left and right, the image of the end Ge of the side surface Gb is on the inside, and the image on the plane Ga side of the side surface Gb is on the outside.
  • the image of the region II passes through the focal length adjustment optical elements 61 and 62 and is guided to the imaging lens 13a. Since the focal position F2 is positioned below the focal position F1 by passing through the focal length adjusting optical elements 61 and 62, the majority of the side surface Gb is a sharp image with focus. In the present embodiment, by making the depth of focus of the third camera 13 and the height of the side surface Gb substantially coincide with each other, it is possible to obtain a sharp image focused on the entire side surface Gb. Further, the boundary portion between the plane Ga and the side surface Gb is a blurred image with little focus (see the shaded portion in FIG. 25). Note that the most central side of the image in the region II is a portion where the cover glass G1 is not present, and the third camera 13 captures a black image.
  • the optical inspection apparatus 3 includes a height acquisition unit 90 that acquires the height of the cover glass G1.
  • the height acquisition unit 90 is provided on the upstream side ( ⁇ x side) in the transport direction F with respect to the side surface inspection unit 60, and mainly includes a surface light source 91, a camera 92, and a reflecting mirror 93.
  • FIG. 26 and 27 are diagrams schematically illustrating how the height of the cover glass G1 is measured, and FIG. 26 is a diagram viewed from a direction substantially orthogonal to the transport direction F (here, the ⁇ y direction).
  • FIG. 27 is a view taken along the transport direction F (here, the + x direction).
  • a two-dot chain line in FIG. 27 indicates a path of light emitted from the surface light source 91.
  • the surface light source 91, the camera 92, and the reflecting mirror 93 are provided with the placement unit 40 interposed therebetween.
  • the surface light source 91 irradiates light in a direction substantially perpendicular to the transport direction F (here, the + y direction).
  • the camera 92 is irradiated from the surface light source 91, passes through the cover glass G1, and is reflected by the reflecting mirror 93.
  • an image such as a shadow picture is obtained where the portion where the light is blocked by the cover glass G1 is dark and the other portion is bright. Therefore, the height of the cover glass G1 can be obtained accurately.
  • the reflecting mirror 93 is not essential, and the light emitted from the surface light source 91 and passing through the cover glass G ⁇ b> 1 may be incident on the camera 92.
  • the front end Gc and the rear end Gd of the cover glass G1 are lower than the plane Ga. Therefore, by illuminating light in the y direction from the surface light source 91 while moving the cover glass G1 in the transport direction F by the placement unit 40, the light passing through the cover glass G1 is imaged by the camera 92, and the front end Gc and the rear The height change of the end Gd can be acquired.
  • the third camera 13 is provided with a moving unit 95 that moves the third camera 13 in the vertical direction.
  • the moving unit 95 includes an actuator (not shown) that is a drive source, and a moving mechanism (not shown) that moves the third camera 13 in the vertical direction by transmitting the driving of the actuator.
  • Various known techniques such as a feed screw can be used for the moving mechanism.
  • the CPU 101 controls the moving unit 95 based on the image captured by the camera 92, and moves the third camera 13 in the vertical direction in accordance with the height change of the front end Gc and the rear end Gd.
  • the ROM 103 stores the number of pulses for sending the cover glass G1 in the transport direction F until the cover glass G1 is positioned directly below the third camera 13 after being imaged by the camera 92. Further, the ROM 103 stores the relationship between the driving amount of the actuator and the moving amount of the third camera 13.
  • the CPU 101 drives the actuator of the moving unit 95 based on the information stored in the ROM 103 to move the third camera 13 in the vertical direction in accordance with the height change of the cover glass G1 passing under the third camera 13. Move.
  • the focal length of the third camera 13 is extended using the focal length adjusting optical elements 61 and 62, and the light incident on the third camera 13 is reflected using the reflecting mirrors 63 and 64.
  • the defect of the side surface Gb can be inspected by one inspection.
  • the defect of the side surface Gb can be inspected regardless of the inclination of the side surface Gb with respect to the horizontal direction by setting the inclination of the reflection surfaces 63a and 64a with respect to the horizontal direction according to the inclination of the side surface Gb with respect to the horizontal direction. Further, for example, by changing the position of the reflecting mirrors 63 and 64 in the y direction according to the width of the cover glass, the defect of the side surface Gb can be inspected regardless of the width of the cover glass.
  • the height of the front end Gc and the rear end Gd is increased by moving the third camera 13 in the vertical direction in accordance with the height change of the cover glass G1 that passes under the third camera 13. Even when the distance changes, the third camera 13 can capture a sharp image in focus at the front end Gc and the rear end Gd. Therefore, it is possible to surely inspect the front end Gc and the rear end Gd for defects.
  • thick glass plates are used as the focal length adjustment optical elements 61 and 62, but the form of the focal length adjustment optical elements 61 and 62 is not limited thereto.
  • concave lenses may be used as the focal length adjustment optical elements 61 and 62.
  • the thickness of the glass plate and the shape of the concave lens are set according to the shape of the cover glass, the focal length easily extends when the concave lens is used. It is desirable to use glass plates as the elements 61 and 62.
  • the CPU 101 controls the moving unit 95 based on the image captured by the camera 92, so that the third time is adjusted according to the height change of the cover glass G1 that passes under the third camera 13.
  • the method of moving the third camera 13 in the vertical direction in accordance with the height change of the cover glass G1 passing under the third camera 13 is not limited to this.
  • information regarding the height change of the front end Gc and the rear end Gd may be stored in the ROM 103 in advance, and the CPU 101 may control the moving unit 95 based on this information.
  • the height of the cover glass G1 may be measured with a laser displacement meter, and the CPU 101 may control the moving unit 95 based on the measurement result.
  • the three-dimensional illumination unit 30 includes a first region 31, a second region 32, and a third region 33, and the light emitting unit 30 a is substantially cylindrical in the second region 32 and the third region 33.
  • the form of the three-dimensional illumination unit is not limited to this.
  • all the strip-shaped light emitting units constituting the three-dimensional illumination unit have a light emitting block in which the light emitting units 30a are arranged in a straight line.
  • the optical inspection apparatus 4 according to the fourth embodiment will be described.
  • the stereoscopic illumination unit 30A included in the optical inspection apparatus 4 according to the fourth embodiment since the difference between the optical inspection apparatus 4 according to the fourth embodiment and the optical inspection apparatus 1 is only the stereoscopic illumination unit, the stereoscopic illumination unit 30A included in the optical inspection apparatus 4 according to the fourth embodiment. A description of the same parts as those of the optical inspection apparatus 1 will be omitted.
  • FIG. 28 is a perspective view showing an outline of a three-dimensional illumination unit 30A included in the optical inspection device 4.
  • the three-dimensional illumination unit 30A irradiates the cover glass G with light from a plurality of directions.
  • the light emitted from the three-dimensional illumination unit 30A and reflected by the cover glass G enters the third camera 13 (see FIG. 1).
  • the three-dimensional illumination unit 30A includes a first region 31A having a substantially semi-cylindrical surface, and a second region 32A and a third region 33A having a substantially hemispherical surface or a substantially semi-elliptical spherical surface.
  • the first region 31A, the second region 32A, and the third region 33A in the stereoscopic illumination unit 30A correspond to the first region 31, the second region 32, and the third region 33 in the stereoscopic illumination unit 30, respectively.
  • the first region 31A includes strip-shaped light emitting portions 31a-1, 31b-1, 31c-1, 32d-1, 31e-1, 31f-1, 31g-1, 31h-1, 31i-1, and 31j-1. .
  • the band-shaped light emitting units 31a-1 to 31j-1 in the three-dimensional illumination unit 30A correspond to the band-shaped light emitting units 31a to 31j in the three-dimensional illumination unit 30.
  • the second region 32A has strip-like light emitting portions 32a-1, 32b-1, 32c-1, 32d-1, 32f-1, 32g-1, 32h-1
  • the third region 33A has the strip-like light emitting portion 33a. -1, 33b-1, 33c-1, 33d-1, 33f-1, 33g-1, and 33h-1.
  • the band-like light emitting units 32a-1 to 32d-1 and 32f-1 to 32h-1 in the three-dimensional illumination unit 30A correspond to the band-like light emitting units 32a to 32d and 32f to 32h in the three-dimensional illumination unit 30.
  • the band-like light emitting units 33a-1 to 33d-1 and 33f-1 to 33h-1 in the three-dimensional illumination unit 30A correspond to the band-like light emitting units 33a to 33d and 33f to 33h in the three-dimensional illumination unit 30.
  • the three-dimensional illumination unit 30A includes a frame 34 that integrates the first region 31A, the second region 32A, and the third region 33A.
  • the frame 34 is formed of a metal having excellent thermal conductivity such as aluminum.
  • the frame 34 has two plates 34a, and a first region 31A is provided between the two plates 34a.
  • the second region 32A and the third region 33A are provided outside the plate 34a.
  • FIG. 29 is a schematic diagram showing details of the strip-shaped light emitting section 31a-1. Since the belt-like light emitting portions 31a-1 to 31j-1 have the same configuration, only the belt-like light emitting portion 31a-1 will be described, and the description of the belt-like light emitting portions 31b-1 to 31j-1 will be omitted.
  • the band-shaped light emitting portion 31a-1 has a light emitting block 30b in which the light emitting portions 30a are arranged in a row so that the length in the longitudinal direction is L, a cylindrical lens 30c-1, and a lenticular lens 30e-1. Is a unit.
  • the difference between the cylindrical lens 30c and the cylindrical lens 30c-1 is only the length in the longitudinal direction.
  • the difference between the lenticular lens 30e and the lenticular lens 30e-1 is only the length in the longitudinal direction.
  • the belt-like light emitting unit 31a-1 has two light emitting blocks 30b arranged in a straight line.
  • the two light emitting blocks 30b are directly attached to the plate 34a via the attachment member 34b.
  • the cylindrical lens 30c-1 is directly attached to the plate 34a via the attachment member 34c.
  • a lenticular lens 30e-1 is provided between the light emitting block 30b and the cylindrical lens 30c-1.
  • the lenticular lens 30e-1 is attached to the light emitting block 30b via a support member 30f.
  • the light emitting block 30b and the cylindrical lens 30c-1 are provided on the plate 34a so that the tip surface p1 of the light emitting block 30b where the light emitting portion 30a is provided and the upper surface p2 of the cylindrical lens 30c-1 are substantially parallel.
  • the extending direction of the light emitting block 30b and the extending direction of the cylindrical lens 30c-1 are substantially parallel.
  • FIG. 30 is a schematic diagram showing details of the belt-like light emitting part 32a-1. Since the belt-like light emitting portions 32a-1 to 32d-1, 32f-1 to 32h-1, 33a-1 to 33d-1, and 33f-1 to 33h-1 have the same configuration, only the belt-like light emitting portion 32a-1 is used. Explanation will be omitted, and the description of the band-like light emitting portions 32b-1 to 32d-1, 32f-1 to 32h-1, 33a-1 to 33d-1, and 33f-1 to 33h-1 will be omitted.
  • the belt-like light emitting part 32a-1 is a light emitting unit having a light emitting block 30b in which the light emitting parts 30a are arranged in a row so that the length in the longitudinal direction is L, a cylindrical lens 30c-2, and a plate 30g. .
  • the only difference between the cylindrical lens 30c and the cylindrical lens 30c-2 is the length in the longitudinal direction.
  • the light emitting block 30b and the cylindrical lens 30c-2 are attached to the plate 30g.
  • the plate 30g is formed of a metal having excellent thermal conductivity such as aluminum.
  • the plate 30g is formed with a bent portion 30h for attaching the plate 30g to the plate 34a.
  • the light emitting block 30b and the cylindrical lens 30c-2 are provided on the plate 30g so that the upper surface p4 of the cylindrical lens 30c-2 is inclined with respect to the tip surface p3 provided with the light emitting portion 30a of the light emitting block 30b.
  • the extending direction of the cylindrical lens 30c-1 is inclined with respect to the extending direction of the light emitting block 30b.
  • the band-like light emitting portions 31a-1 to 31j-1 have lenticular lenses 30e-1, but the band-like light emitting portions 32a-1 to 32d-1, 32f-1 to 32h-1, 33a-1 to 33d-1, and 33f-1 to 33h-1 do not have a lenticular lens. This is because the spot-like light of the light emitting part 30a does not appear side by side on the P surface formed at the left end and the right end of the cover glass G.
  • the band-like light emitting portions 31a-1 to 31e-1 are located on the + x side from the central plane S1, and the band-like light emitting portions 31f-1 to 31j-1 are located on the ⁇ x side from the central plane S1.
  • the strip-shaped light emitting portions 31a-1 to 31j-1 are not arranged on the center plane S1.
  • the band-like light emitting portions 31a-1 to 31j-1 are provided so that the optical axis intersects the intersection line between the center plane S1 and the mounting portion 40 (not shown in FIG. 28), that is, the central axis ax (see FIG. 31). (Detailed later).
  • the belt-like light emitting portions 32a-1 and 33a-1 are provided on the center plane S1.
  • the band-like light emitting portions 32b-1 to 32d-1, 33b-1 to 33d-1 are located on the + x side from the center plane S1, and the band-like light emitting portions 32f-1 to 32h-1, 33f-1 to 33h-1 are Located on the ⁇ x side from the center plane S1.
  • the belt-like light emitting units 32a-1 and 33a-1 have a central axis facing the intersection (center point O1, see FIG. 31) between the central axis ax1 of the three-dimensional illumination unit 30A and the mounting unit 40.
  • the strip-shaped light emitting portions 32b-1 to 32d-1, 32f-1 to 32h-1, 33b-1 to 33d-1, and 33f-1 to 33h-1 are substantially parallel to the strip-shaped light emitting portions 32a-1 and 33a-1. Provided.
  • FIG. 31 is a diagram illustrating the path of light emitted from the three-dimensional illumination unit 30A.
  • route of light is shown with a dashed-two dotted line.
  • the belt-like light emitting portion 31f-1 is provided so that the optical axis intersects the central axis ax.
  • the cylindrical lens 30c-1 is provided between the light emitting block 30b and the central axis ax, and condenses the light emitted from the light emitting unit 30a in the vicinity of the central axis ax.
  • the light emitting portions 30a are arranged substantially horizontally, and the tip surface p1 of the light emitting block 30b and the upper surface p2 of the cylindrical lens 30c-1 are substantially parallel, so that the light is emitted from the light emitting block 30b.
  • the light passes through the cylindrical lens 30c-1 and is focused on the central axis ax.
  • the center axis of the strip-shaped light emitting portions 32a-1 and 33a-1 is directed to the center point O1.
  • the cylindrical lens 30c-2 is provided between the light emitting block 30b and the center point O1 (center axis ax), and condenses the light emitted from the light emitting unit 30a in the vicinity of the center axis ax.
  • the light emitting portions 30a are not arranged substantially horizontally, and the extending direction of the light emitting block 30b is inclined with respect to the horizontal direction. If the front end surface p3 of the light emitting block 30b and the upper surface p4 of the cylindrical lens 30c-2 are substantially parallel, the light emitted from the light emitting unit 30a is focused on a line substantially parallel to the front end surface p3, and is focused on the central axis ax. Do not tie. Therefore, in the second region 32A and the third region 33A, the upper surface p4 is inclined with respect to the tip surface p3 so that the light emitted from the light emitting unit 30a is focused on the central axis ax.
  • the second region 32A and the third region 33A the light emitted from the light emitting unit 30a passes through the cylindrical lens 30c-2, and the light is applied to the P surface formed at the left end and the right end of the cover glass G. Irradiate and focus the light on the P plane.
  • the second region 32A and the third region 33A irradiate light to the region A2 outside the range A1 in which the first region 31A can irradiate light.
  • the second region 32A and the third region 33A have a function of supplementing the first region 31A.
  • the cover glass G can be irradiated with light from various directions using the three-dimensional illumination unit 30A.
  • the upper surface p4 is inclined with respect to the tip surface p3, so that the focus of the light emitted from the light emitting unit 30a is on the P surface formed at the left and right ends of the cover glass G.
  • the second region 32A and the third region 33A can supplement the first region 31A by inclining the upper surface p4 with respect to the tip surface p3.
  • the number of light emitting blocks 30b included in the band-like light emitting units 31a-1 to 31j-1 can be reduced.
  • the frame 34 and the plate 30g formed of a material having high thermal conductivity are integrated to constitute the heat radiating member, the heat generated from the light emitting unit 30a and the like is efficiently obtained. It can dissipate heat.
  • the blower 35 is provided in the vicinity of the three-dimensional illumination unit 30A.
  • the cooling effect by the heat radiating member (frame 34 and plate 30g) can be improved by sending wind from the blower 35 to the three-dimensional illumination unit 30A.
  • the blower 35 is directed from the side surface (at least one of + y direction and -y direction) along the extending direction of the plate 30g (see the thick arrow in FIG. 28). ) Is preferably sent to the three-dimensional illumination unit 30A.
  • the air blowing unit 35 is provided in the ⁇ y direction of the three-dimensional illumination unit 30A, but the position of the air blowing unit 35 is not limited to this.
  • one blower 35 is provided, but the number of blowers 35 is not limited to this.
  • the coaxial illumination unit 20 includes an upper coaxial illumination 21 that is the coaxial illumination of the first camera 11 and a lower coaxial illumination 22 that is the coaxial illumination of the second camera 12.
  • the form of the coaxial illumination unit is not limited to this.
  • the coaxial illumination unit has a C-PL filter.
  • the optical inspection apparatus 5 according to the fifth embodiment will be described.
  • the coaxial illumination section 20A included in the optical inspection apparatus 5 according to the fourth embodiment since the difference between the optical inspection apparatus 5 according to the fifth embodiment and the optical inspection apparatus 1 is only the coaxial illumination section, the coaxial illumination section 20A included in the optical inspection apparatus 5 according to the fourth embodiment. A description of the same parts as those of the optical inspection apparatus 1 will be omitted.
  • FIG. 32 is a front view showing an outline of the optical inspection apparatus 5 according to the fifth embodiment.
  • the coaxial illumination unit 20A includes an upper coaxial illumination 21 that is the coaxial illumination of the first camera 11, a lower coaxial illumination 22 that is the coaxial illumination of the second camera 12, and C-PL filters 23a and 23b.
  • the C-PL filter 23 a is provided below the first camera 11, and the C-PL filter 23 b is provided above the second camera 12.
  • Each of the C-PL filters 23a and 23b is a circularly polarizing filter having a polarizing plate and a 1 / 4 ⁇ phase difference plate that gives a 1 / 4 ⁇ phase difference to transmitted light that has passed through the polarizing plate.
  • the quarter-wave retardation plate converts linearly polarized light into circularly polarized light.
  • the C-PL filters 23a and 23b are provided such that the polarizing plates are positioned on the half mirrors 21h and 22h, and the 1 / 4 ⁇ phase difference plate is positioned on the side far from the half mirrors 21h and 22h. Since the C-PL filters 23a and 23b are already known, detailed description thereof is omitted.
  • the C-PL filters 23a and 23b are provided adjacent to the first camera 11 and the second camera 12, respectively.
  • the C-PL filters 23a and 23b are provided such that the plane in the direction substantially orthogonal to the thickness direction is slightly inclined with respect to the direction substantially orthogonal to the optical axis oax.
  • Some of the light emitted from the light source 21a and reflected downward by the half mirror 21h may be transmitted through the cover glass G and reflected from the surface of the imaging lens 12a.
  • This reflected light is incident on the first camera 11, there is a possibility that a bright light line is included in the center of the image captured by the first camera 11.
  • the C-PL filter 23 b prevents light that has passed through the cover glass G and reflected from the surface of the imaging lens 12 a from entering the first camera 11. Accordingly, it is possible to prevent a bright light line from being included in the center of the image captured by the first camera 11.
  • the C-PL filter 23a is irradiated from the light source 22a, reflected upward by the half mirror 22h, transmitted through the cover glass G, and reflected from the surface of the imaging lens 11a so that it does not enter the second camera 12. To do. Accordingly, it is possible to prevent a bright light line from being included in the center of the image captured by the second camera 12.
  • the C-PL filters 23a and 23b are provided, but the C-PL filter 23a is not essential.
  • the side surface inspection unit 60 and the height acquisition unit 90 may be applied to the optical inspection devices 4 and 5 according to the fourth and fifth embodiments.
  • the optical inspection apparatus 2 according to the second embodiment and the optical inspection apparatus 5 according to the fifth embodiment may be combined, or the optical inspection apparatus 4 according to the fourth embodiment may be combined with the optical inspection apparatus 4 according to the fourth embodiment.
  • the optical inspection device 5 according to the fifth embodiment may be combined.
  • the inspection objects (inspection objects) of the optical inspection apparatuses 1 to 5 are the cover glasses G and G1, but the inspection object of the optical inspection apparatuses 1 to 5 is not limited to the cover glass.
  • the inspection target of the optical inspection apparatuses 1 to 5 may be glass used for a touch pad of a laptop personal computer.
  • substantially is a concept that includes not only a case where they are exactly the same but also errors and deformations that do not lose the identity.
  • substantially horizontal is not limited to being strictly horizontal, but is a concept including an error of about several degrees, for example.
  • near means including a region in a certain range (which can be arbitrarily determined) near a reference position.
  • Optical inspection device 10 10 A: Imaging unit 11: First camera 12: Second camera 13: Third camera 11 a, 12 a, 13 a: Imaging lens 11 b, 12 b, 13 b: Line sensor 13 c: Third camera Field position 20, 20A: Coaxial illumination unit 21, 21A: Upper coaxial illumination 22, 22A: Lower coaxial illumination 21a, 22a: Light source 21b, 22b: Integrator 21c, 22c: Condensing lens 21d, 22d: Apertures 21e, 22e: Collimator lenses 21f, 22f: mirrors 21g, 22g: Fresnel lenses 21h, 22h: half mirrors 23a, 23b: C-PL filter 30, 30A: three-dimensional illumination unit 30a: light emitting unit 30b: light emitting blocks 30c, 30c-1, 30c- 2: Cylindrical lens 30d: Light emitting block 30e, 30e-1: Wrench Dura lens 30g: plate 30h: bent portion 31, 31A: first region 31a to 31j, 31a-1

Abstract

The purpose of the present invention is to provide an optical inspection device with which defects can be inspected with a single device and in a single inspection regardless of where on an end surface of an object to be inspected a defect is found. When this optical inspection device images an object to be inspected (G) using a one-dimensional imaging means (13) from substantially vertically above the object to be inspected (G), the optical inspection device irradiates the object to be inspected (G) with light from a plurality of light-emitting units (30a) that are provided in the following: a first region (31) of a substantially semi-cylindrical plane having a central axis (ax) that is located on a central plane (S1), which is a substantially vertical plane that contains the one-dimensional imaging means (13); and in a second region (32) and a third region (33) of a substantially hemispherical or substantially semi-ellipsoidal plane formed at both ends of the first region (31). The light-emitting units (30a) are arrayed in directions that are substantially perpendicular to a conveyance direction (F) of the object to be inspected (G) in the first region (31) except for in a region close to the central plane (S1). In addition, the light-emitting units (30a) are arrayed at positions on the central plane (S1) in the second region (32) and the third region (33).

