WO2018088247A1 - 容器のリーク検査装置及びリーク検査方法、搬送容器処理装置 - Google Patents

容器のリーク検査装置及びリーク検査方法、搬送容器処理装置 Download PDF

Info

Publication number
WO2018088247A1
WO2018088247A1 PCT/JP2017/038916 JP2017038916W WO2018088247A1 WO 2018088247 A1 WO2018088247 A1 WO 2018088247A1 JP 2017038916 W JP2017038916 W JP 2017038916W WO 2018088247 A1 WO2018088247 A1 WO 2018088247A1
Authority
WO
WIPO (PCT)
Prior art keywords
containers
container
pressure
inspection
leak
Prior art date
Application number
PCT/JP2017/038916
Other languages
English (en)
French (fr)
Inventor
正志 青木
修 幡野
聖仁 権藤
宏紀 尾関
Original Assignee
東洋製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016220559A external-priority patent/JP6874337B2/ja
Priority claimed from JP2017025287A external-priority patent/JP6354876B1/ja
Application filed by 東洋製罐株式会社 filed Critical 東洋製罐株式会社
Priority to US16/343,315 priority Critical patent/US20200182737A1/en
Priority to CN201780069898.XA priority patent/CN109983317A/zh
Publication of WO2018088247A1 publication Critical patent/WO2018088247A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3209Details, e.g. container closure devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators

Definitions

  • the present invention relates to an inspection apparatus and an inspection method for inspecting a container for leaking downstream of a container production line, or a processing apparatus for performing processing such as inspection, cleaning, and filling of a container on the downstream side of a container production line. It is.
  • a leak inspection process for inspecting whether the manufactured container has a predetermined airtightness, a cleaning process for removing dust in the container, a container A process such as a filling process for filling the content liquid or the like inside is performed.
  • a processing head inspection head or the like
  • the processing head is held for a certain period of time, during which a process such as a leak inspection is performed.
  • the test head is attached to the mouth of the container, and pressurized air is supplied into the sealed container, thereby applying the test pressure in the container, and then holding the sealed condition for a certain period of time, The presence / absence of a leak is determined from the pressure drop amount of the container internal pressure detected during that time.
  • the bottle internal pressure immediately after mounting the inspection head on the bottle mouth, opening the supply valve for a predetermined period, and closing the supply valve for a synthetic resin bottle Is used as a reference internal pressure, and it is checked whether or not the reference internal pressure exceeds a predetermined first threshold value. If the reference internal pressure exceeds the first threshold value, the airtight state of the bottle is maintained for a certain period of time, The amount of pressure drop from the reference internal pressure after a lapse of a certain time is measured by a differential pressure sensor, and when the amount of pressure drop does not exceed a second threshold value that is defined in advance, the bottle is determined to be non-defective (no leak). .
  • Patent Document 2 is a leak inspection apparatus, which causes the inspection head to follow a transport means for transporting the container and a container that moves to mount the inspection head on the mouth of the container.
  • a tracking means is provided, and equidistant arrangement means for arranging the containers to be conveyed at equal intervals and a gripping means for positioning the containers at equal intervals are provided. .
  • the temperature of the container gradually changes from a high temperature state to room temperature.
  • the bottle immediately after being taken out from the blow mold has a high temperature of about 40 to 50 ° C. at the barrel portion, and 30 ° C. at the leak inspection apparatus inlet on the downstream side of the container production line. It will be about. Thereafter, the temperature of the bottle decreases to room temperature (about 25 ° C.) in the process of being conveyed.
  • the threshold value in the above-described leak inspection needs to be set to a value that takes into account the temperature of the container.
  • the temperature of the bottle body flowing to the leak inspection device is about 30 ° C as described above during continuous production.
  • a bottle near room temperature may flow. is there.
  • a first problem of the present invention is to perform a highly accurate leak inspection with high productivity without considering a change in the container temperature in the container leak inspection on the downstream side of the container production line.
  • the present invention has been proposed to deal with such problems. That is, the second problem of the present invention is that in a processing apparatus that performs processing such as leak inspection on a container to be transported, even if there is a variation in the interval between containers, it is possible to reliably For example, a processing head is attached to each of the plurality of containers.
  • a container leak inspection apparatus has the following configuration.
  • a head mounting unit that mounts inspection heads on the mouths of a plurality of containers, and a supply pressure to the inspection heads that are mounted on each of the plurality of containers
  • a pressure supply unit that makes the pressure in the plurality of sealed containers an inspection pressure
  • a leak determination that detects a change in pressure over time in the plurality of sealed containers and performs a leak determination of the plurality of containers
  • the leak determination unit includes a differential pressure sensor that detects a differential pressure in a container that is a pair of the plurality of containers, and performs a leak determination based on an output of the differential pressure sensor.
  • a transport container processing apparatus of the present invention has the following configuration.
  • a container sensor that detects a container that is linearly conveyed; a plurality of head mounting sections that respectively mount processing heads at the mouths of the plurality of containers detected by the container sensor; and the transport path of the container through the head mounting section.
  • a plurality of linear actuators that reciprocate along the head, and a control unit that individually controls the operations of the plurality of linear actuators and the plurality of head mounting units, and the control unit detects the timing of the container sensor.
  • a transport container processing apparatus grasping the positions of a plurality of containers conveyed from the movement distance of the containers, and controlling the linear actuator to move the processing heads onto the plurality of containers detected by the container sensor, A transport container processing apparatus, wherein the head mounting portion is caused to follow the movement of the container.
  • the container leak inspection apparatus performs a leak determination by detecting a differential pressure in a container for a pair of containers out of the containers aligned and transported from the container production line.
  • Containers that are pairs of a plurality of containers that are aligned and transported have substantially the same container temperature. Therefore, by detecting the differential pressure in these containers, the productivity is high without considering changes in the container temperature. A highly accurate leak determination can be performed.
  • the differential pressure in the paired container is small in the range of pressure change detected regardless of the size of the container, by making this small pressure change range correspond to the full range of the differential pressure sensor, a minute pressure It becomes possible to detect the change with high sensitivity. This also makes it possible to perform leak determination with high accuracy.
  • each processing head is moved to the position of each container detected by the container sensor, and a plurality of transported containers are transported.
  • a processing head can be attached to the container.
  • the processing capacity can be increased by processing multiple containers at the same time, and even if there are variations in the spacing between containers, the processing heads can be securely attached to the multiple containers without using means for positioning them at regular intervals. This can improve productivity such as shortening the mold change time.
  • this processing apparatus can be installed externally without changing an existing transport apparatus, it can be deployed at low cost.
  • a container leak inspection apparatus (hereinafter referred to as a leak inspection apparatus) 1A according to an embodiment of the present invention includes a head mounting part 4, a pressure supply part 7, and a leak determination part 8.
  • the objects to be inspected are a plurality of containers W1 and W2 that have been aligned and conveyed from the container production line.
  • the target containers W1 and W2 only need to be able to ensure hermeticity by closing the mouth, and can target various containers such as synthetic resin bottles, metal cans, metal bottle cans, and pouches.
  • the leak inspection apparatus 1A simultaneously inspects a plurality of neighboring containers W1 and W2 among the containers aligned and transported from the container manufacturing line. Are assumed to be approximately the same.
  • the head mounting portion 4 has a function of mounting the inspection heads 3A and 3B to the mouths of the containers W1 and W2 to be inspected, respectively.
  • the inspection heads 3A and 3B seal the mouths of the containers W1 and W2, respectively, and the end portions of the pressure supply pipes 30 and 31 connected to the pressure supply unit 7 and the pressure detection pipes 40 and 41 connected to the leak determination unit 8 are connected. Has been.
  • the inspection head 3A (3B) is attached to the mouth portion of the container W1 (W2), the mouth portion is sealed, and the end portions of the pressure supply pipe 30 (31) and the pressure detection pipe 40 (41) are sealed. Will communicate with the inside of the container W1 (W2).
  • the head mounting portion 4 includes air cylinders 22 and 23 for raising and lowering the inspection heads 3A and 3B.
  • Pipes 24A and 24B for operating the air cylinder are connected to the air cylinder 22, and pipes 24C and 24D branched from the pipes 24A and 24B are connected to the air cylinder 23, respectively.
  • a flow path switching valve 25 is connected between the pipe 24E connected to the pressure supply source via the pressure regulating valve 26 and the pipes 24A and 24B. By switching the flow path switching valve 25, Then, the air cylinders 22 and 23 are operated to raise or lower the inspection heads 3A and 3B.
  • the mechanism for raising or lowering the inspection heads 3A, 3B is not limited to the above-described air cylinder, and other actuators such as an electric cylinder may be used.
  • the pressure supply unit 7 simultaneously supplies the supply pressure to the inspection heads 3A and 3B attached to the containers W1 and W2, respectively, and raises the pressure in the sealed containers W1 and W2 to the inspection pressure.
  • the pressure supply unit 7 includes flow path switching valves 32 and 33 connected to the pressure supply pipes 30 and 31.
  • the flow path switching valves 32 and 33 are connected with a pipe 35 connected to a pressure supply source via a pressure adjusting valve 34 and a pipe 36 branched therefrom.
  • supply pressure is simultaneously sent to the inspection heads 3A and 3B.
  • the flow path switching valves 32 and 33 are simultaneously switched to the closed side, the pressure supply is stopped, and the sealed state is achieved.
  • the setting of the supply pressure in the pressure supply unit 7 is preferably set higher than the inspection pressure applied in the containers W1, W2, and the containers W1, W2 are set by setting the supply pressure higher than the inspection pressure.
  • the pressurizing time can be shortened.
  • the leak determination unit 8 detects a change in pressure over time in the containers W1 and W2 sealed by the inspection heads 3A and 3B, and performs a leak determination on the containers W1 and W2.
  • the leak determination unit 8 includes a differential pressure sensor 42 that detects a differential pressure in the two containers W1, W2.
  • the differential pressure sensor 42 is connected to the other ends of pressure detection pipes 40 and 41 whose one ends are connected to the inspection heads 3A and 3B.
  • the leak determination unit 8 has the other ends of the pressure detection pipes 40 and 41 further branched and connected to the direct pressure sensors 43 and 44, and the differential pressure sensor 42 and the direct pressure sensors 43 and 44.
  • the pressure detector 45 is configured.
  • the direct pressure sensors 43 and 44 directly detect the internal pressures of the containers W1 and W2.
  • the other ends of the pressure detection pipes 40 and 44 are branched and connected to the direct pressure sensors 43 and 44, so that the differential pressure is detected.
  • the differential pressure in the containers W1 and W2 detected by the sensor 42 and the internal pressures of the containers W1 and W2 detected by the direct pressure sensors 43 and 44 can be detected simultaneously.
  • the leak determination unit 8 includes an arithmetic processing unit 46, and outputs of the differential pressure sensor 42 and the direct pressure sensors 43 and 44 are input to the arithmetic processing unit 46.
  • the arithmetic processing unit 46 determines whether or not there is a leak in the containers W1 and W2 based on the outputs of the differential pressure sensor 42 and the direct pressure sensors 43 and 44.
  • the pressure detection pipes 40 and 41 connected to the leak determination unit 8 are connected to the inspection heads 3A and 3B in a state separated from the pressure supply pipes 30 and 31 connected to the pressure supply unit 7.
  • FIG. 2 shows an installation example of the leak inspection apparatus 1A.
  • This leak inspection apparatus 1A has a plurality of neighboring containers W1 and W2 among the containers W that are aligned and conveyed in a row by a conveyance device 60 such as a conveyor, and an inspection head along the conveyance direction of the containers W.
  • the container W is sequentially inspected for leaks while moving 3A and 3B.
  • the leak inspection apparatus 1 ⁇ / b> A is provided with a guide rail 50 along the conveyance direction of the conveyance apparatus 60, and includes moving mechanisms 51 and 52 that move the inspection heads 3 ⁇ / b> A and 3 ⁇ / b> B along the guide rail 50.
  • the moving mechanisms 51 and 52 move the inspection heads 3A and 3B in synchronization with the conveyance of the plurality of containers W1 and W2, and move the inspection heads 3A and 3B in the direction opposite to the conveyance direction. After the inspection heads 3A and 3B are mounted on the containers W1 and W2, the moving mechanisms 51 and 52 move the inspection heads 3A and 3B at the same speed as the moving speed of the transport device 60, and the inspection heads 3A and 3B are moved from the containers W1 and W2 to the inspection heads. After leaving 3A and 3B, the operation returns to the initial position, the moving speed is increased, the inspection heads 3A and 3B are moved in the direction opposite to the transport direction, and the standby state is entered.
