WO2018088191A1 - Ceramic substrate and method for manufacturing ceramic substrate - Google Patents

Ceramic substrate and method for manufacturing ceramic substrate Download PDF

Info

Publication number
WO2018088191A1
WO2018088191A1 PCT/JP2017/038264 JP2017038264W WO2018088191A1 WO 2018088191 A1 WO2018088191 A1 WO 2018088191A1 JP 2017038264 W JP2017038264 W JP 2017038264W WO 2018088191 A1 WO2018088191 A1 WO 2018088191A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
sheet
ceramic substrate
ceramic
inter
Prior art date
Application number
PCT/JP2017/038264
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 三野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018550115A priority Critical patent/JP6743903B2/en
Priority to CN201780069401.4A priority patent/CN109923950B/en
Publication of WO2018088191A1 publication Critical patent/WO2018088191A1/en
Priority to US16/394,459 priority patent/US10999927B2/en
Priority to US17/220,533 priority patent/US20210227690A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0537Transfer of pre-fabricated insulating pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a ceramic substrate and a method for manufacturing a ceramic substrate.
  • a ceramic substrate there is a substrate on which one surface is connected to a mother board and a plurality of electronic components are mounted on the other surface.
  • Patent Document 1 discloses a method for applying a cover coat to electrodes on the surface of a ceramic multilayer substrate in order to increase the adhesion strength between the substrate and pads (electrodes). Specifically, a method is disclosed in which a cover coat is printed on a film sheet having good releasability, and the film sheet and a ceramic green sheet on which an electrode is printed are bonded and pressed.
  • electrode wiring interelectrode wiring
  • the portion to which the cover coat is applied is an electrode, but it is not considered to cover the electrode wiring.
  • the electrode is covered with a cover coat and the inter-electrode wiring is not covered, there is a problem in that the solder spreads between the electrodes during component mounting.
  • the conductive paste is printed on the electronic component mounting surface to provide the electrodes and inter-electrode wiring, and the cover A method of printing a resist pattern to be a coating can be considered.
  • this method has a problem that the resist pattern is blurred because there is a step due to the electrodes and the inter-electrode wiring at the time of printing the resist pattern.
  • the present invention has been made in order to solve the above-described problem, and prevents the solder from spreading between the electrodes during mounting of the component, and prevents the resist pattern from bleeding between the electrodes. It is an object of the present invention to provide a method for manufacturing a ceramic substrate in which a resist serving as a cover coat is formed on a wiring.
  • the ceramic substrate of the present invention is a ceramic substrate in which a plurality of electrodes and inter-electrode wiring for connecting the electrodes are provided on an electronic component mounting surface, and a resist straddling the inter-electrode wiring is provided on the electronic component mounting surface. It is arranged. If the resist straddling the inter-electrode wiring is disposed on the electronic component mounting surface, it is possible to prevent the solder from spreading between the electrodes during component mounting.
  • the surface of the resist straddling the interelectrode wiring is preferably flat.
  • the resist surface is flat, workability at the time of electronic component mounting is enhanced.
  • the cross-sectional shape of the electrode and the inter-electrode wiring has a front surface, a back surface, a front surface corner portion having an R chamfered shape from the front surface to the back surface direction, and from the back surface to the front surface direction.
  • it is composed of a back corner portion having an R chamfered shape, and the curvature radius of the back corner portion is preferably larger than the curvature radius of the front surface corner portion.
  • Another aspect of the ceramic substrate of the present invention is a ceramic substrate in which an electrode is provided on an electronic component mounting surface, and the electrode is divided into a plurality of electrodes by straddling the electrode on the electronic component mounting surface.
  • the resist to be arranged is arranged.
  • the electrode itself can be divided into a plurality of electrodes by arranging the resist straddling the electrodes. And it can be set as the electronic device which each mounted the electronic component in the some electrode. Also in this aspect, it is possible to prevent the solder from spreading between the electrodes during component mounting.
  • the method for producing a ceramic substrate of the present invention comprises a step of preparing a ceramic green sheet provided with a plurality of electrodes and an inter-electrode wiring connecting the electrodes on the electronic component mounting surface, and a resist having a resist pattern provided on the surface.
  • a step of preparing a sheet, and the resist sheet is placed and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet, and the resist is placed so that the resist of the resist sheet straddles the inter-electrode wiring.
  • a transferring step is used to prepare a ceramic green sheet provided with a plurality of electrodes and an inter-electrode wiring connecting the electrodes on the electronic component mounting surface, and a resist having a resist pattern provided on the surface.
  • a resist straddling the electrode wiring is formed by transfer from a resist sheet provided with a resist pattern. This method prevents the resist from bleeding. Also, since the inter-electrode wiring is pushed into the ceramic green sheet by the crimping at the time of transfer, the portion of the resist straddling the inter-electrode wiring is prevented from becoming higher than the surrounding after the transfer of the resist. There is also an effect that the coplanarity of can be increased.
  • a resist pattern is printed on a release film, the release film is further pressure-bonded to a transfer sheet, and the release film is peeled off to transfer the resist pattern to the transfer sheet.
  • Preparing a resist sheet placing a resist sheet composed of a transfer sheet on which the resist pattern is transferred, and placing the resist pattern on the electronic component mounting surface of the ceramic green sheet, and then pressing the resist sheet. It is preferable that the resist is transferred so that the resist on the transfer sheet is stripped and straddles the inter-electrode wiring.
  • a resist pattern is prepared by printing a resist pattern on a baking sheet made of a material that is burned off at the baking temperature of the ceramic green sheet, and the baking pattern on which the resist pattern is printed.
  • a resist sheet made of a sheet is placed and pressure-bonded so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet, and the firing sheet is burned out by firing the resist sheet together with the ceramic green sheet. It is preferable to transfer the resist so that the resist on the baking sheet straddles the inter-electrode wiring.
  • a resist pattern is prepared by printing a resist pattern on a peeling sheet that can be peeled off after being pressed to the ceramic green sheet. From the peeling sheet on which the resist pattern is printed, The resist sheet is placed so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and the resist sheet is peeled off, and the resist on the peeling sheet straddles the inter-electrode wiring. Thus, it is preferable to transfer the resist.
  • the thickness of the interelectrode wiring is 5 ⁇ m or more and 30 ⁇ m or less. In the region where the thickness of the interelectrode wiring is within this range, the effect of increasing the coplanarity is particularly preferably exhibited.
  • aspects of the method for producing a ceramic substrate of the present invention include a step of preparing a ceramic green sheet having electrodes provided on an electronic component mounting surface, a step of preparing a resist sheet having a resist pattern on the surface, Placing the resist sheet so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and then transferring the resist so that the resist of the resist sheet straddles the electrodes. And In this aspect, the resist can be transferred so that the resist of the resist sheet straddles the electrodes. And the ceramic substrate by which the electrode was divided
  • the electrode since the electrode is pushed into the ceramic green sheet by the crimping at the time of transfer, the resist portion straddling the electrode is prevented from becoming higher than the surrounding after the resist is transferred, and the coplanarity around the resist straddling the electrode is prevented. There is also an effect that can be increased.