Description

光学検査装置Optical inspection device
 本発明は、光学検査装置に関する。 The present invention relates to an optical inspection apparatus.
 特許文献1には、被検査物に照射され、一次元撮像手段に入射される光がそれぞれ正反射光、拡散反射光、透過光となるように複数の照明装置が配置されており、これらの点灯のタイミングを一次元撮像手段の転送回ごとに変更し、一次元撮像手段から転送された画像データを同じ照明装置が点灯した画像データごとに集積して集積画像データを作成する撮像光学検査装置が開示されている。 In Patent Document 1, a plurality of illumination devices are arranged such that light that is irradiated on an object to be inspected and incident on a one-dimensional imaging unit becomes specularly reflected light, diffusely reflected light, and transmitted light, respectively. An imaging optical inspection apparatus that changes the lighting timing for each transfer of the one-dimensional imaging means and accumulates the image data transferred from the one-dimensional imaging means for each image data that is lit by the same illumination device, thereby creating integrated image data Is disclosed.
特開2012-42297号公報JP 2012-42297 A
 特許文献1に記載の発明は、透明な板状の被検査物を検査するものである。透明な板状の被検査物としては、例えば携帯端末等に用いられるカバーガラスがあげられる。カバーガラスは、略矩形形状であり、端面が磨き加工されている。このようなカバーガラス等の端面加工における欠陥(例えば、端面の欠け)を検査するためには、全ての端面に同じように光を当て、その反射光を撮像手段に入射させる必要がある。 The invention described in Patent Document 1 is for inspecting a transparent plate-shaped inspection object. As a transparent plate-shaped object to be inspected, for example, a cover glass used for a portable terminal or the like can be mentioned. The cover glass has a substantially rectangular shape, and the end surface is polished. In order to inspect defects (for example, chipping of the end face) in end face processing such as cover glass, it is necessary to apply light to all end faces in the same manner and make the reflected light enter the imaging means.
 特許文献1に記載の発明では、一次元撮像手段の光軸が被検査物の法線に対して45度程度傾いている。したがって、特許文献1に記載の発明では、一部の端面(端面Iとする)で反射した光は撮像手段に入射するが、端面I以外の端面(端面IIとする)で反射した光は撮像手段に入射しないおそれがある。そして、端面IIについては、欠陥を撮像することができない、すなわち欠陥を検出することができないという問題がある。 In the invention described in Patent Document 1, the optical axis of the one-dimensional imaging means is inclined by about 45 degrees with respect to the normal line of the inspection object. Therefore, in the invention described in Patent Document 1, light reflected by a part of the end face (referred to as end face I) is incident on the imaging means, but light reflected from an end face other than end face I (referred to as end face II) is imaged. There is a risk of not entering the means. The end face II has a problem that a defect cannot be imaged, that is, the defect cannot be detected.
 本発明はこのような事情に鑑みてなされたもので、欠陥が非検査物の端面のどの位置にあったとしても、1つの装置かつ1回の検査で欠陥を検査することができる光学検査装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an optical inspection apparatus capable of inspecting a defect with one apparatus and one inspection regardless of the position of the defect on the end face of the non-inspection object. The purpose is to provide.
 上記課題を解決するために、本発明に係る光学検査装置は、例えば、水平方向に被検査物を載置する載置部と、前記載置部に載置された被検査物を搬送方向に沿って移動させる搬送部と、前記被検査物を略鉛直上向きから撮像する一次元撮像手段であって、長手方向が前記搬送方向と略直交するように配置された一次元撮像手段と、前記被検査物へ光を照射する発光部を複数有する光照射部と、を備え、前記光照射部は、前記一次元撮像手段を含む略鉛直方向の面である中心面上に中心軸が位置する略半円筒面の第1領域と、前記第1領域の両端に形成された略半球面又は略半楕円球面の第2領域及び第3領域と、を有し、前記第1領域においては、前記搬送方向と略直交する方向に沿って前記発光部が並べられた帯状発光部を複数有し、前記帯状発光部は、前記第1領域における前記中心面の近傍以外の領域に設けられ、前記第2領域及び前記第3領域においては、前記中心面上に前記発光部が並べられることを特徴とする。 In order to solve the above-described problems, an optical inspection apparatus according to the present invention includes, for example, a placement unit that places an object to be inspected in a horizontal direction and an object to be inspected placed on the placement unit in the transport direction. A one-dimensional imaging unit configured to image the inspection object from substantially vertically upward, a one-dimensional imaging unit arranged so that a longitudinal direction thereof is substantially orthogonal to the conveyance direction, and the object to be inspected A light irradiating unit having a plurality of light emitting units for irradiating light to the inspection object, and the light irradiating unit has a central axis positioned on a central plane that is a substantially vertical plane including the one-dimensional imaging means. A first region of a semi-cylindrical surface, and a second region and a third region of a substantially hemispherical surface or a substantially semi-elliptical spherical surface formed at both ends of the first region, and in the first region, the conveyance A plurality of band-shaped light emitting portions in which the light emitting portions are arranged along a direction substantially orthogonal to the direction, The band-shaped light emitting portion is provided in a region other than the vicinity of the central surface in the first region, and the light emitting portions are arranged on the central surface in the second region and the third region. To do.
 本発明に係る光学検査装置によれば、一次元撮像手段を用いて被検査物を略鉛直上向きから撮像するときに、一次元撮像手段を含む略鉛直方向の面である中心面上に中心軸が位置する略半円筒面の第1領域と、第1領域の両端に形成された略半球面又は略半楕円球面の第2領域及び第3領域に設けられた複数の光照射部から被検査物に光を照射する。第1領域においては、中心面近傍以外の領域に、被検査物の搬送方向と略直交する方向に沿って発光部が並べられる。これにより、被検査物の先端面及び後端面で反射した光を一次元撮像手段に入射させることができる。また、第2領域及び第3領域においては、中心面上の位置に発光部が並べられる。これにより、被検査物の左右端面で反射した光を一次元撮像手段に入射させることができる。したがって、欠陥が非検査物の端面のどの位置にあったとしても、1つの装置かつ1回の検査で欠陥を検査することができる。 According to the optical inspection apparatus of the present invention, when the inspection object is imaged from the substantially vertical upward direction using the one-dimensional imaging means, the central axis is on the central plane that is the substantially vertical plane including the one-dimensional imaging means. From the first region of the substantially semi-cylindrical surface where the is located, and the plurality of light irradiation portions provided in the second region and the third region of the substantially hemispherical surface or the substantially semi-elliptical spherical surface formed at both ends of the first region Irradiate objects with light. In the first area, the light emitting units are arranged in an area other than the vicinity of the center plane along a direction substantially perpendicular to the conveyance direction of the inspection object. Thereby, the light reflected by the front end surface and the rear end surface of the inspection object can be made incident on the one-dimensional imaging means. In the second region and the third region, the light emitting units are arranged at positions on the center plane. Thereby, the light reflected by the left and right end surfaces of the object to be inspected can be incident on the one-dimensional imaging means. Therefore, regardless of the position of the defect on the end face of the non-inspection object, the defect can be inspected by one apparatus and one inspection.
 ここで、前記帯状発光部は、光軸と、前記中心面と前記載置部の上面との交線と、が交差するように設けられ、前記帯状発光部は、光軸と前記中心面とのなす角度が略8度又は略17度である第1帯状発光部を有してもよい。これにより、パール顔料を用いた場合又はパール顔料を用いない場合について、印刷部の色ムラ等が検出可能な画像を撮像することができる。 Here, the belt-like light emitting part is provided so that an optical axis and an intersection line between the central plane and the upper surface of the mounting part intersect, and the belt-like light emitting part includes the optical axis and the central plane. You may have a 1st strip | belt-shaped light emission part whose angle which is made is about 8 degree | times or about 17 degree | times. Thereby, when the pearl pigment is used or when the pearl pigment is not used, it is possible to capture an image in which color unevenness or the like of the printing portion can be detected.
 ここで、一定の速度で前記被検査物を搬送するように前記搬送部を制御し、一定の間隔で画像を撮像するように前記一次元撮像手段を駆動し、かつ、前記一次元撮像手段による撮像に同期して、前記第1領域の前記中心面で区切られた半分の領域である第1発光領域、前記第1領域のうちの前記第1発光領域以外の第2発光領域、前記第2領域のうちの前記中心面上の第3発光領域、前記第3領域のうちの前記中心面上の第4発光領域、前記第1帯状発光部を別々に照射させる制御部を備えてもよい。これにより、先端P面における欠陥が光った画像、後端P面における欠陥が光った画像、左右端P面における欠陥が光った画像、印刷部の欠陥が他の印刷部より暗い画像を、被検査物を1回搬送する間に別々のタイミングで撮影することができる。 Here, the conveyance unit is controlled so as to convey the inspection object at a constant speed, the one-dimensional imaging unit is driven so as to capture images at a constant interval, and the one-dimensional imaging unit In synchronization with the imaging, a first light emitting region that is a half region divided by the central plane of the first region, a second light emitting region other than the first light emitting region in the first region, the second You may provide the control part which irradiates separately the 3rd light emission area | region on the said center plane of the area | region, the 4th light emission area | region on the said center plane of the said 3rd area | region, and the said 1st strip | belt-shaped light emission part. As a result, an image in which a defect on the front end P surface is lit, an image in which a defect is radiated on the rear end P surface, an image in which a defect is radiated on the left and right end P surfaces, Images can be taken at different timings while the inspection object is conveyed once.
 ここで、前記光照射部は、前記帯状発光部と、前記中心面と前記載置部の上面との交線と、の間に配置されたシリンドリカルレンズを有してもよい。これにより、帯状発光部から照射された光を集光し、一次元撮像手段の撮像周波数を高く(撮像時間を短く)することができる。 Here, the light irradiation unit may include a cylindrical lens disposed between the belt-like light emitting unit and a line of intersection between the center plane and the upper surface of the mounting unit. Thereby, the light irradiated from the strip | belt-shaped light emission part can be condensed, and the imaging frequency of a one-dimensional imaging means can be made high (imaging time is shortened).
 ここで、一定の速度で前記被検査物を搬送するように前記搬送部を制御し、前記載置部の上側又は下側に設けられる第1撮像手段と、光軸が前記第1撮像手段の光軸と一致するように、前記第1撮像手段と前記載置部を挟んで反対側に設けられた第2撮像手段と、前記被検査物に法線方向から平行光を照射する第1同軸照明であって、前記第1撮像手段の同軸照明である第1同軸照明と、前記第1同軸照明と前記載置部を挟んで反対側に設けられた第2同軸照明であって、前記第2撮像手段の同軸照明である第2同軸照明と、を備え、前記第1撮像手段には、前記第1同軸照明から照射され、前記被検査物で正反射した光が入射し、前記第2撮像手段には、前記第2同軸照明から照射され、前記被検査物で正反射した光、及び前記第1同軸照明から照射され、前記被検査物を透過した光が入射してもよい。これにより、被検査物の不透明な部分の欠陥(例えば印刷部分の傷、印刷エッジの欠け等)を検出可能な透過画像、被検査物の表面や裏面の傷や異物等を検出可能な正反射画像を撮像することができる。 Here, the conveyance unit is controlled so as to convey the inspection object at a constant speed, and a first imaging unit provided above or below the placement unit, and an optical axis of the first imaging unit A first image pickup means and a second image pickup means provided on the opposite side of the mounting portion so as to coincide with the optical axis; and a first coaxial for irradiating the inspection object with parallel light from a normal direction. A first coaxial illumination that is a coaxial illumination of the first imaging means, and a second coaxial illumination that is provided on the opposite side across the first coaxial illumination and the mounting portion, and And the second coaxial illumination that is the coaxial illumination of the two imaging means, and the first imaging means is irradiated with the light irradiated from the first coaxial illumination and specularly reflected by the object to be inspected. The imaging means has light irradiated from the second coaxial illumination and specularly reflected by the inspection object, and the first coaxial Emitted from a light, the light transmitted through the object to be inspected may enter. As a result, a transmission image that can detect defects in the opaque part of the inspection object (for example, scratches on the printed part, chipped printing edges, etc.), specular reflection that can detect scratches and foreign matter on the front and back surfaces of the inspection object An image can be taken.
 ここで、前記第1同軸照明を第1の強さで照射する第1形態、前記第2同軸照明を前記第1の強さで照射する第2形態、前記第1同軸照明を第2の強さで照射する第3形態、の3つの照射パターンで前記第1同軸照明又は前記第2同軸照明を照射させ、かつ、前記第1形態の照射にあわせて前記第1撮像手段で画像を取得し、前記第2形態の照射にあわせて前記第2撮像手段で画像を取得し、前記第3形態の照射にあわせて前記第2撮像手段で画像を取得するように、前記第1撮像手段及び前記第2撮像手段を駆動する第2制御部を備えてもよい。これにより、被検査物を1回搬送する間に別々のタイミングで透過画像、正反射画像を撮影することができる。 Here, the first form in which the first coaxial illumination is irradiated with the first intensity, the second form in which the second coaxial illumination is applied with the first intensity, and the first coaxial illumination with the second intensity. Then, the first coaxial illumination or the second coaxial illumination is irradiated with the three irradiation patterns of the third form to be irradiated, and an image is acquired by the first imaging unit in accordance with the irradiation of the first form. The first imaging unit and the second imaging unit acquire an image in accordance with the irradiation of the second form, and acquire an image by the second imaging unit in accordance with the irradiation of the third form. You may provide the 2nd control part which drives a 2nd imaging means. Thereby, a transmission image and a regular reflection image can be taken at different timings while the inspection object is conveyed once.
 ここで、光軸が前記一次元撮像手段の光軸と一致するように、前記一次元撮像手段と前記載置部を挟んで反対側に設けられた第2撮像手段と、前記被検査物に法線方向から平行光を照射する第1同軸照明であって、前記一次元撮像手段の同軸照明である第1同軸照明と、前記第1同軸照明と前記載置部を挟んで反対側に設けられた第2同軸照明であって、前記第2撮像手段の同軸照明である第2同軸照明と、を備え、前記光照射部は、前記一次元撮像手段と前記搬送部との間に設けられ、前記一次元撮像手段には、前記光照射部又は前記第1同軸照明から照射され、前記被検査物で正反射した光が入射し、前記第2撮像手段には、前記第2同軸照明から照射され、前記被検査物で正反射した光、及び前記第1同軸照明から照射され、前記被検査物を透過した光が入射してもよい。これにより、被検査物の不透明な部分の欠陥を検出可能な透過画像、被検査物の表面や裏面の傷や異物等を検出可能な正反射画像をより少ない撮像手段で撮像することができる。 Here, the second imaging means provided on the opposite side across the mounting portion and the one-dimensional imaging means so that the optical axis coincides with the optical axis of the one-dimensional imaging means, and the inspection object 1st coaxial illumination which irradiates parallel light from a normal line direction, Comprising: The 1st coaxial illumination which is the coaxial illumination of the said one-dimensional imaging means, and the said 1st coaxial illumination and provided in the other side on both sides of the said mounting part A second coaxial illumination that is a coaxial illumination of the second imaging unit, and the light irradiation unit is provided between the one-dimensional imaging unit and the transport unit. The one-dimensional imaging means is irradiated with the light irradiated from the light irradiator or the first coaxial illumination and regularly reflected by the inspection object, and the second imaging means is supplied with the second coaxial illumination. Irradiated and specularly reflected by the object to be inspected, and irradiated from the first coaxial illumination,査物 may enter the light transmitted through the. Thereby, a transmission image that can detect a defect in an opaque portion of the inspection object, and a regular reflection image that can detect a scratch or a foreign object on the front and back surfaces of the inspection object can be captured with fewer imaging means.
 ここで、一定の速度で前記被検査物を搬送するように前記搬送部を制御し、前記第1同軸照明を第1の強さで照射する第1形態、前記第2同軸照明を前記第1の強さで照射する第2形態、前記第1同軸照明を第2の強さで照射する第3形態、の3つの照射パターンで前記第1同軸照明又は前記第2同軸照明を照射させ、かつ、前記第1形態の照射にあわせて前記一次元撮像手段で画像を取得し、前記第2形態の照射にあわせて前記第2撮像手段で画像を取得し、前記第3形態の照射にあわせて前記第2撮像手段で画像を取得するように、前記一次元撮像手段及び前記第2撮像手段を駆動する第3制御部を備えてもよい。これにより、被検査物を1回搬送する間に別々のタイミングで透過画像、正反射画像を撮影することができる。 Here, the transport unit is controlled so as to transport the inspection object at a constant speed, and the first coaxial illumination is irradiated with the first intensity at the first intensity, and the second coaxial illumination is the first. Irradiating the first coaxial illumination or the second coaxial illumination with three irradiation patterns of the second form irradiating with the intensity of the second, and the third form irradiating the first coaxial illumination with the second intensity, and The image is acquired by the one-dimensional imaging unit in accordance with the irradiation of the first form, the image is acquired by the second imaging unit in accordance with the irradiation of the second form, and is adjusted in accordance with the irradiation of the third form. You may provide the 3rd control part which drives the said one-dimensional imaging means and the said 2nd imaging means so that an image may be acquired with the said 2nd imaging means. Thereby, a transmission image and a regular reflection image can be taken at different timings while the inspection object is conveyed once.
 ここで、前記光照射部は、前記発光部に隣接して設けられ、前記発光部から照射された光を拡散する光拡散板を有してもよい。これにより、複数の発光部から照射された光を光拡散板で細長い面光源とし、被検査物に発光部の点状の光が映ってしまう不具合を防止することができる。 Here, the light irradiation unit may include a light diffusing plate that is provided adjacent to the light emitting unit and diffuses light emitted from the light emitting unit. Thereby, the light irradiated from the several light emission part can be made into an elongate surface light source with a light diffusing plate, and the malfunction that the dotted | punctate light of a light emission part is reflected on to-be-inspected object can be prevented.
 ここで、前記一次元撮像手段の焦点距離を調整する焦点距離調整用光学素子と、前記載置部に隣接して設けられた反射鏡と、を備え、前記焦点距離調整用光学素子及び前記反射鏡は、前記中心面上に設けられ、平面視において、前記一次元撮像手段の鉛直方向下側に、前記被検査物が載置される前記載置部上の領域である載置領域が位置し、平面視において、前記反射鏡は、前記搬送方向と略直交する方向において、前記載置領域の外側かつ前記載置領域に隣接する位置に設けられ、前記反射鏡の反射面は略平面であり、前記反射面は、前記中心面と交差する線が水平面に対して傾斜するように、前記搬送方向に略沿って延設され、前記焦点距離調整用光学素子は、前記一次元撮像手段と前記反射鏡とを結ぶ線と重なるように配置されてもよい。これにより、側面に部分的な円筒形状又は楕円筒形状を有するカバーガラスであっても、1回の検査で側面の欠陥についても検査することができる。つまり、被検査物の側面の像を反射鏡で反射して一次元撮像手段に導き、かつ、焦点距離調整用光学素子で一次元撮像手段の焦点距離を延ばすことで、被検査物の平面より下側にある側面に焦点を合わせることができる。 Here, a focal length adjustment optical element for adjusting a focal length of the one-dimensional imaging means, and a reflecting mirror provided adjacent to the mounting portion, the focal length adjustment optical element and the reflection are provided. The mirror is provided on the center plane, and in a plan view, a placement area that is an area on the placement portion on which the inspection object is placed is positioned below the one-dimensional imaging unit in the vertical direction. In plan view, the reflecting mirror is provided at a position outside the mounting area and adjacent to the mounting area in a direction substantially orthogonal to the transport direction, and the reflecting surface of the reflecting mirror is substantially flat. And the reflection surface extends substantially along the transport direction so that a line intersecting the center plane is inclined with respect to a horizontal plane, and the optical element for adjusting the focal length includes the one-dimensional imaging unit. Even if it is arranged to overlap the line connecting the reflector There. Thereby, even if it is a cover glass which has a partial cylindrical shape or elliptical cylindrical shape on the side surface, it is possible to inspect for defects on the side surface in one inspection. That is, the image of the side surface of the inspection object is reflected by the reflecting mirror and guided to the one-dimensional imaging means, and the focal length of the one-dimensional imaging means is extended by the optical element for adjusting the focal length. You can focus on the bottom side.
 ここで、前記焦点距離調整用光学素子は、ガラス板であり、板厚方向と略直交する両端面が水平となるように設けられてもよい。これにより、焦点距離調整用光学素子へ入射する過程、及び光が焦点距離調整用光学素子から出射する過程で光が屈折し、一次元撮像手段の焦点位置を延ばすことができる。 Here, the optical element for adjusting the focal length is a glass plate, and may be provided so that both end faces substantially orthogonal to the plate thickness direction are horizontal. Accordingly, light is refracted in the process of entering the focal length adjusting optical element and in the process of emitting the light from the focal length adjusting optical element, and the focal position of the one-dimensional imaging unit can be extended.
 ここで、前記一次元撮像手段を上下方向に移動させる移動部と、前記被検査物の高さを取得する高さ取得部と、前記高さ取得部が取得した情報に基づいて前記移動部を制御して、前記一次元撮像手段の下を通過する前記被検査物の高さ変化に合わせて前記一次元撮像手段を上下方向に移動させる移動制御部と、を備えてもよい。これにより、被検査物の高さが変化する場合であっても、焦点の合ったシャープな像を一次元撮像手段で撮像することができる。 Here, the moving unit that moves the one-dimensional imaging unit in the vertical direction, the height acquiring unit that acquires the height of the inspection object, and the moving unit based on the information acquired by the height acquiring unit A movement control unit that controls and moves the one-dimensional imaging unit in a vertical direction in accordance with a height change of the inspection object passing under the one-dimensional imaging unit. As a result, even when the height of the object to be inspected changes, a sharp image in focus can be picked up by the one-dimensional image pickup means.
 ここで、前記高さ取得部は、前記搬送方向と略直交する方向に光を照射する面光源と、前記面光源から照射され、前記被検査物を通過した光が入射する側面撮像手段と、を有してもよい。これにより、被検査物により光が遮られた部分は暗く、その他の部分は明るい影絵のような画像を側面撮像手段で撮像することで、被検査物の高さを正確に取得することができる。 Here, the height acquisition unit includes a surface light source that emits light in a direction substantially orthogonal to the transport direction, a side surface imaging unit that receives light that has been irradiated from the surface light source and passed through the inspection object, You may have. As a result, the height of the object to be inspected can be accurately obtained by capturing an image such as a shadow image in which the light is blocked by the object to be inspected and the other part being bright. .
 ここで、前記光照射部は、前記第2領域及び前記第3領域において、前記発光部が一列に並べられた発光ブロックと、前記発光部から照射された光が通過する第2シリンドリカルレンズと、を有し、前記第2領域及び前記第3領域においては、前記発光ブロックの延設方向は水平方向に対して傾いており、前記第2領域及び前記第3領域においては、前記発光ブロックの延設方向に対して、前記第2シリンドリカルレンズの延設方向が傾いていてもよい。これにより、第2領域及び第3領域から照射された光の焦点を被検査物にあわせることができる。また、第2領域、第3領域が第1領域を補うようにし、第1領域の帯状発光部が有する発光部の数を減らすことができる。 Here, the light irradiation unit includes a light emitting block in which the light emitting units are arranged in a row in the second region and the third region, a second cylindrical lens through which light emitted from the light emitting unit passes, In the second region and the third region, the extending direction of the light emitting block is inclined with respect to the horizontal direction, and in the second region and the third region, the light emitting block extends. The extending direction of the second cylindrical lens may be inclined with respect to the installation direction. Thereby, the focus of the light irradiated from the 2nd field and the 3rd field can be matched with a to-be-inspected object. In addition, the second region and the third region can supplement the first region, and the number of light emitting units included in the band-like light emitting unit in the first region can be reduced.
 ここで、前記光照射部は、熱伝導性の高い材料で形成された放熱部材を有し、前記発光部は、前記放熱部材に設けられてもよい。これにより、発光部から発生した熱を効率よく放熱することができる。 Here, the light irradiation unit may include a heat radiating member formed of a material having high thermal conductivity, and the light emitting unit may be provided on the heat radiating member. Thereby, the heat generated from the light emitting unit can be efficiently radiated.
 ここで、前記放熱部材に風を送る送風部を備え、前記放熱部材は、前記発光部が設けられたプレートを複数有し、前記プレートは、前記搬送方向と略直交する方向に延設されており、前記送風部は、前記プレートの延設方向に沿った向きの風を送ってもよい。これにより、放熱部材による冷却効果を向上させることができる。 Here, the heat dissipation member includes a blower that sends air to the heat dissipation member, and the heat dissipation member includes a plurality of plates on which the light emitting unit is provided, and the plate extends in a direction substantially orthogonal to the transport direction. And the said ventilation part may send the wind of the direction along the extending direction of the said plate. Thereby, the cooling effect by a heat radiating member can be improved.
 ここで、前記第2撮像手段は、前記載置部の下側に設けられ、前記第2撮像手段の上側には、円偏光フィルタが設けられ、前記円偏光フィルタは、厚さ方向と略直交する方向の平面が、前記第2撮像手段の光軸と略直交する方向に対して少し傾斜するように設けられていてもよい。これにより、載置部の下側に設けられた第2撮像手段の撮像レンズ表面で反射した光が、載置部の上側に設けられたカメラに入射し、このカメラで撮像された画像に明るい光の線が含まれないようにすることができる。 Here, the second imaging unit is provided below the placement unit, a circular polarizing filter is provided above the second imaging unit, and the circular polarizing filter is substantially orthogonal to the thickness direction. The plane in the direction to be inclined may be provided so as to be slightly inclined with respect to the direction substantially orthogonal to the optical axis of the second imaging means. Thereby, the light reflected by the surface of the imaging lens of the second imaging means provided on the lower side of the mounting unit is incident on the camera provided on the upper side of the mounting unit, and the image captured by this camera is bright. It is possible to prevent light lines from being included.
 本発明によれば、欠陥が非検査物の端面のどの位置にあったとしても、1つの装置かつ1回の検査で欠陥を検査することができる。 According to the present invention, the defect can be inspected with one apparatus and one inspection regardless of the position of the end face of the non-inspection object.
第1の実施の形態に係る光学検査装置1の概略を示す正面図である。It is a front view which shows the outline of the optical inspection apparatus 1 which concerns on 1st Embodiment. 立体照明部30の詳細を示す図である。3 is a diagram showing details of the three-dimensional illumination unit 30. FIG. 帯状発光部31aの詳細を示す模式図である。It is a schematic diagram which shows the detail of the strip | belt-shaped light emission part 31a. 第1領域31を含むように光学検査装置1をxz平面と平行な面で切断したときにおける、光学検査装置1の断面を模式的に示す図である。It is a figure which shows typically the cross section of the optical inspection apparatus 1 when the optical inspection apparatus 1 is cut | disconnected by the surface parallel to xz plane so that the 1st area | region 31 may be included. 立体照明部30の平面模式図である。3 is a schematic plan view of a three-dimensional illumination unit 30. FIG. 帯状発光部32aの詳細を示す模式図である。It is a schematic diagram which shows the detail of the strip | belt-shaped light emission part 32a. 光学検査装置1の電気的な構成を示すブロック図である。2 is a block diagram showing an electrical configuration of the optical inspection apparatus 1. FIG. 出力部73と、光学検査装置1の各構成との電気的な接続を説明するブロック図である。4 is a block diagram for explaining electrical connection between an output unit 73 and each component of the optical inspection apparatus 1. FIG. 出力部73から第1カメラ11、第2カメラ12及び同軸照明部20に出力される信号について説明する図である。It is a figure explaining the signal output to the 1st camera 11, the 2nd camera 12, and the coaxial illumination part 20 from the output part 73. FIG. 図9に示す処理におけるタイミングチャートである。10 is a timing chart in the process shown in FIG. 9. 出力部73から第3カメラ13及び立体照明部30に出力される信号について説明する図である。It is a figure explaining the signal output to the 3rd camera 13 and the three-dimensional illumination part 30 from the output part 73. FIG. 図11に示す信号出力と、立体照明部30で撮像される画像に含まれる欠陥との対応を示す図である。It is a figure which shows a response | compatibility with the signal output shown in FIG. 11, and the defect contained in the image imaged by the three-dimensional illumination part 30. FIG. カバーガラスGの端面における光の様子を示す図であり、光の経路を2点鎖線で示す。It is a figure which shows the mode of the light in the end surface of the cover glass G, and shows the path | route of light with a dashed-two dotted line. 図11に示す処理におけるタイミングチャートである。12 is a timing chart in the processing shown in FIG. 11. カバーガラスGの透過画像の一例である。It is an example of the transmission image of the cover glass G. カバーガラスGの正反射画像の一例である。It is an example of the regular reflection image of the cover glass G. カバーガラスGの先端のP内面における欠陥が光った画像(部分拡大図)の一例である。It is an example of the image (partial enlarged view) which the defect in the P inner surface of the front-end | tip of the cover glass G shined. カバーガラスGの印刷部の欠陥が他の印刷部より暗い画像(部分拡大図)の一例である。It is an example of the image (partial enlarged view) in which the defect of the printing part of the cover glass G is darker than another printing part. 変形例にかかる発光ブロック30b-1を模式的に示す図であり、(A)は側面図であり、(B)は(A)に示す状態を図における下方向から見た図であるIt is a figure which shows typically the light emission block 30b-1 concerning a modification, (A) is a side view, (B) is the figure which looked at the state shown to (A) from the downward direction in the figure. 第2の実施の形態に係る光学検査装置2の概略を示す正面図である。It is a front view which shows the outline of the optical inspection apparatus 2 which concerns on 2nd Embodiment. 撮像処理の順番と、第1カメラ11、第2カメラ12で撮像される画像との対応を示す図である。It is a figure which shows a response | compatibility with the order of an imaging process, and the image imaged with the 1st camera 11 and the 2nd camera 12. FIG. 第3の実施の形態に係る光学検査装置3の概略を示す正面図である。It is a front view which shows the outline of the optical inspection apparatus 3 which concerns on 3rd Embodiment. 光学検査装置3の一部を拡大表示した斜視図である。It is the perspective view which expanded and displayed a part of optical inspection apparatus 3. FIG. 光学検査装置3を中心面S1で切断した状態における概略構成を示す図である。It is a figure which shows schematic structure in the state which cut | disconnected the optical inspection apparatus 3 by center plane S1. カバーガラスG1の位置と第3カメラ13で撮像される画像との関係を示す図であり、(A)はカバーガラスG1の側面部分の拡大図であり、(B)は第3カメラ13で撮像される画像の一部を示す。It is a figure which shows the relationship between the position of the cover glass G1, and the image imaged with the 3rd camera 13, (A) is an enlarged view of the side part of the cover glass G1, (B) is imaged with the 3rd camera 13. A part of the image to be displayed is shown. カバーガラスG1の高さを測定する様子を模式的に示す図であり、搬送方向Fと略直交する方向から見た図である。It is a figure which shows a mode that the height of cover glass G1 is measured, and is the figure seen from the direction substantially orthogonal to the conveyance direction F. FIG. カバーガラスG1の高さを測定する様子を模式的に示す図であり、搬送方向Fに沿って見た図である。It is a figure which shows a mode that the height of cover glass G1 is measured, and is the figure seen along the conveyance direction F. FIG. 第3の実施の形態に係る光学検査装置が備える立体照明部30Aの概略を示す斜視図である。It is a perspective view which shows the outline of the three-dimensional illumination part 30A with which the optical inspection apparatus which concerns on 3rd Embodiment is provided. 帯状発光部31a-1の詳細を示す模式図である。FIG. 4 is a schematic diagram showing details of a band-shaped light emitting unit 31a-1. 帯状発光部32a-1の詳細を示す模式図である。FIG. 6 is a schematic diagram showing details of a band-shaped light emitting unit 32a-1. 立体照明部30Aから照射される光の経路について説明する図である。It is a figure explaining the path | route of the light irradiated from three-dimensional illumination part 30A. 第5の実施の形態に係る光学検査装置5の概略を示す正面図である。It is a front view which shows the outline of the optical inspection apparatus 5 which concerns on 5th Embodiment.
 以下、本発明の実施形態を、図面を参照して詳細に説明する。各図面において、同一の要素には同一の符号が付されており、重複する部分については説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same elements are denoted by the same reference numerals, and the description of overlapping parts is omitted.
 本発明は、被検査物である携帯端末等のカバーガラスGを検査する光学検査装置である。光学検査装置で撮像された画像に基づいて、カバーガラスGの端面や表面、裏面における傷、研磨ムラ等の欠陥や、カバーガラスGに印刷された部分の印刷ムラ、欠け等の欠陥が検査可能である。なお、本実施の形態においては、光学検査装置が携帯端末等のカバーガラスGを検査する形態を例示するが、光学検査装置が検査する被検査物はカバーガラスに限られない。 The present invention is an optical inspection apparatus for inspecting a cover glass G of a portable terminal or the like that is an object to be inspected. Based on the image captured by the optical inspection device, it is possible to inspect defects such as scratches and uneven polishing on the end surface, front surface, and back surface of the cover glass G, and defects such as uneven printing and chipping on the portion printed on the cover glass G. It is. In the present embodiment, an example in which the optical inspection apparatus inspects the cover glass G of the mobile terminal or the like is illustrated, but the inspection object inspected by the optical inspection apparatus is not limited to the cover glass.
 カバーガラスGは、全周が曲面となるように研磨されている。また、カバーガラスGの裏面には、部分的に印刷がされている。以下、周面の円弧形状の研磨面をポリッシュ面(以下、P面)という。また、カバーガラスGの印刷部分には、単色の有機塗料を塗布する単色印刷や、ベースカラーとなる単色顔料を塗布し、半透明の粒子を透明な二酸化チタン等で覆ったパール顔料を含む透明層を重ねて塗布するパール塗装が行なわれている。 The cover glass G is polished so that the entire circumference is a curved surface. Further, the back surface of the cover glass G is partially printed. Hereinafter, the circular arc-shaped polished surface of the peripheral surface is referred to as a polished surface (hereinafter referred to as P surface). In addition, the printed portion of the cover glass G is a monochromatic print in which a monochromatic organic paint is applied, or a transparent pigment containing a pearl pigment in which a monochromatic pigment as a base color is applied and translucent particles are covered with transparent titanium dioxide or the like. Pearl coating is applied in which layers are applied in layers.
 <第1の実施の形態>
 図1は、第1の実施の形態に係る光学検査装置1の概略を示す正面図である。光学検査装置1は、主として、撮像部10と、同軸照明部20と、立体照明部30と、載置部40と、搬送部50(図8参照)と、を有する。
<First Embodiment>
FIG. 1 is a front view showing an outline of an optical inspection apparatus 1 according to the first embodiment. The optical inspection apparatus 1 mainly includes an imaging unit 10, a coaxial illumination unit 20, a three-dimensional illumination unit 30, a placement unit 40, and a transport unit 50 (see FIG. 8).
 載置部40は、複数のローラ40aを有し、上側にはカバーガラスGが載置される。搬送部50は、載置部40に設けられたカバーガラスGを搬送方向F(ここでは、x方向)に移動させるものであり、例えばローラ40aを回転させるアクチュエータ(図示せず)等を有する。載置部40及び搬送部50は既に公知であるため、説明を省略する。 The mounting unit 40 includes a plurality of rollers 40a, and a cover glass G is mounted on the upper side. The conveyance part 50 moves the cover glass G provided in the mounting part 40 to the conveyance direction F (here, x direction), for example, has an actuator (not shown) etc. which rotate the roller 40a. Since the mounting part 40 and the conveyance part 50 are already well-known, description is abbreviate | omitted.
 撮像部10は、主として、第1カメラ11と、第2カメラ12と、第3カメラ13と、(本実施の形態においては、それぞれ本発明の第1撮像手段と、第2撮像手段と、一次元撮像手段と、に相当)を有する。第1カメラ11、第2カメラ12、第3カメラ13は、主として、撮像レンズ11a、12a、13aと、ラインCCD、CMOS等のラインセンサ11b、12b、13bと、を有する。ラインセンサ11b、12b、13bは、長手方向がカバーガラスGの搬送方向Fと略直交するように(すなわち、y方向に沿って)配置される。撮像部10は既に公知であるため、説明を省略する。 The imaging unit 10 mainly includes a first camera 11, a second camera 12, a third camera 13 (in the present embodiment, the first imaging unit, the second imaging unit, and the primary, respectively, of the present invention). Original imaging means). The first camera 11, the second camera 12, and the third camera 13 mainly include imaging lenses 11a, 12a, and 13a, and line sensors 11b, 12b, and 13b such as line CCD and CMOS. The line sensors 11b, 12b, and 13b are arranged so that the longitudinal direction is substantially orthogonal to the transport direction F of the cover glass G (that is, along the y direction). Since the imaging unit 10 is already known, a description thereof will be omitted.
 第1カメラ11は、載置部40の上側(+z側)に設けられ、カバーガラスGを略鉛直上向き(+z方向)から撮像する。第2カメラ12は、第1カメラ11と載置部40を挟んで反対側(載置部40の下側(-z側))に設けられ、カバーガラスGを略鉛直下向き(-z方向)から撮像する。第1カメラ11及び第2カメラ12は、光軸oaxが一致するように設けられる。 The first camera 11 is provided on the upper side (+ z side) of the placement unit 40, and images the cover glass G from substantially vertically upward (+ z direction). The second camera 12 is provided on the opposite side (the lower side (−z side) of the mounting unit 40) across the first camera 11 and the mounting unit 40, and the cover glass G faces substantially vertically downward (−z direction). Take an image from The first camera 11 and the second camera 12 are provided so that the optical axes oax coincide.
 第3カメラ13は、載置部40の上側(+z側)に設けられ、カバーガラスGを略鉛直上向きから撮像する。また、第3カメラ13は、第1カメラ11及び第2カメラ12と水平方向における位置(xy平面と平行な面における位置)が異なるように配置される。 The third camera 13 is provided on the upper side (+ z side) of the placement unit 40, and images the cover glass G from substantially vertically upward. The third camera 13 is arranged so that the position in the horizontal direction (position in a plane parallel to the xy plane) is different from that of the first camera 11 and the second camera 12.