  • a sensor for detecting the container W is arranged on the transport device 60, and the inspection heads 3A and 3B are attached to the container W and moved by the moving mechanisms 51 and 52 in accordance with the timing at which the container W is detected. It is good also as a structure performed separately. As a result, even when the pitch of the containers W varies, the inspection heads 3A and 3B can be reliably mounted on the containers.
  • the inspection is started by first mounting the inspection heads 3A and 3B on the mouths of the containers W1 and W2 by the head mounting unit 4 (head mounting process).
  • the movement of the moving mechanisms 51 and 52 is synchronized with the movement of the transport device 60, the air cylinders 22 and 23 are operated by the switching operation of the flow path switching valve 25, and the inspection heads 3A and 3B are moved. Lower.
  • the pressure supply unit 7 simultaneously supplies supply pressure to the inspection heads 3A and 3B to pressurize the containers W1 and W2, and set the pressures in the containers W1 and W2 to the inspection pressure. Increase (pressure supply process).
  • the supply pressure is applied by simultaneous switching of the flow path switching valves 32 and 33 in the pressure supply unit 7, the flow path switching valves 32 and 33 are switched to the open side to turn on the supply pressure, and then a predetermined time has elapsed. After that, the flow path switching valves 32 and 33 are switched to the closed side to turn off the supply pressure, and the container internal pressure is held at the inspection pressure.
  • the supply pressure to be applied is preferably set higher than the inspection pressure, and the pressurization time can be shortened by setting the supply pressure higher.
  • a predetermined equilibration period is provided after the inspection pressure is applied to stabilize the pressure state in the containers W1 and W2, and then a leak determination process described later is performed.
  • the pressure detection pipe 40 By separating 41 on the secondary side of the containers W1, W2, the equilibration period can be shortened.
  • the leak determination step Thereafter, the amount of pressure change with time in the sealed containers W1 and W2 is detected, and the leak determination of the containers W1 and W2 is performed (leak determination step).
  • the pressure change amount is detected by the outputs of the differential pressure sensor 42 and the direct pressure sensors 43 and 44.
  • the leak determination unit 8 mainly detects the differential pressure in the containers W1 and W2 by the differential pressure sensor 42, performs a leak determination based on the differential pressure, and supplementarily outputs the direct pressure sensors 43 and 44.
  • the direct pressure sensors 43 and 44 can be appropriately omitted depending on the inspection situation.
  • the leak determination step first, the internal pressures of the containers W1 and W2 at the time when the pressurization time ends are measured by the direct pressure sensors 43 and 44. If the inspection pressure has not been reached, it is determined that there is a large leak. . If the test pressure has been reached, the pressure detected after the time t1 has elapsed from the start of the test (the pressure at point A or A 'and the pressure difference at point C or C' in the figure), and then the time ⁇ t has passed. The pressure change amount is obtained by comparing the pressure (the pressure at the point B or B ′ shown in the figure with the differential pressure at the point D or D ′) detected after the time t2 has elapsed from the start of the inspection.
  • the leak determination based on the output of the differential pressure sensor 42 is a value obtained by subtracting the differential pressure detected at the point C or C ′ from the differential pressure detected at the point D or D ′ shown in the differential pressure graph of FIG.
  • the pressure change amount of the differential pressure is compared with a set threshold value. If the pressure change amount of the differential pressure exceeds the threshold value, it is determined that one of the containers W1 and W2 has a leak, and the threshold value is not exceeded. In this case, it is determined that there is no leak in both the containers W1 and W2.
  • the differential pressure test waveform when there is no leak in both containers W1 and W2 is indicated by a solid line, and the differential pressure test waveform when there is a leak in one of the containers W1 and W2. It is indicated by a broken line.
  • the pressure change amount of the differential pressure is almost 0 Pa.
  • the pressure change amount of the differential pressure is elapsed over time. It grows with.
  • the direct pressure sensors 43 and 44 are supplementarily provided. Based on the outputs of the direct pressure sensors 43 and 44, it is possible to determine the presence or absence of leakage in the individual containers W1 and W2.
  • the leak judgment based on the outputs of the direct pressure sensors 43 and 44 is obtained by subtracting the pressure detected at the point B or B ′ from the pressure detected at the point A or A ′ shown in the direct pressure graph of FIG. Compared with the set threshold value, if the threshold value is exceeded, it is determined that there is a leak. If the threshold value is not exceeded, it is determined that there is no leak. As shown in FIG. 3, in the direct pressure test waveform, when there is no leak, the pressure change amount is almost 0 Pa as shown by a solid line, and when there is a leak, the pressure change amount is shown by a broken line. It becomes a big value.
  • the inspection heads 3A and 3B are removed from the containers W1 and W2.
  • the inspection time for the containers W1 and W2 is until the inspection heads 3A and 3B are prepared to descend for the next plurality of containers.
  • the inspection heads 3A, 3B are moved according to the conveyance of the containers W1, W2, while the pressure supply process and the leak determination process. I do.
  • the inspection heads 3A and 3B are detached from the containers W1 and W2 and returned to the initial position, and moved at an initial speed by moving the containers W1 and W2 in a direction opposite to the conveying direction. Returned to position F and enters a standby state.
  • the leak determination is performed on the plurality of containers W1 and W2 that are aligned and transported from the container production line by the differential pressure in the containers.
  • leak determination can be performed without considering the change in the container temperature. This eliminates the need for adjustment of the threshold in consideration of the change in the container temperature, and enables highly productive leak determination.
  • the differential pressure in the plurality of containers W1, W2 has a small absolute value of the amount of pressure change over time, this small change is made to correspond to the full range of the differential pressure sensor 42 to detect a pressure change with high sensor sensitivity. can do. As a result, it is possible to realize highly accurate leak determination and to detect without missing a leak due to a very small pinhole.
  • the leak inspection apparatus 1A can be incorporated into the container transport process, so that the leak inspection space can be saved, and further, the tact time of the container transport process can be reduced. As a result, it is possible to obtain a high productivity.
  • the leak inspection apparatus 1A shortens the pressurization time by setting the supply pressure to be higher than the inspection pressure, and separates the pressure supply pipes 30 and 31 and the pressure inspection pipes 40 and 41 from the inspection head.
  • the equilibrium period after the pressure supply can be set short, so that the elapsed time ⁇ t for detecting the pressure change amount can be set long within the limited inspection time range. This makes it possible to perform leak determination with high reliability.
  • the embodiment of the present invention has been described for the case where the leak inspection is performed on the neighboring containers W1 and W2.
  • the combination to be paired is arbitrary.
  • the combination to be paired may be any of W1-W2, W2-W3, or W1-W2, W1-W3.
  • the processing apparatus 1 is an apparatus that performs leak inspection processing, cleaning processing, filling processing, and the like on a plurality of containers W that are linearly transported by a transport device 100 such as a transport conveyor.
  • a transport device 100 such as a transport conveyor.
  • the processing apparatus 1 can be used in a leak inspection apparatus as shown in FIG. 1, but is not particularly limited thereto.
  • the processing apparatus 1 includes an apparatus main body 10, a container sensor 2, a processing head 3, a head mounting unit 4, a linear actuator 5, a control unit 6, and the like, and these main parts are shown in FIGS. 5 and 6.
  • the container sensor 2 is provided in the apparatus main body 10 and detects a container W that is linearly conveyed by the conveying apparatus 100 with an interval.
  • the container sensor 2 transmits a detection signal to the control unit 6 at a timing when the container W transported by the transport device 100 passes the installation location (origin) of the container sensor 2.
  • various types of contact type and non-contact type sensors can be used.
  • the processing head 3 is attached to the mouth of the container W and performs various processes.
  • the inspection heads 3A and 3B are the above-described inspection heads 3A and 3B.
  • An inspection pressure is applied to the inside of the container W, and a subsequent pressure change in the container W is detected.
  • the head mounting portion 4 is for mounting / detaching the processing head 3 (inspection heads 3A, 3B) to / from the mouth of the container W.
  • the head mounting portion 4 includes lifting means such as an air cylinder. The processing head 3 is moved up and down.
  • the linear actuator 5 reciprocates the head mounting portion 4 along the conveyance path of the container W, and a guide rail 5A disposed along the conveyance device 100 that linearly moves the container W, and the guide rail 5A. And a drive motor (for example, a stepping motor) 5C that moves the moving member 5B to a predetermined position.
  • a drive motor for example, a stepping motor
  • the control unit 6 receives the detection signal from the container sensor 2 and controls the head mounting unit 4 and the linear actuator 5.
  • the processing head 3 may operate independently according to the operation timing of the head mounting unit 4 or may be controlled by the control unit 6.
  • FIG. 7 shows operations of the head mounting unit 4 and the linear actuator 5 controlled by the control unit 6.
  • the control unit 6 calculates the movement distances of the plurality of containers W to be transported from the detection timing of the container sensor 2 and the output of an encoder (not shown) attached to the motor of the transport apparatus 100, and the position of each container W I know.
  • the movement distance of the container W can also be calculated from the detection timing of the container sensor 2, the transport speed of the transport device 100, and the elapsed time of each container W.
  • a preset speed may be input to the control unit 6, or a speed detected by a separately provided speed detection unit may be input to the control unit 6. May be.
  • control unit 6 controls the linear actuator 5 to move the processing head 3 onto the next unprocessed container W (W3, W4) whose position has already been grasped by the detection of the container sensor 2. Then, the head mounting portion 4 is moved. Then, as shown in FIG. 7B, when the processing head 3 reaches the next unprocessed container W (W3, W4), the processing head 3 moves on the transported container W (W3, W4).
  • the linear actuator 5 is controlled to move, and the head mounting portion 4 is caused to follow the movement of the container W (W3, W4).
  • the control unit 6 controls the head mounting unit 4 so that the processing head 3 is moved to the plurality of containers W (W3, W4).
  • the processing by the processing head 3 for example, leak inspection processing
  • the head mounting portion 4 is performed while causing the head mounting portion 4 to follow the movement of the container W (W3, W4).
  • the operations shown in FIGS. 7A to 7C are repeated for the next unprocessed container W.
  • the control unit 6 individually controls a plurality of containers W (two containers in the illustrated example) to be processed among the containers W that are linearly conveyed at various intervals. It becomes possible to attach the processing head 3 and perform processing simultaneously. At this time, the head mounting unit 4 and the linear actuator 5 controlled by the control unit 6 need to be arranged in parallel by the number of containers W (two in the illustrated example) that perform simultaneous processing. It is necessary that the processing heads 3 respectively provided in the head mounting unit 4 are linearly arranged along the row of containers W to be transported.
  • the processing apparatus 1 described above can be used as a differential pressure type leak inspection apparatus 1A as shown in FIG.
  • the leak inspection apparatus 1A is equipped with the pressure supply unit 7 and the leak determination unit 8 described above with respect to the inspection heads 3A and 3B, which are the processing heads 3 described above, and the head mounting unit 4.
  • the processing apparatus 1 can be used not only as the differential pressure type leak inspection apparatus 1A described above, but also as a direct pressure type leak inspection apparatus or other processing apparatuses such as cleaning and filling. At this time, the processing apparatus 1 can be provided externally without using a means for positioning at an equal interval with respect to an arbitrary conveyance apparatus having a variation in the conveyance interval.
  • the processing head 1 can be securely attached to the container W. And processing capacity can be raised by processing a plurality of containers W simultaneously.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