  • the ceramic substrate of the present invention it is possible to prevent the solder from spreading between the electrodes during component mounting. According to the method for producing a ceramic substrate of the present invention, it is possible to produce a ceramic substrate in which resist pattern bleeding is prevented and a resist serving as a cover coat is formed on the interelectrode wiring.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of an electronic device including a ceramic substrate according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the electronic component mounting surface of the ceramic substrate according to the embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a portion of the resist straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along line AA in FIG.
  • FIG. 4A is an enlarged cross-sectional view schematically showing a resist portion straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along the line BB in FIG. FIG. 4B and FIG.
  • FIG. 4C are cross-sectional views schematically showing an example of the cross-sectional shape of the interelectrode wiring.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
  • 6 (a), 6 (b) and 6 (c) are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
  • FIG. 7A and FIG. 7B are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
  • FIG. 8A, FIG. 8B, FIG. 8C, and FIG. 8D are process diagrams schematically showing a second aspect of the method for manufacturing a ceramic substrate.
  • FIG. 9B, FIG. 9C, and FIG. 9D are process diagrams schematically showing a third aspect of the method for manufacturing a ceramic substrate.
  • FIG. 10A is a top view schematically showing a portion where a resist straddling the electrode is arranged in the ceramic substrate according to the embodiment of the present invention, and FIG. It is a top view which shows typically a mode that the electronic component was mounted in.
  • the ceramic substrate and the method for producing the ceramic substrate of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
  • Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
  • the ceramic substrate of the present invention is a ceramic substrate in which a plurality of electrodes and interelectrode wiring are provided on an electronic component mounting surface.
  • FIG. 1 is a cross-sectional view schematically illustrating an example of an electronic device including a ceramic substrate according to an embodiment of the present invention.
  • the electronic device 100 includes a plurality of electronic components (for example, a multilayer ceramic capacitor 110 and a semiconductor component 120 which are chip-shaped electronic components) mounted on an electronic component mounting surface 10 which is one main surface of the ceramic substrate 1.
  • the ceramic substrate 1 shown in FIG. 1 is a single-layer plate having a single ceramic layer 30, but may be a multilayer plate in which a plurality of ceramic layers are laminated.
  • a motherboard mounting electrode 45 is provided on the motherboard mounting surface 20 which is the other main surface of the ceramic substrate 1.
  • the motherboard mounting electrode 45 is used as an electrical connection means when the electronic device 100 is mounted on a motherboard (not shown).
  • a plurality of electrodes 40 for mounting a plurality of electronic components are provided on the electronic component mounting surface of the ceramic substrate 1.
  • electrode means an electrode provided on the electronic component mounting surface for mounting the electronic component on the ceramic substrate, and is an electrical connection for mounting the electronic device on the motherboard. Motherboard mounting electrodes as means are not included.
  • An interelectrode wiring 50 is provided between the plurality of electrodes 40, and the plurality of electrodes 40 are electrically connected by the interelectrode wiring 50.
  • the interelectrode wiring 50 is a wiring provided on the electronic component mounting surface 10.
  • the resist 60 is arrange
  • FIG. 2 is a perspective view schematically showing an example of the electronic component mounting surface of the ceramic substrate according to the embodiment of the present invention.
  • six electrodes (electrode 40a, electrode 40b, electrode 40c, electrode 40d, electrode 40e and electrode 40f) for mounting the electronic component are shown.
  • Three inter-electrode wirings (inter-electrode wiring 50a, inter-electrode wiring 50b, and inter-electrode wiring 50c) for electrically connecting the respective electrodes are provided.
  • Three resists resist 60a, resist 60b, and resist 60c are provided to straddle each inter-electrode wiring.
  • the resist straddling the inter-electrode wiring means that the width of the resist is larger than the wiring width of the inter-electrode wiring and the upper surface of the inter-electrode wiring is covered with the resist. As shown in FIG. 2, it is not necessary that the resist straddles all over the length of the interelectrode wiring, and there may be a portion where the resist does not straddle the interelectrode wiring in the vicinity of the electrode.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a portion of the resist straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along line AA in FIG.
  • the interelectrode wiring 50 a is buried in the ceramic layer 30 in a portion where the resist 60 a is provided on the interelectrode wiring 50 a.
  • the height of the upper surface of the resist 60a, the upper surface of the interelectrode wiring 50a not covered with the resist 60a, the upper surface of the electrode 40a, and the upper surface of the electrode 40b are aligned. That is, the coplanarity around the interelectrode wiring is high. Since the coplanarity of this part is high, workability at the time of electronic component mounting is enhanced.
  • FIG. 4A is an enlarged cross-sectional view schematically showing a resist portion straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along the line BB in FIG.
  • FIG. 4A shows that the wiring width of the resist 60a is larger than the wiring width of the interelectrode wiring 50a, and the upper surface of the interelectrode wiring 50a is covered with the resist 60a.
  • the surface of the resist 60a is flat.
  • the flatness of the resist surface means that there is substantially no step between a portion where the inter-electrode wiring exists and a portion where the inter-electrode wiring does not exist.
  • the surface of the resist 60a becomes flat when the interelectrode wiring 50a is buried in the ceramic layer 30.
  • the cross-sectional shape of the inter-electrode wiring has a front surface, a back surface, a front surface corner portion having an R chamfered shape from the front surface to the back surface direction, and a back surface corner portion having an R chamfered shape from the back surface to the front surface direction. It is preferable that the radius of curvature of the rear corner portion is larger than the radius of curvature of the front corner portion.
  • FIG. 4B and FIG. 4C are cross-sectional views schematically showing an example of the cross-sectional shape of the interelectrode wiring.
  • FIG. 4B is an example of a cross-sectional shape including a flat portion having a constant conductor thickness.
  • the cross-sectional shape of the inter-electrode wiring 50a includes a front surface 51 and a back surface 52 opposite to the front surface 51, and a flat portion with a constant conductor thickness, and from the front surface 51 toward the back surface 52.
  • surface corner section (indicated by double arrow C 1), and a back surface corner portion extending from the rear surface 52 to the surface 51 direction (shown by the double arrow C 2).
  • FIG. 4 (b) R 1 to the radius of curvature of the surface corner portion C 1, and the radius of curvature of the back surface corner portion C 2 shown in R 2, and has a R 2> R 1.
  • the shape of the interelectrode wiring 50a shown in FIG. 4B is substantially trapezoidal as a whole, and the cross-sectional shape of the interelectrode wiring of the ceramic substrate of the present invention is such a substantially trapezoidal shape. Shape is preferred.
  • FIG. 4C shows an example of a cross-sectional shape in which the back surface is convex and the conductor thickness is thick at the center of the wiring.
  • the cross-sectional shape of the interelectrode wiring 50a ′ includes a front surface 51 ′ and a back surface 52 ′ facing the front surface 51 ′, and a front surface corner portion (from the front surface 51 ′ toward the back surface 52 ′ ( both arrows C 1 and a 'and indicated by), the back surface corner portions toward the surface 51' direction from the back surface 52 '(double arrow C 2' indicated by).
  • FIG 4 (c) 'the radius of curvature of R 1' surface corner portion C 1, 'the radius of curvature of R 2' backside corner portion C 2 is indicated by, becomes R 2 '> R 1' Yes.
  • the surface corner portion C 1 of the two locations' surface corner portion C 1 radius of curvature R 1 respectively corresponding to the' may be the same or may be different.