 同軸照明部20は、第1カメラ11の同軸照明である上側同軸照明21と、第2カメラ12の同軸照明である下側同軸照明22と、を有する。上側同軸照明21及び下側同軸照明22は、いわゆるケーラー照明であり、カバーガラスGに法線方向(z方向)から平行光を照射する。上側同軸照明21及び下側同軸照明22は、光軸oaxが一致するように、載置部40を挟んで反対側(上側同軸照明21は載置部40の+z側、下側同軸照明22は載置部40の-z側)に設けられる。 The coaxial illumination unit 20 includes an upper coaxial illumination 21 that is the coaxial illumination of the first camera 11 and a lower coaxial illumination 22 that is the coaxial illumination of the second camera 12. The upper coaxial illumination 21 and the lower coaxial illumination 22 are so-called Koehler illuminations, and irradiate the cover glass G with parallel light from the normal direction (z direction). The upper coaxial illumination 21 and the lower coaxial illumination 22 are opposite to each other with the mounting portion 40 therebetween so that the optical axes oax coincide (the upper coaxial illumination 21 is the + z side of the mounting portion 40, and the lower coaxial illumination 22 is It is provided on the −z side of the mounting portion 40.
 上側同軸照明21及び下側同軸照明22の構成について説明する。上側同軸照明21及び下側同軸照明22は、それぞれ、光源21a、22aと、照度分布を均一化するガラス製のインテグレータ21b、22bと、集光レンズ21c、22cと、集光レンズ21c、22cの焦点と略一致する位置に設けられる絞り21d、22dと、光を平行光へ変換するコリメータレンズ21e、22eと、光路を曲げるミラー21f、22fと、平行直線状の溝を有し、光を直線上に集光させるフレネルレンズ21g、22gと、光路を曲げるハーフミラー21h、22hと、を有する。 The configuration of the upper coaxial illumination 21 and the lower coaxial illumination 22 will be described. The upper coaxial illumination 21 and the lower coaxial illumination 22 are the light sources 21a and 22a, the glass integrators 21b and 22b that uniformize the illuminance distribution, the condenser lenses 21c and 22c, and the condenser lenses 21c and 22c, respectively. Apertures 21d and 22d provided at positions substantially coincident with the focal point, collimator lenses 21e and 22e that convert light into parallel light, mirrors 21f and 22f that bend the optical path, and parallel linear grooves, and linearly align the light. It has Fresnel lenses 21g and 22g that condense on top, and half mirrors 21h and 22h that bend the optical path.
 光源21a、22aは、アルミニウム等の金属板に発光部材が面実装されている。金属板の背面には、放熱板(ヒートシンク)が設けられている。発光部材は、白色(例えば、色温度が5700K)のLEDであり、その照射角は120度程度である。 The light sources 21a and 22a have a light emitting member surface-mounted on a metal plate such as aluminum. A heat radiating plate (heat sink) is provided on the back surface of the metal plate. The light emitting member is a white LED (for example, a color temperature of 5700 K), and its irradiation angle is about 120 degrees.
 光源21a、22aとインテグレータ21b、22bとは隣接して設けられる。LEDからは比較的広域に光が照射されるため、一部の光はインテグレータ21b、22bに入射されず漏れ出てしまうが、大部分の光はインテグレータ21b、22bに入射されてカバーガラスGに照射される。 The light sources 21a and 22a and the integrators 21b and 22b are provided adjacent to each other. Since light is emitted from the LED in a relatively wide area, some light leaks without being incident on the integrators 21b and 22b, but most of the light is incident on the integrators 21b and 22b and enters the cover glass G. Irradiated.
 ハーフミラー21hは、第1カメラ11の光軸上に設けられる。したがって、ハーフミラー21hで反射された光は、カバーガラスGに対し垂直に照射され、カバーガラスGで正反射した光は第1カメラ11に入射する。また、ハーフミラー21hで反射された光は、カバーガラスGを透過し、第2カメラ12に入射する。 The half mirror 21 h is provided on the optical axis of the first camera 11. Therefore, the light reflected by the half mirror 21 h is irradiated perpendicularly to the cover glass G, and the light regularly reflected by the cover glass G enters the first camera 11. In addition, the light reflected by the half mirror 21 h passes through the cover glass G and enters the second camera 12.
 ハーフミラー22hは、第2カメラ12の光軸上に設けられる。したがって、ハーフミラー22hで反射された光は、カバーガラスGに対し垂直に照射され、カバーガラスGで正反射した光は第2カメラ12に入射する。 The half mirror 22h is provided on the optical axis of the second camera 12. Therefore, the light reflected by the half mirror 22h is irradiated perpendicularly to the cover glass G, and the light regularly reflected by the cover glass G enters the second camera 12.
 立体照明部30は、複数の方向からカバーガラスGへ光を照射する。立体照明部30から照射され、カバーガラスGで反射した光は、第3カメラ13に入射する。図2は、立体照明部30の詳細を示す図である。図2においては、第3カメラ13(撮像レンズ13a、ラインセンサ13b)を点線で示し、第3カメラ13の視野位置13c及び第3カメラ13への光の経路を2点鎖線で示す。 The three-dimensional illumination unit 30 irradiates light to the cover glass G from a plurality of directions. The light emitted from the three-dimensional illumination unit 30 and reflected by the cover glass G enters the third camera 13. FIG. 2 is a diagram illustrating details of the three-dimensional illumination unit 30. In FIG. 2, the third camera 13 (the imaging lens 13 a and the line sensor 13 b) is indicated by a dotted line, and the visual field position 13 c of the third camera 13 and the light path to the third camera 13 are indicated by a two-dot chain line.
 立体照明部30は、略半円筒面の第1領域31と、略半球面又は略半楕円球面の第2領域32及び第3領域33と、を有する。第2領域32及び第3領域33は、同形状であり、第1領域31の両端に配置される。 The three-dimensional illumination unit 30 includes a first region 31 having a substantially semi-cylindrical surface, and a second region 32 and a third region 33 having a substantially hemispherical surface or a substantially semi-elliptical spherical surface. The second region 32 and the third region 33 have the same shape and are disposed at both ends of the first region 31.
 第1領域31においては、略半円筒面上に発光部30aが設けられる。発光部30aは、光源21a、22aと同様であり、白色のLEDと、放熱部材と、を有する。第1領域31の中心軸axは、第3カメラ13を含む略鉛直方向の面である中心面S1上に位置する。 In the first region 31, the light emitting unit 30a is provided on a substantially semi-cylindrical surface. The light emitting unit 30a is similar to the light sources 21a and 22a, and includes a white LED and a heat dissipation member. The central axis ax of the first region 31 is located on the central plane S <b> 1 that is a substantially vertical plane including the third camera 13.
 第2領域32及び第3領域33においては、略半球面上又は略半楕円球面上に発光部30aが設けられる。第2領域32及び第3領域33の中心点は、中心面S1上に位置する。本実施の形態では、第2領域32及び第3領域33は略半球面であるが、第2領域32及び第3領域33の形状はこれに限られない。 In the second region 32 and the third region 33, the light emitting unit 30a is provided on a substantially hemispherical surface or a substantially semielliptical spherical surface. The center points of the second region 32 and the third region 33 are located on the center plane S1. In the present embodiment, the second region 32 and the third region 33 are substantially hemispherical surfaces, but the shape of the second region 32 and the third region 33 is not limited to this.
 第1領域31においては、第3カメラ13と載置部40との間、すなわち中心面S1の近傍以外の領域に、搬送方向Fと略直交する方向(すなわち、y方向)に沿って発光部30aが並べられている。y方向に沿って並べられた発光部30aを、帯状発光部31a、31b、31c、32d、31e、31f、31g・・・(後に詳述)とする。本実施の形態では、10本の帯状発光部31a~31j(図4参照)を有するが、帯状発光部の数はこれに限られない。 In the first region 31, the light emitting unit is disposed between the third camera 13 and the placement unit 40, that is, in a region other than the vicinity of the center plane S <b> 1 along a direction substantially orthogonal to the transport direction F (that is, the y direction). 30a are arranged. The light emitting sections 30a arranged along the y direction are assumed to be strip-shaped light emitting sections 31a, 31b, 31c, 32d, 31e, 31f, 31g (detailed later). In the present embodiment, the ten strip-shaped light emitting sections 31a to 31j (see FIG. 4) are provided, but the number of strip-shaped light emitting sections is not limited to this.
 図3は、帯状発光部31aの詳細を示す模式図である。帯状発光部31a~31jは同じ構成であるため、帯状発光部31aについてのみ説明し、帯状発光部31b~31jについては説明を省略する。 FIG. 3 is a schematic diagram showing details of the strip-shaped light emitting portion 31a. Since the belt-like light emitting portions 31a to 31j have the same configuration, only the belt-like light emitting portion 31a will be described, and the description of the belt-like light emitting portions 31b to 31j is omitted.
 帯状発光部31aは、全体の長さが3Lであり、長手方向の長さがLとなるように発光部30aが一列に並べられた発光ブロック30bを3個有する。 The belt-like light emitting portion 31a has a total length of 3L, and has three light emitting blocks 30b in which the light emitting portions 30a are arranged in a row so that the length in the longitudinal direction is L.
 発光部30aは、横幅wが3.4mm程度、長さhが3.4mm程度であり、隣接する発光部30a間の距離は略0.2mmである。本実施の形態では、発光ブロック30bの長さLが略50mmであるため、1つの発光ブロック30bに発光部30aが13個程度並べられる。これにより、帯状発光部31aからは、帯状(線状)の光が照射される。 The light emitting unit 30a has a lateral width w of about 3.4 mm and a length h of about 3.4 mm, and the distance between adjacent light emitting units 30a is about 0.2 mm. In the present embodiment, since the length L of the light emitting block 30b is approximately 50 mm, about 13 light emitting units 30a are arranged in one light emitting block 30b. Thereby, the strip-shaped (line-shaped) light is emitted from the strip-shaped light emitting portion 31a.
 なお、本実施の形態では、発光部30aとして白色LEDを用いるが、発光部30aに用いられるのは白色LEDに限られない。発光部30aには、例えば、青色又は紫外LEDと黄色蛍光体とを組み合わせたもの、赤緑青の3色チップを組み合わせたもの、青色LEDと赤色及び緑色蛍光剤とを組み合わせたもの、のいずれかを用いるようにしてもよい。 In the present embodiment, a white LED is used as the light emitting unit 30a, but the light emitting unit 30a is not limited to the white LED. The light emitting unit 30a is, for example, one of a combination of a blue or ultraviolet LED and a yellow phosphor, a combination of red, green and blue three-color chips, or a combination of a blue LED and red and green fluorescent agents. May be used.
 次に、立体照明部30における帯状発光部31a~31jの配置について説明する。図4は、第1領域31を含むように光学検査装置1をxz平面と平行な面で切断したときにおける、光学検査装置1の断面を模式的に示す図である。図4において、帯状発光部31a~31jから照射される光の経路を2点鎖線で示す。 Next, the arrangement of the strip light emitting units 31a to 31j in the three-dimensional illumination unit 30 will be described. FIG. 4 is a diagram schematically showing a cross section of the optical inspection apparatus 1 when the optical inspection apparatus 1 is cut along a plane parallel to the xz plane so as to include the first region 31. In FIG. 4, the path of light emitted from the band-like light emitting portions 31a to 31j is indicated by a two-dot chain line.
 第1領域31の中心軸axは、カバーガラスGの上面近傍に位置し、帯状発光部31a~31jは、中心軸axを中心とした半径Rの円周(図4における点線参照)上に設けられる。なお、カバーガラスGの厚さは微小であるため、カバーガラスGの上面の位置は、中心面S1と載置部40(図4では図示省略)の上面との交線と略一致する。半径Rは、帯状発光部31a~31jの長さ3Lと略同じである。 The central axis ax of the first region 31 is located in the vicinity of the upper surface of the cover glass G, and the belt-like light emitting portions 31a to 31j are provided on the circumference of the radius R centered on the central axis ax (see the dotted line in FIG. 4). It is done. In addition, since the thickness of the cover glass G is very small, the position of the upper surface of the cover glass G substantially coincides with the line of intersection between the center plane S1 and the upper surface of the mounting portion 40 (not shown in FIG. 4). The radius R is substantially the same as the length 3L of the band-like light emitting portions 31a to 31j.
 帯状発光部31a~31jは、光軸(図4における一点鎖線参照)が中心面S1と載置部40との交線(中心面S1とカバーガラスGとの交線)、すなわち中心軸axと交差するように設けられる。 In the belt-like light emitting portions 31a to 31j, the optical axis (see the alternate long and short dash line in FIG. 4) is an intersection line between the center plane S1 and the mounting portion 40 (intersection line between the center plane S1 and the cover glass G), that is, the center axis ax. Provided to intersect.
 帯状発光部31a~31eは、中心面S1より+x側に位置し、帯状発光部31f~31jは、中心面S1より-x側に位置する。 The band-like light emitting portions 31a to 31e are located on the + x side from the central plane S1, and the band-like light emitting portions 31f to 31j are located on the −x side from the central plane S1.
 帯状発光部31a、31fは、中心面S1に最も近い位置に設けられる。帯状発光部31a、31fの光軸と中心面S1とのなす角度θ1は略8度である。 The belt-like light emitting portions 31a and 31f are provided at positions closest to the center plane S1. An angle θ1 formed by the optical axis of the band-shaped light emitting portions 31a and 31f and the center plane S1 is approximately 8 degrees.
 帯状発光部31b、31gは、帯状発光部31a、31fの外側に、帯状発光部31a、31fに隣接して設けられる。帯状発光部31b、31gの光軸と中心面S1とのなす角度θ2は略17度である。 The strip-shaped light emitting portions 31b and 31g are provided outside the strip-shaped light emitting portions 31a and 31f and adjacent to the strip-shaped light emitting portions 31a and 31f. An angle θ2 formed by the optical axis of the band-shaped light emitting portions 31b and 31g and the center plane S1 is approximately 17 degrees.
 帯状発光部31c、31hは、帯状発光部31b、31gの外側に、帯状発光部31b、31gに隣接して設けられる。帯状発光部31c、31hの光軸と中心面S1とのなす角度θ3は略26度である。 The strip-shaped light emitting portions 31c and 31h are provided outside the strip-shaped light emitting portions 31b and 31g and adjacent to the strip-shaped light emitting portions 31b and 31g. An angle θ3 formed by the optical axis of the band-shaped light emitting portions 31c and 31h and the center plane S1 is approximately 26 degrees.
 帯状発光部31d、31iは、帯状発光部31c、31hの外側に、帯状発光部31c、31hに隣接して設けられる。帯状発光部31d、31iの光軸と中心面S1とのなす角度θ4は略35度である。 The strip-shaped light emitting portions 31d and 31i are provided outside the strip-shaped light emitting portions 31c and 31h and adjacent to the strip-shaped light emitting portions 31c and 31h. An angle θ4 formed by the optical axis of the band-shaped light emitting portions 31d and 31i and the center plane S1 is approximately 35 degrees.
 帯状発光部31e、31jは、帯状発光部31d、31iの外側に、帯状発光部31d、31iに隣接して設けられる。帯状発光部31e、31jの光軸と中心面S1とのなす角度θ5は略44度である。 The strip light emitting portions 31e and 31j are provided outside the strip light emitting portions 31d and 31i and adjacent to the strip light emitting portions 31d and 31i. An angle θ5 formed by the optical axis of the belt-like light emitting portions 31e and 31j and the center plane S1 is approximately 44 degrees.
 帯状発光部31a~31jは、光軸上に設けられたシリンドリカルレンズ30cを有する。シリンドリカルレンズ30cは、例えばアクリル製の棒材を中心軸に沿って切断し、切断面を磨くことにより形成される。シリンドリカルレンズ30cは、発光部30aと中心軸axとの間に設けられ、発光部30aから照射された光を中心軸ax近傍に集光する。 The belt-like light emitting portions 31a to 31j have a cylindrical lens 30c provided on the optical axis. The cylindrical lens 30c is formed by, for example, cutting an acrylic bar along the central axis and polishing the cut surface. The cylindrical lens 30c is provided between the light emitting unit 30a and the central axis ax, and condenses light emitted from the light emitting unit 30a in the vicinity of the central axis ax.
 図5は、立体照明部30の平面模式図である。図5においては、第3カメラ13の視野位置13cを点線で示す。また、図5においては、発光ブロック30d(後に詳述)を破線で示す。 FIG. 5 is a schematic plan view of the three-dimensional illumination unit 30. In FIG. 5, the visual field position 13c of the third camera 13 is indicated by a dotted line. In FIG. 5, the light emitting block 30 d (detailed later) is indicated by a broken line.
 第2領域32及び第3領域33は、発光部30aが一列に並べられた帯状発光部32a~32i、33a~33iを有する。なお、本実施の形態では、各9本の帯状発光部32a~32i、33a~33iを有するが、帯状発光部の数はこれに限られない。 The second region 32 and the third region 33 have strip-like light emitting portions 32a to 32i and 33a to 33i in which the light emitting portions 30a are arranged in a line. In the present embodiment, each of the nine strip-like light emitting portions 32a to 32i and 33a to 33i is provided, but the number of the strip-like light emitting portions is not limited to this.
 帯状発光部32a、33aは、中心面S1上に設けられる。帯状発光部32b~32e、33b~33eは、それぞれ帯状発光部31a~31dの延長線上に設けられる。帯状発光部32f~32i、33f~33iは、それぞれ帯状発光部31f~31iの延長線上に設けられる。 The strip-like light emitting portions 32a and 33a are provided on the center plane S1. The strip-shaped light emitting portions 32b to 32e and 33b to 33e are provided on the extended lines of the strip-shaped light emitting portions 31a to 31d, respectively. The strip-shaped light emitting portions 32f to 32i and 33f to 33i are provided on the extended lines of the strip-shaped light emitting portions 31f to 31i, respectively.
 図6は、帯状発光部32aの詳細を示す模式図である。帯状発光部32a~32i、33a~33iは略同様の構成であるため、帯状発光部32aについてのみ説明し、帯状発光部32b~32i、33a~33iについては説明を省略する。 FIG. 6 is a schematic diagram showing details of the band-like light emitting part 32a. Since the belt-like light emitting portions 32a to 32i and 33a to 33i have substantially the same configuration, only the belt-like light emitting portion 32a will be described, and description of the belt-like light emitting portions 32b to 32i and 33a to 33i will be omitted.
 帯状発光部32aは、発光部30aが一列に並べられた発光ブロック30dを複数有する。本実施の形態では、発光ブロック30dの長さlが略18.5mmであり、隣接する発光部30a間の距離は略0.2mmであるため、1つの発光ブロック30dに発光部30aが5個程度並べられる。発光ブロック30dは、発光部30aが半径Rの略円筒面上(図6点線参照)に位置するように、隣接して並べられる。 The strip-shaped light emitting unit 32a includes a plurality of light emitting blocks 30d in which the light emitting units 30a are arranged in a line. In the present embodiment, since the length l of the light emitting block 30d is approximately 18.5 mm and the distance between the adjacent light emitting units 30a is approximately 0.2 mm, five light emitting units 30a are included in one light emitting block 30d. About to be arranged. The light emitting blocks 30d are arranged adjacent to each other so that the light emitting portion 30a is positioned on a substantially cylindrical surface having a radius R (see the dotted line in FIG. 6).
 図5の説明に戻る。帯状発光部32a~32c、32f、32g、33a~33c、33f、33gにおける発光ブロック30dの数は5個であり、帯状発光部32d、32h、33d、33hにおける発光ブロック30dの数は4個であり、帯状発光部32e、32i、33e、33iにおける発光ブロック30dの数は2個であるが、帯状発光部32a~32i、33a~33iにおける発光ブロック30dの数はこれに限られない。 Returning to the explanation of FIG. The number of light emitting blocks 30d in the belt-like light emitting portions 32a to 32c, 32f, 32g, 33a to 33c, 33f, and 33g is five, and the number of light emitting blocks 30d in the belt-like light emitting portions 32d, 32h, 33d, and 33h is four. Yes, the number of light emitting blocks 30d in the band-like light emitting units 32e, 32i, 33e, 33i is two, but the number of light emitting blocks 30d in the band-like light emitting units 32a to 32i, 33a to 33i is not limited to this.
 帯状発光部32a、33aにおける各発光ブロック30dの光軸は、第2領域32、第3領域33の中心点O2、O3に向いている。帯状発光部32b~32i、33a~33iにおける各発光ブロック30dの光軸は、第1領域31の中心点O1に向いている。ただし、帯状発光部32a~32i、33a~33iにおける各発光ブロック30dの光軸の向きは、図5に示す形態に限定されない。 The optical axis of each light-emitting block 30d in the strip-shaped light-emitting portions 32a and 33a faces the center points O2 and O3 of the second region 32 and the third region 33. The optical axis of each light emitting block 30d in the band-like light emitting portions 32b to 32i and 33a to 33i is directed to the center point O1 of the first region 31. However, the direction of the optical axis of each light-emitting block 30d in the strip-shaped light-emitting portions 32a to 32i and 33a to 33i is not limited to the form shown in FIG.
 図7は、光学検査装置1の電気的な構成を示すブロック図である。光学検査装置1は、集積回路71と、入力部72と、出力部73と、電源部74と、通信インターフェース(I/F)75と、を有する。 FIG. 7 is a block diagram showing an electrical configuration of the optical inspection apparatus 1. The optical inspection apparatus 1 includes an integrated circuit 71, an input unit 72, an output unit 73, a power supply unit 74, and a communication interface (I / F) 75.
 集積回路71は、例えばFPGA(Field-programmable gate array)であり、プログラムに基づいて動作し、各部の制御を行う。集積回路71は、光学検査装置1の各部を制御する制御部(本発明の制御部、第2制御部を含む)の機能を有する。具体的には、集積回路71は、入力部72、出力部73等から信号を取得し、取得した信号に基づいて出力部73から出力する信号を生成する。本実施の形態では、集積回路71であるFPGAに各機能を実現するプログラムが格納されているが、集積回路71はFPGAに限られないし、プログラムの実行方法もこれに限られない。 The integrated circuit 71 is, for example, a field-programmable gate array (FPGA), and operates based on a program to control each unit. The integrated circuit 71 has a function of a control unit (including the control unit and the second control unit of the present invention) that controls each unit of the optical inspection apparatus 1. Specifically, the integrated circuit 71 acquires signals from the input unit 72, the output unit 73, and the like, and generates a signal to be output from the output unit 73 based on the acquired signals. In the present embodiment, the FPGA that is the integrated circuit 71 stores a program for realizing each function. However, the integrated circuit 71 is not limited to the FPGA, and the execution method of the program is not limited to this.
 入力部72には、位置検出センサ81、82等の各種センサから信号が入力される。入力部72は、出力部73の各チャンネルの出力モード設定、撮像部10の撮像周波数の設定等を行なうスイッチを有する。 The input unit 72 receives signals from various sensors such as the position detection sensors 81 and 82. The input unit 72 includes switches for setting the output mode of each channel of the output unit 73, setting the imaging frequency of the imaging unit 10, and the like.
 出力部73は、複数のチャンネルを有し、撮像部10、同軸照明部20、立体照明部30等に異なるチャンネルから出力を行なう。例えば、出力部73は、駆動モータパルスを搬送部50へ出力し、水平同期信号及び垂直同期信号等を撮像部10へ出力する。また、出力部73は、通信エラー、タイムアウト等のエラー表示、カバーガラスGの走行中、撮像部10のキャプチャー待機中、同軸照明部20や立体照明部30の照明中等を示すLED、7セグメントディスプレイ等の表示素子を有する。 The output unit 73 has a plurality of channels, and outputs from different channels to the imaging unit 10, the coaxial illumination unit 20, the stereoscopic illumination unit 30, and the like. For example, the output unit 73 outputs a drive motor pulse to the transport unit 50 and outputs a horizontal synchronization signal, a vertical synchronization signal, and the like to the imaging unit 10. In addition, the output unit 73 is an LED that indicates an error display such as a communication error or a timeout, the cover glass G is running, the capture unit 10 is waiting for capture, the coaxial illumination unit 20 or the three-dimensional illumination unit 30 is illuminating, or the like. And the like.
 図8は、出力部73と、光学検査装置1の各構成との電気的な接続を説明するブロック図である。出力部73は、撮像部10(第1カメラ11、第2カメラ12及び第3カメラ13)と、同軸照明部20(上側同軸照明21及び下側同軸照明22)と、立体照明部30(帯状発光部31a~31j、32a~32i、33a~33i)と、搬送部50と、に信号を出力する。 FIG. 8 is a block diagram illustrating the electrical connection between the output unit 73 and each component of the optical inspection apparatus 1. The output unit 73 includes an imaging unit 10 (first camera 11, second camera 12, and third camera 13), a coaxial illumination unit 20 (upper coaxial illumination 21 and lower coaxial illumination 22), and a three-dimensional illumination unit 30 (band-shaped). Signals are output to the light emitting units 31a to 31j, 32a to 32i, 33a to 33i) and the transport unit 50.
 出力部73から出力される信号は、通信I/F75を介してパーソナルコンピュータ(PC)100から入力される水平同期信号等に基づいて集積回路71で生成される。 The signal output from the output unit 73 is generated by the integrated circuit 71 based on a horizontal synchronization signal or the like input from the personal computer (PC) 100 via the communication I / F 75.
 図7の説明に戻る。電源部74は、例えばAC100Vの電圧が入力されるものであり、必要な電圧に変換するスイッチング電源を内部に含む。電源部74は、同軸照明部20や立体照明部30に電力を供給する。 Returning to the explanation of FIG. The power supply unit 74 receives, for example, a voltage of 100 VAC and includes a switching power supply that converts the voltage into a necessary voltage. The power supply unit 74 supplies power to the coaxial illumination unit 20 and the three-dimensional illumination unit 30.
 通信I/F75は、外部機器からデータを受信して集積回路71に送信すると共に、集積回路71が生成したデータを他の機器に送信する。また、通信I/F75は、集積回路71のプログラミング、デバッグを行うためのコネクタを有する。通信I/F75は、PC100から、水平同期信号及び垂直同期信号、駆動モータスタート信号等を取得し、集積回路71に出力する。また、通信I/F75は、PC100等に撮像部10が撮像した画像データを出力する。 The communication I / F 75 receives data from an external device and transmits the data to the integrated circuit 71, and transmits data generated by the integrated circuit 71 to other devices. The communication I / F 75 has a connector for programming and debugging the integrated circuit 71. The communication I / F 75 acquires a horizontal synchronization signal, a vertical synchronization signal, a drive motor start signal, and the like from the PC 100 and outputs them to the integrated circuit 71. The communication I / F 75 outputs image data captured by the imaging unit 10 to the PC 100 or the like.
 位置検出センサ81、82は、カバーガラスGの位置を検出する。位置検出センサ81は、カバーガラスGが第1カメラ11及び第2カメラ12の下に搬送されたこと及び第1カメラ11及び第2カメラ12の下を通過し終わったことを検出する。位置検出センサ82は、カバーガラスGが第3カメラ13の下に搬送されたこと及び第3カメラ13の下を通過し終わったことを検出する。 Position detection sensors 81 and 82 detect the position of the cover glass G. The position detection sensor 81 detects that the cover glass G has been transported under the first camera 11 and the second camera 12 and has passed under the first camera 11 and the second camera 12. The position detection sensor 82 detects that the cover glass G has been transported under the third camera 13 and has passed under the third camera 13.
 PC100は、CPU(Central Processing Unit)101と、RAM(Random Access Memory)102と、ROM(Read Only Memory)103と、入出力インターフェース(I/F)104と、通信インターフェース(I/F)105と、メディアインターフェース(I/F)106と、を有する。 The PC 100 includes a central processing unit (CPU) 101, a random access memory (RAM) 102, a read only memory (ROM) 103, an input / output interface (I / F) 104, a communication interface (I / F) 105, and the like. A media interface (I / F) 106.
 CPU101は、RAM102、ROM103に格納されたプログラムに基づいて動作し、各部の制御を行う。CPU101から出力された信号は、通信I/F105を介して光学検査装置1に出力される。 The CPU 101 operates based on programs stored in the RAM 102 and the ROM 103, and controls each unit. A signal output from the CPU 101 is output to the optical inspection apparatus 1 via the communication I / F 105.
 RAM102は、揮発性メモリである。RAM102は、CPU101が実行するプログラム及びCPU101が使用するデータなどを格納する。ROM103は、各種制御プログラム等が記憶されている不揮発性メモリである。CPU101は、RAM102、ROM103に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM103は、PC100の起動時にCPU101が行うブートプログラムや、PC100のハードウェアに依存するプログラムなどを格納する。 The RAM 102 is a volatile memory. The RAM 102 stores programs executed by the CPU 101, data used by the CPU 101, and the like. The ROM 103 is a non-volatile memory that stores various control programs and the like. The CPU 101 operates based on programs stored in the RAM 102 and the ROM 103, and controls each unit. The ROM 103 stores a boot program executed by the CPU 101 when the PC 100 is started up, a program depending on the hardware of the PC 100, and the like.
 CPU101は、入出力I/F104を介して、キーボードやマウス等の入力装置111や、表示装置等の出力装置112を制御する。CPU101は、通信I/F105を介して、ネットワーク等を介して光学検査装置1や他の機器からデータを取得すると共に、生成したデータを光学検査装置1に出力する。 The CPU 101 controls the input device 111 such as a keyboard and a mouse and the output device 112 such as a display device via the input / output I / F 104. The CPU 101 acquires data from the optical inspection apparatus 1 and other devices via a network or the like via the communication I / F 105 and outputs the generated data to the optical inspection apparatus 1.
 CPU101は、入力装置111からの入力に基づいて、出力部73のチャンネルの出力設定、集積回路71における点灯信号出力の順番、処理のループ設定、カバーガラスGのエッジ検出から撮像開始までのカバーガラスGの移動距離(空走距離)の設定等、各種設定を行い、これらの設定データを生成する。通信I/F105は、CPU101が生成した設定データを光学検査装置1に出力する。また、CPU101は、撮像部10で撮像された画像を光学検査装置1から取得し、検査用の画像を生成する。画像生成処理の詳細は後に詳述する。 Based on the input from the input device 111, the CPU 101 sets the output of the channel of the output unit 73, the order of output of the lighting signal in the integrated circuit 71, the loop setting of the processing, the cover glass G from the edge detection to the start of imaging. Various settings such as setting of the G travel distance (idle travel distance) are performed, and these setting data are generated. The communication I / F 105 outputs the setting data generated by the CPU 101 to the optical inspection device 1. In addition, the CPU 101 acquires an image captured by the imaging unit 10 from the optical inspection device 1 and generates an image for inspection. Details of the image generation process will be described later.
 メディアI/F106は、記憶媒体113に格納されたプログラム又はデータを読み取り、RAM102に格納する。なお、記憶媒体113は、例えば、ICカード、SDカード、DVD等である。 The media I / F 106 reads the program or data stored in the storage medium 113 and stores it in the RAM 102. Note that the storage medium 113 is, for example, an IC card, an SD card, a DVD, or the like.
 なお、各機能を実現するプログラムは、例えば、記憶媒体113から読み出されて、RAM102を介して光学検査装置1にインストールされ、CPU101によって実行される。 In addition, the program which implement | achieves each function is read from the storage medium 113, for example, is installed in the optical inspection apparatus 1 via RAM102, and is performed by CPU101.
 図7に示す光学検査装置1及びPC100の構成は、本実施形態の特徴を説明するにあたって主要構成を説明したのであって、例えば一般的な情報処理装置が備える構成を排除するものではない。光学検査装置1の構成要素は、処理内容に応じてさらに多くの構成要素に分類されてもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。また、図7においては、光学検査装置1とPC100とを別の装置としたが、PC100の構成要素が光学検査装置1に含まれていてもよい。 The configurations of the optical inspection apparatus 1 and the PC 100 illustrated in FIG. 7 are the main configurations for describing the features of the present embodiment, and do not exclude, for example, configurations included in a general information processing apparatus. The constituent elements of the optical inspection apparatus 1 may be classified into more constituent elements according to the processing content, or one constituent element may execute processing of a plurality of constituent elements. In FIG. 7, the optical inspection apparatus 1 and the PC 100 are separate apparatuses, but the components of the PC 100 may be included in the optical inspection apparatus 1.
 このように構成された光学検査装置1で行う処理について説明する。以下の処理は、主として集積回路71で行なわれる。 Processing performed by the optical inspection apparatus 1 configured as described above will be described. The following processing is mainly performed in the integrated circuit 71.
 集積回路71は載置部40のローラ40aを駆動する駆動モータパルスを生成し、出力部73はこれを搬送部50に出力する。これにより、カバーガラスGが載置部40の上を搬送方向Fに沿って一定の速度で移動する。 The integrated circuit 71 generates a drive motor pulse for driving the roller 40 a of the placement unit 40, and the output unit 73 outputs this to the transport unit 50. Thereby, the cover glass G moves on the mounting part 40 along the conveyance direction F at a constant speed.
 位置検出センサ81からカバーガラスGが第1カメラ11、第2カメラ12の下に搬送されたことが検出されると、検出信号が位置検出センサ81から入力部72を介して集積回路71に入力される。この検出信号が入力されたら、集積回路71は、透過画像、正反射画像を第1カメラ11及び第2カメラ12で撮像する処理を開始する。以下、透過画像、正反射画像を撮像する処理について、図9、10を用いて説明する。 When it is detected from the position detection sensor 81 that the cover glass G has been conveyed under the first camera 11 and the second camera 12, a detection signal is input from the position detection sensor 81 to the integrated circuit 71 via the input unit 72. Is done. When this detection signal is input, the integrated circuit 71 starts processing for capturing a transmission image and a regular reflection image with the first camera 11 and the second camera 12. Hereinafter, processing for capturing a transmission image and a regular reflection image will be described with reference to FIGS.
 <透過画像、正反射画像を撮像する処理>
 図9は、出力部73から第1カメラ11、第2カメラ12及び同軸照明部20に出力される信号について説明する図である。チャンネル(以下、chという)は、出力部73が有するチャンネルの一部であり、ch1~3は上側同軸照明21への出力であり、ch4~6は下側同軸照明22への出力である。ROOPは、繰り返し処理を示す信号であり、集積回路71へ出力される。なお、図9のch1~6に記載された数値は、上側同軸照明21、下側同軸照明22を照射する時間であり、単位はμsec(マイクロ秒)である。
<Process for capturing a transmission image and a regular reflection image>
FIG. 9 is a diagram illustrating signals output from the output unit 73 to the first camera 11, the second camera 12, and the coaxial illumination unit 20. Channels (hereinafter referred to as “ch”) are a part of channels of the output unit 73, ch 1 to 3 are outputs to the upper coaxial illumination 21, and ch 4 to 6 are outputs to the lower coaxial illumination 22. ROOP is a signal indicating repetitive processing and is output to the integrated circuit 71. Note that the numerical values described in ch1 to ch6 in FIG. 9 are times for irradiating the upper coaxial illumination 21 and the lower coaxial illumination 22, and the unit is μsec (microseconds).
 図10は、図9に示す処理におけるタイミングチャートである。撮像信号は、第1カメラ11及び第2カメラ12を駆動する信号であり、一定の周期で入力される水平同期信号に基づいて集積回路71において生成される。本実施の形態では、撮像信号の周波数が3kHzであり、撮像信号の間隔Tは略330μsecである。撮像信号は、撮像期間T1はHigh、ブランキング期間T2がLowとなる信号であり、撮像期間T1を調整することにより第1カメラ11や第2カメラ12の光量(撮像される画像の明るさ)を調整する。同軸照明用信号は、撮像信号に同期して生成される。本実施の形態では、撮像期間T1を300μsecとするが、撮像期間T1はこれに限られない。 FIG. 10 is a timing chart in the process shown in FIG. The imaging signal is a signal for driving the first camera 11 and the second camera 12, and is generated in the integrated circuit 71 based on a horizontal synchronization signal input at a constant period. In the present embodiment, the frequency of the imaging signal is 3 kHz, and the interval T of the imaging signal is approximately 330 μsec. The imaging signal is a signal in which the imaging period T1 is High and the blanking period T2 is Low. By adjusting the imaging period T1, the light amount of the first camera 11 and the second camera 12 (brightness of the image to be captured). Adjust. The coaxial illumination signal is generated in synchronization with the imaging signal. In the present embodiment, the imaging period T1 is 300 μsec, but the imaging period T1 is not limited to this.
 以下、図9、10に示す順番1~3の処理について詳しく説明する。
 (順番1)集積回路71は、上側同軸照明21を5μsecで照射させる信号を生成し、出力部73はこの信号を上側同軸照明21に出力する。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第2カメラ12に出力する。これにより、第2カメラ12にはカバーガラスGを透過した光が入射し、第2カメラ12で透過画像が撮像される。透過画像では、不透明な部分の欠陥、例えば印刷部分の傷、印刷エッジの欠け等を検出することができる。
In the following, the processing in order 1 to 3 shown in FIGS. 9 and 10 will be described in detail.
(Order 1) The integrated circuit 71 generates a signal for irradiating the upper coaxial illumination 21 at 5 μsec, and the output unit 73 outputs this signal to the upper coaxial illumination 21. At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs it to the second camera 12. As a result, light transmitted through the cover glass G enters the second camera 12, and a transmitted image is captured by the second camera 12. In the transmission image, it is possible to detect a defect in an opaque portion, for example, a scratch on a printed portion, a lack of a printed edge, or the like.
 順番1において、上側同軸照明21を照射させる信号は、撮像信号がHighとなるのと同時にHighとなり、5μsec経過後にLowとなる。上側同軸照明21を照射する5μsecという時間は、撮像期間を300μsecに比べて非常に短い。ガラスにおいては、4%程度の光が反射し、残りの96%程度の光が透過する。したがって、上側同軸照明21を照射する時間を短くすることで、適切な明るさの透過画像を撮像することができる。 In order 1, the signal for irradiating the upper coaxial illumination 21 becomes High at the same time as the imaging signal becomes High, and becomes Low after 5 μsec. The time of 5 μsec for irradiating the upper coaxial illumination 21 is much shorter than the imaging period of 300 μsec. In glass, about 4% of light is reflected and the remaining 96% of light is transmitted. Therefore, a transmission image with appropriate brightness can be taken by shortening the time for irradiating the upper coaxial illumination 21.
 なお、順番1においては、上側同軸照明21を5μsecで照射し、第2カメラ12で透過画像を撮像したが、下側同軸照明22を5μsecで照射し、第1カメラ11で透過画像を撮像してもよい。 In order 1, the upper coaxial illumination 21 was irradiated at 5 μsec and the transmission image was captured by the second camera 12, but the lower coaxial illumination 22 was irradiated at 5 μsec and the transmission image was captured by the first camera 11. May be.
 (順番2)集積回路71は、上側同軸照明21を100μsecで照射させる信号を生成し、出力部73はこの信号を上側同軸照明21に出力する。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第1カメラ11に出力する。これにより、第1カメラ11にはカバーガラスGの表面で正反射した光が入射し、第1カメラ11で正反射画像が撮像される。 (Order 2) The integrated circuit 71 generates a signal for irradiating the upper coaxial illumination 21 at 100 μsec, and the output unit 73 outputs this signal to the upper coaxial illumination 21. At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the first camera 11. As a result, the light regularly reflected by the surface of the cover glass G enters the first camera 11, and a regular reflection image is captured by the first camera 11.