容器温度の変化を考慮しないリーク検査を可能にする。リーク検査装置1Aは、容器製造ラインから整列搬送された容器のうち、容器W1,W2の口部にそれぞれ検査ヘッド3A,3Bを装着するヘッド装着部4と、容器W1,W2それぞれに装着された検査ヘッド3A,3Bに、供給圧を同時に送り、密閉された容器W1,W2内の圧力を検査圧にする圧力供給部7と、密閉された容器W1,W2内の経時的な圧力変化を検出して、容器W1,W2のリーク判定を行うリーク判定部8とを備え、リーク判定部8は、複数の容器の対になる容器W1,W2内の差圧を検出する差圧センサ42を備え、差圧センサ42の出力に基づいてリーク判定を行う。

Description

容器のリーク検査装置及びリーク検査方法、搬送容器処理装置
 本発明は、容器製造ラインの下流側で、容器のリークを検査する検査装置及び検査方法、又は、容器製造ラインの下流側で、容器に検査、清掃、充填などの処理を行う処理装置に関するものである。
 合成樹脂製ボトルや缶などの容器製造ラインの下流側では、製造された容器が所定の気密性を有しているか否かを検査するリーク検査処理、容器内の塵を除去する清掃処理、容器内に内容液等を充填する充填処理などの処理が行われる。このような処理は、搬送されている容器の口部に処理ヘッド(検査ヘッドなど)を装着して、その後一定時間処理ヘッドを保持し、その間にリーク検査等の処理を行う。
 リーク検査は、検査ヘッドを容器の口部に装着して、密閉状態の容器内に加圧エアを供給することで、容器内に検査圧を付与し、その後一定時間密閉状態を保持して、その間に検出される容器内圧の圧力低下量からリークの有無を判断している。
 下記特許文献1に記載された従来技術では、合成樹脂製のボトルを対象にして、ボトル口部に検査ヘッドを装着し、供給バルブを所定の間だけ開とし供給バルブを閉じた直後のボトル内圧を基準内圧として、その基準内圧が予め規定した第1閾値を超えているか否かをチェックし、その第1閾値を超えている場合は、ボトルのエア密閉状態を一定時間保持し、ボトル内圧の一定時間経過後の基準内圧からの圧力低下量を差圧センサにより計測し、圧力低下量が予め規定した第2閾値を超えていない場合に、そのボトルを良品(リーク無)と判定している。
 また、下記特許文献2に記載された従来技術は、リーク検査装置であって、容器を搬送する搬送手段と、容器の口部に検査ヘッドを装着するために移動する容器に検査ヘッドを追従させる追従手段を備えており、複数の検査ヘッドを同時に複数の容器に装着するために、搬送される容器を等間隔に配置する等間隔配置手段及び容器を等間隔に位置決めする把持手段を備えている。
特開2009-109259号公報 特開2004-117135号公報
 容器製造ラインの下流側では、容器の温度は高温状態から徐々に常温に低下する温度変化が生じる。例えば、合成樹脂製ボトルであれば、ブロー金型から取り出された直後のボトルは、胴部で40~50℃程の高温になっており、容器製造ライン下流側のリーク検査装置入口では30℃程度になる。その後搬送される過程でボトルの温度は常温(25℃程度)に低下する。
 容器製造ラインの下流側でリーク検査を行う場合には、前述した容器の温度変化を十分に考慮する必要がある。容器の温度が高いと基準内圧からの圧力低下量が小さくなるので、前述したリーク検査における閾値は、容器の温度を考慮した値に設定することが必要になる。
 リーク検査装置に流れてくるボトル胴部の温度は、連続生産時では前述の30℃程度になるが、容器製造ラインが一時停止し、再スタートする場合は常温付近のボトルが流れてくる場合もある。このため、全ての温度範囲に対応した広い閾値の設定、または、リーク検査装置入口のボトルの温度に応じて、適宜閾値を変更するといった煩雑な調整が必要になり、生産性の高いリーク検査を行うことができない問題があった。
 本発明は、このような問題に対処するために提案されたものである。すなわち、本発明の第1の課題は、容器製造ラインの下流側における容器のリーク検査において、容器温度の変化を考慮することなく、高い生産性で高精度のリーク検査を行うことなどである。
 また、前述した容器への処理では、処理能力を高めるためには、複数の容器を同時に処理することが必要になる。例えば、リーク検査装置では、微小なリーク孔による緩やかな圧力変化を検知するために検査時間を長くすることが必要になる。このため、処理能力を高めるためには、複数の処理ヘッドを同時に複数の容器の口部に装着しリーク検査をすることが求められる。
 特許文献2に記載の従来技術は、直線的に搬送されている容器に対して、複数の検査ヘッドを同時に複数の容器の口部に装着するために、まず、容器を等間隔に配置する等間隔配置手段(スターホイール)を設け、その後、等間隔配置手段を通過した容器が検査ヘッドを装着するまでの間に振動などでばらついた容器の間隔を再度等間隔に位置決めする把持手段を設けている。このように等間隔配置手段を通過した後に、再度等間隔に位置決めする把持手段を設けるとリーク検査装置等が大型化しコスト高になると共に、容器サイズを変更する際に把持手段の型替えが必要となり、生産性が低下する問題がある。このため、容器の間隔にばらつきがあっても等間隔に位置決めする手段を用いること無く、確実に複数の容器それぞれに検査ヘッド(処理ヘッド)を装着することが求められている。
 本発明は、このような問題に対処するために提案されたものである。すなわち、本発明の第2の課題は、搬送される容器に対してリーク検査等の処理を行う処理装置において、容器の間隔にばらつきがあっても等間隔に位置決めする手段を用いること無く、確実に複数の容器それぞれに処理ヘッドを装着することなどである。
 前述した第1の課題を解決するために、本発明による容器のリーク検査装置は、以下の構成を具備するものである。
 容器製造ラインから整列搬送された容器のうち、複数の容器の口部にそれぞれ検査ヘッドを装着するヘッド装着部と、前記複数の容器それぞれに装着された前記検査ヘッドに、供給圧を同時に送り、密閉された前記複数の容器内の圧力を検査圧にする圧力供給部と、密閉された前記複数の容器内の経時的な圧力変化を検出して、前記複数の容器のリーク判定を行うリーク判定部とを備え、前記リーク判定部は、前記複数の容器の対になる容器内の差圧を検出する差圧センサを備え、該差圧センサの出力に基づいてリーク判定を行うことを特徴とする容器のリーク検査装置。
 前述した第2の課題を解決するために、本発明の搬送容器処理装置は、以下の構成を具備するものである。
 直線的に搬送される容器を検出する容器センサと、前記容器センサで検出された複数の容器の口部にそれぞれ処理ヘッドを装着する複数のヘッド装着部と、前記ヘッド装着部を容器の搬送経路に沿って往復移動させる複数のリニアアクチュエータと、複数の前記リニアアクチュエータと複数の前記ヘッド装着部の動作を、それぞれ個別に制御する制御部とを備え、前記制御部は、前記容器センサの検出タイミングと容器の移動距離から搬送される複数の容器の位置をそれぞれ把握し、前記リニアアクチュエータを制御することで、前記容器センサによって検出された複数の容器の上にそれぞれ前記処理ヘッドを移動させ、その後前記ヘッド装着部を容器の移動に追従させることを特徴とする搬送容器処理装置。
 本発明の容器のリーク検査装置は、容器製造ラインから整列搬送された容器のうち、複数の容器の対になる容器を対象に、容器内の差圧を検出してリーク判定を行う。整列搬送された容器における複数の容器の対になる容器は、容器温度がほぼ等しいので、それらの容器内の差圧を検出することで、容器温度の変化を考慮することなく、生産性が高く高精度のリーク判定を行うことができる。
 また、対になる容器内の差圧は、容器の大小に拘わらず検出される圧力変化の範囲が小さいので、この小さい圧力変化の範囲を差圧センサのフルレンジに対応させることで、微小な圧力変化を高感度で検出することが可能になる。これによっても精度の高いリーク判定を行うことができる。
 本発明の搬送容器処理は、直線的に搬送される容器の間隔にばらつきがある場合にも、容器センサによって検出された各容器の位置に各処理ヘッドを移動させて、搬送されている複数の容器に処理ヘッドを装着することができる。これによって、複数の容器を同時処理することで処理能力を高めることができると共に、容器の間隔にばらつきがあっても等間隔に位置決めする手段を用いること無く複数の容器に確実に処理ヘッドを装着することができ、型替え時間の短縮などの生産性向上が図れる。
 また、既存の搬送装置を変更すること無く本処理装置を外付けで設置できるため、低コストで配備することができる。
本発明の実施形態に係る容器のリーク検査装置の構成例を示した説明図である。 本発明の実施形態に係る容器のリーク検査装置の設置例を示した説明図である。 本発明の実施形態に係る容器のリーク検査装置によるリーク有無の判定例を示した説明図である。 本発明の実施形態に係る搬送容器処理装置の全体構成を示した説明図である。 本発明の実施形態に係る搬送容器処理装置の要部を示した側面図である。 本発明の実施形態に係る搬送容器処理装置の要部を示した下面図である。 本発明の実施形態に係る搬送容器処理装置の動作を示した説明図((a)が一つの処理を終了した直後の状態、(b)が次の処理を行う直前の状態、(c)が処理中の状態をそれぞれ示している。)である。
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。