  • the back side corner portion C 2 of the two locations' back surface corner portion C 2 radius of curvature R 2 that correspond to the' may be the same or may be different.
  • the front surface 51 ′ is flat and the back surface 52 ′ has a downwardly convex shape. Therefore, as a whole, it has a substantially trapezoidal shape with the bottom surface swelled.
  • the cross-sectional shape of the inter-electrode wiring of the ceramic substrate of the present invention is also preferably a substantially trapezoidal shape with such a bulging bottom surface.
  • the cross-sectional shape of the electrode is the same as the cross-sectional shape of the inter-electrode wiring, the front surface, the back surface, the surface corner portion having an R chamfered shape from the front surface to the back surface direction, and the back surface to the front surface direction.
  • a back corner portion having an R chamfered shape and having a radius of curvature of the back corner portion larger than that of the surface corner portion that is, a substantially trapezoidal shape or a substantially trapezoidal shape with an expanded bottom surface) ) Is preferable.
  • a ceramic layer as an insulating layer is used for the ceramic substrate.
  • the material of the ceramic layer is not particularly limited, but a low-temperature sintered ceramic material is preferably used.
  • the low-temperature sintered ceramic material include a glass composite-based low-temperature sintered ceramic material obtained by mixing borosilicate glass with a ceramic material such as quartz, alumina, forsterite, or the like, ZnO—MgO—Al 2 O 3 —SiO 2 type Crystallized glass low-temperature sintered ceramic materials using crystallized glass, BaO—Al 2 O 3 —SiO 2 ceramic materials, Al 2 O 3 —CaO—SiO 2 —MgO—B 2 O 3 ceramic materials, etc.
  • a conductor material used for a ceramic electronic component using a low-temperature sintered ceramic material is preferably used as a material for the electrodes and the inter-electrode wiring.
  • the conductive material preferably includes a metal material. Further, a ceramic material or a glass material may be added.
  • the metal material preferably contains Au, Ag, or Cu, and more preferably contains Ag or Cu. Examples of the ceramic material include alumina, titania, silica and the like. Examples of the glass material include quartz glass and borosilicate glass.
  • the materials constituting the electrodes and the interelectrode wirings may be the same or different.
  • the thickness of the interelectrode wiring is preferably 5 ⁇ m or more and 30 ⁇ m or less. In the region where the thickness of the interelectrode wiring is within this range, the effect of increasing the coplanarity is particularly preferably exhibited.
  • the resist material it is preferable to use a low-temperature sintered ceramic material similar to the material constituting the ceramic layer.
  • the low temperature sintered ceramic material constituting the ceramic layer and the low temperature sintered ceramic material constituting the resist may be the same or different. From the viewpoint of the adhesion between the resist and the electronic component mounting surface and the matching of the thermal expansion coefficients, the same material is preferable.
  • a resist that includes a low-temperature sintered ceramic material is transferred so as to straddle the inter-electrode wiring, and then baked to form a sintered resist straddling the inter-electrode wiring.
  • the thickness of the resist is preferably 5 ⁇ m or more and 30 ⁇ m or less. In the region where the resist thickness is in this range, the effect of increasing the coplanarity is particularly preferably exhibited.
  • the thickness of the resist and the thickness of the interelectrode wiring are preferably the same, and the difference between the thickness of the resist and the thickness of the interelectrode wiring is preferably 25 ⁇ m or less.
  • the electronic component mounted on the electronic component mounting surface of the ceramic substrate of the present invention is not particularly limited.
  • a ceramic electronic component such as a multilayer ceramic capacitor, a multilayer inductor, or a multilayer ceramic filter obtained by integrally firing these. It is possible to apply. Also, it can be applied to semiconductor parts such as IC and memory.
  • the method for producing a ceramic substrate of the present invention comprises a step of preparing a ceramic green sheet provided with a plurality of electrodes and an inter-electrode wiring connecting the electrodes on the electronic component mounting surface, and a resist having a resist pattern provided on the surface.
  • a step of preparing a sheet, and the resist sheet is placed and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet, and the resist is placed so that the resist of the resist sheet straddles the inter-electrode wiring.
  • a transferring step Since there are several modes for the step of preparing the resist sheet and the step of transferring the resist so that the resist of the resist sheet straddles the inter-electrode wiring, each mode will be described.
  • a resist pattern is printed on a release film, the release film is pressure-bonded to a transfer sheet, and the release film is peeled off to form a resist pattern on the transfer sheet.
  • a resist sheet is prepared by transfer, and a resist sheet made of a transfer sheet on which the resist pattern is transferred is placed and pressure-bonded so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet. The sheet is peeled off, and the resist is transferred so that the resist on the transfer sheet straddles the inter-electrode wiring.
  • FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
  • a resist pattern 260 is printed on the release film 210 as shown in FIG.
  • the release film is a film in which a release layer is formed on a base film such as PET, and a general release film can be used.
  • a printing method using a resist paste such as screen printing, photolithography, and ink jet printing, can be used.
  • a paste containing the low-temperature sintered ceramic material described as the resist material in the description of the ceramic substrate of the present invention can be used.
  • the release film 210 is inverted so that the resist pattern 260 faces the transfer sheet 220 as shown in FIG. 5 (b), and the release film 210 and the transfer sheet as shown in FIG. 5 (c). 220 is stacked.
  • FIGS. 5B and 5C and the drawings in this specification in the drawings in which two or more sheets or films are stacked, the upper sheet or film is allowed to pass through to form a resist pattern, electrodes, and electrodes. The positional relationship of the inter-wiring is schematically shown.
  • the overlapped release film 210 and the transfer sheet 220 are pressure-bonded, and the release film 210 is peeled off as shown in FIG. 5D to transfer the resist pattern 260 to the transfer sheet 220.
  • a resin sheet such as a PET resin sheet, a foam release sheet, or a UV release sheet can be used.
  • a resist sheet 200 having a resist pattern 260 provided on the surface of the transfer sheet 220 is prepared.
  • the thickness of the transfer sheet is preferably 10 ⁇ m or more, and preferably 500 ⁇ m or less.
  • the pressure, temperature, and time for crimping can be arbitrarily set.
  • FIG. 6A shows a ceramic green sheet 230.
  • the ceramic green sheet is a sheet containing a ceramic material before firing.
  • the ceramic green sheet can be produced as follows. First, ceramic powder containing a low-temperature sintered ceramic material, a binder, and a plasticizer are mixed in arbitrary amounts to prepare a ceramic slurry. This ceramic slurry is applied on a carrier film to form a sheet. An apparatus such as a lip coater or a doctor blade can be used for slurry application.
  • the thickness of the ceramic green sheet to be produced is arbitrary, but is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the ceramic green sheet 230 is provided with an electrode 240 and an interelectrode wiring 250 on the electronic component mounting surface 10.
  • the electrode 240 and the interelectrode wiring 250 become the electrode 40 and the interelectrode wiring 50 of the ceramic substrate 1 shown in FIG. 2 by firing.
  • a plurality of electrodes 240 are provided, and the plurality of electrodes 240 are connected by an interelectrode wiring 250. Formation of the electrode 240 and the interelectrode wiring 250 on the electronic component mounting surface 10 of the ceramic green sheet 230 can be performed by a method such as screen printing, inkjet, gravure printing, photolithography, or the like.