 上側同軸照明21からはカバーガラスGに垂直方向から光を照射する。したがって、カバーガラスGの表面の傷、異物等が無い部分は、光が正反射して第1カメラ11に入射するため、撮像された画像において明るく写る。それに対し、カバーガラスGの表面に傷や異物等がある部分は、光が乱反射して第1カメラ11に入射しないため、撮像された画像において暗く写る。このようにして、カバーガラスGの表面の傷や異物等を検出することができる。なお、正反射光で表面の傷や異物等を検出するのは、鏡面など反射率が高いものにのみ有効である。 The upper coaxial illumination 21 irradiates light to the cover glass G from the vertical direction. Therefore, a portion where there is no scratch or foreign matter on the surface of the cover glass G is reflected brightly in the captured image because the light is regularly reflected and enters the first camera 11. On the other hand, the portion where the surface of the cover glass G has scratches, foreign matters, etc. is reflected darkly in the captured image because the light is irregularly reflected and does not enter the first camera 11. In this way, scratches, foreign matters, etc. on the surface of the cover glass G can be detected. It should be noted that the detection of surface scratches, foreign matters, and the like with specularly reflected light is effective only for high reflectance such as mirror surfaces.
 (順番3)集積回路71は、下側同軸照明22を100μsecで照射させる信号を生成し、出力部73はこの信号を下側同軸照明22に出力する。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第2カメラ12に出力する。これにより、第2カメラ12にはカバーガラスGの裏面で正反射した光が入射し、第2カメラ12で反射画像が撮像される。このようにして、カバーガラスGの裏面の傷や異物等を検出することができる。 (Order 3) The integrated circuit 71 generates a signal for irradiating the lower coaxial illumination 22 at 100 μsec, and the output unit 73 outputs this signal to the lower coaxial illumination 22. At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs it to the second camera 12. Thereby, the light regularly reflected by the back surface of the cover glass G enters the second camera 12, and a reflected image is captured by the second camera 12. In this way, scratches, foreign matters, etc. on the back surface of the cover glass G can be detected.
 また、集積回路71は、順番3の出力を行なうと同時に繰り返し処理を示す信号を生成する。出力部73は、下側同軸照明22へ信号を出力するのと同時に、繰り返し処理を示す信号を集積回路71に出力する。集積回路71は、繰り返し処理を示す信号を受けて、処理を最初に戻し、順番1~3に示す信号を順番に出力する処理を繰り返す。 In addition, the integrated circuit 71 generates a signal indicating repetition processing at the same time as performing output in order 3. The output unit 73 outputs a signal indicating repetition processing to the integrated circuit 71 simultaneously with outputting a signal to the lower coaxial illumination 22. The integrated circuit 71 receives the signal indicating the repetition process, returns the process to the beginning, and repeats the process of sequentially outputting the signals shown in the order 1 to 3.
 順番2、3において、上側同軸照明21や下側同軸照明22を照射させる信号は、撮像信号がHighとなるのと同時にHighとなり、100μsec経過後にLowとなる。順番2で上側同軸照明21、順番3で下側同軸照明22を照射する100μsecという時間は、撮像期間T1(300μsec)の1/3程度であり、順番1における照射時間(5μsec)に比べて大幅に長い。このように、正反射画像を撮像するときは上側同軸照明21や下側同軸照明22を照射する時間を長くすることで、適切な明るさの反射画像を撮像することができる。 In order 2 and 3, the signal for irradiating the upper coaxial illumination 21 and the lower coaxial illumination 22 becomes High at the same time as the imaging signal becomes High, and becomes Low after 100 μsec has elapsed. The time of 100 μsec for irradiating the upper coaxial illumination 21 in order 2 and the lower coaxial illumination 22 in order 3 is about 1/3 of the imaging period T1 (300 μsec), which is significantly larger than the irradiation time in order 1 (5 μsec). Long. As described above, when capturing a regular reflection image, it is possible to capture a reflection image with appropriate brightness by increasing the time for irradiating the upper coaxial illumination 21 and the lower coaxial illumination 22.
 集積回路71は、上記順番1~3の照射パターンの信号出力と同時に、出力部73を介して搬送部50に駆動モータパルスを出力する。これにより、載置部40上でカバーガラスGを一定の速度で搬送してカバーガラスGと第1カメラ11、第2カメラ12との位置を相対的に変化させながら、第1カメラ11又は第2カメラ12で撮像が行なわれる。 The integrated circuit 71 outputs a drive motor pulse to the transport unit 50 via the output unit 73 simultaneously with the signal output of the irradiation patterns in the order 1 to 3 described above. As a result, the cover glass G is transported at a constant speed on the mounting portion 40 and the positions of the cover glass G and the first camera 11 and the second camera 12 are relatively changed, while the first camera 11 or the first camera Imaging is performed by the two cameras 12.
 これにより、被検査物を1回搬送する間に、透過画像、正反射画像を別々のタイミングで撮影することができる。第1カメラ11、第2カメラ12でカバーガラスGの透過画像、正反射画像を撮像する処理は、カバーガラスGが第1カメラ11及び第2カメラ12を通過し終わるまで継続する。カバーガラスGが第1カメラ11及び第2カメラ12を通過し終わったら、位置検出センサ81による検出信号が集積回路71に入力される。この検出信号が入力されたら、集積回路71は、第1カメラ11、第2カメラ12及び同軸照明部20への信号出力を終了する。 This allows the transmission image and the regular reflection image to be taken at different timings while the object to be inspected is transported once. The process of capturing the transmission image and the specular reflection image of the cover glass G with the first camera 11 and the second camera 12 continues until the cover glass G has passed through the first camera 11 and the second camera 12. When the cover glass G has passed through the first camera 11 and the second camera 12, a detection signal from the position detection sensor 81 is input to the integrated circuit 71. When this detection signal is input, the integrated circuit 71 ends the signal output to the first camera 11, the second camera 12, and the coaxial illumination unit 20.
 集積回路71は、出力部73を介して搬送部50に駆動モータパルスを継続して出力する。位置検出センサ82によりカバーガラスGが第3カメラ13の下に搬送されたことが検出されると、検出信号が位置検出センサ82から入力部72を介して集積回路71に入力される。この検出信号が入力されたら、集積回路71は、反射画像を第3カメラ13で撮像する処理を開始する。以下、反射画像を撮像する処理について図11~図14を用いて説明する。 The integrated circuit 71 continuously outputs drive motor pulses to the transport unit 50 via the output unit 73. When the position detection sensor 82 detects that the cover glass G is conveyed under the third camera 13, a detection signal is input from the position detection sensor 82 to the integrated circuit 71 via the input unit 72. When this detection signal is input, the integrated circuit 71 starts a process of capturing the reflected image with the third camera 13. Hereinafter, processing for capturing a reflection image will be described with reference to FIGS.
 <反射画像を撮像する処理>
 図11は、出力部73から第3カメラ13及び立体照明部30に出力される信号について説明する図である。ch11~46は、出力部73が有するチャンネルの一部である。ch11~46に記載された数値は、立体照明部30を照射する時間であり、単位はμsecである。図11においては、一部のchについての図示を省略する。また、図12は、図11に示す信号出力と、第3カメラ13で撮像される画像に含まれる欠陥との対応を示す図である。図13は、カバーガラスGの端面における光の様子を示す図であり、光の経路を2点鎖線で示す。図14は、図11に示す処理におけるタイミングチャートである。
<Process for capturing a reflected image>
FIG. 11 is a diagram for describing signals output from the output unit 73 to the third camera 13 and the stereoscopic illumination unit 30. The channels 11 to 46 are part of the channels that the output unit 73 has. The numerical values described in ch 11 to 46 are the time for irradiating the three-dimensional illumination unit 30, and the unit is μsec. In FIG. 11, illustration of some of the channels is omitted. FIG. 12 is a diagram illustrating the correspondence between the signal output illustrated in FIG. 11 and the defects included in the image captured by the third camera 13. FIG. 13 is a diagram showing the state of light on the end face of the cover glass G, and the light path is indicated by a two-dot chain line. FIG. 14 is a timing chart in the processing shown in FIG.
 図11において、ch11~40は帯状発光部31a~31jへの出力である。本実施の形態では、発光ブロック30b毎に1個のチャンネルが割り当てられている。例えば、ch11~13は帯状発光部31a(これを構成する3個の発光ブロック30d、以下同じ)への出力であり、ch14~16は帯状発光部31bへの出力であり、ch17~19は帯状発光部31cへの出力であり、ch20~22は帯状発光部31dへの出力であり、ch23~25は帯状発光部31eへの出力であり、ch26~28は帯状発光部31fへの出力であり、ch29~31は帯状発光部31gへの出力であり、ch32~34は帯状発光部31hへの出力であり、ch35~37は帯状発光部31iへの出力であり、ch38~40は帯状発光部31jへの出力である。 In FIG. 11, ch11 to ch40 are outputs to the band-like light emitting sections 31a to 31j. In the present embodiment, one channel is assigned to each light emitting block 30b. For example, ch11 to 13 are outputs to the strip-shaped light emitting section 31a (three light-emitting blocks 30d constituting the same, the same applies hereinafter), ch14 to 16 are outputs to the strip-shaped light emitting section 31b, and ch17 to 19 are strip-shaped. Outputs to the light emitting unit 31c, ch20 to 22 are outputs to the strip light emitting unit 31d, ch23 to 25 are outputs to the strip light emitting unit 31e, and ch26 to 28 are outputs to the strip light emitting unit 31f. , Ch29 to 31 are outputs to the strip light emitting portion 31g, ch32 to 34 are outputs to the strip light emitting portion 31h, ch35 to 37 are outputs to the strip light emitting portion 31i, and ch38 to 40 are strip light emitting portions. This is an output to 31j.
 また、ch41は帯状発光部32aへの出力であり、ch42は帯状発光部32b~32eへの出力であり、ch43は帯状発光部32f~32iへの出力である。さらに、ch44は帯状発光部33aへの出力であり、ch45は帯状発光部33b~33eへの出力であり、ch46は帯状発光部33f~33iへの出力である。 Further, ch41 is an output to the strip-shaped light emitting section 32a, ch42 is an output to the strip-shaped light emitting sections 32b to 32e, and ch43 is an output to the strip-shaped light emitting sections 32f to 32i. Further, ch44 is an output to the strip-shaped light emitting section 33a, ch45 is an output to the strip-shaped light emitting sections 33b to 33e, and ch46 is an output to the strip-shaped light emitting sections 33f to 33i.
 以下、図11、13に示す順番1~9の処理について詳しく説明する。
 (順番1)集積回路71は、帯状発光部31fを100μsec、帯状発光部31gを120μsec、帯状発光部31hを150μsec、帯状発光部31iを180μsec、帯状発光部31jを210μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部31f~31jに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には-x方向から照射され、カバーガラスGの先端(+x側の端)のP面の内側の面(以下、P内面という)で反射した光が入射する(図13参照)。順番1で第3カメラ13で撮像されるのは、カバーガラスGの先端のP内面における欠陥(印刷ムラ、磨きムラ、傷等)が光った画像である(図12参照)。
Hereinafter, processes in order 1 to 9 shown in FIGS. 11 and 13 will be described in detail.
(Sequence 1) The integrated circuit 71 generates signals for irradiating the band-shaped light emitting portion 31f at 100 μsec, the band-shaped light emitting portion 31g at 120 μsec, the band-shaped light emitting portion 31h at 150 μsec, the band-shaped light emitting portion 31i at 180 μsec, and the band-shaped light emitting portion 31j at 210 μsec. The output unit 73 outputs this signal to the band-like light emitting units 31f to 31j (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, the third camera 13 is irradiated with light that is irradiated from the −x direction and reflected from the inner surface (hereinafter referred to as “P inner surface”) of the P surface of the front end (+ x side end) of the cover glass G (see FIG. 13). What is imaged by the third camera 13 in order 1 is an image in which defects (printing unevenness, polishing unevenness, scratches, etc.) on the P inner surface of the front end of the cover glass G shine (see FIG. 12).
 (順番2)カバーガラスGの印刷部分にパール塗装がされている場合には、集積回路71は、帯状発光部31bを300μsec、帯状発光部31gを300μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部31b、31gに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には、+x方向17°及び-x方向17°から照射され、カバーガラスGの印刷部で反射した光が入射する。 (Order 2) When the printed part of the cover glass G is pearl-coated, the integrated circuit 71 generates a signal for irradiating the strip-shaped light emitting portion 31b at 300 μsec and the strip-shaped light emitting portion 31g at 300 μsec, and outputs the output unit 73. Outputs this signal to the strip-like light emitting portions 31b and 31g (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, light that is irradiated from the + x direction 17 ° and the −x direction 17 ° and reflected by the printing portion of the cover glass G enters the third camera 13.
 また、カバーガラスGの印刷部分にパール塗装以外の印刷(単色印刷等)がされている場合には、集積回路71は、帯状発光部31aを300μsec、帯状発光部31fを300μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部31a、31fに出力する。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には、+x方向8°及び-x方向8°から照射され、カバーガラスGの印刷部で反射した光が入射する。 When the printed portion of the cover glass G is printed other than pearl paint (single color printing or the like), the integrated circuit 71 outputs a signal for irradiating the strip-shaped light emitting portion 31a at 300 μsec and the strip-shaped light emitting portion 31f at 300 μsec. The output unit 73 generates this signal and outputs the signal to the strip light emitting units 31a and 31f. At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, light that is irradiated from the + x direction 8 ° and the −x direction 8 ° and reflected by the printing part of the cover glass G enters the third camera 13.
 順番2で第3カメラ13で撮像されるのは、カバーガラスGの印刷部の欠陥(色ムラ等)が他の印刷部と異なるコントラストの画像(例えば、印刷部の欠陥が他の印刷部より暗かったり明るかったりする画像)である(図12参照)。 The image captured by the third camera 13 in order 2 is that the defect (color unevenness, etc.) of the printing part of the cover glass G is different from the other printing part (for example, the defect of the printing part is different from the other printing part). A dark or bright image) (see FIG. 12).
 (順番3)集積回路71は、帯状発光部31aを100μsec、帯状発光部31bを120μsec、帯状発光部31cを150μsec、帯状発光部31dを180μsec、帯状発光部31eを210μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部31a~31eに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には+x方向から照射され、カバーガラスGの後端(-x側の端)のP内面で反射した光が入射する(図13参照)。順番3で第3カメラ13で撮像されるのは、カバーガラスGの後端のP内面における欠陥が光った画像である(図12参照)。 (Sequence 3) The integrated circuit 71 generates a signal for irradiating the strip light emitting portion 31a at 100 μsec, the strip light emitting portion 31b at 120 μsec, the strip light emitting portion 31c at 150 μsec, the strip light emitting portion 31d at 180 μsec, and the strip light emitting portion 31e at 210 μsec. The output unit 73 outputs this signal to the band-like light emitting units 31a to 31e (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, the third camera 13 is irradiated with light that is irradiated from the + x direction and reflected by the inner surface P of the rear end (−x side end) of the cover glass G (see FIG. 13). What is imaged by the third camera 13 in order 3 is an image in which defects on the P inner surface at the rear end of the cover glass G are lit (see FIG. 12).
 (順番4)集積回路71は、帯状発光部32aを200μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部32aに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には-y方向から照射され、カバーガラスGの左端(+y側の端)のP内面で反射した光が入射する。順番4で第3カメラ13で撮像されるのは、カバーガラスGの左端のP内面における欠陥が光った画像である(図12参照)。 (Order 4) The integrated circuit 71 generates a signal for irradiating the band-shaped light emitting unit 32a at 200 μsec, and the output unit 73 outputs this signal to the band-shaped light emitting unit 32a (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, the third camera 13 is irradiated with light irradiated from the −y direction and reflected from the P inner surface at the left end (+ y side end) of the cover glass G. What is imaged by the third camera 13 in order 4 is an image in which a defect on the inner surface P at the left end of the cover glass G is lit (see FIG. 12).
 (順番5)集積回路71は、帯状発光部33a、33f~33i、31f~31jを3μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部33a、33f~33i、31f~31jに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には+y方向及び+y方向と-x方向との間から照射され、カバーガラスGの左端かつ左後端側のP面の表側(以下P表面という)で反射した光が入射する(図13参照)。順番5で第3カメラ13で撮像されるのは、カバーガラスGの左端かつ左後端側のP表面における欠陥が映った画像である(図12参照)。この画像では、P表面における傷、異物等の欠陥のほとんどが暗く映る。 (Sequence 5) The integrated circuit 71 generates a signal for irradiating the band-shaped light emitting units 33a, 33f to 33i, and 31f to 31j at 3 μsec, and the output unit 73 outputs this signal to the band-shaped light emitting units 33a, 33f to 33i, 31f to It outputs to 31j (refer FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, the third camera 13 is irradiated from the + y direction and between the + y direction and the −x direction, and is reflected on the front side of the P surface on the left end and the left rear end side of the cover glass G (hereinafter referred to as the P surface). Is incident (see FIG. 13). The image captured by the third camera 13 in order 5 is an image in which defects on the P surface on the left end and the left rear end side of the cover glass G are reflected (see FIG. 12). In this image, most defects such as scratches and foreign matters on the P surface appear dark.
 (順番6)集積回路71は、帯状発光部33b~33eを3μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部33b~33eに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には+y方向と+x方向との間から照射され、カバーガラスGの左端から先端側のP表面で反射した光が入射する。順番6で第3カメラ13で撮像されるのは、カバーガラスGの左端から先端側のP表面における欠陥が映った画像である(図12参照)。 (Order 6) The integrated circuit 71 generates a signal for irradiating the strip-shaped light emitting sections 33b to 33e at 3 μsec, and the output section 73 outputs this signal to the strip-shaped light emitting sections 33b to 33e (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, the third camera 13 is irradiated with light that is irradiated from between the + y direction and the + x direction and reflected from the left end of the cover glass G on the P surface on the front end side. The image captured by the third camera 13 in order 6 is an image in which defects on the P surface on the front end side from the left end of the cover glass G are reflected (see FIG. 12).
 (順番7)集積回路71は、帯状発光部33aを200μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部33aに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には+y方向から照射され、カバーガラスGの右端(-y側の端)のP内面で反射した光が入射する。順番7で第3カメラ13で撮像されるのは、カバーガラスGの右端のP内面における欠陥が光った画像である(図12参照)。 (Order 7) The integrated circuit 71 generates a signal for irradiating the band-shaped light emitting unit 33a at 200 μsec, and the output unit 73 outputs this signal to the band-shaped light emitting unit 33a (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, light that is irradiated from the + y direction and reflected by the P inner surface at the right end (−y side end) of the cover glass G enters the third camera 13. What is imaged by the third camera 13 in order 7 is an image in which a defect on the P inner surface at the right end of the cover glass G shines (see FIG. 12).
 (順番8)集積回路71は、帯状発光部32f~32iを3μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部32f~32iに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には-y方向と-x方向との間から照射され、カバーガラスGの右端から後端側のP表面で反射した光が入射する。順番8で第3カメラ13で撮像されるのは、カバーガラスGの右端から後端側のP表面における欠陥が映った画像である(図12参照)。 (Sequence 8) The integrated circuit 71 generates a signal for irradiating the strip light emitting sections 32f to 32i at 3 μsec, and the output section 73 outputs this signal to the strip light emitting sections 32f to 32i (see FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. As a result, the third camera 13 is irradiated with light which is irradiated from between the −y direction and the −x direction and reflected from the P surface on the rear end side from the right end of the cover glass G. The image captured by the third camera 13 in order 8 is an image in which defects on the P surface on the rear end side from the right end of the cover glass G are reflected (see FIG. 12).
 (順番9)集積回路71は、帯状発光部32a~32e、31a~31eを3μsecで照射させる信号を生成し、出力部73は、この信号を帯状発光部32a~32e、31a~31eに出力する(図11参照)。それと同時に、集積回路71は撮像信号を生成し、出力部73はこれを第3カメラ13に出力する。これにより、第3カメラ13には-y方向及び-y方向と+x方向との間から照射され、カバーガラスGの右端から右先端側のP表面で反射した光が入射する。順番9で第3カメラ13で撮像されるのは、カバーガラスGの右端かつ右先端側のP表面における欠陥が映った画像である(図12参照)。 (Sequence 9) The integrated circuit 71 generates a signal for irradiating the strip light emitting units 32a to 32e and 31a to 31e at 3 μsec, and the output unit 73 outputs the signal to the strip light emitting units 32a to 32e and 31a to 31e. (See FIG. 11). At the same time, the integrated circuit 71 generates an imaging signal, and the output unit 73 outputs this to the third camera 13. Thereby, the third camera 13 is irradiated with light that is irradiated from the −y direction and between the −y direction and the + x direction and reflected from the right end of the cover glass G on the P surface on the right end side. What is imaged by the third camera 13 in order 9 is an image in which defects on the P surface on the right end and right tip side of the cover glass G are reflected (see FIG. 12).
 また、集積回路71は、順番9の出力を行なうと同時に繰り返し処理を示す信号を生成し、出力部73は、繰り返し処理を示す信号を集積回路71に出力する。集積回路71は、繰り返し処理を示す信号を受けて、処理を最初に戻し、順番1~9に示す信号を順番に出力する処理を繰り返す。 Further, the integrated circuit 71 generates a signal indicating repetition processing at the same time as performing output in order 9, and the output unit 73 outputs a signal indicating repetition processing to the integrated circuit 71. The integrated circuit 71 receives the signal indicating the repetition process, returns the process to the beginning, and repeats the process of sequentially outputting the signals shown in order 1 to 9.
 ここで、順番4、7においてそれぞれ左端、右端のP内面を検査するときは、順番5、6、8、9においてP表面を検査するときよりもはるかに長い時間、帯状発光部32a、33aを照射する。したがって、順番4、7において第3カメラ13では、それぞれ、カバーガラスGのP面が真っ白に光った、飽和した画像が撮像される。 Here, when inspecting the P inner surfaces at the left end and the right end in the order 4 and 7, respectively, the strip-like light emitting portions 32a and 33a are much longer than when inspecting the P surface in the order 5, 6, 8, and 9. Irradiate. Therefore, in order 4 and 7, the third camera 13 captures a saturated image in which the P surface of the cover glass G shines white.
 なお、図11、12等に示す順番1~9は一例であり、検査部位や検査内容の順番は任意に定めることができる。また、順番1で示すカバーガラスGの先端のP内面の検査、及び順番6で示すカバーガラスGの左端から先端側のP表面の検査は、カバーガラスGの中央部、後端部では不要であるし、順番3で示すカバーガラスGの後端のP内面の検査、及び順番8で示すカバーガラスGの右端から後端側のP表面の検査は、カバーガラスGの先端部、中央部では不要である。集積回路71は、カバーガラスGの長さを示す情報から駆動モータパルス数を算出し、出力した駆動モータパルス数に基づいてカバーガラスGの位置を求め、カバーガラスGの位置に応じて順番1、3、6、8を省略するようにしてもよい。 In addition, the order 1 to 9 shown in FIGS. 11 and 12 is an example, and the order of examination parts and examination contents can be arbitrarily determined. Further, the inspection of the inner surface P at the front end of the cover glass G shown in order 1 and the inspection of the P surface from the left end to the front end side of the cover glass G shown in order 6 are unnecessary at the center part and the rear end part of the cover glass G. In addition, the inspection of the P inner surface at the rear end of the cover glass G shown in order 3 and the inspection of the P surface from the right end to the rear end side of the cover glass G shown in order 8 are performed at the front end portion and the central portion of the cover glass G. It is unnecessary. The integrated circuit 71 calculates the number of drive motor pulses from the information indicating the length of the cover glass G, obtains the position of the cover glass G based on the output drive motor pulse number, and in order 1 according to the position of the cover glass G. 3, 6, and 8 may be omitted.
 図14は、図11に示す処理におけるタイミングチャートである。なお、順番1については、100μsecで照射させる信号のみを表示する。撮像信号は図10に示すものと同様である。立体照明部30を照射させる信号は、撮像信号がHighとなるのと同時にHighとなり、それぞれ照射時間経過後にLowとなる。 FIG. 14 is a timing chart in the processing shown in FIG. For order 1, only the signal irradiated at 100 μsec is displayed. The imaging signal is the same as that shown in FIG. The signal for irradiating the three-dimensional illumination unit 30 becomes High at the same time as the imaging signal becomes High, and becomes Low after the irradiation time elapses.
 なお、P表面で反射した光を第3カメラ13に入射させる場合と、印刷部で反射した光を第3カメラ13に入射させる場合とでは、必要な光量は1:100程度である。したがって、P面で反射した光を第3カメラ13に入射させる場合と、印刷部で反射した光を第3カメラ13に入射させる場合とで立体照明部30の照射時間を異ならせる。 Note that the required amount of light is about 1: 100 when the light reflected by the P surface is incident on the third camera 13 and when the light reflected by the printing unit is incident on the third camera 13. Therefore, the irradiation time of the three-dimensional illumination unit 30 is made different between the case where the light reflected by the P surface is incident on the third camera 13 and the case where the light reflected by the printing unit is incident on the third camera 13.
 集積回路71は、上記順番1~9の信号出力と同時に、出力部73を介して搬送部50に駆動モータパルスを出力する。これにより、載置部40上でカバーガラスGを一定の速度で搬送してカバーガラスGと第3カメラ13との位置を相対的に変化させながら、第3カメラ13で撮像が行なわれる。 The integrated circuit 71 outputs a drive motor pulse to the transport unit 50 via the output unit 73 simultaneously with the output of the signals in the order 1 to 9. As a result, the third camera 13 captures an image while the cover glass G is transported at a constant speed on the placement unit 40 and the positions of the cover glass G and the third camera 13 are relatively changed.
 これにより、先端P面における欠陥が光った画像、後端P面における欠陥が光った画像、左右端P面における欠陥が光った画像、印刷部の欠陥が他の印刷部より暗い画像を、カバーガラスGを1回搬送する間に別々のタイミングで撮影することができる。第3カメラ13でカバーガラスGの透過画像、正反射画像を撮像する処理は、カバーガラスGが第3カメラ13を通過し終わるまで継続する。カバーガラスGが第3カメラ13を通過し終わったら、位置検出センサ82による検出信号が集積回路71に入力される。この検出信号が入力されたら、集積回路71は、第3カメラ13及び立体照明部30への信号出力を終了する。 As a result, an image in which a defect on the front end P surface is shined, an image in which a defect on the rear end P surface is shined, an image in which a defect on the left and right end P surfaces is shining, While the glass G is conveyed once, it can be photographed at different timings. The process of capturing the transmitted image and the specular image of the cover glass G with the third camera 13 continues until the cover glass G finishes passing through the third camera 13. When the cover glass G has passed through the third camera 13, a detection signal from the position detection sensor 82 is input to the integrated circuit 71. When this detection signal is input, the integrated circuit 71 ends the signal output to the third camera 13 and the stereoscopic illumination unit 30.
 その後、集積回路71は、所定のパルス数だけ搬送部50に駆動モータパルス出力して、カバーガラスGを処理終了位置まで移動させる。そして、集積回路71は、一連の処理を終了する。 Thereafter, the integrated circuit 71 outputs a drive motor pulse to the transport unit 50 by a predetermined number of pulses, and moves the cover glass G to the processing end position. Then, the integrated circuit 71 ends a series of processes.
 一連の処理が終了すると、第1カメラ11、第2カメラ12及び第3カメラ13で撮像された画像は、出力部73を介してPC100に出力される。CPU101は、第1カメラ11、第2カメラ12及び第3カメラ13で撮像された画像から検査用の画像を生成する。本実施の形態では、CPU101は、第1カメラ11、第2カメラ12及び第3カメラ13で撮像された画像のなかから、同じ照明パターンで撮像された画像を抽出し、これらを連結して平面画像を生成する。以下、画像生成処理について説明する。 When the series of processing is completed, images captured by the first camera 11, the second camera 12, and the third camera 13 are output to the PC 100 via the output unit 73. The CPU 101 generates an inspection image from images captured by the first camera 11, the second camera 12, and the third camera 13. In the present embodiment, the CPU 101 extracts images picked up with the same illumination pattern from the images picked up by the first camera 11, the second camera 12, and the third camera 13, and connects them to obtain a plane. Generate an image. Hereinafter, the image generation process will be described.
 CPU101は、第1カメラ11及び第2カメラ12で撮像された画像から透過画像及び正反射画像を生成する。透過画像、正反射画像を撮像する処理では、図9、10に示すように、順番1~3の照射パターンの照射を繰り返し行っている。したがって、CPU101は、第2カメラ12で撮像された画像のうち1フレーム目を基準として3フレームおき(1フレーム目、4フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの透過画像(平面画像)が生成される。透過画像は、図15に示すように、不透明な印刷部分が暗く映った画像であり、印刷の欠陥部(図15における点線の丸印部)が確認可能である。 The CPU 101 generates a transmission image and a regular reflection image from images captured by the first camera 11 and the second camera 12. In the process of capturing a transmission image and a specular reflection image, irradiation of irradiation patterns in order 1 to 3 is repeated as shown in FIGS. Therefore, the CPU 101 extracts every third frame (the first frame, the fourth frame,...) From the image captured by the second camera 12 with the first frame as a reference, and connects these images. A two-dimensional image is generated. Thereby, a transmission image (planar image) of the cover glass G is generated. As shown in FIG. 15, the transmission image is an image in which an opaque printed portion appears dark, and a defective printing portion (dotted circle in FIG. 15) can be confirmed.
 また、CPU101は、第1カメラ11で撮像された画像のうち2フレーム目を基準として3フレームおき(2フレーム目、5フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、上側の正反射画像、すなわちカバーガラスGの表面における正反射画像(平面画像)が生成される。正反射画像は、図16に示すように、欠陥(図16では傷を例示している)が無い部分は明るく、傷が暗く映った画像である。なお、傷が印刷部分と重なっていたとしても、印刷部分よりもガラス表面での反射率のほうが高いため、傷は他の部分よりも暗く写る。 Further, the CPU 101 extracts every third frame (second frame, fifth frame,...) From the second frame of the image captured by the first camera 11, and connects these images. A two-dimensional image is generated. Thereby, an upper regular reflection image, that is, a regular reflection image (planar image) on the surface of the cover glass G is generated. As shown in FIG. 16, the regular reflection image is an image in which a portion without a defect (a scratch is illustrated in FIG. 16) is bright and a scratch is dark. Even if the scratch overlaps with the printed portion, the reflectance on the glass surface is higher than that of the printed portion, so that the scratch appears darker than the other portions.
 さらに、CPU101は、第2カメラ12で撮像された画像のうち3フレーム目を基準として3フレームおき(3フレーム目、6フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、下側の正反射画像、すなわちカバーガラスGの裏面における正反射画像(平面画像)が生成される。 Further, the CPU 101 extracts every third frame (third frame, sixth frame,...) From the third frame of the image captured by the second camera 12 and connects these images. A two-dimensional image is generated. Thereby, a lower regular reflection image, that is, a regular reflection image (planar image) on the back surface of the cover glass G is generated.
 また、CPU101は、第3カメラ13で撮像された画像から反射画像を生成する。反射画像を撮像する処理では、図11~13に示すように、順番1~9の照射パターンの照射を繰り返し行っている。したがって、CPU101は、第3カメラ13で撮像された画像のうち1フレーム目を基準として9フレームおき(1フレーム目、10フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、図17に示すように、カバーガラスGの先端のP内面における欠陥が光ったカバーガラスGの平面画像が生成される。 Further, the CPU 101 generates a reflection image from the image captured by the third camera 13. In the process of capturing a reflected image, irradiation of irradiation patterns 1 to 9 is repeated as shown in FIGS. Therefore, the CPU 101 extracts every nine frames (the first frame, the tenth frame,...) Of the images captured by the third camera 13 with the first frame as a reference, and connects these images. A two-dimensional image is generated. Thereby, as shown in FIG. 17, a planar image of the cover glass G in which the defect on the inner surface P at the tip of the cover glass G is lit is generated.
 CPU101は、第3カメラ13で撮像された画像のうち2フレーム目を基準として9フレームおき(2フレーム目、11フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、図18に示すように、カバーガラスGの印刷部の欠陥が他の印刷部より暗く写ったカバーガラスGの平面画像が生成される。
 なお、説明のため、図17、18は、平面画像の一部を拡大しており、欠陥の周囲に黒線を表示している。
The CPU 101 extracts every nine frames (second frame, eleventh frame,...) From the second frame of the image captured by the third camera 13, and connects these images to form a two-dimensional image. Generate an image of Thereby, as shown in FIG. 18, the plane image of the cover glass G in which the defect of the printing part of the cover glass G appeared darker than other printing parts is produced | generated.
For the sake of explanation, FIGS. 17 and 18 show an enlarged part of the planar image and display a black line around the defect.
 CPU101は、第3カメラ13で撮像された画像のうち3フレーム目を基準として9フレームおき(3フレーム目、12フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの後端のP内面における欠陥が光ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every nine frames (third frame, twelfth frame,...) Of the images captured by the third camera 13 with reference to the third frame, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P inner surface of the rear end of the cover glass G shines is produced | generated.
 CPU101は、第3カメラ13で撮像された画像のうち4フレーム目を基準として9フレームおき(4フレーム目、13フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの左端のP内面における欠陥が光ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every nine frames (fourth frame, thirteenth frame,...) From the fourth frame of the image captured by the third camera 13 and connects these images to form a two-dimensional image. Generate an image of Thereby, the plane image of the cover glass G in which the defect in the P inner surface of the left end of the cover glass G shined was produced | generated.
 CPU101は、第3カメラ13で撮像された画像のうち5フレーム目を基準として9フレームおき(5フレーム目、14フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの左端かつ後端側のP表面における欠陥が映ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every nine frames (fifth frame, fourteenth frame,...) Out of the images captured by the third camera 13 with reference to the fifth frame, and connects these images to form a two-dimensional image. Generate an image of Thereby, the plane image of the cover glass G in which the defect in the P surface of the left end of the cover glass G and the rear end side was reflected is produced | generated.
 CPU101は、第3カメラ13で撮像された画像のうち6フレーム目を基準として9フレームおき(6フレーム目、15フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの左端から先端側のP表面における欠陥が映ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every nine frames (sixth frame, fifteenth frame,...) Out of the images captured by the third camera 13 with reference to the sixth frame, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P surface of the front end side from the left end of the cover glass G was reflected is produced | generated.
 CPU101は、第3カメラ13で撮像された画像のうち7フレーム目を基準として9フレームおき(7フレーム目、16フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの右端のP内面における欠陥が光ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every nine frames (7th frame, 16th frame,...) From the 7th frame of the image captured by the third camera 13, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P inner surface of the right end of the cover glass G was shining is produced | generated.
 CPU101は、第3カメラ13で撮像された画像のうち8フレーム目を基準として9フレームおき(8フレーム目、17フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの右端から後端側のP表面における欠陥が映ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every 9 frames (8th frame, 17th frame,...) From the 8th frame of the image captured by the third camera 13, and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P surface on the rear end side from the right end of the cover glass G is reflected is generated.
 CPU101は、第3カメラ13で撮像された画像のうち9フレーム目を基準として9フレームおき(9フレーム目、18フレーム目・・・)のフレームを抽出し、これらの画像を連結して2次元の画像を生成する。これにより、カバーガラスGの右端かつ先端側のP表面における欠陥が映ったカバーガラスGの平面画像が生成される。 The CPU 101 extracts every nine frames (9th frame, 18th frame,...) From the 9th frame of the image captured by the third camera 13 and connects these images to form a two-dimensional image. Generate an image of Thereby, the planar image of the cover glass G in which the defect in the P surface of the right end and front end side of the cover glass G was reflected is produced | generated.
 本実施の形態によれば、立体照明部30を用いて様々な方向から光をカバーガラスGに照射して画像を撮像するため、欠陥がカバーガラスGの端面のどの位置にあったとしても、1つの光学検査装置1を用いて、1回の検査で欠陥を検査することができる。 According to the present embodiment, since the image is captured by irradiating the cover glass G with light from various directions using the three-dimensional illumination unit 30, no matter where the defect is on the end surface of the cover glass G, A single optical inspection apparatus 1 can be used to inspect defects in a single inspection.
 特に、第1領域31においては、中心面S1の近傍以外の領域に、y方向に沿って発光部30aが並べられている。したがって、帯状の光をカバーガラスGに照射し、y方向の位置によらず中心軸ax近傍の領域を同じように検査することができる。 In particular, in the first region 31, the light emitting portions 30a are arranged along the y direction in a region other than the vicinity of the center plane S1. Therefore, it is possible to irradiate the cover glass G with the band-shaped light and inspect the region in the vicinity of the central axis ax in the same manner regardless of the position in the y direction.