 図1に示すように、本発明の実施形態に係る容器のリーク検査装置(以下、リーク検査装置)1Aは、ヘッド装着部4、圧力供給部7、リーク判定部8を備えている。ここで、検査対象となるのは、容器製造ラインから整列搬送されてきた複数の容器W1,W2である。対象の容器W1,W2は、口部を塞ぐことで密閉性を確保できるものであればよく、合成樹脂製ボトル、金属缶、金属ボトル缶、パウチなど、各種の容器を対象とすることができる。そして、本実施形態においては、このリーク検査装置1Aによって、同時に検査対象となるのは、容器製造ラインから整列搬送された容器のうち、近隣の複数の容器W1,W2であり、これらの容器温度がほぼ同等であることが前提になっている。
 ヘッド装着部4は、検査対象となる容器W1,W2の口部にそれぞれ検査ヘッド3A,3Bを装着する機能を有する。検査ヘッド3A,3Bは、容器W1,W2の口部をそれぞれ密閉すると共に、圧力供給部7に繋がる圧力供給配管30,31とリーク判定部8に繋がる圧力検出配管40,41の端部が接続されている。これにより、検査ヘッド3A(3B)が容器W1(W2)の口部に装着されると、その口部が密閉されて、圧力供給配管30(31)と圧力検出配管40(41)の端部が容器W1(W2)内に連通することになる。
 図1に示したヘッド装着部4の具体的な構成例を説明すると、ヘッド装着部4は、検査ヘッド3A,3Bを上昇又は下降操作するためのエアシリンダ22,23を備えている。エアシリンダ22には、エアシリンダを動作するための配管24A,24Bが接続され、エアシリンダ23には、配管24A,24Bからそれぞれ分岐した配管24C,24Dが接続されている。圧力供給源に圧力調整弁26を介して接続されている配管24Eと配管24A,24Bとの間には、流路切り替え弁25が接続されており、流路切り替え弁25を切り替え操作することで、エアシリンダ22,23が作動して検査ヘッド3A,3Bが上昇又は下降する。なお、検査ヘッド3A,3Bを上昇又は下降操作するための機構は前述のエアシリンダに限定されるものでは無く、電動シリンダなどの他のアクチュエータを用いても良い。
 圧力供給部7は、容器W1,W2のそれぞれに装着された検査ヘッド3A,3Bに供給圧を同時に送り、密閉された容器W1,W2内の圧力を検査圧に上昇させる。具体的には、圧力供給部7は、圧力供給配管30,31に接続される流路切り替え弁32,33を備えている。流路切り替え弁32,33には、圧力調整弁34を介して圧力供給源に接続されている配管35と、そこから分岐した配管36がそれぞれ接続されている。流路切り替え弁32,33を同時に検査ヘッド3A,3B側に切り替え操作することで、検査ヘッド3A,3Bに供給圧が同時に送られる。その後、所定の時間が経過し容器内圧が検査圧に到達した後、流路切り替え弁32,33が閉側に同時に切り替わり、圧力供給が停止し密閉状態となる。
 圧力供給部7における供給圧の設定は、容器W1,W2内に付与される検査圧に対して高めに設定することが好ましく、供給圧を検査圧より高めに設定することで、容器W1,W2内の加圧時間を短縮することができる。
 リーク判定部8は、検査ヘッド3A,3Bによって密閉された容器W1,W2内の経時的な圧力変化を検出して、容器W1,W2のリーク判定を行う。ここでは、リーク判定部8は、2つの容器W1,W2内の差圧を検出する差圧センサ42を備えている。差圧センサ42には、一端が検査ヘッド3A,3Bに接続されている圧力検出配管40,41の他端が接続されている。
 図1の例では、リーク判定部8は、圧力検出配管40,41の他端が更に分岐して直圧センサ43,44に接続されており、差圧センサ42と直圧センサ43,44とで圧力検出部45が構成されている。直圧センサ43,44は、容器W1,W2それぞれの内圧を直接検出するものであり、圧力検出配管40,44の他端を分岐して直圧センサ43,44に接続することで、差圧センサ42によって検出される容器W1,W2内の差圧と、直圧センサ43,44によって検出される容器W1,W2それぞれの内圧とを同時に検出することができる。
 また、リーク判定部8は、演算処理部46を備えており、差圧センサ42と直圧センサ43,44の出力が演算処理部46に入力される。演算処理部46は、差圧センサ42と直圧センサ43,44の出力に基づいて、容器W1,W2にリークが有るか否かの判定を行う。
 リーク判定部8に繋がる圧力検出配管40,41は、圧力供給部7に繋がる圧力供給配管30,31とは分離した状態で、検査ヘッド3A,3Bに接続されている。このように圧力供給配管30,31と圧力検出配管40,41とを分離した状態で検査ヘッド3A,3Bに接続することで流路切り替え弁32,33の動作時に生じるハンチング時間を短縮することができる。
 図2は、リーク検査装置1Aの設置例を示している。このリーク検査装置1Aは、コンベヤなどの搬送装置60によって1列に整列搬送されている容器Wのうち、近隣の複数の容器W1,W2を検査対象とし、容器Wの搬送方向に沿って検査ヘッド3A,3Bを移動しながら、順次容器Wのリーク検査を行う。このため、リーク検査装置1Aは、搬送装置60の搬送方向に沿ってガイドレール50を設けており、ガイドレール50に沿って検査ヘッド3A,3Bを移動させる移動機構51,52を備えている。
 移動機構51,52は、検査ヘッド3A,3Bを複数の容器W1,W2の搬送に同期して移動すると共に、検査ヘッド3A,3Bを搬送方向とは逆向きに移動する。この移動機構51,52は、検査ヘッド3A,3Bを容器W1,W2に装着した後は、搬送装置60の移動速度と同じ速度で検査ヘッド3A,3Bを移動させ、容器W1,W2から検査ヘッド3A,3Bを離脱した後は初期位置復帰動作に入り、移動速度を速めて搬送方向とは逆向きに検査ヘッド3A,3Bを移動させ、待機状態となる。なお、図示しないが搬送装置60上に容器Wを検出するセンサを配置し、容器Wを検出したタイミングに合わせて、検査ヘッド3A,3Bの容器Wへの装着および移動機構51、52による移動を個別に行う構成としても良い。これにより容器Wのピッチにバラツキがあった場合でも確実に検査ヘッド3A、3Bを容器に装着可能となる。
 次に、図3を参照しながら、リーク検査装置1Aによるリーク検査の方法を説明する。検査の開始は、先ず、ヘッド装着部4によって、検査ヘッド3A,3Bを容器W1,W2の口部に装着する(ヘッド装着工程)。図2に示した例では、搬送装置60の移動に移動機構51,52の移動を同期させて、流路切り替え弁25の切り替え操作によってエアシリンダ22,23を動作させ、検査ヘッド3A,3Bを下降させる。
 検査ヘッド3A,3Bの装着が完了すると、圧力供給部7によって、検査ヘッド3A,3Bに供給圧を同時に送って、容器W1,W2内を加圧し、容器W1,W2内の圧力を検査圧に上昇させる(圧力供給工程)。供給圧の印加は、圧力供給部7における流路切り替え弁32,33の同時切り替えによってなされ、流路切り替え弁32,33を開側に切り替えて供給圧をオンにし、その後、所定の時間が経過した後に流路切り替え弁32,33を閉側に切り替えて供給圧をオフにし、容器内圧を検査圧に保持する。
 印加される供給圧は、前述したように、検査圧より高く設定することが好ましく、供給圧を高く設定することで、加圧時間を短縮することが可能になる。検査圧の印加後に所定の平衡期間を設けて、容器W1,W2内の圧力状態を安定させてから、後述のリーク判定工程を行うが、圧力供給配管30,31に対して圧力検出配管40,41を容器W1,W2の2次側に分離させることで、平衡期間の短縮化が可能になる。
 その後は、密閉された容器W1,W2内の経時的な圧力変化量を検出して、容器W1,W2のリーク判定を行う(リーク判定工程)。ここでは、差圧センサ42と直圧センサ43,44の出力で圧力変化量を検出している。リーク判定部8は、主として、差圧センサ42によって容器W1,W2内の差圧を検出し、この差圧に基づいてリーク判定を行っており、補助的に、直圧センサ43,44の出力によって、容器W1,W2それぞれの内圧を検出している。直圧センサ43,44は、検査状況に応じては適宜省略することができる。
 リーク判定工程では、まず、加圧時間が終了した時点での容器W1,W2それぞれの内圧を直圧センサ43、44で測定し、検査圧に達していない場合は大きなリークが有りと判定される。検査圧に達している場合は、検査開始から時間t1経過して検出される圧力(図示A点又はA’点の圧力とC点又はC’点の差圧)と、その後Δt時間経過して、検査開始から時間t2経過して検出される圧力(図示B点又はB’点の圧力とD点又はD’点の差圧)とを比較して、圧力変化量を求める。
 差圧センサ42の出力によるリーク判定は、図3の差圧のグラフに示すD点又はD’点で検出される差圧からC点又はC’点で検出される差圧を差し引いた値(差圧の圧力変化量)を、設定された閾値と比較し、差圧の圧力変化量が閾値を超えた場合には、容器W1,W2の一方にリークが有ると判定し、閾値を超えない場合は、容器W1,W2の両方にリークが無いと判定する。図3の差圧のグラフには、容器W1,W2の両方にリークが無い場合の差圧の検査波形を実線で示し、容器W1,W2の一方にリークが有る場合の差圧の検査波形を破線で示している。両方の容器W1,W2にリークが無い場合には、差圧の圧力変化量はほぼ0Paになるが、容器W1,W2の一方にリークが有る場合には、差圧の圧力変化量は時間経過と共に大きくなる。