  • the ceramic substrate to be manufactured is a multilayer board
  • a laminated body obtained by laminating and pressing a plurality of wiring-formed ceramic green sheets can be regarded as one ceramic green sheet, and the following steps can be performed.
  • the surface on which the electronic component is mounted becomes the electronic component mounting surface of the ceramic green sheet.
  • the ceramic green sheet 230 is inverted so that the electrode 240 and the inter-electrode wiring 250 face the resist pattern 260 of the resist sheet 200, and the ceramic green sheet 230 as shown in FIG.
  • the green sheet 230 and the resist sheet 200 are overlapped.
  • the resist pattern 260 is overlapped across the interelectrode wiring 250.
  • the stacked ceramic green sheet 230 and the resist sheet 200 are pressure-bonded. The pressure, temperature, and time for crimping can be arbitrarily set.
  • FIG. 7A and FIG. 7B are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
  • FIG. 7A shows a state in which the bonded ceramic green sheet 230 and the resist sheet 200 are reversed so that the resist sheet 200 is on the upper side.
  • the transfer sheet 220 constituting the resist sheet 200 is peeled from the ceramic green sheet 230, the resist pattern 260 remains on the ceramic green sheet 230 side.
  • the resist on the transfer sheet is transferred so as to straddle the inter-electrode wiring.
  • the unsintered ceramic material contained in the ceramic green sheet is sintered to form a ceramic layer.
  • the electrodes on the ceramic green sheet, the interelectrode wiring, and the resist are also fired. As a result, a ceramic substrate 1 as shown in FIG. 2 can be obtained.
  • a resist pattern is prepared by printing a resist pattern on a firing sheet made of a material that is burned off at the firing temperature of the ceramic green sheet, and the resist pattern is printed on the firing sheet.
  • a resist sheet made of a sheet is placed and pressure-bonded so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet, and the firing sheet is burned out by firing the resist sheet together with the ceramic green sheet.
  • the resist is transferred so that the resist on the baking sheet straddles the inter-electrode wiring.
  • FIG. 8A, FIG. 8B, FIG. 8C, and FIG. 8D are process diagrams schematically showing a second aspect of the method for manufacturing a ceramic substrate.
  • a resist pattern 260 is printed on the baking sheet 320.
  • the firing sheet is a firing sheet made of a material that burns away at the firing temperature of the ceramic green sheet.
  • the firing temperature of the ceramic green sheet varies depending on the composition of the ceramic material contained in the ceramic green sheet, but is generally 200 ° C. or higher and 1000 ° C. or lower. Whether or not the firing sheet is burned off at the firing temperature is determined by the weight reduction rate when the firing sheet is held for 2 hours in a heating furnace set to the firing temperature. If the weight reduction rate is 5% or more, it is determined that the firing sheet is a sheet that burns out at the firing temperature.
  • the firing sheet a resin-based sheet and a carbon sheet are preferably used.
  • the resin-based sheet an acrylic resin sheet, a polystyrene resin sheet, or the like can be used.
  • the thickness of the firing sheet is preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less.
  • a sheet obtained by printing the resist pattern 260 on the baking sheet 320 becomes the resist sheet 300.
  • the same ceramic green sheet 230 as described in the first embodiment is prepared (see the right side of FIG. 8A).
  • the ceramic green sheet 230 is inverted so that the electrode 240 and the interelectrode wiring 250 face the resist pattern 260 of the resist sheet 300, and on the right side of FIG. As shown, the ceramic green sheet 230 and the resist sheet 300 are stacked. At this time, the resist pattern 260 is overlapped across the interelectrode wiring 250. Then, the stacked ceramic green sheet 230 and the resist sheet 300 are pressure-bonded. The pressure, temperature, and time for crimping can be arbitrarily set.
  • FIG. 8C shows a state in which the pressure-bonded ceramic green sheet 230 and the resist sheet 300 are reversed so that the resist sheet 300 is on the upper side. Then, the resist sheet 300 is fired together with the ceramic green sheet 230 at the firing temperature of the ceramic green sheet. By firing, the unsintered ceramic material contained in the ceramic green sheet is sintered to form a ceramic layer. Further, the electrodes on the ceramic green sheet and the interelectrode wiring are also fired. At the same time, the baking sheet 320 constituting the resist sheet 300 is burned out by baking. Since the resist pattern 260 remains without being burned off, the resist on the baking sheet is transferred so as to straddle the inter-electrode wiring. As a result, a ceramic substrate 1 as shown in FIG. 8D can be obtained. This ceramic substrate 1 is the same as the ceramic substrate 1 shown in FIG.
  • a resist pattern is prepared by printing a resist pattern on a peeling sheet that can be peeled off after pressure bonding to the ceramic green sheet. From the peeling sheet on which the resist pattern is printed, The resist sheet is placed so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and the resist sheet is peeled off, and the resist on the peeling sheet straddles the inter-electrode wiring. The resist is transferred as follows. In the third aspect of the method for producing a ceramic substrate, a release sheet is used as the resist sheet.
  • FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D are process diagrams schematically showing a third aspect of the method for manufacturing a ceramic substrate.
  • a resist pattern 260 is printed on the peeling sheet 420.
  • the peeling sheet is a sheet that can be peeled off after being pressed onto the ceramic green sheet.
  • a release agent such as a silicone release agent or a fluorine release agent may be provided on the surface.
  • the peeling sheet a resin-based sheet and a carbon sheet are preferably used.
  • the resin-based sheet an acrylic resin sheet, a polystyrene resin sheet, or the like can be used.
  • the thickness of the peeling sheet is preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less.
  • the same ceramic green sheet 230 as described in the first embodiment is prepared (see the right side of FIG. 9A).
  • the ceramic green sheet 230 is inverted so that the electrode 240 and the interelectrode wiring 250 face the resist pattern 260 of the resist sheet 400, and on the right side of FIG. As shown, the ceramic green sheet 230 and the resist sheet 400 are stacked. At this time, the resist pattern 260 is overlapped across the interelectrode wiring 250. Then, the stacked ceramic green sheet 230 and the resist sheet 400 are pressure bonded. The pressure, temperature, and time for crimping can be arbitrarily set.
  • FIG. 9C shows a state in which the pressure-bonded ceramic green sheet 230 and the resist sheet 400 are reversed so that the resist sheet 400 is on the upper side.
  • the peeling sheet 420 constituting the resist sheet 400 is peeled from the ceramic green sheet 230, the resist pattern 260 remains on the ceramic green sheet 230 side.
  • the resist on the peeling sheet is transferred so as to straddle the inter-electrode wiring.
  • the unsintered ceramic material contained in the ceramic green sheet is sintered to form a ceramic layer.
  • the electrodes on the ceramic green sheet, the interelectrode wiring, and the resist are also fired. As a result, a ceramic substrate 1 as shown in FIG. 2 can be obtained.
  • the ceramic substrate of the present invention can be produced.
  • the resist sheet is disposed so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet so that the resist pattern of the resist sheet straddles the inter-electrode wiring. Crimp. By this pressure bonding, the inter-electrode wiring is pushed toward the ceramic green sheet, and a part of the inter-electrode wiring is buried in the ceramic green sheet. As a result, as shown in FIG.