 また、複数の帯状発光部31a~31jを備えるため、様々な角度から中心軸ax近傍の領域に光を照射することが出来る。P面における欠陥の全体像を撮像するためには、光軸と中心面S1とのなす角度が8度近傍である光源から44度近傍である光源まで同時に光を照射することが重要である。したがって、先端や後端のP面における欠陥の全体像を撮像するためには、複数の帯状発光部31a~31jを備えることが重要である。また、第2領域32及び第3領域33においては、中心面S1上の位置に帯状発光部32a、33aが設けられているため、左右両側のP面について欠陥の全体像を撮像することができる。 In addition, since the plurality of strip-like light emitting portions 31a to 31j are provided, it is possible to irradiate light in the vicinity of the central axis ax from various angles. In order to capture the entire image of the defect on the P plane, it is important to irradiate light simultaneously from a light source whose angle between the optical axis and the center plane S1 is about 8 degrees to a light source that is about 44 degrees. Therefore, in order to capture the entire image of the defect on the P surface at the front end or the rear end, it is important to include a plurality of strip-like light emitting portions 31a to 31j. In the second region 32 and the third region 33, since the strip-like light emitting portions 32a and 33a are provided at positions on the center plane S1, it is possible to capture the entire image of the defect on the left and right P surfaces. .
 また、本実施の形態によれば、光軸と中心面S1とのなす角度θ2が略17度となるように帯状発光部31b、31gが配置されており、パール印刷で光が反射した時の散乱光を第3カメラ13で撮像することで、パール材の光沢に比べて欠陥のコントラストが大きくなった画像を撮像することができる。 Further, according to the present embodiment, the band-like light emitting portions 31b and 31g are arranged so that the angle θ2 formed by the optical axis and the center plane S1 is approximately 17 degrees, and when the light is reflected by pearl printing. By capturing the scattered light with the third camera 13, it is possible to capture an image in which the defect contrast is greater than the gloss of the pearl material.
 例えば、光軸と中心面S1とのなす角度θ1が略8度である帯状発光部31a、31fで撮像した場合には、パール材の光沢が強く写りこんでしまう。また、例えば、光軸と中心面S1とのなす角度θ3が略26度である帯状発光部31c、31hで撮像した場合や、光軸と中心面S1とのなす角度θ4が略35度である帯状発光部31d、31iで撮像した場合には、パール塗装の欠陥部分のコントラストが小さくなってしまう。 For example, when the images are taken with the belt-like light emitting portions 31a and 31f in which the angle θ1 between the optical axis and the center plane S1 is about 8 degrees, the gloss of the pearl material is reflected strongly. Further, for example, when imaging is performed with the strip-shaped light emitting portions 31c and 31h in which the angle θ3 formed between the optical axis and the center plane S1 is approximately 26 degrees, or the angle θ4 formed between the optical axis and the center plane S1 is approximately 35 degrees. When imaging is performed with the band-shaped light emitting portions 31d and 31i, the contrast of the defective portion of the pearl coating is reduced.
 それに対し、本実施の形態のように、法線方向に対して17度の角度からカバーガラスGに光を照射することで、パール塗装の欠陥部分のコントラストが他の部分に対して低く又は高くなった画像を撮像することができ、かつパール材の光沢が欠陥検出の閾値にかかりにくい。したがって、この撮像画像に基づいてパール塗装の欠陥を容易に検出することができる。 On the other hand, by irradiating the cover glass G with light from an angle of 17 degrees with respect to the normal direction as in the present embodiment, the contrast of the defective part of the pearl paint is low or high with respect to the other parts. The resulting image can be taken, and the gloss of the pearl material is less likely to reach the threshold for defect detection. Therefore, it is possible to easily detect a pearl coating defect based on the captured image.
 また、本実施の形態によれば、光軸と中心面S1とのなす角度θ1が略8度となるように帯状発光部31a、31fが配置されており、法線方向に対して8度の角度からカバーガラスGに光を照射することで単色印刷の欠陥部分のコントラストが他の部分に対して低く又は高くなった画像を撮像することができる。 Further, according to the present embodiment, the strip-like light emitting portions 31a and 31f are arranged so that the angle θ1 formed by the optical axis and the center plane S1 is about 8 degrees, and the angle θ1 is 8 degrees with respect to the normal direction. By irradiating the cover glass G with light from an angle, it is possible to capture an image in which the contrast of the defective portion of monochromatic printing is lower or higher than the other portions.
 また、本実施の形態では、撮像部10の撮像時間を変えず、同軸照明部20、立体照明部30からの光の照射時間を変えることで、撮像内容によって光量を異ならせることができる。 Further, in the present embodiment, the amount of light can be varied depending on the contents of imaging by changing the irradiation time of light from the coaxial illumination unit 20 and the three-dimensional illumination unit 30 without changing the imaging time of the imaging unit 10.
 また、本実施の形態では、第3カメラ13に対応して立体照明部30を設け、第3カメラ13で撮像された画像の中から同じ照射パターンで撮像された画像を抜き出して、照射パターン毎に異なる平面画像を生成することで、複数のカメラを使った撮像と同等の画像を最小のカメラ数で実現することができる。 Further, in the present embodiment, a three-dimensional illumination unit 30 is provided corresponding to the third camera 13, and an image captured with the same irradiation pattern is extracted from the images captured with the third camera 13, and each irradiation pattern is extracted. By generating different plane images, an image equivalent to imaging using a plurality of cameras can be realized with the minimum number of cameras.
 また、本実施の形態では、光学検査装置1は帯状発光部31a、31fと帯状発光部31b、31gとを両方備えているため、同じ装置で、パール顔料を用いた場合、パール顔料を用いない場合のいずれについても、印刷部の色ムラ等が検出可能な画像を撮像することができる。 In the present embodiment, since the optical inspection apparatus 1 includes both the band-like light emitting parts 31a and 31f and the band-like light emitting parts 31b and 31g, when the pearl pigment is used in the same apparatus, the pearl pigment is not used. In any case, it is possible to capture an image in which color unevenness or the like of the printing unit can be detected.
 なお、本実施の形態では、帯状発光部31a、31fの光軸と中心面S1とのなす角度θ1が略8度であるが、角度θ1は略8~10度であればよい。また、角度θ2~θ5も図示した角度に限られない。 In the present embodiment, the angle θ1 formed by the optical axis of the belt-like light emitting portions 31a and 31f and the center plane S1 is approximately 8 degrees, but the angle θ1 may be approximately 8 to 10 degrees. Further, the angles θ2 to θ5 are not limited to the illustrated angles.
 また、本実施の形態では、PC100で欠陥検出用の画像を生成したが、PC100において、生成した画像に基づいてカバーガラスGの欠陥を検出するようにしてもよい。例えば、図14に示す画像については、画素値と閾値とを比較することで欠陥を検出することができる。また、例えば、図15に示す画像については、複数画素の平均値を算出し、その平均値と閾値とを比較することで欠陥を検出することができる。 In the present embodiment, the defect detection image is generated by the PC 100. However, the defect of the cover glass G may be detected by the PC 100 based on the generated image. For example, in the image shown in FIG. 14, a defect can be detected by comparing a pixel value with a threshold value. For example, for the image shown in FIG. 15, a defect can be detected by calculating an average value of a plurality of pixels and comparing the average value with a threshold value.
 また、本実施の形態では、帯状発光部31a~31jの光軸上にシリンドリカルレンズ30cを設けたが、シリンドリカルレンズ30cは必須ではない。ただし、シリンドリカルレンズ30cを有する場合には、シリンドリカルレンズ30cにより発光部30aから照射された光を中心軸ax近傍に集光することができ、これにより第3カメラ13に向かう光量を増やすことができる。したがって、撮像部10の撮像周波数を高く(撮像時間を短く)することができる。 In this embodiment, the cylindrical lens 30c is provided on the optical axis of the band-like light emitting portions 31a to 31j. However, the cylindrical lens 30c is not essential. However, when the cylindrical lens 30c is provided, the light emitted from the light emitting unit 30a by the cylindrical lens 30c can be condensed near the central axis ax, and thereby the amount of light directed to the third camera 13 can be increased. . Therefore, the imaging frequency of the imaging unit 10 can be increased (imaging time is shortened).
 また、本実施の形態では、図11に示すように、帯状発光部32a、32b~32e、32f~32iをそれぞれ異なるチャンネルに接続し、帯状発光部33a、33b~33e、33f~33iをそれぞれ異なるチャンネルに接続したが、帯状発光部32a~32i、33a~33iと、チャンネルと、の関係はこれに限られない。例えば、帯状発光部32b~32i、33b~33iを1つのチャンネルに接続してもよいし、帯状発光部32a~32i、33a~33iをそれぞれ異なるチャンネルに接続してもよい。 In the present embodiment, as shown in FIG. 11, the strip-shaped light emitting portions 32a, 32b to 32e, and 32f to 32i are connected to different channels, and the strip-shaped light emitting portions 33a, 33b to 33e, and 33f to 33i are respectively different. Although connected to the channel, the relationship between the band-like light emitting portions 32a to 32i and 33a to 33i and the channel is not limited to this. For example, the band-like light emitting units 32b to 32i and 33b to 33i may be connected to one channel, or the band-like light emitting units 32a to 32i and 33a to 33i may be connected to different channels.
 また、本実施の形態では、図9、10、11、13に示す各照射パターンにおける照射時間を示したが、照射時間は例示であり、照射時間はこれらに記載された値に限定されるものではない。また、図9、10、11、13に示す各照射パターンにおいては、照射時間をμsecで規定したが、照射時間は、撮像時間に対する比率で規定してもよい。 Moreover, in this Embodiment, although the irradiation time in each irradiation pattern shown to FIG. 9, 10, 11, 13 was shown, irradiation time is an illustration and irradiation time is limited to the value described in these. is not. In each of the irradiation patterns shown in FIGS. 9, 10, 11, and 13, the irradiation time is specified in μsec. However, the irradiation time may be specified as a ratio to the imaging time.
 また、本実施の形態では、発光部30aが一列に並べられた発光ブロック30b、30dを有するが、発光ブロック30b、30dが光拡散板を有していても良い。図19は、変形例にかかる発光ブロック30b-1を模式的に示す図であり、図19(A)は側面図であり、図19(B)は図19(A)に示す状態を図19(A)における下方向から見た図である。 In the present embodiment, the light emitting units 30a have the light emitting blocks 30b and 30d arranged in a line, but the light emitting blocks 30b and 30d may have a light diffusion plate. 19 is a diagram schematically showing a light emitting block 30b-1 according to a modified example, FIG. 19A is a side view, and FIG. 19B is a diagram illustrating the state shown in FIG. It is the figure seen from the downward direction in (A).
 発光ブロック30b-1は、発光部30aに隣接して光拡散板であるレンチキュラレンズ30eが設けられる。レンチキュラレンズ30eは、複数の発光部30aを覆うように設けられる。レンチキュラレンズ30eは、断面がかまぼこ型の細長い凸レンズを均等なピッチで多数並べたものであり、凸レンズの配列方向(凸レンズの長手方向と直交する方向)と同方向の光の成分を拡散する。発光ブロック30b-1では、凸レンズの配列方向と、発光部30aとは同じである。したがって、発光部30aから照射された光がレンチキュラレンズ30eで拡散され、複数の発光部30aから照射された光をレンチキュラレンズ30eで細長い1つの面光源とすることができる。 The light emitting block 30b-1 is provided with a lenticular lens 30e, which is a light diffusing plate, adjacent to the light emitting portion 30a. The lenticular lens 30e is provided so as to cover the plurality of light emitting units 30a. The lenticular lens 30e is formed by arranging a large number of elongated convex lenses having a semi-cylindrical cross section at an equal pitch, and diffuses light components in the same direction as the convex lens arrangement direction (a direction perpendicular to the longitudinal direction of the convex lenses). In the light emitting block 30b-1, the arrangement direction of the convex lenses and the light emitting unit 30a are the same. Therefore, the light emitted from the light emitting unit 30a is diffused by the lenticular lens 30e, and the light emitted from the plurality of light emitting units 30a can be used as one elongated surface light source by the lenticular lens 30e.
 例えば、レンチキュラレンズ30eが無い場合には、カバーガラスGの先端P面や後端P面で正反射した光に基づいて検査を行うときに、先端P面や後端P面に発光部30aの点状の光が映ってしまう可能性があるが、発光部30aを覆うようにレンチキュラレンズ30eを設けることで、このような不具合の発生を防止することができる。 For example, when the lenticular lens 30e is not provided, when the inspection is performed based on the light regularly reflected by the front end P surface and the rear end P surface of the cover glass G, the light emitting unit 30a is formed on the front end P surface and the rear end P surface. Although dot-like light may be reflected, the occurrence of such a problem can be prevented by providing the lenticular lens 30e so as to cover the light emitting portion 30a.
 なお、先端P面や後端P面の検査として、帯状発光部31bや帯状発光部31gを弱く光らせて、先端P面や後端P面に帯状発光部31bや帯状発光部31gの光を写り込ませる方法が考えられる。このとき、帯状発光部31b、31gにレンチキュラレンズ30eが無い場合には、先端P面や後端P面に点状の光が写ってしまい、うまく検査できない。それに対し、帯状発光部31b、31gにレンチキュラレンズ30eが設けられている場合には、先端P面や後端P面に点状の光が写るため、この光が曲がっているか否かで先端P面や後端P面の研磨に関する不具合を検査することができる。 For inspection of the tip P surface and the rear end P surface, the band-like light emitting portion 31b and the band-like light emitting portion 31g are weakly illuminated, and the light from the band-like light emitting portion 31b and the band-like light emitting portion 31g is reflected on the tip P surface and the rear end P surface. It is possible to use a method to At this time, if the belt-like light emitting portions 31b and 31g do not have the lenticular lens 30e, dot-like light is reflected on the front end P surface and the rear end P surface, and the inspection cannot be performed well. On the other hand, when the lenticular lens 30e is provided in the belt-like light emitting portions 31b and 31g, since point-like light is reflected on the front end P surface and the rear end P surface, the front end P depends on whether or not this light is bent. It is possible to inspect defects related to the polishing of the surface and the rear end P surface.
 なお、図19では、1個の発光ブロック30b-1に1枚のレンチキュラレンズ30eが設けられたが、レンチキュラレンズ30eの枚数はこれに限られない。複数のレンチキュラレンズを並べたものを複数の発光部30aを覆うように設けてもよい。また、光拡散板はレンチキュラレンズに限られない。 In FIG. 19, one lenticular lens 30e is provided in one light emitting block 30b-1, but the number of lenticular lenses 30e is not limited to this. A plurality of lenticular lenses arranged may be provided so as to cover the plurality of light emitting units 30a. The light diffusion plate is not limited to a lenticular lens.
 <第2の実施の形態>
 本発明の第1の実施の形態では、同軸照明を用いた画像と、立体照明を用いた画像とを別のカメラで撮像したが、同軸照明を用いた画像と、立体照明を用いた画像とを同じカメラで撮像してもよい。
<Second Embodiment>
In the first embodiment of the present invention, an image using coaxial illumination and an image using stereoscopic illumination are captured by different cameras, but an image using coaxial illumination and an image using stereoscopic illumination are taken. May be taken with the same camera.
 本発明の第2の実施の形態は、2つのカメラで撮像を行なう形態である。以下、第2の実施の形態に係る光学検査装置2について説明する。なお、光学検査装置1と同一の部分については、同一の符号を付し、説明を省略する。 The second embodiment of the present invention is a mode in which imaging is performed with two cameras. Hereinafter, the optical inspection apparatus 2 according to the second embodiment will be described. In addition, about the part same as the optical inspection apparatus 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図20は、第2の実施の形態に係る光学検査装置2の概略を示す正面図である。光学検査装置2は、主として、撮像部10Aと、同軸照明部20と、立体照明部30と、載置部40と、搬送部50(図示省略)と、を有する。 FIG. 20 is a front view showing an outline of the optical inspection apparatus 2 according to the second embodiment. The optical inspection apparatus 2 mainly includes an imaging unit 10A, a coaxial illumination unit 20, a stereoscopic illumination unit 30, a placement unit 40, and a conveyance unit 50 (not shown).
 撮像部10Aは、第1カメラ11(本実施の形態においては、本発明の一次元撮像手段に相当)と、第2カメラ12(本発明の第2撮像手段に相当)と、を有する。第1カメラ11、第2カメラ12の配置は、光学検査装置1と同様である。 The imaging unit 10A includes a first camera 11 (corresponding to the one-dimensional imaging unit of the present invention in the present embodiment) and a second camera 12 (corresponding to the second imaging unit of the present invention). The arrangement of the first camera 11 and the second camera 12 is the same as that of the optical inspection apparatus 1.
 立体照明部30は、第1カメラ11と、載置部40との間に設けられる。また、立体照明部30は、中心軸axが第1カメラ11の光軸と交差する位置に設けられる。帯状発光部31a、31fの光軸と中心面S1とのなす角度θ1(図4参照)が略8度であるため、上側同軸照明21からの光は立体照明部30によって遮られない。 The three-dimensional illumination unit 30 is provided between the first camera 11 and the placement unit 40. The three-dimensional illumination unit 30 is provided at a position where the central axis ax intersects the optical axis of the first camera 11. Since the angle θ1 (see FIG. 4) formed by the optical axis of the strip-shaped light emitting portions 31a and 31f and the center plane S1 is approximately 8 degrees, the light from the upper coaxial illumination 21 is not blocked by the three-dimensional illumination unit 30.
 このように構成された光学検査装置2で行う処理について説明する。集積回路71(本発明の第3制御部を含む)は載置部40のローラ40aを駆動する駆動モータパルスを生成し、出力部73はこれを搬送部50に出力する。これにより、カバーガラスGが載置部40の上を搬送方向Fに沿って一定の速度で移動する。 The processing performed by the optical inspection apparatus 2 configured as described above will be described. The integrated circuit 71 (including the third control unit of the present invention) generates a drive motor pulse for driving the roller 40 a of the mounting unit 40, and the output unit 73 outputs this to the transport unit 50. Thereby, the cover glass G moves on the mounting part 40 along the conveyance direction F at a constant speed.
 位置検出センサ81からカバーガラスGが第1カメラ11、第2カメラ12の下に搬送されたことが検出されると、検出信号が位置検出センサ81から入力部72を介して集積回路71に入力される。この検出信号が入力されたら、集積回路71は、反射画像を第1カメラ11で撮像する処理、及び透過画像、正反射画像を第1カメラ11及び第2カメラ12で撮像する処理を開始する。 When it is detected from the position detection sensor 81 that the cover glass G has been conveyed under the first camera 11 and the second camera 12, a detection signal is input from the position detection sensor 81 to the integrated circuit 71 via the input unit 72. Is done. When this detection signal is input, the integrated circuit 71 starts processing for capturing a reflected image with the first camera 11 and processing for capturing a transmitted image and a regular reflected image with the first camera 11 and the second camera 12.
 図21は、撮像処理の順番と、第1カメラ11、第2カメラ12で撮像される画像との対応を示す図である。 FIG. 21 is a diagram illustrating the correspondence between the order of the imaging processing and the images captured by the first camera 11 and the second camera 12.
 反射画像を第1カメラ11で撮像する処理(図21における順番1~9の処理)は、集積回路71が生成した撮像信号を第1カメラ11に出力する点以外は、光学検査装置1において行なわれた処理(図11、12及び14)と同様であるため、詳細な説明を省略する。 Processing for capturing a reflected image with the first camera 11 (processing in order 1 to 9 in FIG. 21) is performed in the optical inspection apparatus 1 except that the imaging signal generated by the integrated circuit 71 is output to the first camera 11. Since this is the same as the processing (FIGS. 11, 12, and 14), detailed description is omitted.
 集積回路71は、順番1~9の処理が終ったら、順番10~12に示す透過画像、正反射画像を撮像する処理を開始する。順番10~12に示す処理は、図9、10に示す処理(順番1~3の処理)と同様であるため、詳細な説明を省略する。 The integrated circuit 71 starts the process of capturing the transmission image and the regular reflection image shown in the order 10 to 12 when the processes in the order 1 to 9 are completed. Since the processes shown in the order 10 to 12 are the same as the processes shown in FIGS. 9 and 10 (the processes in the order 1 to 3), detailed description thereof is omitted.
 集積回路71は順番12の出力を行なうと同時に繰り返し処理を示す信号を生成し、出力部73を介して集積回路71に出力する。集積回路71は、繰り返し処理を示す信号を受けて、処理を最初に戻し、順番1~12に示す信号を順番に出力する処理を繰り返す。 The integrated circuit 71 outputs in order 12 and at the same time generates a signal indicating repetitive processing and outputs the signal to the integrated circuit 71 via the output unit 73. The integrated circuit 71 receives the signal indicating the repetition process, returns the process to the beginning, and repeats the process of sequentially outputting the signals shown in the order 1 to 12.
 本実施の形態によれば、1つの光学検査装置2を用いて、1回の検査で欠陥を検査することができる。また、最小限(2個)のカメラ数で反射画像、透過画像、正反射画像を撮像することができる。 According to the present embodiment, it is possible to inspect a defect by one inspection using one optical inspection apparatus 2. Further, it is possible to capture a reflected image, a transmitted image, and a regular reflection image with a minimum (two) cameras.
 なお、本実施の形態では、第1カメラ11の光軸上にハーフミラー21hが設けられているため、立体照明部30から照射され、第1カメラ11に入射する光量は、光学検査装置1において立体照明部30から照射され、第3カメラ13に入射する光量の略半分となる。したがって、立体照明部30から照射される光を明るくすることが望ましい。また、本実施の形態では、第1カメラ11で撮像する画像数が第1の実施の形態と比べて多いため、立体照明部30から照射される光を明るくし、撮像周波数を高くすることが望ましい。 In the present embodiment, since the half mirror 21h is provided on the optical axis of the first camera 11, the amount of light emitted from the three-dimensional illumination unit 30 and incident on the first camera 11 is determined by the optical inspection apparatus 1. The amount of light that is irradiated from the three-dimensional illumination unit 30 and is incident on the third camera 13 is approximately half. Therefore, it is desirable to brighten the light emitted from the three-dimensional illumination unit 30. In the present embodiment, since the number of images captured by the first camera 11 is larger than that in the first embodiment, the light emitted from the three-dimensional illumination unit 30 can be brightened and the imaging frequency can be increased. desirable.
 <第3の実施の形態>
 本発明の第1の実施の形態では、周囲に円弧形状のP面が形成されたカバーガラスGの検査を行うものであるが、カバーガラスの形態はこれに限られない。最近では、カバーガラスの周囲の曲面が深くなり、この曲面部分が部分的な円筒形状又は楕円筒形状となったカバーガラスが用いられるようになってきている。
<Third Embodiment>
In the first embodiment of the present invention, the cover glass G in which the arc-shaped P surface is formed is inspected, but the form of the cover glass is not limited to this. Recently, the curved surface around the cover glass has become deeper, and a cover glass in which the curved surface portion has a partial cylindrical shape or an elliptical cylindrical shape has been used.
 本発明の第3の実施の形態は、周囲に部分的な円筒形状又は楕円筒形状を有するカバーガラスを検査する形態である。以下、第3の実施の形態に係る光学検査装置3について説明する。なお、光学検査装置1と同一の部分については、同一の符号を付し、説明を省略する。 The third embodiment of the present invention is a mode for inspecting a cover glass having a partial cylindrical shape or an elliptical cylindrical shape around it. Hereinafter, an optical inspection apparatus 3 according to the third embodiment will be described. In addition, about the part same as the optical inspection apparatus 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 図22は、第3の実施の形態に係る光学検査装置3の概略を示す正面図である。光学検査装置3は、主として、撮像部10と、同軸照明部20と、立体照明部30と、載置部40と、搬送部50(図示省略)と、側面検査部60と、高さ取得部90と、を有する。 FIG. 22 is a front view showing an outline of the optical inspection apparatus 3 according to the third embodiment. The optical inspection apparatus 3 mainly includes an imaging unit 10, a coaxial illumination unit 20, a three-dimensional illumination unit 30, a placement unit 40, a transport unit 50 (not shown), a side inspection unit 60, and a height acquisition unit. 90.
 図23は、光学検査装置3の一部を拡大表示した斜視図である。側面検査部60は、主として、焦点距離調整用光学素子61、62と、反射鏡63、64と、を有する。焦点距離調整用光学素子61、62及び反射鏡63、64は、第3カメラ13を含む略鉛直方向の中心面S1上に位置する。 FIG. 23 is an enlarged perspective view of a part of the optical inspection device 3. The side surface inspection unit 60 mainly includes focal length adjusting optical elements 61 and 62 and reflecting mirrors 63 and 64. The focal length adjusting optical elements 61 and 62 and the reflecting mirrors 63 and 64 are located on a substantially vertical center plane S1 including the third camera 13.
 焦点距離調整用光学素子61、62は、第3カメラ13の焦点距離を調整する光学素子である。本実施の形態では、焦点距離調整用光学素子61、62として厚板状のガラス板を用いる。焦点距離調整用光学素子61、62は、板厚方向と略直交する両端面が水平となるように設けられる。 The focal length adjusting optical elements 61 and 62 are optical elements for adjusting the focal length of the third camera 13. In the present embodiment, thick glass plates are used as the focal length adjusting optical elements 61 and 62. The focal length adjusting optical elements 61 and 62 are provided such that both end faces substantially orthogonal to the plate thickness direction are horizontal.
 焦点距離調整用光学素子61と焦点距離調整用光学素子62とは、x方向及びz方向の位置は略同じであり、第3カメラ13の中心を通るz方向に延びる線ax1を挟んで対向するように設けられる。また、焦点距離調整用光学素子61、62は、立体照明部30よりも上側(+z側)に設けられる。 The focal length adjustment optical element 61 and the focal length adjustment optical element 62 have substantially the same positions in the x direction and the z direction, and face each other with a line ax1 passing through the center of the third camera 13 extending in the z direction. It is provided as follows. Further, the focal length adjustment optical elements 61 and 62 are provided on the upper side (+ z side) of the stereoscopic illumination unit 30.
 反射鏡63、64は、カバーガラスG1の側面の像を反射し、第3カメラ13へ導く部材である。反射鏡63、64は、略板状であり、載置部40に隣接して設けられる。本実施の形態では、隣接するローラ40aとローラ40aとの間に設けられる。 The reflecting mirrors 63 and 64 are members that reflect the image on the side surface of the cover glass G1 and guide it to the third camera 13. The reflecting mirrors 63 and 64 are substantially plate-shaped and are provided adjacent to the placement unit 40. In the present embodiment, it is provided between adjacent rollers 40a.
 反射鏡63と反射鏡64は、x方向及びz方向の位置は略同じであり、第3カメラ13の中心を通るz方向に延びる線ax1を挟んで対向するように設けられる。また平面視において、反射鏡63と反射鏡64は、それぞれ、搬送方向Fと略直交する方向において、載置領域の外側かつ載置領域に隣接する位置に設けられる。ここで、載置領域とは、カバーガラスG1が載置される載置部40上の領域であり、第3カメラ13の鉛直方向下側の領域を含む。図23では、載置領域にカバーガラスG1が載置された状態を図示している。 The positions of the reflecting mirror 63 and the reflecting mirror 64 are substantially the same in the x direction and the z direction, and are provided so as to face each other with a line ax1 passing through the center of the third camera 13 extending in the z direction. Further, in plan view, the reflecting mirror 63 and the reflecting mirror 64 are respectively provided at positions outside the placement area and adjacent to the placement area in a direction substantially orthogonal to the transport direction F. Here, the placement area is an area on the placement portion 40 where the cover glass G <b> 1 is placed, and includes an area on the lower side in the vertical direction of the third camera 13. FIG. 23 illustrates a state where the cover glass G1 is placed on the placement area.
 図24は、光学検査装置3を中心面S1で切断した状態における概略構成を示す図である。図24は、搬送方向F下流側(+x方向)から見た様子を示す。図24における2点鎖線は、第3カメラ13に入射する光の経路を模式的に示す。 FIG. 24 is a diagram showing a schematic configuration in a state in which the optical inspection device 3 is cut along the center plane S1. FIG. 24 shows a state viewed from the downstream side in the transport direction F (+ x direction). A two-dot chain line in FIG. 24 schematically shows a path of light incident on the third camera 13.
 反射鏡63、64の反射面63a、64aは、略平面であり、中心面S1と交差する線(図24において反射面63a、64aを示す線)が水平面に対して傾斜するように、搬送方向Fに略沿って延設される。 The reflecting surfaces 63a and 64a of the reflecting mirrors 63 and 64 are substantially flat, and the conveying direction is such that a line intersecting the center plane S1 (a line indicating the reflecting surfaces 63a and 64a in FIG. 24) is inclined with respect to the horizontal plane. It extends substantially along F.
 中心面S1上では、反射鏡63と反射鏡64は、それぞれ、カバーガラスG1の両側に位置する。カバーガラスG1は、載置部40に載置された状態において、水平方向と平行な平面Gaと、水平方向に対して傾いている側面Gbと、を有する。側面Gbは、部分的な円筒形状又は楕円筒形状であり、側面Gbの水平方向に対する傾きは略30~45度である。また、両側の側面Gbの端Geがローラ40aに載置される。 On the central plane S1, the reflecting mirror 63 and the reflecting mirror 64 are respectively located on both sides of the cover glass G1. The cover glass G <b> 1 has a plane Ga parallel to the horizontal direction and a side surface Gb inclined with respect to the horizontal direction in a state of being placed on the placement unit 40. The side surface Gb has a partial cylindrical shape or an elliptical cylindrical shape, and the inclination of the side surface Gb with respect to the horizontal direction is approximately 30 to 45 degrees. Further, the ends Ge of the side surfaces Gb on both sides are placed on the roller 40a.
 平面Gaの像は、焦点距離調整用光学素子61、62を通過せずに撮像レンズ13aに導かれる。言い換えれば、撮像レンズ13aと平面Gaとを結ぶ線上には、焦点距離調整用光学素子61、62が存在しない。 The image of the plane Ga is guided to the imaging lens 13a without passing through the focal length adjusting optical elements 61 and 62. In other words, the focal length adjusting optical elements 61 and 62 do not exist on the line connecting the imaging lens 13a and the plane Ga.
 それに対し、側面Gbの像は、反射面63a、64aで反射し、焦点距離調整用光学素子61、62を通過して、撮像レンズ13aに導かれる。言い換えれば、撮像レンズ13aと反射面63a、64aとを結ぶ線と重なるように、焦点距離調整用光学素子61、62が配置される。 On the other hand, the image of the side surface Gb is reflected by the reflecting surfaces 63a and 64a, passes through the focal length adjusting optical elements 61 and 62, and is guided to the imaging lens 13a. In other words, the focal length adjusting optical elements 61 and 62 are arranged so as to overlap with a line connecting the imaging lens 13a and the reflecting surfaces 63a and 64a.
 なお、本実施の形態では、撮像レンズ13aと平面Gaとを結ぶ線上に焦点距離調整用光学素子61、62が位置しないように、焦点距離調整用光学素子61、62は、内側が一部切り欠かれている。 In the present embodiment, the focal length adjustment optical elements 61 and 62 are partially cut away so that the focal length adjustment optical elements 61 and 62 are not positioned on the line connecting the imaging lens 13a and the plane Ga. It is missing.
 焦点距離調整用光学素子61、62を通過しない場合の焦点位置F1は、カバーガラスG1の平面Gaの位置である。カバーガラスG1の板厚は略0.5mmであり、焦点位置F1は平面Gaにおける板厚方向の中心近傍に位置することが望ましい。 The focal position F1 when not passing through the focal length adjusting optical elements 61 and 62 is the position of the plane Ga of the cover glass G1. The plate thickness of the cover glass G1 is approximately 0.5 mm, and the focal position F1 is preferably located near the center of the plane Ga in the plate thickness direction.
 焦点距離調整用光学素子61、62を通過する場合には、光が焦点距離調整用光学素子61、62へ入射する過程、及び光が焦点距離調整用光学素子61、62から出射する過程で光が屈折するため、焦点位置F2は焦点位置F1よりも遠い位置にある。焦点距離調整用光学素子61、62を通過することによる焦点位置の延び(図24における黒矢印参照)は、焦点距離調整用光学素子61、62の板圧をTとし、ガラスの屈折率をnとすると、T-T/nで表せる。例えばTが12mmであり、nが1.5であるとすると、焦点距離調整用光学素子61、62を通過することで焦点位置が4mm延びる。つまり、焦点位置F2は、焦点位置F1よりも4mmだけ-z側に位置する。 When the light passes through the focal length adjustment optical elements 61 and 62, the light enters the focal length adjustment optical elements 61 and 62 and the light exits from the focal length adjustment optical elements 61 and 62. Is refracted, the focal position F2 is farther than the focal position F1. The extension of the focal position by passing through the focal length adjusting optical elements 61 and 62 (see the black arrow in FIG. 24) is that the plate pressure of the focal length adjusting optical elements 61 and 62 is T, and the refractive index of the glass is n. Then, it can be expressed as TT / n. For example, if T is 12 mm and n is 1.5, the focal position extends 4 mm by passing through the focal length adjusting optical elements 61 and 62. That is, the focal position F2 is located on the −z side by 4 mm from the focal position F1.
 図25は、カバーガラスG1の位置と第3カメラ13で撮像される画像との関係を示す図であり、(A)はカバーガラスG1の側面部分の拡大図であり、(B)は第3カメラ13で撮像される画像の一部を示す。図25(A)では、反射面63aを点線で示し、反射面63aで反射されて第3カメラ13に入射する光の経路を2点鎖線で示す。 FIG. 25 is a diagram illustrating the relationship between the position of the cover glass G1 and an image captured by the third camera 13, (A) is an enlarged view of a side surface portion of the cover glass G1, and (B) is a third view. A part of the image captured by the camera 13 is shown. In FIG. 25A, the reflecting surface 63a is indicated by a dotted line, and the path of light reflected by the reflecting surface 63a and incident on the third camera 13 is indicated by a two-dot chain line.
 カバーガラスG1の平面Ga及びカバーガラスG1の側面Gbの平面Ga寄りの一部の領域(領域I)については、その像は、焦点距離調整用光学素子61、62を通過せずに撮像レンズ13aに導かれる。焦点位置F1は平面Gaの位置にあるため、領域Iの像はシャープな像となる。側面Gbの像は、少し焦点があっていないボケた像となる(図25網掛け部参照)。 With respect to the partial area (area I) near the plane Ga of the cover glass G1 and the side surface Gb of the cover glass G1, the image does not pass through the focal length adjustment optical elements 61 and 62, and the imaging lens 13a. Led to. Since the focal position F1 is at the position of the plane Ga, the image of the region I is a sharp image. The image on the side surface Gb is a blurred image with little focus (see the shaded portion in FIG. 25).
 側面Gb及び平面Gaの側面Gb寄りの一部の領域(領域II)の像は、反射面63a(反射面64aについても同様)で反射して撮像レンズ13aへ導かれる。したがって、領域IIの像は左右反転し、側面Gbの端Geの像が内側になり、側面Gbの平面Ga側の像が外側になる。 The images of the side surface Gb and a partial region (region II) of the plane Ga near the side surface Gb are reflected by the reflecting surface 63a (the same applies to the reflecting surface 64a) and guided to the imaging lens 13a. Therefore, the image of the region II is reversed left and right, the image of the end Ge of the side surface Gb is on the inside, and the image on the plane Ga side of the side surface Gb is on the outside.
 また、領域IIの像は、焦点距離調整用光学素子61、62を通過して撮像レンズ13aへ導かれる。焦点距離調整用光学素子61、62を通過することで焦点位置F2は焦点位置F1よりも下側に位置するため、側面Gbの大部分については焦点のあったシャープな像となる。本実施の形態では、第3カメラ13の焦点深度と側面Gbの高さとを略一致させることで、側面Gbの全体について焦点のあったシャープな像を得ることができる。また、平面Gaと側面Gbとの境界部分については、少し焦点があっていないボケた像となる(図25網掛け部参照)。なお、領域IIの像の最も中心側は、カバーガラスG1が無い部分であり、第3カメラ13では黒い像が撮像される。 Further, the image of the region II passes through the focal length adjustment optical elements 61 and 62 and is guided to the imaging lens 13a. Since the focal position F2 is positioned below the focal position F1 by passing through the focal length adjusting optical elements 61 and 62, the majority of the side surface Gb is a sharp image with focus. In the present embodiment, by making the depth of focus of the third camera 13 and the height of the side surface Gb substantially coincide with each other, it is possible to obtain a sharp image focused on the entire side surface Gb. Further, the boundary portion between the plane Ga and the side surface Gb is a blurred image with little focus (see the shaded portion in FIG. 25). Note that the most central side of the image in the region II is a portion where the cover glass G1 is not present, and the third camera 13 captures a black image.
 領域Iと領域IIは、一部重なるように設定することが望ましい。これにより、平面Gaと側面Gbとの境界部分について、焦点距離調整用光学素子61、62を通過した画像と通過しない画像との2つの画像を得ることができるため、一方の画像の焦点が合っていない場合にも平面Gaと側面Gbとの境界部分についての欠陥を検出することができる。 It is desirable to set area I and area II so that they partially overlap. As a result, two images, an image that has passed through the focal length adjustment optical elements 61 and 62 and an image that has not passed through, can be obtained at the boundary between the plane Ga and the side surface Gb, so that one of the images is in focus. Even if not, it is possible to detect a defect in the boundary portion between the plane Ga and the side surface Gb.
 図23の説明に戻る。光学検査装置3は、カバーガラスG1の高さを取得する高さ取得部90を有する。高さ取得部90は、側面検査部60よりも搬送方向Fの上流側(-x側)に設けられ、主として、面光源91と、カメラ92と、反射鏡93と、を有する。 Returning to the explanation of FIG. The optical inspection apparatus 3 includes a height acquisition unit 90 that acquires the height of the cover glass G1. The height acquisition unit 90 is provided on the upstream side (−x side) in the transport direction F with respect to the side surface inspection unit 60, and mainly includes a surface light source 91, a camera 92, and a reflecting mirror 93.
 図26、27は、カバーガラスG1の高さを測定する様子を模式的に示す図であり、図26は搬送方向Fと略直交する方向(ここでは、-y方向)から見た図であり、図27は、搬送方向Fに沿って(ここでは+x方向)見た図である。図27の二点鎖線は、面光源91から照射された光の経路を示す。 26 and 27 are diagrams schematically illustrating how the height of the cover glass G1 is measured, and FIG. 26 is a diagram viewed from a direction substantially orthogonal to the transport direction F (here, the −y direction). FIG. 27 is a view taken along the transport direction F (here, the + x direction). A two-dot chain line in FIG. 27 indicates a path of light emitted from the surface light source 91.
 面光源91と、カメラ92及び反射鏡93とは、載置部40を挟んで設けられる。面光源91は、搬送方向Fと略直交する方向(ここでは、+y方向)に光を照射する。カメラ92は、面光源91から照射され、カバーガラスG1を通過し、反射鏡93で反射された光が入射する。これにより、カメラ92では、カバーガラスG1により光が遮られた部分は暗く、その他の部分は明るい影絵のような画像が得られる。したがって、カバーガラスG1の高さを正確に取得することができる。なお、反射鏡93は必須ではなく、面光源91から照射され、カバーガラスG1を通過した光がカメラ92に入射するようにしてもよい。 The surface light source 91, the camera 92, and the reflecting mirror 93 are provided with the placement unit 40 interposed therebetween. The surface light source 91 irradiates light in a direction substantially perpendicular to the transport direction F (here, the + y direction). The camera 92 is irradiated from the surface light source 91, passes through the cover glass G1, and is reflected by the reflecting mirror 93. As a result, in the camera 92, an image such as a shadow picture is obtained where the portion where the light is blocked by the cover glass G1 is dark and the other portion is bright. Therefore, the height of the cover glass G1 can be obtained accurately. Note that the reflecting mirror 93 is not essential, and the light emitted from the surface light source 91 and passing through the cover glass G <b> 1 may be incident on the camera 92.