 リーク有りの判定がなされた場合に、容器W1,W2のどちら側にリークが有るかは、差圧センサ42の出力の正負によって判断することができる。また、極希なケースではあるが、両方の容器W1,W2に同等のリークがあると、差圧の圧力変化量が閾値を超えないことになる。このようなケースでの誤判定を避けるために、補助的に直圧センサ43,44を設けている。直圧センサ43,44の出力によって、個々の容器W1,W2のリークの有無を判定することができる。
 直圧センサ43,44の出力によるリーク判定は、図3の直圧のグラフに示すA点又はA’点で検出される圧力からB点又はB’点で検出される圧力を差し引いた値を設定された閾値と比較し、閾値を超えた場合にはリークが有ると判定し、閾値を超えない場合はリークが無いと判定する。図3に示すように、直圧の検査波形も、リークが無い場合には、圧力変化量は実線で示すようにほぼ0Paになり、リークがある場合には、圧力変化量は破線で示すように大きな値になる。
 図3に示すように、流路切り替え弁25を切り替え操作して、検査ヘッド3A,3Bを下降させ、圧力供給工程、リーク判定工程を行った後、検査ヘッド3A,3Bを容器W1,W2から離脱させ、次の複数の容器に対しての検査ヘッド3A,3Bの下降準備をするまでが、容器W1,W2に対しての検査時間になる。
 図2に示した例では、容器W1,W2に検査ヘッド3A,3Bを装着した後、検査ヘッド3A,3Bを、容器W1,W2の搬送に合わせて移動しながら、圧力供給工程とリーク判定工程を行う。そして、リーク判定工程後には、検査ヘッド3A,3Bは、容器W1,W2から離脱されて初期位置に戻し、容器W1,W2の搬送方向とは逆向きに移動速度を速めて移動して、初期位置Fに戻され、待機状態となる。
 このようなリーク検査装置1Aを用いたリーク検査方法によると、容器製造ラインから整列搬送されてきた容器温度がほぼ等しい複数の容器W1,W2を対象として、それら容器内の差圧によってリーク判定を行うので、容器温度の変化を考慮することなくリーク判定を行うことができる。これにより、容器温度の変化を考慮した閾値の調整などが不要になり、生産性の高いリーク判定が可能になる。
 また、複数の容器W1,W2内の差圧は、経時的な圧力変化量の絶対値が小さいので、この小さい変化を差圧センサ42のフルレンジに対応させて、高いセンサ感度で圧力変化を検出することができる。これによって、精度の高いリーク判定を実現することができ、極小ピンホールによるリークを見逃さずに検知することが可能になる。
 また、図2に示した設置例のように、容器の搬送過程にリーク検査装置1Aを組み込むことができるので、リーク検査スペースの省スペース化が可能になり、更には、容器搬送過程のタクトタイムを利用したリーク検査が可能になるので、これによっても高い生産性を得ることができる。
 そして、リーク検査装置1Aは、供給圧を検査圧に対して高く設定することで、加圧時間を短縮しており、圧力供給配管30,31と圧力検査配管40,41を分離して検査ヘッド3A,3Bに接続することで、圧力供給後の平衡期間を短く設定できるので、限られた検査時間の範囲内で、圧力変化量を検出するための経過時間Δtを長く設定することができる。これによって、確実性の高いリーク判定を行うことが可能になる。
 なお、上述したように本発明の実施形態を、近隣の容器W1,W2に対してリーク検査を行う場合について説明したが、3つ以上の容器Wに対してリーク検査を行うことも可能である。その場合、対になる組合せは自由で、例えば3つの容器W1,W2,W3において、対となる組み合わせはW1-W2、W2-W3、或いはW1-W2、W1-W3のいずれでも良い。このように、容器の処理数が増える場合、リーク検査装置の各部(ヘッド装着部4、圧力供給部7、リーク判定部8)は容器の処理数に応じて適宜増設される。
 図4において、搬送容器処理装置(以下、処理装置)1を説明する。処理装置1は、搬送コンベヤなどの搬送装置100によって、直線的に搬送される複数の容器Wに対して、リーク検査処理,清掃処理,充填処理などを行う装置である。以下の説明では、処理装置1は、図1に示したようなリーク検査装置に用いることができるが、特にこれに限定されるものではない。
 処理装置1は、装置本体10、容器センサ2、処理ヘッド3、ヘッド装着部4、リニアアクチュエータ5、制御部6などを備えており、これらの要部を図5及び図6に示している。
 容器センサ2は、装置本体10に設けられ、搬送装置100によって間隔を空けて直線的に搬送されている容器Wを検出している。容器センサ2は、搬送装置100によって搬送される容器Wが容器センサ2の設置箇所(原点)を通過したタイミングで検出信号を制御部6に送信する。容器センサ2としては、接触型や非接触型の各種センサを用いることができる。
 処理ヘッド3は、容器Wの口部に装着されて各種処理を行うものであり、リーク検査を行う場合には、前述した検査ヘッド3A,3Bであって、容器Wを密閉して、容器W内に検査圧を付与し、その後の容器W内の圧力変化を検知する。ヘッド装着部4は、図1に示すように、処理ヘッド3(検査ヘッド3A,3B)を容器Wの口部に装着・離脱するものであり、前述したようにエアシリンダなど昇降手段を備えて処理ヘッド3を上下に昇降動作させる。
 リニアアクチュエータ5は、ヘッド装着部4を容器Wの搬送経路に沿って往復移動させるものであり、直線的に容器Wを移動させる搬送装置100に沿って配置されるガイドレール5Aと、ガイドレール5Aに沿って往復移動する移動部材5Bと、移動部材5Bを所定の位置に移動させる駆動モータ(例えば、ステッピングモータ)5Cを備えている。
 制御部6は、容器センサ2の検出信号を受けて、ヘッド装着部4とリニアアクチュエータ5を制御する。処理ヘッド3は、ヘッド装着部4の動作タイミングに合わせて独自に動作してもよいし、制御部6によって動作制御してもよい。
 図7は、制御部6によって制御されるヘッド装着部4とリニアアクチュエータ5の動作を示している。制御部6は、容器センサ2の検出タイミングと搬送装置100のモータに取り付けられたエンコーダ(不図示)の出力から、搬送される複数の容器Wの移動距離を計算し、それぞれの容器Wの位置を把握している。また、容器Wの移動距離は、容器センサ2の検出タイミングと搬送装置100の搬送速度および、それぞれの容器Wの時間経過から計算することもできる。その場合、搬送装置100の搬送速度は、予め設定された速度を制御部6に入力するようにしてもよいし、別途設けた速度検出手段によって検知された速度を制御部6に入力するようにしても良い。
 制御部6は、直線的に搬送されている容器Wにうち、連続して搬送される複数の容器W(W1,W2)に対しての処理が終了すると、図7(a)に示すように、処理ヘッド4を容器W(W1,W2)の口部から離脱させ、次の未処理の容器への処理準備を行う。
 その後、制御部6は、容器センサ2の検出によって、既に位置を把握している次の未処理の容器W(W3,W4)の上に処理ヘッド3を移動させるべく、リニアアクチュエータ5を制御して、ヘッド装着部4を移動させる。そして、図7(b)に示すように、次の未処理の容器W(W3,W4)上に処理ヘッド3が到達すると、搬送されている容器W(W3,W4)上を処理ヘッド3が移動するように、リニアアクチュエータ5を制御して、ヘッド装着部4を容器W(W3,W4)の移動に追従させる。
 また、制御部6は、処理ヘッド3が未処理の容器W(W3,W4)の上に到達したところで、ヘッド装着部4を制御して、処理ヘッド3を複数の容器W(W3,W4)の口部に装着し、図7(c)に示すように、ヘッド装着部4を容器W(W3,W4)の移動に追従させながら、処理ヘッド3による処理(例えば、リーク検査処理)を行う。そして、処理終了後は、次の未処理の容器Wに対して、図7(a)~図7(c)に示した動作を繰り返す。
 制御部6が前述した制御を行うことで、様々な間隔で直線的に搬送されている容器Wの中で処理対象の複数の容器W(図示の例では2つの容器)に対して、個別に処理ヘッド3を装着し、同時に処理を行うことが可能になる。この際、制御部6によって制御されるヘッド装着部4とリニアアクチュエータ5は、同時処理を行う容器Wの数(図示の例では2個)だけ並列配置されていることが必要になり、複数のヘッド装着部4にそれぞれ設けられる処理ヘッド3は、搬送される容器Wの列に沿って直線的に配置されていることが必要になる。
 前述した処理装置1は、図1に示すような差圧式のリーク検査装置1Aとして用いることができる。このリーク検査装置1Aは、前述した処理ヘッド3である検査ヘッド3A,3Bとヘッド装着部4に対して、前述した圧力供給部7とリーク判定部8が装備される。
 処理装置1は、前述した差圧式のリーク検査装置1Aとして用いることができるだけで無く、直圧式のリーク検査装置や、清掃,充填などの他の処理装置として用いることができる。この際、搬送間隔にばらつきがある任意の搬送装置に対して、搬送装置には等間隔に位置決めする手段を用いること無く、外付けで処理装置1を配備することができ、搬送されている複数の容器Wに処理ヘッド1を確実に装着することができる。そして、複数の容器Wを同時処理することで、処理能力を高めることができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。