  • the height of the upper surface of the resist 60a and the upper surfaces of the interelectrode wiring 50a and the electrodes 40a and 40b around the resist 60a are aligned. That is, according to the method for manufacturing a ceramic substrate of the present invention, a ceramic substrate having a high coplanarity around the interelectrode wiring can be obtained.
  • Another aspect of the ceramic substrate of the present invention is a ceramic substrate in which an electrode is provided on an electronic component mounting surface, and a resist that divides the electrode into a plurality of electrodes by straddling the electrode is disposed on the electronic component mounting surface. It is characterized by.
  • This aspect is different from the aspect of the ceramic substrate of the present invention described above in that the portion where the resist straddles is not an inter-electrode wiring but an electrode.
  • the preferable aspect of another structure is the same.
  • FIG. 10A is a top view schematically showing a portion where a resist straddling an electrode is arranged in a ceramic substrate according to an embodiment of the present invention.
  • FIG. 10A schematically shows that the electrode is divided into a plurality of electrodes 540a and 540b by arranging the resist 560 straddling the electrodes.
  • the electrode 540a and the electrode 540b can be regarded as one electrode before the resist 560 is disposed thereon.
  • the connection between the electrode 540a and the electrode 540b is expressed by showing a portion hidden under the resist 560 with a dotted line.
  • FIG. 10B is a top view schematically showing a state in which electronic components (multilayer ceramic capacitor 110a and multilayer ceramic capacitor 110b) are mounted on each of the divided electrodes.
  • the electrode itself can be divided into a plurality of electrodes by arranging a resist straddling the electrodes. it can. And it can be set as the electronic device which each mounted the electronic component in the some electrode. Also in this aspect, it is possible to prevent the solder from spreading between the electrodes during component mounting.
  • aspects of the method for producing a ceramic substrate of the present invention include a step of preparing a ceramic green sheet having electrodes provided on an electronic component mounting surface, a step of preparing a resist sheet having a resist pattern on the surface, Placing the resist sheet so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and then transferring the resist so that the resist of the resist sheet straddles the electrodes. And according to the method for manufacturing a ceramic substrate of the present invention of this aspect, the resist can be transferred so that the resist of the resist sheet straddles the electrodes. And the ceramic substrate by which the electrode was divided
  • the specific mode of the step of transferring the resist so that the resist of the resist sheet straddles the electrode may be the same as the step of transferring the resist so that the resist of the resist sheet straddles the inter-electrode wiring described above. Since it can, detailed description is abbreviate
  • Example 1 A ceramic green sheet provided with interelectrode wiring for connecting a plurality of electrodes to each other by screen printing a conductive paste containing Cu on the ceramic green sheet was prepared. Separately, a resist pattern containing the same ceramic material as that of the ceramic green sheet was printed on a PET release film to form a resist pattern. Then, a transfer sheet made of a PET resin sheet and a release film were stacked and pressure-bonded, and the resist pattern was transferred to the transfer sheet. Subsequently, the ceramic green sheet and the transfer sheet were stacked and pressure-bonded so that the resist pattern straddled the inter-electrode wiring. Further, by peeling off the transfer sheet, the resist was transferred so that the resist on the transfer sheet straddled the inter-electrode wiring. Then, the ceramic material which comprises a ceramic green sheet was baked at the baking temperature, and the ceramic substrate was obtained.
  • Example 1 A ceramic green sheet similar to that in Example 1 was prepared. A resist paste containing the same ceramic material as that forming the ceramic green sheet was directly printed by screen printing so as to straddle the inter-electrode wiring on the ceramic green sheet. Then, the ceramic material which comprises a ceramic green sheet was baked at the baking temperature, without performing crimping
  • the ceramic substrate of Example 1 can be said to be a substrate having a small measured value of coplanarity around the inter-electrode wiring (high coplanarity), so that it is possible to improve workability when mounting electronic components.

Abstract

This ceramic substrate is provided with a plurality of electrodes, and interelectrode wiring that connects the electrodes to each other, said electrodes and interelectrode wiring being on an electronic component mounting surface. The ceramic substrate is characterized in that, on the electronic component mounting surface, a resist is disposed over the interelectrode wiring.

Description

セラミック基板及びセラミック基板の製造方法Ceramic substrate and method for manufacturing ceramic substrate
本発明は、セラミック基板及びセラミック基板の製造方法に関する。 The present invention relates to a ceramic substrate and a method for manufacturing a ceramic substrate.
セラミック基板として、一方の面がマザーボードに接続され、もう一方の面には複数の電子部品が実装される基板がある。 As a ceramic substrate, there is a substrate on which one surface is connected to a mother board and a plurality of electronic components are mounted on the other surface.
特許文献1には、基板とパッド(電極)との密着強度を増加させるために、セラミック多層基板における表面の電極にカバーコートを施す方法が開示されている。具体的には、離型性のよいフィルムシートにカバーコートを印刷し、そのフィルムシートと電極が印刷されたセラミックグリーンシートとを接着プレスする方法が開示されている。 Patent Document 1 discloses a method for applying a cover coat to electrodes on the surface of a ceramic multilayer substrate in order to increase the adhesion strength between the substrate and pads (electrodes). Specifically, a method is disclosed in which a cover coat is printed on a film sheet having good releasability, and the film sheet and a ceramic green sheet on which an electrode is printed are bonded and pressed.
特開平9-223870号公報JP-A-9-223870
セラミック基板に複数の電子部品が実装される場合、当該複数の電子部品を実装する電極の間の電気的接続を、電子部品実装面に形成した配線(電極間配線)により行うことがある。
特許文献1に記載された方法では、カバーコートを施す部位は電極であるが、電極間配線に対してはカバーコートを施すことは考えられていない。
電極にカバーコートが施され、電極間配線にカバーコートが施されていない状態であると、部品実装時にはんだが電極間で濡れ拡がってしまうという問題があった。
When a plurality of electronic components are mounted on a ceramic substrate, electrical connection between electrodes for mounting the plurality of electronic components may be performed by wiring (interelectrode wiring) formed on the electronic component mounting surface.
In the method described in Patent Document 1, the portion to which the cover coat is applied is an electrode, but it is not considered to cover the electrode wiring.
When the electrode is covered with a cover coat and the inter-electrode wiring is not covered, there is a problem in that the solder spreads between the electrodes during component mounting.
電子部品実装面に電極及び電極間配線を設け、さらに適切な部位にカバーコートを設けるための方法として、電子部品実装面に導電性ペーストを印刷して電極及び電極間配線を設け、さらに、カバーコートとなるレジストパターンを印刷する方法が考えられる。
しかし、この方法では、レジストパターンを印刷する時点で電極及び電極間配線による段差が存在しているためにレジストパターンの印刷がにじむという問題が生じた。
As a method for providing electrodes and inter-electrode wiring on the electronic component mounting surface, and further providing a cover coat on an appropriate part, the conductive paste is printed on the electronic component mounting surface to provide the electrodes and inter-electrode wiring, and the cover A method of printing a resist pattern to be a coating can be considered.
However, this method has a problem that the resist pattern is blurred because there is a step due to the electrodes and the inter-electrode wiring at the time of printing the resist pattern.