 カバーガラスG1の先端Gcと後端Gdは、平面Gaよりも高さが低い。したがって、載置部40によりカバーガラスG1を搬送方向Fに移動させながら面光源91からy方向に光を照射し、カバーガラスG1を通過した光をカメラ92で撮像することで、先端Gc及び後端Gdの高さ変化を取得することができる。 The front end Gc and the rear end Gd of the cover glass G1 are lower than the plane Ga. Therefore, by illuminating light in the y direction from the surface light source 91 while moving the cover glass G1 in the transport direction F by the placement unit 40, the light passing through the cover glass G1 is imaged by the camera 92, and the front end Gc and the rear The height change of the end Gd can be acquired.
 図23の説明に戻る。第3カメラ13には、第3カメラ13を上下方向に移動させる移動部95が設けられる。移動部95は、駆動源であるアクチュエータ(図示省略)と、アクチュエータの駆動を伝達して第3カメラ13を上下方向に移動させる移動機構(図示省略)と、を有する。移動機構には、送りねじ等の様々な公知の技術を用いることができる。 Returning to the explanation of FIG. The third camera 13 is provided with a moving unit 95 that moves the third camera 13 in the vertical direction. The moving unit 95 includes an actuator (not shown) that is a drive source, and a moving mechanism (not shown) that moves the third camera 13 in the vertical direction by transmitting the driving of the actuator. Various known techniques such as a feed screw can be used for the moving mechanism.
 CPU101(図7参照)は、カメラ92で撮像された画像に基づいて移動部95を制御し、先端Gc及び後端Gdの高さ変化に合わせて第3カメラ13を上下方向に移動させる。ROM103(図7参照)には、カメラ92で撮像された後、カバーガラスG1が第3カメラ13の真下に位置するまでに、カバーガラスG1を搬送方向Fに送るパルス数が格納されている。また、ROM103には、アクチュエータの駆動量と第3カメラ13の移動量との関係が格納されている。CPU101は、ROM103に格納された情報に基づいて移動部95のアクチュエータを駆動することで、第3カメラ13の下を通過するカバーガラスG1の高さ変化に合わせて第3カメラ13を上下方向に移動させる。 The CPU 101 (see FIG. 7) controls the moving unit 95 based on the image captured by the camera 92, and moves the third camera 13 in the vertical direction in accordance with the height change of the front end Gc and the rear end Gd. The ROM 103 (see FIG. 7) stores the number of pulses for sending the cover glass G1 in the transport direction F until the cover glass G1 is positioned directly below the third camera 13 after being imaged by the camera 92. Further, the ROM 103 stores the relationship between the driving amount of the actuator and the moving amount of the third camera 13. The CPU 101 drives the actuator of the moving unit 95 based on the information stored in the ROM 103 to move the third camera 13 in the vertical direction in accordance with the height change of the cover glass G1 passing under the third camera 13. Move.
 本実施の形態によれば、焦点距離調整用光学素子61、62を用いて第3カメラ13の焦点距離を延ばし、反射鏡63、64を用いて第3カメラ13に入射する光を反射させることで、側面Gbを有するカバーガラスG1であっても、1回の検査で側面Gbの欠陥についても検査することができる。 According to the present embodiment, the focal length of the third camera 13 is extended using the focal length adjusting optical elements 61 and 62, and the light incident on the third camera 13 is reflected using the reflecting mirrors 63 and 64. Thus, even for the cover glass G1 having the side surface Gb, the defect of the side surface Gb can be inspected by one inspection.
 また、本実施の形態によれば、カバーガラスの形状に応じて反射鏡63、64の位置や傾きを変えることで、様々な種類のカバーガラスに対応することができる。例えば、側面Gbの水平方向に対する傾きに応じて反射面63a、64aの水平方向に対する傾きを設定することで、側面Gbの水平方向に対する傾きによらず側面Gbの欠陥を検査することができる。また例えば、カバーガラスの幅に応じて反射鏡63、64のy方向の位置を変えることで、カバーガラスの幅によらず側面Gbの欠陥を検査することができる。 Moreover, according to this Embodiment, it can respond to various types of cover glass by changing the position and inclination of the reflecting mirrors 63 and 64 according to the shape of the cover glass. For example, the defect of the side surface Gb can be inspected regardless of the inclination of the side surface Gb with respect to the horizontal direction by setting the inclination of the reflection surfaces 63a and 64a with respect to the horizontal direction according to the inclination of the side surface Gb with respect to the horizontal direction. Further, for example, by changing the position of the reflecting mirrors 63 and 64 in the y direction according to the width of the cover glass, the defect of the side surface Gb can be inspected regardless of the width of the cover glass.
 また、本実施の形態によれば、第3カメラ13の下を通過するカバーガラスG1の高さ変化に合わせて第3カメラ13を上下方向に移動させることで、先端Gc及び後端Gdの高さが変化する場合であっても、先端Gc及び後端Gdについても焦点の合ったシャープな像を第3カメラ13で撮像することができる。したがって、先端Gc及び後端Gdについても、欠陥を確実に検査することができる。 In addition, according to the present embodiment, the height of the front end Gc and the rear end Gd is increased by moving the third camera 13 in the vertical direction in accordance with the height change of the cover glass G1 that passes under the third camera 13. Even when the distance changes, the third camera 13 can capture a sharp image in focus at the front end Gc and the rear end Gd. Therefore, it is possible to surely inspect the front end Gc and the rear end Gd for defects.
 なお、本実施の形態では、焦点距離調整用光学素子61、62として厚板状のガラス板を用いたが、焦点距離調整用光学素子61、62の形態はこれに限られない。例えば、焦点距離調整用光学素子61、62としてとして凹レンズを用いても良い。なお、ガラス板の厚さや凹レンズの形状はカバーガラスの形状に応じて設定されるが、凹レンズを用いると焦点距離が容易に伸びるので、側面Gbの高さが低い場合には焦点距離調整用光学素子61、62としてガラス板を用いることが望ましい。 In the present embodiment, thick glass plates are used as the focal length adjustment optical elements 61 and 62, but the form of the focal length adjustment optical elements 61 and 62 is not limited thereto. For example, concave lenses may be used as the focal length adjustment optical elements 61 and 62. Although the thickness of the glass plate and the shape of the concave lens are set according to the shape of the cover glass, the focal length easily extends when the concave lens is used. It is desirable to use glass plates as the elements 61 and 62.
 また、本実施の形態では、CPU101がカメラ92で撮像された画像に基づいて移動部95を制御することで、第3カメラ13の下を通過するカバーガラスG1の高さ変化に合わせて第3カメラ13を上下方向に移動させたが、第3カメラ13の下を通過するカバーガラスG1の高さ変化に合わせて第3カメラ13を上下方向に移動させる方法はこれに限られない。例えば、先端Gc及び後端Gdの高さ変化に関する情報を予めROM103に格納しておき、この情報に基づいてCPU101が移動部95を制御してもよい。また例えば、レーザ変位計でカバーガラスG1の高さを測定し、この測定結果に基づいてCPU101が移動部95を制御してもよい。 Further, in the present embodiment, the CPU 101 controls the moving unit 95 based on the image captured by the camera 92, so that the third time is adjusted according to the height change of the cover glass G1 that passes under the third camera 13. Although the camera 13 is moved in the vertical direction, the method of moving the third camera 13 in the vertical direction in accordance with the height change of the cover glass G1 passing under the third camera 13 is not limited to this. For example, information regarding the height change of the front end Gc and the rear end Gd may be stored in the ROM 103 in advance, and the CPU 101 may control the moving unit 95 based on this information. Further, for example, the height of the cover glass G1 may be measured with a laser displacement meter, and the CPU 101 may control the moving unit 95 based on the measurement result.
 <第4の実施の形態>
 本発明の第1の実施の形態では、立体照明部30が第1領域31、第2領域32及び第3領域33を有し、第2領域32、第3領域33では発光部30aが略円筒面上に配置されたが、立体照明部の形態はこれに限られない。
<Fourth embodiment>
In the first embodiment of the present invention, the three-dimensional illumination unit 30 includes a first region 31, a second region 32, and a third region 33, and the light emitting unit 30 a is substantially cylindrical in the second region 32 and the third region 33. Although arranged on the surface, the form of the three-dimensional illumination unit is not limited to this.
 本発明の第4の実施の形態は、立体照明部を構成する全ての帯状発光部が、発光部30aが直線状に並べられた発光ブロックを有する形態である。以下、第4の実施の形態に係る光学検査装置4について説明する。なお、第4の実施の形態に係る光学検査装置4と光学検査装置1との差異は立体照明部のみであるため、第4の実施の形態に係る光学検査装置4が備える立体照明部30Aについて説明し、光学検査装置1と同一の部分については説明を省略する。 In the fourth embodiment of the present invention, all the strip-shaped light emitting units constituting the three-dimensional illumination unit have a light emitting block in which the light emitting units 30a are arranged in a straight line. Hereinafter, the optical inspection apparatus 4 according to the fourth embodiment will be described. In addition, since the difference between the optical inspection apparatus 4 according to the fourth embodiment and the optical inspection apparatus 1 is only the stereoscopic illumination unit, the stereoscopic illumination unit 30A included in the optical inspection apparatus 4 according to the fourth embodiment. A description of the same parts as those of the optical inspection apparatus 1 will be omitted.
 図28は、光学検査装置4が備える立体照明部30Aの概略を示す斜視図である。立体照明部30Aは、複数の方向からカバーガラスGへ光を照射する。立体照明部30Aから照射され、カバーガラスGで反射した光は、第3カメラ13(図1参照)に入射する。 FIG. 28 is a perspective view showing an outline of a three-dimensional illumination unit 30A included in the optical inspection device 4. The three-dimensional illumination unit 30A irradiates the cover glass G with light from a plurality of directions. The light emitted from the three-dimensional illumination unit 30A and reflected by the cover glass G enters the third camera 13 (see FIG. 1).
 立体照明部30Aは、略半円筒面の第1領域31Aと、略半球面又は略半楕円球面の第2領域32A及び第3領域33Aと、を有する。立体照明部30Aにおける第1領域31A、第2領域32A及び第3領域33Aは、それぞれ、立体照明部30における第1領域31、第2領域32及び第3領域33に相当する。 The three-dimensional illumination unit 30A includes a first region 31A having a substantially semi-cylindrical surface, and a second region 32A and a third region 33A having a substantially hemispherical surface or a substantially semi-elliptical spherical surface. The first region 31A, the second region 32A, and the third region 33A in the stereoscopic illumination unit 30A correspond to the first region 31, the second region 32, and the third region 33 in the stereoscopic illumination unit 30, respectively.
 第1領域31Aは、帯状発光部31a-1、31b-1、31c-1、32d-1、31e-1、31f-1、31g-1、31h-1、31i-1、31j-1を有する。立体照明部30Aにおける帯状発光部31a-1~31j-1は、立体照明部30における帯状発光部31a~31jに相当する。 The first region 31A includes strip-shaped light emitting portions 31a-1, 31b-1, 31c-1, 32d-1, 31e-1, 31f-1, 31g-1, 31h-1, 31i-1, and 31j-1. . The band-shaped light emitting units 31a-1 to 31j-1 in the three-dimensional illumination unit 30A correspond to the band-shaped light emitting units 31a to 31j in the three-dimensional illumination unit 30.
 第2領域32Aは、帯状発光部32a-1、32b-1、32c-1、32d-1、32f-1、32g-1、32h-1を有し、第3領域33Aは、帯状発光部33a-1、33b-1、33c-1、33d-1、33f-1、33g-1、33h-1を有する。立体照明部30Aにおける帯状発光部32a-1~32d-1、32f-1~32h-1は、立体照明部30における帯状発光部32a~32d、32f~32hに相当する。立体照明部30Aにおける帯状発光部33a-1~33d-1、33f-1~33h-1は、立体照明部30における帯状発光部33a~33d、33f~33hに相当する。 The second region 32A has strip-like light emitting portions 32a-1, 32b-1, 32c-1, 32d-1, 32f-1, 32g-1, 32h-1, and the third region 33A has the strip-like light emitting portion 33a. -1, 33b-1, 33c-1, 33d-1, 33f-1, 33g-1, and 33h-1. The band-like light emitting units 32a-1 to 32d-1 and 32f-1 to 32h-1 in the three-dimensional illumination unit 30A correspond to the band-like light emitting units 32a to 32d and 32f to 32h in the three-dimensional illumination unit 30. The band-like light emitting units 33a-1 to 33d-1 and 33f-1 to 33h-1 in the three-dimensional illumination unit 30A correspond to the band-like light emitting units 33a to 33d and 33f to 33h in the three-dimensional illumination unit 30.
 また立体照明部30Aは、第1領域31A、第2領域32A及び第3領域33Aを一体化するフレーム34を有する。フレーム34は、アルミニウム等の熱伝導性に優れた金属で形成される。フレーム34は2枚のプレート34aを有し、この2枚のプレート34aの間に第1領域31Aが設けられる。第2領域32A、第3領域33Aは、プレート34aの外側に設けられる。 The three-dimensional illumination unit 30A includes a frame 34 that integrates the first region 31A, the second region 32A, and the third region 33A. The frame 34 is formed of a metal having excellent thermal conductivity such as aluminum. The frame 34 has two plates 34a, and a first region 31A is provided between the two plates 34a. The second region 32A and the third region 33A are provided outside the plate 34a.
 図29は、帯状発光部31a-1の詳細を示す模式図である。帯状発光部31a-1~31j-1は同じ構成であるため、帯状発光部31a-1についてのみ説明し、帯状発光部31b-1~31j-1については説明を省略する。 FIG. 29 is a schematic diagram showing details of the strip-shaped light emitting section 31a-1. Since the belt-like light emitting portions 31a-1 to 31j-1 have the same configuration, only the belt-like light emitting portion 31a-1 will be described, and the description of the belt-like light emitting portions 31b-1 to 31j-1 will be omitted.
 帯状発光部31a-1は、長手方向の長さがLとなるように発光部30aが一列に並べられた発光ブロック30bと、シリンドリカルレンズ30c-1と、レンチキュラレンズ30e-1と、を有する発光ユニットである。シリンドリカルレンズ30cとシリンドリカルレンズ30c-1との差異は長手方向の長さのみである。また、レンチキュラレンズ30eとレンチキュラレンズ30e-1との差異は、長手方向の長さのみである。 The band-shaped light emitting portion 31a-1 has a light emitting block 30b in which the light emitting portions 30a are arranged in a row so that the length in the longitudinal direction is L, a cylindrical lens 30c-1, and a lenticular lens 30e-1. Is a unit. The difference between the cylindrical lens 30c and the cylindrical lens 30c-1 is only the length in the longitudinal direction. Further, the difference between the lenticular lens 30e and the lenticular lens 30e-1 is only the length in the longitudinal direction.
 帯状発光部31a-1は、直線状に並べられた発光ブロック30bを2個有する。2個の発光ブロック30bは、取付部材34bを介してプレート34aに直接取り付けられる。シリンドリカルレンズ30c-1は、取付部材34cを介してプレート34aに直接取り付けられる。 The belt-like light emitting unit 31a-1 has two light emitting blocks 30b arranged in a straight line. The two light emitting blocks 30b are directly attached to the plate 34a via the attachment member 34b. The cylindrical lens 30c-1 is directly attached to the plate 34a via the attachment member 34c.
 発光ブロック30bとシリンドリカルレンズ30c-1との間には、レンチキュラレンズ30e-1が設けられる。レンチキュラレンズ30e-1は、支え部材30fを介して発光ブロック30bに取り付けられる。 A lenticular lens 30e-1 is provided between the light emitting block 30b and the cylindrical lens 30c-1. The lenticular lens 30e-1 is attached to the light emitting block 30b via a support member 30f.
 発光ブロック30b及びシリンドリカルレンズ30c-1は、発光ブロック30bの発光部30aが設けられた先端面p1と、シリンドリカルレンズ30c-1の上面p2とが略平行となるように、プレート34aに設けられる。言い換えれば、発光ブロック30bの延設方向と、シリンドリカルレンズ30c-1の延設方向は略平行である。 The light emitting block 30b and the cylindrical lens 30c-1 are provided on the plate 34a so that the tip surface p1 of the light emitting block 30b where the light emitting portion 30a is provided and the upper surface p2 of the cylindrical lens 30c-1 are substantially parallel. In other words, the extending direction of the light emitting block 30b and the extending direction of the cylindrical lens 30c-1 are substantially parallel.
 図30は、帯状発光部32a-1の詳細を示す模式図である。帯状発光部32a-1~32d-1、32f-1~32h-1、33a-1~33d-1、及び33f-1~33h-1は同じ構成であるため、帯状発光部32a-1についてのみ説明し、帯状発光部32b-1~32d-1、32f-1~32h-1、33a-1~33d-1、及び33f-1~33h-1については説明を省略する。 FIG. 30 is a schematic diagram showing details of the belt-like light emitting part 32a-1. Since the belt-like light emitting portions 32a-1 to 32d-1, 32f-1 to 32h-1, 33a-1 to 33d-1, and 33f-1 to 33h-1 have the same configuration, only the belt-like light emitting portion 32a-1 is used. Explanation will be omitted, and the description of the band-like light emitting portions 32b-1 to 32d-1, 32f-1 to 32h-1, 33a-1 to 33d-1, and 33f-1 to 33h-1 will be omitted.
 帯状発光部32a-1は、長手方向の長さがLとなるように発光部30aが一列に並べられた発光ブロック30bと、シリンドリカルレンズ30c-2と、プレート30gと、を有する発光ユニットである。シリンドリカルレンズ30cとシリンドリカルレンズ30c-2との差異は長手方向の長さのみである。 The belt-like light emitting part 32a-1 is a light emitting unit having a light emitting block 30b in which the light emitting parts 30a are arranged in a row so that the length in the longitudinal direction is L, a cylindrical lens 30c-2, and a plate 30g. . The only difference between the cylindrical lens 30c and the cylindrical lens 30c-2 is the length in the longitudinal direction.
 プレート30gには、発光ブロック30b及びシリンドリカルレンズ30c-2が取り付けられる。プレート30gは、アルミニウム等の熱伝導性に優れた金属で形成される。プレート30gには、プレート30gをプレート34aに取り付けるための折り曲げ部30hが形成される。 The light emitting block 30b and the cylindrical lens 30c-2 are attached to the plate 30g. The plate 30g is formed of a metal having excellent thermal conductivity such as aluminum. The plate 30g is formed with a bent portion 30h for attaching the plate 30g to the plate 34a.
 発光ブロック30b及びシリンドリカルレンズ30c-2は、発光ブロック30bの発光部30aが設けられた先端面p3に対して、シリンドリカルレンズ30c-2の上面p4が傾くように、プレート30gに設けられる。言い換えれば、発光ブロック30bの延設方向に対して、シリンドリカルレンズ30c-1の延設方向が傾いている。 The light emitting block 30b and the cylindrical lens 30c-2 are provided on the plate 30g so that the upper surface p4 of the cylindrical lens 30c-2 is inclined with respect to the tip surface p3 provided with the light emitting portion 30a of the light emitting block 30b. In other words, the extending direction of the cylindrical lens 30c-1 is inclined with respect to the extending direction of the light emitting block 30b.
 なお、帯状発光部31a-1~31j-1はレンチキュラレンズ30e-1を有するが、帯状発光部32a-1~32d-1、32f-1~32h-1、33a-1~33d-1、及び33f-1~33h-1はレンチキュラレンズを有しない。これは、カバーガラスGの左端及び右端に形成されたP面に発光部30aの点状の光が並んで写ることがないためである。 The band-like light emitting portions 31a-1 to 31j-1 have lenticular lenses 30e-1, but the band-like light emitting portions 32a-1 to 32d-1, 32f-1 to 32h-1, 33a-1 to 33d-1, and 33f-1 to 33h-1 do not have a lenticular lens. This is because the spot-like light of the light emitting part 30a does not appear side by side on the P surface formed at the left end and the right end of the cover glass G.
 図28の説明に戻る。帯状発光部31a-1~31e-1は、中心面S1より+x側に位置し、帯状発光部31f-1~31j-1は、中心面S1より-x側に位置する。帯状発光部31a-1~31j-1は、中心面S1上に配置されない。 Returning to the explanation of FIG. The band-like light emitting portions 31a-1 to 31e-1 are located on the + x side from the central plane S1, and the band-like light emitting portions 31f-1 to 31j-1 are located on the −x side from the central plane S1. The strip-shaped light emitting portions 31a-1 to 31j-1 are not arranged on the center plane S1.
 帯状発光部31a-1~31j-1は、光軸が中心面S1と載置部40(図28では図示省略)との交線、すなわち中心軸ax(図31参照)と交差するように設けられる(後に詳述)。 The band-like light emitting portions 31a-1 to 31j-1 are provided so that the optical axis intersects the intersection line between the center plane S1 and the mounting portion 40 (not shown in FIG. 28), that is, the central axis ax (see FIG. 31). (Detailed later).
 帯状発光部32a-1、33a-1は、中心面S1上に設けられる。帯状発光部32b-1~32d-1、33b-1~33d-1は、中心面S1より+x側に位置し、帯状発光部32f-1~32h-1、33f-1~33h-1は、中心面S1より-x側に位置する。 The belt-like light emitting portions 32a-1 and 33a-1 are provided on the center plane S1. The band-like light emitting portions 32b-1 to 32d-1, 33b-1 to 33d-1 are located on the + x side from the center plane S1, and the band-like light emitting portions 32f-1 to 32h-1, 33f-1 to 33h-1 are Located on the −x side from the center plane S1.
 帯状発光部32a-1、33a-1は、中心軸が立体照明部30Aの中心軸ax1と載置部40との交点(中心点O1、図31参照)に向いている。帯状発光部32b-1~32d-1、32f-1~32h-1、33b-1~33d-1及び33f-1~33h-1は、帯状発光部32a-1、33a-1と略平行に設けられる。 The belt-like light emitting units 32a-1 and 33a-1 have a central axis facing the intersection (center point O1, see FIG. 31) between the central axis ax1 of the three-dimensional illumination unit 30A and the mounting unit 40. The strip-shaped light emitting portions 32b-1 to 32d-1, 32f-1 to 32h-1, 33b-1 to 33d-1, and 33f-1 to 33h-1 are substantially parallel to the strip-shaped light emitting portions 32a-1 and 33a-1. Provided.
 図31は、立体照明部30Aから照射される光の経路について説明する図である。図31においては、立体照明部30Aを中心面S1で切断したときの概略構成を示すと共に、光の経路を2点鎖線で示す。 FIG. 31 is a diagram illustrating the path of light emitted from the three-dimensional illumination unit 30A. In FIG. 31, while showing schematic structure when the solid-state illumination part 30A is cut | disconnected by center plane S1, the path | route of light is shown with a dashed-two dotted line.
 帯状発光部31f-1は、光軸が中心軸axと交差するように設けられる。帯状発光部31f-1において、シリンドリカルレンズ30c-1は、発光ブロック30bと中心軸axとの間に設けられ、発光部30aから照射された光を中心軸ax近傍に集光する。第1領域31Aにおいては、発光部30aが略水平に並んでおり、発光ブロック30bの先端面p1と、シリンドリカルレンズ30c-1の上面p2とが略平行であるため、発光ブロック30bから照射される光は、シリンドリカルレンズ30c-1を通過して中心軸axに焦点を結ぶ。 The belt-like light emitting portion 31f-1 is provided so that the optical axis intersects the central axis ax. In the belt-like light emitting unit 31f-1, the cylindrical lens 30c-1 is provided between the light emitting block 30b and the central axis ax, and condenses the light emitted from the light emitting unit 30a in the vicinity of the central axis ax. In the first region 31A, the light emitting portions 30a are arranged substantially horizontally, and the tip surface p1 of the light emitting block 30b and the upper surface p2 of the cylindrical lens 30c-1 are substantially parallel, so that the light is emitted from the light emitting block 30b. The light passes through the cylindrical lens 30c-1 and is focused on the central axis ax.
 帯状発光部32a-1、33a-1は、中心軸が中心点O1に向いている。シリンドリカルレンズ30c-2は、発光ブロック30bと中心点O1(中心軸ax)との間に設けられ、発光部30aから照射された光を中心軸ax近傍に集光する。 The center axis of the strip-shaped light emitting portions 32a-1 and 33a-1 is directed to the center point O1. The cylindrical lens 30c-2 is provided between the light emitting block 30b and the center point O1 (center axis ax), and condenses the light emitted from the light emitting unit 30a in the vicinity of the center axis ax.
 第2領域32A、第3領域33Aにおいては、発光部30aが略水平に並んでおらず、発光ブロック30bの延設方向が水平方向に対して傾いている。仮に発光ブロック30bの先端面p3とシリンドリカルレンズ30c-2の上面p4とが略平行だとすると、発光部30aから照射される光は先端面p3と略平行な線上に焦点を結び、中心軸axに焦点を結ばない。したがって、第2領域32A、第3領域33Aにおいては、発光部30aから照射される光が中心軸axに焦点を結ぶように、先端面p3に対して上面p4を傾ける。 In the second region 32A and the third region 33A, the light emitting portions 30a are not arranged substantially horizontally, and the extending direction of the light emitting block 30b is inclined with respect to the horizontal direction. If the front end surface p3 of the light emitting block 30b and the upper surface p4 of the cylindrical lens 30c-2 are substantially parallel, the light emitted from the light emitting unit 30a is focused on a line substantially parallel to the front end surface p3, and is focused on the central axis ax. Do not tie. Therefore, in the second region 32A and the third region 33A, the upper surface p4 is inclined with respect to the tip surface p3 so that the light emitted from the light emitting unit 30a is focused on the central axis ax.
 これにより、第2領域32A、第3領域33Aにおいて、発光部30aから照射された光は、シリンドリカルレンズ30c-2を通過して、カバーガラスGの左端及び右端に形成されたP面に光を照射し、かつその光の焦点をP面に結ぶことができる。また、第2領域32A、第3領域33Aは、第1領域31Aが光を照射可能な範囲A1の外側の領域A2に光を照射する。このように、第2領域32A、第3領域33Aが第1領域31Aを補う機能を有する。 Thereby, in the second region 32A and the third region 33A, the light emitted from the light emitting unit 30a passes through the cylindrical lens 30c-2, and the light is applied to the P surface formed at the left end and the right end of the cover glass G. Irradiate and focus the light on the P plane. In addition, the second region 32A and the third region 33A irradiate light to the region A2 outside the range A1 in which the first region 31A can irradiate light. Thus, the second region 32A and the third region 33A have a function of supplementing the first region 31A.
 本実施の形態によれば、立体照明部30Aを用いて様々な方向から光をカバーガラスGに照射することができる。特に、第2領域32A、第3領域33Aにおいて先端面p3に対して上面p4を傾けることで、発光部30aから照射された光の焦点をカバーガラスGの左端及び右端に形成されたP面にあわせることができる。また、先端面p3に対して上面p4を傾けることで、第2領域32A、第3領域33Aが第1領域31Aを補うことができる。その結果、帯状発光部31a-1~31j-1が有する発光ブロック30bの数を減らすことができる。 According to the present embodiment, the cover glass G can be irradiated with light from various directions using the three-dimensional illumination unit 30A. In particular, in the second region 32A and the third region 33A, the upper surface p4 is inclined with respect to the tip surface p3, so that the focus of the light emitted from the light emitting unit 30a is on the P surface formed at the left and right ends of the cover glass G. Can be combined. In addition, the second region 32A and the third region 33A can supplement the first region 31A by inclining the upper surface p4 with respect to the tip surface p3. As a result, the number of light emitting blocks 30b included in the band-like light emitting units 31a-1 to 31j-1 can be reduced.
 また、本実施の形態によれば、熱伝導性の高い材料で形成されたフレーム34及びプレート30gが一体化されて放熱部材を構成しているため、発光部30a等から発生した熱を効率よく放熱することができる。 In addition, according to the present embodiment, since the frame 34 and the plate 30g formed of a material having high thermal conductivity are integrated to constitute the heat radiating member, the heat generated from the light emitting unit 30a and the like is efficiently obtained. It can dissipate heat.
 さらに、図28に示すように、立体照明部30Aの近傍に送風部35を設けることが望ましい。送風部35から立体照明部30Aへ風を送ることで、放熱部材(フレーム34及びプレート30g)による冷却効果を向上させることができる。なお、プレート30gがy方向に延設されているため、送風部35は、側面(+y方向及び-y方向の少なくとも一方)から、プレート30gの延設方向に沿った向き(図28太矢印参照)の風を立体照明部30Aへ送ることが望ましい。なお、図28では、立体照明部30Aの-y方向に送風部35を設けているが、送風部35の位置はこれに限られない。また、図28では送風部35を1つ設けているが、送風部35の数もこれに限られない。 Furthermore, as shown in FIG. 28, it is desirable to provide a blower unit 35 in the vicinity of the three-dimensional illumination unit 30A. The cooling effect by the heat radiating member (frame 34 and plate 30g) can be improved by sending wind from the blower 35 to the three-dimensional illumination unit 30A. Since the plate 30g extends in the y direction, the blower 35 is directed from the side surface (at least one of + y direction and -y direction) along the extending direction of the plate 30g (see the thick arrow in FIG. 28). ) Is preferably sent to the three-dimensional illumination unit 30A. In FIG. 28, the air blowing unit 35 is provided in the −y direction of the three-dimensional illumination unit 30A, but the position of the air blowing unit 35 is not limited to this. In FIG. 28, one blower 35 is provided, but the number of blowers 35 is not limited to this.
 <第5の実施の形態>
 本発明の第1の実施の形態では、同軸照明部20は、第1カメラ11の同軸照明である上側同軸照明21と、第2カメラ12の同軸照明である下側同軸照明22と、を有したが、同軸照明部の形態はこれに限られない。
<Fifth embodiment>
In the first embodiment of the present invention, the coaxial illumination unit 20 includes an upper coaxial illumination 21 that is the coaxial illumination of the first camera 11 and a lower coaxial illumination 22 that is the coaxial illumination of the second camera 12. However, the form of the coaxial illumination unit is not limited to this.
 本発明の第5の実施の形態は、同軸照明部がC-PLフィルタを有する形態である。以下、第5の実施の形態に係る光学検査装置5について説明する。なお、第5の実施の形態に係る光学検査装置5と光学検査装置1との差異は同軸照明部のみであるため、第4の実施の形態に係る光学検査装置5が備える同軸照明部20Aについて説明し、光学検査装置1と同一の部分については説明を省略する。 In the fifth embodiment of the present invention, the coaxial illumination unit has a C-PL filter. Hereinafter, the optical inspection apparatus 5 according to the fifth embodiment will be described. In addition, since the difference between the optical inspection apparatus 5 according to the fifth embodiment and the optical inspection apparatus 1 is only the coaxial illumination section, the coaxial illumination section 20A included in the optical inspection apparatus 5 according to the fourth embodiment. A description of the same parts as those of the optical inspection apparatus 1 will be omitted.
 図32は、第5の実施の形態に係る光学検査装置5の概略を示す正面図である。同軸照明部20Aは、第1カメラ11の同軸照明である上側同軸照明21と、第2カメラ12の同軸照明である下側同軸照明22と、C-PLフィルタ23a、23bを有する。C-PLフィルタ23aは、第1カメラ11の下側に設けられ、C-PLフィルタ23bは、第2カメラ12の上側に設けられる。 FIG. 32 is a front view showing an outline of the optical inspection apparatus 5 according to the fifth embodiment. The coaxial illumination unit 20A includes an upper coaxial illumination 21 that is the coaxial illumination of the first camera 11, a lower coaxial illumination 22 that is the coaxial illumination of the second camera 12, and C-PL filters 23a and 23b. The C-PL filter 23 a is provided below the first camera 11, and the C-PL filter 23 b is provided above the second camera 12.
 C-PLフィルタ23a、23bは、それぞれ、偏光板と、偏光板を透過した透過光に1/4λの位相差を与える1/4λ位相差板とを有する円偏光フィルタである。1/4λ位相差板は、直線偏光を円偏光に変換する。C-PLフィルタ23a、23bは、それぞれ、ハーフミラー21h、22h側に偏光板が位置し、ハーフミラー21h、22hから遠い側に1/4λ位相差板が位置するように設けられる。C-PLフィルタ23a、23bは既に公知であるため、詳細な説明を省略する。 Each of the C-PL filters 23a and 23b is a circularly polarizing filter having a polarizing plate and a 1 / 4λ phase difference plate that gives a 1 / 4λ phase difference to transmitted light that has passed through the polarizing plate. The quarter-wave retardation plate converts linearly polarized light into circularly polarized light. The C-PL filters 23a and 23b are provided such that the polarizing plates are positioned on the half mirrors 21h and 22h, and the 1 / 4λ phase difference plate is positioned on the side far from the half mirrors 21h and 22h. Since the C-PL filters 23a and 23b are already known, detailed description thereof is omitted.
 C-PLフィルタ23a、23bは、それぞれ、第1カメラ11、第2カメラ12に隣接して設けられる。また、C-PLフィルタ23a、23bは、それぞれ、厚さ方向と略直交する方向の平面が、光軸oaxと略直交する方向に対して少し傾斜するように設けられる。 The C-PL filters 23a and 23b are provided adjacent to the first camera 11 and the second camera 12, respectively. The C-PL filters 23a and 23b are provided such that the plane in the direction substantially orthogonal to the thickness direction is slightly inclined with respect to the direction substantially orthogonal to the optical axis oax.
 光源21aから照射され、ハーフミラー21hで下向きに反射された光のうちの一部がカバーガラスGを透過して撮像レンズ12a表面で反射する場合がある。この反射光が第1カメラ11に入射すると、第1カメラ11で撮像された画像の中央に明るい光の線が含まれてしまうおそれがある。C-PLフィルタ23bは、カバーガラスGを透過して撮像レンズ12a表面で反射した光が第1カメラ11に入射しないようにする。これにより、第1カメラ11で撮像された画像の中央に明るい光の線が含まれないようにすることができる。 Some of the light emitted from the light source 21a and reflected downward by the half mirror 21h may be transmitted through the cover glass G and reflected from the surface of the imaging lens 12a. When this reflected light is incident on the first camera 11, there is a possibility that a bright light line is included in the center of the image captured by the first camera 11. The C-PL filter 23 b prevents light that has passed through the cover glass G and reflected from the surface of the imaging lens 12 a from entering the first camera 11. Accordingly, it is possible to prevent a bright light line from being included in the center of the image captured by the first camera 11.
 同様に、C-PLフィルタ23aは、光源22aから照射され、ハーフミラー22hで上向きに反射され、カバーガラスGを透過して撮像レンズ11a表面で反射した光が第2カメラ12に入射しないようにする。これにより、第2カメラ12で撮像された画像の中央に明るい光の線が含まれないようにすることができる。 Similarly, the C-PL filter 23a is irradiated from the light source 22a, reflected upward by the half mirror 22h, transmitted through the cover glass G, and reflected from the surface of the imaging lens 11a so that it does not enter the second camera 12. To do. Accordingly, it is possible to prevent a bright light line from being included in the center of the image captured by the second camera 12.
 なお、本実施の形態では、C-PLフィルタ23a、23bを有したが、C-PLフィルタ23aは必須ではない。 In this embodiment, the C-PL filters 23a and 23b are provided, but the C-PL filter 23a is not essential.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。当業者であれば、実施形態の各要素を、適宜、変更、追加、変換等することが可能である。例えば、第4、5の実施の形態に係る光学検査装置4、5に対して、側面検査部60と、高さ取得部90とを適用してもよい。また例えば、第2の実施の形態に係る光学検査装置2と第5の実施の形態に係る光学検査装置5とを組み合わせてもよいし、第4の実施の形態に係る光学検査装置4と第5の実施の形態に係る光学検査装置5とを組み合わせてもよい。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included. . A person skilled in the art can appropriately change, add, or convert each element of the embodiment. For example, the side surface inspection unit 60 and the height acquisition unit 90 may be applied to the optical inspection devices 4 and 5 according to the fourth and fifth embodiments. Further, for example, the optical inspection apparatus 2 according to the second embodiment and the optical inspection apparatus 5 according to the fifth embodiment may be combined, or the optical inspection apparatus 4 according to the fourth embodiment may be combined with the optical inspection apparatus 4 according to the fourth embodiment. The optical inspection device 5 according to the fifth embodiment may be combined.
 また、上記実施の形態では、光学検査装置1~5の被検査物(検査対象)がカバーガラスG、G1であったが、光学検査装置1~5の検査対象はカバーガラスに限られない。例えば、光学検査装置1~5の検査対象が、ラップトップ型パーソナルコンピュータのタッチパッドに用いられるガラスであってもよい。 In the above embodiment, the inspection objects (inspection objects) of the optical inspection apparatuses 1 to 5 are the cover glasses G and G1, but the inspection object of the optical inspection apparatuses 1 to 5 is not limited to the cover glass. For example, the inspection target of the optical inspection apparatuses 1 to 5 may be glass used for a touch pad of a laptop personal computer.
 また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略水平とは、厳密に水平の場合には限られず、例えば数度程度の誤差を含む概念である。また、例えば、単に平行、直交等と表現する場合において、厳密に平行、直交等の場合のみでなく、略平行、略直交等の場合を含むものとする。また、本発明において「近傍」とは、基準となる位置の近くのある範囲(任意に定めることができる)の領域を含むことを意味する。 Further, in the present invention, “substantially” is a concept that includes not only a case where they are exactly the same but also errors and deformations that do not lose the identity. For example, “substantially horizontal” is not limited to being strictly horizontal, but is a concept including an error of about several degrees, for example. Further, for example, when simply expressing as parallel, orthogonal, etc., not only strictly parallel, orthogonal, etc. but also cases of substantially parallel, substantially orthogonal, etc. are included. Further, in the present invention, “near” means including a region in a certain range (which can be arbitrarily determined) near a reference position.
1、2 :光学検査装置
10、10A:撮像部
11  :第1カメラ
12  :第2カメラ
13  :第3カメラ
11a、12a、13a:撮像レンズ
11b、12b、13b:ラインセンサ
13c :第3カメラの視野位置
20、20A:同軸照明部
21、21A:上側同軸照明
22、22A:下側同軸照明
21a、22a:光源
21b、22b:インテグレータ
21c、22c:集光レンズ
21d、22d:絞り
21e、22e:コリメータレンズ
21f、22f:ミラー
21g、22g:フレネルレンズ
21h、22h:ハーフミラー
23a、23b:C-PLフィルタ
30、30A:立体照明部
30a :発光部
30b :発光ブロック
30c、30c-1、30c-2:シリンドリカルレンズ
30d :発光ブロック
30e、30e-1:レンチキュラレンズ
30g   :プレート
30h   :折り曲げ部
31、31A:第1領域
31a~31j、31a-1~31j-1:帯状発光部
32、32A:第2領域
32a~32i、32a-1~32d-1、32f-1~32h-1:帯状発光部
33、33A:第3領域
33a~33i、33a-1~33d-1、33f-1~33h-1:帯状発光部
34  :フレーム
34a :プレート
34b、34c:取付部材
35  :送風部
40  :載置部
40a :ローラ
50  :搬送部
60  :側面検査部
61、62:焦点距離調整用光学素子
63、64:反射鏡
63a、64a:反射面
71  :集積回路
72  :入力部
73  :出力部
74  :電源部
75  :通信I/F
81  :位置検出センサ
82  :位置検出センサ
90  :高さ取得部
91  :面光源
92  :カメラ
93  :反射鏡
95  :移動部
100 :パーソナルコンピュータ
101 :CPU
102 :RAM
103 :ROM
104 :入出力インターフェース
105 :通信I/F
106 :メディアI/F
111 :入力装置
112 :出力装置
113 :記憶媒体
1, 2: Optical inspection device 10, 10 A: Imaging unit 11: First camera 12: Second camera 13: Third camera 11 a, 12 a, 13 a: Imaging lens 11 b, 12 b, 13 b: Line sensor 13 c: Third camera Field position 20, 20A: Coaxial illumination unit 21, 21A: Upper coaxial illumination 22, 22A: Lower coaxial illumination 21a, 22a: Light source 21b, 22b: Integrator 21c, 22c: Condensing lens 21d, 22d: Apertures 21e, 22e: Collimator lenses 21f, 22f: mirrors 21g, 22g: Fresnel lenses 21h, 22h: half mirrors 23a, 23b: C-PL filter 30, 30A: three-dimensional illumination unit 30a: light emitting unit 30b: light emitting blocks 30c, 30c-1, 30c- 2: Cylindrical lens 30d: Light emitting block 30e, 30e-1: Wrench Dura lens 30g: plate 30h: bent portion 31, 31A: first region 31a to 31j, 31a-1 to 31j-1: strip-like light emitting unit 32, 32A: second region 32a to 32i, 32a-1 to 32d-1, 32f -1 to 32h-1: Band-shaped light emitting portions 33, 33A: Third regions 33a to 33i, 33a-1 to 33d-1, 33f-1 to 33h-1: Band-shaped light emitting portions 34: Frame 34a: Plates 34b, 34c: Mounting member 35: blower 40: placement unit 40a: roller 50: transport unit 60: side surface inspection unit 61, 62: focal length adjusting optical element 63, 64: reflecting mirror 63a, 64a: reflecting surface 71: integrated circuit 72 : Input unit 73: Output unit 74: Power supply unit 75: Communication I / F
81: Position detection sensor 82: Position detection sensor 90: Height acquisition unit 91: Surface light source 92: Camera 93: Reflector 95: Moving unit 100: Personal computer 101: CPU
102: RAM
103: ROM
104: Input / output interface 105: Communication I / F
106: Media I / F
111: Input device 112: Output device 113: Storage medium