Claims (10)

  1.  容器製造ラインから整列搬送された容器のうち、複数の容器の口部にそれぞれ検査ヘッドを装着するヘッド装着部と、
     前記複数の容器それぞれに装着された前記検査ヘッドに、供給圧を同時に送り、密閉された前記複数の容器内の圧力を検査圧にする圧力供給部と、
     密閉された前記複数の容器内の経時的な圧力変化を検出して、前記複数の容器のリーク判定を行うリーク判定部とを備え、
     前記リーク判定部は、前記複数の容器の対になる容器内の差圧を検出する差圧センサを備え、該差圧センサの出力に基づいてリーク判定を行うことを特徴とする容器のリーク検査装置。
  2.  前記リーク判定部は、前記複数の容器それぞれの内圧を前記差圧と同時に検出する直圧センサを備えることを特徴とする請求項1に記載された容器のリーク検査装置。
  3.  前記圧力供給部に繋がる圧力供給配管と前記リーク判定部に繋がる圧力検出配管がそれぞれ分離して前記検査ヘッドに接続されていることを特徴とする請求項1又は2に記載された容器のリーク検査装置。
  4.  前記ヘッド装着部は、前記検査ヘッドを前記複数の容器の搬送方向に沿って移動する移動機構を備え、
     前記移動機構は、前記複数の容器に装着された前記検査ヘッドを、前記複数の容器の搬送に同期して移動し、検査後に前記複数の容器から離脱した前記検査ヘッドを、前記搬送方向とは逆向きに移動することを特徴とする請求項1~3のいずれか1項に記載された容器のリーク検査装置。
  5.  容器製造ラインから整列搬送された容器のうち、複数の容器の口部にそれぞれ検査ヘッドを装着するヘッド装着工程と、
     前記複数の容器それぞれに装着された前記検査ヘッドに、供給圧を同時に送り、密閉された前記複数の容器内の圧力を検査圧にする圧力供給工程と、
     密閉された前記複数の容器内の経時的な圧力変化を検出して、前記複数の容器のリーク判定を行うリーク判定工程とを有し、
     前記リーク判定工程では、前記複数の容器の対になる容器内の差圧を検出して、該差圧に基づいてリーク判定を行うことを特徴とする容器のリーク検査方法。
  6.  前記リーク判定工程では、前記複数の容器それぞれの内圧を、前記差圧と同時に検出することを特徴とする請求項5に記載された容器のリーク検査方法。
  7.  前記複数の容器に装着した前記検査ヘッドを、前記複数の容器の搬送に同期して移動しながら、前記圧力供給工程と前記リーク判定工程を行い、
     前記リーク判定工程の後、前記検査ヘッドを前記複数の容器から離脱して、前記複数の容器の搬送方向とは逆向きに移動させることを特徴とする請求項5又は6に記載された容器のリーク検査方法。
  8.  直線的に搬送される容器を検出する容器センサと、
     前記容器センサで検出された複数の容器の口部にそれぞれ処理ヘッドを装着する複数のヘッド装着部と、
     前記ヘッド装着部を容器の搬送経路に沿って往復移動させる複数のリニアアクチュエータと、
     複数の前記リニアアクチュエータと複数の前記ヘッド装着部の動作を、それぞれ個別に制御する制御部とを備え、
     前記制御部は、前記容器センサの検出タイミングと容器の移動距離から搬送される複数の容器の位置をそれぞれ把握し、前記リニアアクチュエータを制御することで、前記容器センサによって検出された複数の容器の上にそれぞれ前記処理ヘッドを移動させ、その後前記ヘッド装着部を容器の移動に追従させることを特徴とする搬送容器処理装置。
  9.  前記制御部は、
     前記ヘッド装着部を制御することで、容器に上に移動させた前記処理ヘッドを容器に装着し、処理後に前記処理ヘッドを容器から離脱することを特徴とする請求項8記載の搬送容器処理装置。
  10.  前記処理ヘッドは、容器内に検査圧を付与してその後の圧力変化を検出するリーク検査ヘッドであることを特徴とする請求項8又は9記載の搬送容器処理装置。
PCT/JP2017/038916 2016-11-11 2017-10-27 容器のリーク検査装置及びリーク検査方法、搬送容器処理装置 WO2018088247A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/343,315 US20200182737A1 (en) 2016-11-11 2017-10-27 Leakage inspection device for container, leakage inspection method for container, and conveyed container processing device
CN201780069898.XA CN109983317A (zh) 2016-11-11 2017-10-27 容器的泄漏检查装置及泄漏检查方法、输送容器处理装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-220559 2016-11-11
JP2016220559A JP6874337B2 (ja) 2016-11-11 2016-11-11 容器のリーク検査装置及びリーク検査方法
JP2017-025287 2017-02-14
JP2017025287A JP6354876B1 (ja) 2017-02-14 2017-02-14 搬送容器処理装置