本発明は上記の問題を解決するためになされたものであり、部品実装時にはんだが電極間で濡れ拡がることを防止することができるセラミック基板、及び、レジストパターンのにじみを防止して、電極間配線上にカバーコートとなるレジストを形成したセラミック基板を製造する方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problem, and prevents the solder from spreading between the electrodes during mounting of the component, and prevents the resist pattern from bleeding between the electrodes. It is an object of the present invention to provide a method for manufacturing a ceramic substrate in which a resist serving as a cover coat is formed on a wiring.
本発明のセラミック基板は、電子部品実装面に複数の電極及び上記電極間を接続する電極間配線が設けられたセラミック基板であって、上記電子部品実装面には上記電極間配線を跨ぐレジストが配置されていることを特徴とする。
電子部品実装面に、電極間配線を跨ぐレジストが配置されていると、部品実装時にはんだが電極間で濡れ拡がることを防止することができる。
The ceramic substrate of the present invention is a ceramic substrate in which a plurality of electrodes and inter-electrode wiring for connecting the electrodes are provided on an electronic component mounting surface, and a resist straddling the inter-electrode wiring is provided on the electronic component mounting surface. It is arranged.
If the resist straddling the inter-electrode wiring is disposed on the electronic component mounting surface, it is possible to prevent the solder from spreading between the electrodes during component mounting.
本発明のセラミック基板では、上記電極間配線を跨ぐレジストの表面が平坦であることが好ましい。
レジストの表面が平坦であると、電子部品実装時の作業性が高まる。
In the ceramic substrate of the present invention, the surface of the resist straddling the interelectrode wiring is preferably flat.
When the resist surface is flat, workability at the time of electronic component mounting is enhanced.
本発明のセラミック基板では、上記電極及び電極間配線の断面形状は、表面と、裏面と、上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなり、上記裏面コーナー部の曲率半径が、上記表面コーナー部の曲率半径よりも大きいことが好ましい。
電極間配線の形状がこのような形状であると、電極間配線の端部への電界集中を緩和してより良好な伝送特性を実現させることができる。
In the ceramic substrate of the present invention, the cross-sectional shape of the electrode and the inter-electrode wiring has a front surface, a back surface, a front surface corner portion having an R chamfered shape from the front surface to the back surface direction, and from the back surface to the front surface direction. Oppositely, it is composed of a back corner portion having an R chamfered shape, and the curvature radius of the back corner portion is preferably larger than the curvature radius of the front surface corner portion.
When the shape of the inter-electrode wiring is such a shape, it is possible to alleviate electric field concentration at the end of the inter-electrode wiring and realize better transmission characteristics.
また、本発明のセラミック基板の他の態様は、電子部品実装面に電極が設けられたセラミック基板であって、上記電子部品実装面には上記電極を跨ぐことによって上記電極を複数の電極に分割するレジストが配置されていることを特徴とする。
この態様では、電子部品実装面に電極間配線が設けられていない場合でも、電極を跨ぐレジストを配置することにより、電極自体を複数の電極に分割して使用することができる。そして、複数の電極にそれぞれ電子部品を搭載した電子装置とすることができる。
また、この態様でも、部品実装時にはんだが電極間で濡れ拡がることを防止することができる。
Another aspect of the ceramic substrate of the present invention is a ceramic substrate in which an electrode is provided on an electronic component mounting surface, and the electrode is divided into a plurality of electrodes by straddling the electrode on the electronic component mounting surface. The resist to be arranged is arranged.
In this aspect, even when the inter-electrode wiring is not provided on the electronic component mounting surface, the electrode itself can be divided into a plurality of electrodes by arranging the resist straddling the electrodes. And it can be set as the electronic device which each mounted the electronic component in the some electrode.
Also in this aspect, it is possible to prevent the solder from spreading between the electrodes during component mounting.
本発明のセラミック基板の製造方法は、電子部品実装面に複数の電極及び上記電極間を接続する電極間配線が設けられたセラミックグリーンシートを準備する工程と、表面にレジストパターンが設けられたレジストシートを準備する工程と、上記レジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記レジストシートのレジストが上記電極間配線を跨ぐようにレジストを転写する工程と、を有することを特徴とする。 The method for producing a ceramic substrate of the present invention comprises a step of preparing a ceramic green sheet provided with a plurality of electrodes and an inter-electrode wiring connecting the electrodes on the electronic component mounting surface, and a resist having a resist pattern provided on the surface. A step of preparing a sheet, and the resist sheet is placed and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet, and the resist is placed so that the resist of the resist sheet straddles the inter-electrode wiring. And a transferring step.
上記製造方法では、レジストパターンが設けられたレジストシートからの転写によって、電極配線間を跨ぐレジストを形成する。
この方法であるとレジストがにじむことが防止される。
また、転写時の圧着により電極間配線がセラミックグリーンシートに押し込まれて転写がされるので、レジストの転写後に電極間配線を跨ぐレジストの部分が周囲より高くなることが防止され、電極間配線周囲のコプラナリティを高くすることができるという効果もある。
In the manufacturing method, a resist straddling the electrode wiring is formed by transfer from a resist sheet provided with a resist pattern.
This method prevents the resist from bleeding.
Also, since the inter-electrode wiring is pushed into the ceramic green sheet by the crimping at the time of transfer, the portion of the resist straddling the inter-electrode wiring is prevented from becoming higher than the surrounding after the transfer of the resist. There is also an effect that the coplanarity of can be increased.
本発明のセラミック基板の製造方法では、離型フィルムにレジストパターンを印刷し、さらに上記離型フィルムを転写用シートに圧着し、離型フィルムを剥離することにより転写用シートにレジストパターンを転写してレジストシートを準備し、上記レジストパターンが転写された転写用シートからなるレジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記転写用シートを剥離して、上記転写用シート上のレジストが上記電極間配線を跨ぐようにレジストを転写することが好ましい。 In the method for producing a ceramic substrate of the present invention, a resist pattern is printed on a release film, the release film is further pressure-bonded to a transfer sheet, and the release film is peeled off to transfer the resist pattern to the transfer sheet. Preparing a resist sheet, placing a resist sheet composed of a transfer sheet on which the resist pattern is transferred, and placing the resist pattern on the electronic component mounting surface of the ceramic green sheet, and then pressing the resist sheet. It is preferable that the resist is transferred so that the resist on the transfer sheet is stripped and straddles the inter-electrode wiring.
また、本発明のセラミック基板の製造方法では、上記セラミックグリーンシートの焼成温度で焼失する材料からなる焼成用シートにレジストパターンを印刷してレジストシートを準備し、上記レジストパターンが印刷された焼成用シートからなるレジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記セラミックグリーンシートとともに上記レジストシートを焼成することにより上記焼成用シートを焼失させ、上記焼成用シート上のレジストが上記電極間配線を跨ぐようにレジストを転写することが好ましい。 Further, in the method for manufacturing a ceramic substrate of the present invention, a resist pattern is prepared by printing a resist pattern on a baking sheet made of a material that is burned off at the baking temperature of the ceramic green sheet, and the baking pattern on which the resist pattern is printed. A resist sheet made of a sheet is placed and pressure-bonded so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet, and the firing sheet is burned out by firing the resist sheet together with the ceramic green sheet. It is preferable to transfer the resist so that the resist on the baking sheet straddles the inter-electrode wiring.