Claims (17)

  1.  水平方向に被検査物を載置する載置部と、
     前記載置部に載置された前記被検査物を搬送方向に沿って移動させる搬送部と、
     前記被検査物を略鉛直上向きから撮像する一次元撮像手段であって、長手方向が前記搬送方向と略直交するように配置された一次元撮像手段と、
     前記被検査物へ光を照射する発光部を複数有する光照射部と、
     を備え、
     前記光照射部は、前記一次元撮像手段を含む略鉛直方向の面である中心面上に中心軸が位置する略半円筒面の第1領域と、前記第1領域の両端に形成された略半球面又は略半楕円球面の第2領域及び第3領域と、を有し、
     前記第1領域においては、前記搬送方向と略直交する方向に沿って前記発光部が並べられた帯状発光部を複数有し、
     前記帯状発光部は、前記第1領域における前記中心面の近傍以外の領域に設けられ、
     前記第2領域及び前記第3領域においては、前記中心面上に前記発光部が並べられる
     ことを特徴とする光学検査装置。
    A placement unit for placing an object to be inspected in a horizontal direction;
    A transport unit configured to move the inspection object placed on the placement unit along a transport direction;
    One-dimensional imaging means for imaging the object to be inspected from substantially vertically upward, one-dimensional imaging means arranged so that the longitudinal direction is substantially orthogonal to the transport direction;
    A light irradiating unit having a plurality of light emitting units for irradiating the inspection object with light;
    With
    The light irradiation unit includes a first region of a substantially semi-cylindrical surface having a central axis positioned on a central surface that is a surface in a substantially vertical direction including the one-dimensional imaging unit, and a substantially region formed at both ends of the first region. A second region and a third region of a hemispherical surface or a substantially semi-elliptical spherical surface,
    The first region has a plurality of strip-like light emitting parts in which the light emitting parts are arranged along a direction substantially orthogonal to the transport direction,
    The belt-like light emitting portion is provided in a region other than the vicinity of the center plane in the first region,
    In the second region and the third region, the light emitting units are arranged on the center plane.
  2.  前記帯状発光部は、光軸と、前記中心面と前記載置部の上面との交線と、が交差するように設けられ、
     前記帯状発光部は、光軸と前記中心面とのなす角度が略8度又は略17度である第1帯状発光部を有する
     ことを特徴とする請求項1に記載の光学検査装置。
    The belt-like light emitting portion is provided such that the optical axis intersects with the intersection line between the center plane and the upper surface of the mounting portion,
    2. The optical inspection apparatus according to claim 1, wherein the band-shaped light-emitting unit includes a first band-shaped light-emitting unit in which an angle between an optical axis and the center plane is approximately 8 degrees or approximately 17 degrees.
  3.  一定の速度で前記被検査物を搬送するように前記搬送部を制御し、一定の間隔で画像を撮像するように前記一次元撮像手段を駆動し、かつ、前記一次元撮像手段による撮像に同期して、前記第1領域の前記中心面で区切られた半分の領域である第1発光領域、前記第1領域のうちの前記第1発光領域以外の第2発光領域、前記第2領域のうちの前記中心面上の第3発光領域、前記第3領域のうちの前記中心面上の第4発光領域、前記第1帯状発光部を別々に照射させる制御部を備えた
     ことを特徴とする請求項2に記載の光学検査装置。
    The transport unit is controlled so as to transport the inspection object at a constant speed, the one-dimensional imaging unit is driven so as to capture images at a constant interval, and is synchronized with imaging by the one-dimensional imaging unit. A first light-emitting region that is a half region delimited by the central plane of the first region, a second light-emitting region other than the first light-emitting region in the first region, and the second region And a third light emitting region on the central plane, a fourth light emitting region on the central plane of the third region, and a control unit for separately irradiating the first strip light emitting portion. Item 3. The optical inspection device according to Item 2.
  4.  前記光照射部は、前記帯状発光部と、前記中心面と前記載置部の上面との交線と、の間に配置されたシリンドリカルレンズを有する
     ことを特徴とする請求項1から3のいずれか一項に記載の光学検査装置。
    The said light irradiation part has a cylindrical lens arrange | positioned between the said strip | belt-shaped light emission part, and the intersection line of the said center plane and the upper surface of the said mounting part. The any one of Claim 1 to 3 characterized by the above-mentioned. An optical inspection apparatus according to claim 1.
  5.  前記載置部の上側又は下側に設けられる第1撮像手段と、
     光軸が前記第1撮像手段の光軸と一致するように、前記第1撮像手段と前記載置部を挟んで反対側に設けられた第2撮像手段と、
     前記被検査物に法線方向から平行光を照射する第1同軸照明であって、前記第1撮像手段の同軸照明である第1同軸照明と、
     前記第1同軸照明と前記載置部を挟んで反対側に設けられた第2同軸照明であって、前記第2撮像手段の同軸照明である第2同軸照明と、
     を備え、
     前記第1撮像手段には、前記第1同軸照明から照射され、前記被検査物で正反射した光が入射し、
     前記第2撮像手段には、前記第2同軸照明から照射され、前記被検査物で正反射した光、及び前記第1同軸照明から照射され、前記被検査物を透過した光が入射する
     ことを特徴とする請求項1から4のいずれか一項に記載の光学検査装置。
    First imaging means provided on the upper side or the lower side of the placement unit,
    A second image pickup means provided on the opposite side of the first image pickup means and the mounting portion so that the optical axis coincides with the optical axis of the first image pickup means;
    A first coaxial illumination that irradiates the inspection object with parallel light from a normal direction, the first coaxial illumination being a coaxial illumination of the first imaging means;
    A second coaxial illumination provided on the opposite side of the first coaxial illumination and the mounting portion, the second coaxial illumination being a coaxial illumination of the second imaging means;
    With
    The first imaging means is irradiated with light irradiated from the first coaxial illumination and specularly reflected by the inspection object,
    The second imaging means receives light irradiated from the second coaxial illumination and regularly reflected by the inspection object, and light irradiated from the first coaxial illumination and transmitted through the inspection object. The optical inspection apparatus according to any one of claims 1 to 4, wherein the optical inspection apparatus is characterized.
  6.  一定の速度で前記被検査物を搬送するように前記搬送部を制御し、前記第1同軸照明を第1の強さで照射する第1形態、前記第2同軸照明を前記第1の強さで照射する第2形態、前記第1同軸照明を第2の強さで照射する第3形態、の3つの照射パターンで前記第1同軸照明又は前記第2同軸照明を照射させ、かつ、前記第1形態の照射にあわせて前記第1撮像手段で画像を取得し、前記第2形態の照射にあわせて前記第2撮像手段で画像を取得し、前記第3形態の照射にあわせて前記第2撮像手段で画像を取得するように、前記第1撮像手段及び前記第2撮像手段を駆動する第2制御部を備えた
     ことを特徴とする請求項5に記載の光学検査装置。
    A first mode in which the transport unit is controlled so as to transport the object to be inspected at a constant speed, and the first coaxial illumination is irradiated with a first intensity, and the second coaxial illumination is irradiated with the first intensity. The first coaxial illumination or the second coaxial illumination is irradiated with the three irradiation patterns of the second form irradiated with the above, the third form irradiated with the first coaxial illumination with the second intensity, and the first An image is acquired by the first imaging unit in accordance with the irradiation of the first form, an image is acquired by the second imaging unit in accordance with the irradiation of the second form, and the second is acquired in accordance with the irradiation of the third form. The optical inspection apparatus according to claim 5, further comprising a second control unit that drives the first imaging unit and the second imaging unit so that an image is acquired by the imaging unit.
  7.  光軸が前記一次元撮像手段の光軸と一致するように、前記一次元撮像手段と前記載置部を挟んで反対側に設けられた第2撮像手段と、
     前記被検査物に法線方向から平行光を照射する第1同軸照明であって、前記一次元撮像手段の同軸照明である第1同軸照明と、
     前記第1同軸照明と前記載置部を挟んで反対側に設けられた第2同軸照明であって、前記第2撮像手段の同軸照明である第2同軸照明と、
     を備え、
     前記光照射部は、前記一次元撮像手段と前記搬送部との間に設けられ、
     前記一次元撮像手段には、前記光照射部又は前記第1同軸照明から照射され、前記被検査物で正反射した光が入射し、
     前記第2撮像手段には、前記第2同軸照明から照射され、前記被検査物で正反射した光、及び前記第1同軸照明から照射され、前記被検査物を透過した光が入射する
     ことを特徴とする請求項1から4のいずれか一項に記載の光学検査装置。
    A second image pickup means provided on the opposite side of the one-dimensional image pickup means and the mounting portion so that the optical axis coincides with the optical axis of the one-dimensional image pickup means;
    A first coaxial illumination that irradiates the inspection object with parallel light from a normal direction, the first coaxial illumination being a coaxial illumination of the one-dimensional imaging means;
    A second coaxial illumination provided on the opposite side of the first coaxial illumination and the mounting portion, the second coaxial illumination being a coaxial illumination of the second imaging means;
    With
    The light irradiation unit is provided between the one-dimensional imaging unit and the transport unit,
    The one-dimensional imaging means is irradiated with light that is irradiated from the light irradiation unit or the first coaxial illumination and is regularly reflected by the inspection object,
    The second imaging means receives light irradiated from the second coaxial illumination and regularly reflected by the inspection object, and light irradiated from the first coaxial illumination and transmitted through the inspection object. The optical inspection apparatus according to any one of claims 1 to 4, wherein the optical inspection apparatus is characterized.
  8.  一定の速度で前記被検査物を搬送するように前記搬送部を制御し、前記第1同軸照明を第1の強さで照射する第1形態、前記第2同軸照明を前記第1の強さで照射する第2形態、前記第1同軸照明を第2の強さで照射する第3形態、の3つの照射パターンで前記第1同軸照明又は前記第2同軸照明を照射させ、かつ、前記第1形態の照射にあわせて前記一次元撮像手段で画像を取得し、前記第2形態の照射にあわせて前記第2撮像手段で画像を取得し、前記第3形態の照射にあわせて前記第2撮像手段で画像を取得するように、前記一次元撮像手段及び前記第2撮像手段を駆動する第3制御部を備えた
     ことを特徴とする請求項7に記載の光学検査装置。
    A first mode in which the transport unit is controlled so as to transport the object to be inspected at a constant speed, and the first coaxial illumination is irradiated with a first intensity, and the second coaxial illumination is irradiated with the first intensity. The first coaxial illumination or the second coaxial illumination is irradiated with the three irradiation patterns of the second form irradiated with the above, the third form irradiated with the first coaxial illumination with the second intensity, and the first An image is acquired by the one-dimensional imaging unit in accordance with the irradiation of the first form, an image is acquired by the second imaging unit in accordance with the irradiation of the second form, and the second in accordance with the irradiation of the third form. The optical inspection apparatus according to claim 7, further comprising a third control unit that drives the one-dimensional imaging unit and the second imaging unit so that an image is acquired by the imaging unit.
  9.  前記光照射部は、前記発光部に隣接して設けられ、前記発光部から照射された光を拡散する光拡散板を有する
     ことを特徴とする請求項1から8のいずれか一項に記載の光学検査装置。
    The said light irradiation part is provided adjacent to the said light emission part, and has a light-diffusion plate which diffuses the light irradiated from the said light emission part. The Claim 1 characterized by the above-mentioned. Optical inspection device.
  10.  前記一次元撮像手段の焦点距離を調整する焦点距離調整用光学素子と、
     前記載置部に隣接して設けられた反射鏡と、
     を備え、
     前記焦点距離調整用光学素子及び前記反射鏡は、前記中心面上に設けられ、
     平面視において、前記一次元撮像手段の鉛直方向下側に、前記被検査物が載置される前記載置部上の領域である載置領域が位置し、
     平面視において、前記反射鏡は、前記搬送方向と略直交する方向において、前記載置領域の外側かつ前記載置領域に隣接する位置に設けられ、
     前記反射鏡の反射面は略平面であり、
     前記反射面は、前記中心面と交差する線が水平面に対して傾斜するように、前記搬送方向に略沿って延設され、
     前記焦点距離調整用光学素子は、前記一次元撮像手段と前記反射鏡とを結ぶ線と重なるように配置される
     ことを特徴とする請求項1から9のいずれか一項に記載の光学検査装置。
    A focal length adjusting optical element for adjusting a focal length of the one-dimensional imaging means;
    A reflector provided adjacent to the mounting portion;
    With
    The focal length adjusting optical element and the reflecting mirror are provided on the center plane,
    In a plan view, a placement area that is an area on the placement section on which the inspection object is placed is positioned below the vertical direction of the one-dimensional imaging means,
    In plan view, the reflecting mirror is provided at a position outside the mounting area and adjacent to the mounting area in a direction substantially orthogonal to the transport direction,
    The reflecting surface of the reflecting mirror is substantially flat,
    The reflecting surface extends substantially along the transport direction so that a line intersecting the center plane is inclined with respect to a horizontal plane,
    The optical inspection apparatus according to claim 1, wherein the focal length adjustment optical element is disposed so as to overlap a line connecting the one-dimensional imaging unit and the reflecting mirror. .
  11.  前記焦点距離調整用光学素子は、ガラス板であり、板厚方向と略直交する両端面が水平となるように設けられる
     ことを特徴とする請求項10に記載の光学検査装置。
    The optical inspection apparatus according to claim 10, wherein the focal length adjusting optical element is a glass plate, and is provided such that both end faces substantially orthogonal to the plate thickness direction are horizontal.
  12.  前記一次元撮像手段を上下方向に移動させる移動部と、
     前記被検査物の高さを取得する高さ取得部と、
     前記高さ取得部が取得した情報に基づいて前記移動部を制御して、前記一次元撮像手段の下を通過する前記被検査物の高さ変化に合わせて前記一次元撮像手段を上下方向に移動させる移動制御部と、
     を備えたことを特徴とする請求項1から11のいずれか一項に記載の光学検査装置。
    A moving unit for moving the one-dimensional imaging means in the vertical direction;
    A height acquisition unit for acquiring the height of the inspection object;
    Based on the information acquired by the height acquisition unit, the moving unit is controlled so that the one-dimensional imaging unit is moved in the vertical direction in accordance with the height change of the inspection object passing under the one-dimensional imaging unit. A movement control unit to be moved;
    The optical inspection apparatus according to claim 1, further comprising:
  13.  前記高さ取得部は、前記搬送方向と略直交する方向に光を照射する面光源と、前記面光源から照射され、前記被検査物を通過した光が入射する側面撮像手段と、を有する
     ことを特徴とする請求項12に記載の光学検査装置。
    The height acquisition unit includes a surface light source that emits light in a direction substantially orthogonal to the transport direction, and a side surface imaging unit that receives light that has been irradiated from the surface light source and passed through the inspection object. The optical inspection apparatus according to claim 12.
  14.  前記光照射部は、前記第2領域及び前記第3領域において、前記発光部が一列に並べられた発光ブロックと、前記発光部から照射された光が通過する第2シリンドリカルレンズと、を有し、
     前記第2領域及び前記第3領域においては、前記発光ブロックの延設方向は水平方向に対して傾いており、
     前記第2領域及び前記第3領域においては、前記発光ブロックの延設方向に対して、前記第2シリンドリカルレンズの延設方向が傾いている
     ことを特徴とする請求項1から13のいずれか一項に記載の光学検査装置。
    The light irradiation unit includes a light emitting block in which the light emitting units are arranged in a row in the second region and the third region, and a second cylindrical lens through which light emitted from the light emitting unit passes. ,
    In the second region and the third region, the extending direction of the light emitting block is inclined with respect to the horizontal direction,
    The extending direction of the second cylindrical lens is inclined with respect to the extending direction of the light emitting block in the second region and the third region. The optical inspection device according to item.
  15.  前記光照射部は、熱伝導性の高い材料で形成された放熱部材を有し、
     前記発光部は、前記放熱部材に設けられる
     ことを特徴とする請求項1から14のいずれか一項に記載の光学検査装置。
    The light irradiation unit has a heat dissipation member formed of a material having high thermal conductivity,
    The optical inspection apparatus according to claim 1, wherein the light emitting unit is provided on the heat dissipation member.
  16.  前記放熱部材に風を送る送風部を備え、
     前記放熱部材は、前記発光部が設けられたプレートを複数有し、
     前記プレートは、前記搬送方向と略直交する方向に延設されており、
     前記送風部は、前記プレートの延設方向に沿った向きの風を送る
     ことを特徴とする請求項15に記載の光学検査装置。
    A blower for sending air to the heat dissipating member;
    The heat dissipation member has a plurality of plates provided with the light emitting part,
    The plate extends in a direction substantially perpendicular to the transport direction,
    The optical inspection apparatus according to claim 15, wherein the air blowing unit sends wind in a direction along the extending direction of the plate.
  17.  前記第2撮像手段は、前記載置部の下側に設けられ、
     前記第2撮像手段の上側には、円偏光フィルタが設けられ、
     前記円偏光フィルタは、厚さ方向と略直交する方向の平面が、前記第2撮像手段の光軸と略直交する方向に対して少し傾斜するように設けられている
     ことを特徴とする請求項5から8のいずれか一項に記載の光学検査装置。
    The second imaging means is provided below the placement unit,
    A circular polarizing filter is provided above the second imaging means,
    The circularly polarizing filter is provided such that a plane in a direction substantially orthogonal to the thickness direction is slightly inclined with respect to a direction substantially orthogonal to the optical axis of the second imaging means. The optical inspection apparatus according to any one of 5 to 8.
PCT/JP2017/040231 2016-11-09 2017-11-08 Optical inspection device WO2018088423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018550225A JP6912824B2 (en) 2016-11-09 2017-11-08 Optical inspection equipment
KR1020197009783A KR102339677B1 (en) 2016-11-09 2017-11-08 optical inspection device
CN201780062143.7A CN109804238B (en) 2016-11-09 2017-11-08 Optical inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-218616 2016-11-09
JP2016218616 2016-11-09