Publications (1)

Publication Number Publication Date
WO2018088247A1 true WO2018088247A1 (ja) 2018-05-17

Family

ID=62109557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038916 WO2018088247A1 (ja) 2016-11-11 2017-10-27 容器のリーク検査装置及びリーク検査方法、搬送容器処理装置

Country Status (3)

Country Link
US (1) US20200182737A1 (ja)
CN (1) CN109983317A (ja)
WO (1) WO2018088247A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115389111B (zh) * 2022-10-27 2023-04-28 江苏宏仁特种气体有限公司 一种高纯液态气体生产在线抽检器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096291A (ja) * 1973-12-22 1975-07-31
JPS56103341A (en) * 1979-09-20 1981-08-18 Nippon Autom Kiki Kk Method and apparatus of differential pressure type for leakage detection
JPH09196801A (ja) * 1996-01-16 1997-07-31 Cosmo Keiki:Kk 洩れ検査方法及び装置
JP2004117135A (ja) * 2002-09-26 2004-04-15 Gunze Ltd リーク検出装置、及びリーク検出方法
WO2009057636A1 (ja) * 2007-10-29 2009-05-07 Toyo Seikan Kaisha, Ltd. 合成樹脂製ボトルのピンホール検査方法及びピンホール検査機
JP2010197054A (ja) * 2009-02-21 2010-09-09 Asutakku:Kk シール部の密封性検査装置
JP2011058920A (ja) * 2009-09-09 2011-03-24 Kirin Techno-System Co Ltd ペットボトルのリーク検査装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1321270B1 (it) * 2000-05-19 2004-01-08 Ima Spa Unita' dosatrice.
CN201485253U (zh) * 2009-07-20 2010-05-26 李真中 三列双线直线灌装机
CN203400870U (zh) * 2013-06-06 2014-01-22 湖州职业技术学院 一种在线果冻密封性自动检测系统
CN105084276A (zh) * 2015-08-28 2015-11-25 厦门理工学院 一种跟踪式自灌装机及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096291A (ja) * 1973-12-22 1975-07-31
JPS56103341A (en) * 1979-09-20 1981-08-18 Nippon Autom Kiki Kk Method and apparatus of differential pressure type for leakage detection
JPH09196801A (ja) * 1996-01-16 1997-07-31 Cosmo Keiki:Kk 洩れ検査方法及び装置
JP2004117135A (ja) * 2002-09-26 2004-04-15 Gunze Ltd リーク検出装置、及びリーク検出方法
WO2009057636A1 (ja) * 2007-10-29 2009-05-07 Toyo Seikan Kaisha, Ltd. 合成樹脂製ボトルのピンホール検査方法及びピンホール検査機
JP2010197054A (ja) * 2009-02-21 2010-09-09 Asutakku:Kk シール部の密封性検査装置
JP2011058920A (ja) * 2009-09-09 2011-03-24 Kirin Techno-System Co Ltd ペットボトルのリーク検査装置

Also Published As

Publication number Publication date
US20200182737A1 (en) 2020-06-11
CN109983317A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
JP6508489B2 (ja) 充填された容器を監視するための方法、および充填された容器のための監視システム
US8713993B2 (en) Method and apparatus for inspecting pinhole in synthetic resin bottle
CN114057145B (zh) 用于容器的填充-密封单元的密封性控制的方法以及填充-密封机
CN110395545A (zh) 具有物品移除装置的分拣输送机
JP6967663B2 (ja) 熱可塑性材料から容器を製造するための方法及び装置
US9971360B2 (en) Positioner
JP2013045817A (ja) 真空処理装置および真空処理方法
US11485584B2 (en) Tire conveying apparatus, tire inspection system provided with same, and tire conveying method
WO2018088247A1 (ja) 容器のリーク検査装置及びリーク検査方法、搬送容器処理装置
TWI651177B (zh) 具有自動拾取高度調整之拾放裝置及用於自動調整拾放裝置的拾取高度的方法及電腦程式產品
KR20120122817A (ko) 정수기필터용 리크 검사방법 및 장치
JP6874337B2 (ja) 容器のリーク検査装置及びリーク検査方法
KR20140046418A (ko) 공기 밀폐 구성품에서의 누설 검출을 위한 검출 장치 및 관련 검출 방법
JP6354876B1 (ja) 搬送容器処理装置
WO2016129170A1 (ja) パージ装置、パージストッカ、及びパージ異常検出方法
CN113432810A (zh) 一种自适应阀门快速检测装置及检测方法
US20170075361A1 (en) Method of inspecting gas supply system
US11679942B2 (en) Method and apparatus for transferring items from and to a transport line
KR20070069952A (ko) 턴 오버 모듈에서 웨이퍼 얼라인 불량 검출장치
KR102110914B1 (ko) 파이프 이송 라인의 불량 검출 방법
TWM558466U (zh) 晶圓盒承載裝置
KR102134440B1 (ko) 기판 처리 장치 및 설비
KR100431787B1 (ko) 스틸 차륜용 림 용접선 정렬장치
JP5024545B2 (ja) ピンホール検査機能付きブロー成形機
IT201800006917A1 (it) Procedimento per effettuare test di compressione su prodotti in avanzamento lungo una linea di trasporto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869646

Country of ref document: EP

Kind code of ref document: A1