また、本発明のセラミック基板の製造方法では、上記セラミックグリーンシートへの圧着後に剥離可能な剥離用シートにレジストパターンを印刷してレジストシートを準備し、上記レジストパターンが印刷された剥離用シートからなるレジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記剥離用シートを剥離して、上記剥離用シート上のレジストが上記電極間配線を跨ぐようにレジストを転写することが好ましい。 Further, in the method for producing a ceramic substrate of the present invention, a resist pattern is prepared by printing a resist pattern on a peeling sheet that can be peeled off after being pressed to the ceramic green sheet. From the peeling sheet on which the resist pattern is printed, The resist sheet is placed so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and the resist sheet is peeled off, and the resist on the peeling sheet straddles the inter-electrode wiring. Thus, it is preferable to transfer the resist.
本発明のセラミック基板の製造方法では、上記電極間配線の厚さが5μm以上、30μm以下であることが好ましい。
電極間配線の厚さがこの範囲の領域において、コプラナリティを高くする効果が特に好適に発揮されやすい。
In the method for producing a ceramic substrate of the present invention, it is preferable that the thickness of the interelectrode wiring is 5 μm or more and 30 μm or less.
In the region where the thickness of the interelectrode wiring is within this range, the effect of increasing the coplanarity is particularly preferably exhibited.
本発明のセラミック基板の製造方法の他の態様は、電子部品実装面に電極が設けられたセラミックグリーンシートを準備する工程と、表面にレジストパターンが設けられたレジストシートを準備する工程と、上記レジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記レジストシートのレジストが上記電極を跨ぐようにレジストを転写する工程と、を有することを特徴とする。
この態様では、レジストシートのレジストが電極を跨ぐようにレジストを転写することができる。そして、電極が複数の電極に分割されたセラミック基板を製造することができる。この方法でも、レジストがにじむことが防止される。
また、転写時の圧着により電極がセラミックグリーンシートに押し込まれて転写がされるので、レジストの転写後に電極を跨ぐレジストの部分が周囲より高くなることが防止され、電極を跨ぐレジストの周囲のコプラナリティを高くすることができるという効果もある。
Other aspects of the method for producing a ceramic substrate of the present invention include a step of preparing a ceramic green sheet having electrodes provided on an electronic component mounting surface, a step of preparing a resist sheet having a resist pattern on the surface, Placing the resist sheet so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and then transferring the resist so that the resist of the resist sheet straddles the electrodes. And
In this aspect, the resist can be transferred so that the resist of the resist sheet straddles the electrodes. And the ceramic substrate by which the electrode was divided | segmented into the some electrode can be manufactured. This method also prevents the resist from bleeding.
In addition, since the electrode is pushed into the ceramic green sheet by the crimping at the time of transfer, the resist portion straddling the electrode is prevented from becoming higher than the surrounding after the resist is transferred, and the coplanarity around the resist straddling the electrode is prevented. There is also an effect that can be increased.
本発明のセラミック基板では、部品実装時にはんだが電極間で濡れ拡がることを防止することができる。そして、本発明のセラミック基板の製造方法によれば、レジストパターンのにじみを防止して、電極間配線上にカバーコートとなるレジストを形成したセラミック基板を製造することができる。 In the ceramic substrate of the present invention, it is possible to prevent the solder from spreading between the electrodes during component mounting. According to the method for producing a ceramic substrate of the present invention, it is possible to produce a ceramic substrate in which resist pattern bleeding is prevented and a resist serving as a cover coat is formed on the interelectrode wiring.
図1は、本発明の一実施形態に係るセラミック基板を備える電子装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically illustrating an example of an electronic device including a ceramic substrate according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るセラミック基板の電子部品実装面の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of the electronic component mounting surface of the ceramic substrate according to the embodiment of the present invention. 図3は、電極間配線を跨ぐレジストの部分を模式的に示す拡大断面図であり、図2のA-A線断面図に相当する。FIG. 3 is an enlarged cross-sectional view schematically showing a portion of the resist straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along line AA in FIG. 図4(a)は、電極間配線を跨ぐレジストの部分を模式的に示す拡大断面図であり、図2のB-B線断面図に相当する。図4(b)及び図4(c)は、電極間配線の断面形状の一例を模式的に示す断面図である。FIG. 4A is an enlarged cross-sectional view schematically showing a resist portion straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along the line BB in FIG. FIG. 4B and FIG. 4C are cross-sectional views schematically showing an example of the cross-sectional shape of the interelectrode wiring. 図5(a)、図5(b)、図5(c)及び図5(d)は、セラミック基板の製造方法の第1の態様の一部を模式的に示す工程図である。FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate. 図6(a)、図6(b)及び図6(c)は、セラミック基板の製造方法の第1の態様の一部を模式的に示す工程図である。6 (a), 6 (b) and 6 (c) are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate. 図7(a)及び図7(b)は、セラミック基板の製造方法の第1の態様の一部を模式的に示す工程図である。FIG. 7A and FIG. 7B are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate. 図8(a)、図8(b)、図8(c)及び図8(d)は、セラミック基板の製造方法の第2の態様を模式的に示す工程図である。FIG. 8A, FIG. 8B, FIG. 8C, and FIG. 8D are process diagrams schematically showing a second aspect of the method for manufacturing a ceramic substrate. 図9(a)、図9(b)、図9(c)及び図9(d)は、セラミック基板の製造方法の第3の態様を模式的に示す工程図である。FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D are process diagrams schematically showing a third aspect of the method for manufacturing a ceramic substrate. 図10(a)は、本発明の一実施形態に係るセラミック基板において、電極を跨ぐレジストが配置された部分を模式的に示す上面図であり、図10(b)は、分割した電極のそれぞれに電子部品を実装した様子を模式的に示す上面図である。FIG. 10A is a top view schematically showing a portion where a resist straddling the electrode is arranged in the ceramic substrate according to the embodiment of the present invention, and FIG. It is a top view which shows typically a mode that the electronic component was mounted in.
以下、本発明のセラミック基板及びセラミック基板の製造方法について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。
Hereinafter, the ceramic substrate and the method for producing the ceramic substrate of the present invention will be described.
However, the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
A combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
本発明のセラミック基板は、電子部品実装面に複数の電極及び電極間配線が設けられたセラミック基板である。
まず、電子部品実装面に複数の電極及び電極間配線が設けられることについて、本発明の一実施形態に係るセラミック基板を備える電子装置の図面を用いて説明する。
The ceramic substrate of the present invention is a ceramic substrate in which a plurality of electrodes and interelectrode wiring are provided on an electronic component mounting surface.
First, the provision of a plurality of electrodes and inter-electrode wiring on the electronic component mounting surface will be described with reference to the drawings of an electronic device including a ceramic substrate according to an embodiment of the present invention.