Publications (1)

Publication Number Publication Date
WO2018088423A1 true WO2018088423A1 (en) 2018-05-17

Family

ID=62110631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040231 WO2018088423A1 (en) 2016-11-09 2017-11-08 Optical inspection device

Country Status (4)

Country Link
JP (1) JP6912824B2 (en)
KR (1) KR102339677B1 (en)
CN (1) CN109804238B (en)
WO (1) WO2018088423A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076652A (en) * 2018-11-08 2020-05-21 日本電気硝子株式会社 Workpiece manufacturing method, workpiece inspection method and workpiece inspection device
WO2021090827A1 (en) * 2019-11-05 2021-05-14 株式会社小糸製作所 Inspection device
US20220101516A1 (en) * 2020-09-28 2022-03-31 Hive Vision Co., Ltd. Non-lambertian surface inspection system for line scan cross reference to related application
TWI781840B (en) * 2021-12-02 2022-10-21 友達光電股份有限公司 A light control device, testing system and method for dark field photography
JP7373644B2 (en) 2019-07-23 2023-11-02 ケーエルエー コーポレイション Imaging internal cracks in semiconductor devices using a combination of transmitted and reflected light

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535265A (en) * 2018-04-10 2018-09-14 深圳市纳研科技有限公司 A kind of multi-angle polisher and acquisition system
CN110208290A (en) * 2019-06-19 2019-09-06 海南梯易易智能科技有限公司 A kind of 3D bend glass defect detecting device based on line scan camera
KR102535869B1 (en) * 2021-03-02 2023-05-26 주식회사 디쌤 Visual inspection assembly
WO2022245195A1 (en) * 2021-05-18 2022-11-24 엘지전자 주식회사 Thickness measurement device
TWI782695B (en) * 2021-09-06 2022-11-01 致茂電子股份有限公司 Dual sided optical detection system with fluorescence detection function
KR102368707B1 (en) * 2021-09-07 2022-02-28 주식회사 하이브비젼 Non-Lambertian Surface Inspecting System For Line Scan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075051A (en) * 1996-07-05 1998-03-17 Toyota Motor Corp Visual inspection device
US20020196338A1 (en) * 2001-06-04 2002-12-26 Tham Yew Fei Dome-shaped apparatus for inspecting a component or a printed circuit board device
JP2003224353A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method for mounting substrate of electronic component
JP2005265741A (en) * 2004-03-22 2005-09-29 Mega Trade:Kk Lighting system
JP2010122047A (en) * 2008-11-19 2010-06-03 Mega Trade:Kk Lighting system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316501B2 (en) * 2000-03-28 2002-08-19 科学技術振興事業団 Sensor head, luminance distribution measuring device including the same, and display unevenness evaluation device
JP4709375B2 (en) * 2000-12-22 2011-06-22 東芝モバイルディスプレイ株式会社 Liquid crystal display element
CN2867100Y (en) * 2005-07-13 2007-02-07 王锦峰 On-line light supply generation device
DE102008047085B4 (en) * 2008-09-12 2016-02-18 Gp Inspect Gmbh lighting device
JP5806808B2 (en) 2010-08-18 2015-11-10 倉敷紡績株式会社 Imaging optical inspection device
FI125320B (en) * 2012-01-05 2015-08-31 Helmee Imaging Oy EVENTS AND SIMILAR OPTICAL MEASUREMENT PROCEDURES
CN103293162B (en) * 2013-06-17 2015-03-11 浙江大学 Lighting system and method used for dark field detection of defect in spherical optical element surface
JP6287360B2 (en) * 2014-03-06 2018-03-07 オムロン株式会社 Inspection device
US9885671B2 (en) * 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075051A (en) * 1996-07-05 1998-03-17 Toyota Motor Corp Visual inspection device
US20020196338A1 (en) * 2001-06-04 2002-12-26 Tham Yew Fei Dome-shaped apparatus for inspecting a component or a printed circuit board device
JP2003224353A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method for mounting substrate of electronic component
JP2005265741A (en) * 2004-03-22 2005-09-29 Mega Trade:Kk Lighting system
JP2010122047A (en) * 2008-11-19 2010-06-03 Mega Trade:Kk Lighting system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076652A (en) * 2018-11-08 2020-05-21 日本電気硝子株式会社 Workpiece manufacturing method, workpiece inspection method and workpiece inspection device
JP7167641B2 (en) 2018-11-08 2022-11-09 日本電気硝子株式会社 Work manufacturing method and work inspection method
JP7373644B2 (en) 2019-07-23 2023-11-02 ケーエルエー コーポレイション Imaging internal cracks in semiconductor devices using a combination of transmitted and reflected light
WO2021090827A1 (en) * 2019-11-05 2021-05-14 株式会社小糸製作所 Inspection device
US20220101516A1 (en) * 2020-09-28 2022-03-31 Hive Vision Co., Ltd. Non-lambertian surface inspection system for line scan cross reference to related application
US11657495B2 (en) * 2020-09-28 2023-05-23 Hive Vision Co., Ltd. Non-lambertian surface inspection system using images scanned in different directions
TWI781840B (en) * 2021-12-02 2022-10-21 友達光電股份有限公司 A light control device, testing system and method for dark field photography

Also Published As

Publication number Publication date
CN109804238A (en) 2019-05-24
KR102339677B1 (en) 2021-12-14
JPWO2018088423A1 (en) 2019-10-03
KR20190082198A (en) 2019-07-09
JP6912824B2 (en) 2021-08-04
CN109804238B (en) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2018088423A1 (en) Optical inspection device
US9110035B2 (en) Method and system for detecting defects of transparent substrate
US20110310244A1 (en) System and method for detecting a defect of a substrate
KR100996335B1 (en) Apparatus and methods for inspecting a composite structure for inconsistencies
JP2006514266A (en) Uniform light source method and apparatus
JP2012042297A (en) Imaging optical inspection apparatus
JP2013505464A (en) High speed optical inspection system with camera array and compact built-in illuminator
JP5720134B2 (en) Image inspection apparatus and image forming apparatus
TWI504885B (en) Pattern inspection apparatus and pattern inspection method
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP5755144B2 (en) Work inspection device
KR101577119B1 (en) Pattern inspection apparatus and pattern inspection method
US20200378899A1 (en) Glass processing apparatus and methods
TWI691714B (en) Inspection device and inspection method
KR20060066041A (en) Apparatus for inspecting back light unit
CN112888936A (en) Multi-modal multiplexed illumination for optical inspection systems
JP6956004B2 (en) Defect inspection equipment and manufacturing method of defect inspection equipment
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JP4746218B2 (en) Pattern inspection apparatus and inspection method
CN115704777A (en) Inspection image acquisition device, inspection image acquisition method, and inspection device
KR20120086333A (en) High speed optical inspection system with adaptive focusing
KR101132792B1 (en) Method of inspecting substrate
JP2010190820A (en) Device for inspecting quality of printed matter, and method for optical arrangement of the same
JP2013044635A (en) Defect detecting device
US11974046B2 (en) Multimodality multiplexed illumination for optical inspection systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550225

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870240

Country of ref document: EP

Kind code of ref document: A1