図1は、本発明の一実施形態に係るセラミック基板を備える電子装置の一例を模式的に示す断面図である。
電子装置100は、セラミック基板1の一方の主面である電子部品実装面10に複数の電子部品(例えば、チップ状の電子部品である積層セラミックキャパシタ110及び半導体部品120)が実装されてなる。
図1に示すセラミック基板1はセラミック層30が1層である単層板であるが、セラミック層が複数積層された多層板であってもよい。
セラミック基板1の他方の主面であるマザーボード実装面20にはマザーボード実装電極45が設けられている。マザーボード実装電極45は、電子装置100を図示しないマザーボード上に実装する際の電気的接続手段として用いられる。
FIG. 1 is a cross-sectional view schematically illustrating an example of an electronic device including a ceramic substrate according to an embodiment of the present invention.
The electronic device 100 includes a plurality of electronic components (for example, a multilayer ceramic capacitor 110 and a semiconductor component 120 which are chip-shaped electronic components) mounted on an electronic component mounting surface 10 which is one main surface of the ceramic substrate 1.
The ceramic substrate 1 shown in FIG. 1 is a single-layer plate having a single ceramic layer 30, but may be a multilayer plate in which a plurality of ceramic layers are laminated.
A motherboard mounting electrode 45 is provided on the motherboard mounting surface 20 which is the other main surface of the ceramic substrate 1. The motherboard mounting electrode 45 is used as an electrical connection means when the electronic device 100 is mounted on a motherboard (not shown).
セラミック基板1の電子部品実装面には、複数の電子部品をそれぞれ実装するための電極40が複数設けられている。
なお、本明細書で単に「電極」というときは、電子部品実装面に設けられた、電子部品をセラミック基板に実装するための電極を意味し、電子装置をマザーボードに実装するための電気的接続手段としてのマザーボード実装電極は含まないものとする。
A plurality of electrodes 40 for mounting a plurality of electronic components are provided on the electronic component mounting surface of the ceramic substrate 1.
In the present specification, the term “electrode” means an electrode provided on the electronic component mounting surface for mounting the electronic component on the ceramic substrate, and is an electrical connection for mounting the electronic device on the motherboard. Motherboard mounting electrodes as means are not included.
そして、複数の電極40の間には、電極間配線50が設けられており、複数の電極40が電極間配線50により電気的に接続されている。
電極間配線50は、電子部品実装面10上に設けられた配線である。
そして、電極間配線を跨ぐようにレジスト60が配置されている。
セラミック基板1における複数の電極40、電極間配線50、レジスト60の位置関係について、図2を用いて説明する。
An interelectrode wiring 50 is provided between the plurality of electrodes 40, and the plurality of electrodes 40 are electrically connected by the interelectrode wiring 50.
The interelectrode wiring 50 is a wiring provided on the electronic component mounting surface 10.
And the resist 60 is arrange | positioned so that wiring between electrodes may be straddled.
The positional relationship among the plurality of electrodes 40, the inter-electrode wiring 50, and the resist 60 on the ceramic substrate 1 will be described with reference to FIG.
図2は、本発明の一実施形態に係るセラミック基板の電子部品実装面の一例を模式的に示す斜視図である。
図2に示すセラミック基板1の電子部品実装面10には、電子部品を実装するための電極が6つ(電極40a、電極40b、電極40c、電極40d、電極40e及び電極40f)示されており、それぞれの電極間を電気的に接続する電極間配線が3つ(電極間配線50a、電極間配線50b及び電極間配線50c)設けられている。
そして、各電極間配線を跨ぐレジストが3つ(レジスト60a、レジスト60b及びレジスト60c)設けられている。
レジストが電極間配線を跨ぐとは、電極間配線の配線幅よりもレジストの幅が大きくなっていて電極間配線の上面がレジストで覆われていることを意味する。なお、図2に示しているが、電極間配線の長さ方向において全てをレジストが跨いでいる必要はなく、電極近傍においてはレジストが電極間配線を跨いでいない部分があってもよい。
FIG. 2 is a perspective view schematically showing an example of the electronic component mounting surface of the ceramic substrate according to the embodiment of the present invention.
On the electronic component mounting surface 10 of the ceramic substrate 1 shown in FIG. 2, six electrodes (electrode 40a, electrode 40b, electrode 40c, electrode 40d, electrode 40e and electrode 40f) for mounting the electronic component are shown. Three inter-electrode wirings (inter-electrode wiring 50a, inter-electrode wiring 50b, and inter-electrode wiring 50c) for electrically connecting the respective electrodes are provided.
Three resists (resist 60a, resist 60b, and resist 60c) are provided to straddle each inter-electrode wiring.
The resist straddling the inter-electrode wiring means that the width of the resist is larger than the wiring width of the inter-electrode wiring and the upper surface of the inter-electrode wiring is covered with the resist. As shown in FIG. 2, it is not necessary that the resist straddles all over the length of the interelectrode wiring, and there may be a portion where the resist does not straddle the interelectrode wiring in the vicinity of the electrode.
本発明のセラミック基板においては、電極間配線を跨ぐレジストの部分が周囲よりも高くなっておらず、電極間配線周囲のコプラナリティが高くなっている(平坦になっている)ことが好ましい。このことについて図3を参照して説明する。
図3は、電極間配線を跨ぐレジストの部分を模式的に示す拡大断面図であり、図2のA-A線断面図に相当する。
In the ceramic substrate of the present invention, it is preferable that the portion of the resist straddling the inter-electrode wiring is not higher than the surroundings, and the coplanarity around the inter-electrode wiring is high (flat). This will be described with reference to FIG.
FIG. 3 is an enlarged cross-sectional view schematically showing a portion of the resist straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along line AA in FIG.
図3に示すように、セラミック基板1では、電極間配線50aの上にレジスト60aが設けられている部分において、電極間配線50aがセラミック層30に埋まっている。その結果、レジスト60aの上面、レジスト60aで覆われていない電極間配線50aの上面、電極40aの上面、及び、電極40bの上面の高さが揃っている。すなわち、電極間配線周囲のコプラナリティが高くなっている。この部位のコプラナリティが高くなっていることにより、電子部品実装時の作業性が高まる。 As shown in FIG. 3, in the ceramic substrate 1, the interelectrode wiring 50 a is buried in the ceramic layer 30 in a portion where the resist 60 a is provided on the interelectrode wiring 50 a. As a result, the height of the upper surface of the resist 60a, the upper surface of the interelectrode wiring 50a not covered with the resist 60a, the upper surface of the electrode 40a, and the upper surface of the electrode 40b are aligned. That is, the coplanarity around the interelectrode wiring is high. Since the coplanarity of this part is high, workability at the time of electronic component mounting is enhanced.
図4(a)は、電極間配線を跨ぐレジストの部分を模式的に示す拡大断面図であり、図2のB-B線断面図に相当する。
図4(a)には、電極間配線50aの配線幅よりもレジスト60aの配線幅の方が大きくなっており、電極間配線50aの上面がレジスト60aで覆われていることを示している。
レジスト60aの表面は平坦である。レジストの表面が平坦であるということは、その下に電極間配線が存在する部位と、電極間配線が存在しない部位において段差が実質的に存在しないことを意味する。
図4(a)に示すように、電極間配線50aがセラミック層30に埋まることによってレジスト60aの表面が平坦になる。
FIG. 4A is an enlarged cross-sectional view schematically showing a resist portion straddling the inter-electrode wiring, and corresponds to a cross-sectional view taken along the line BB in FIG.
FIG. 4A shows that the wiring width of the resist 60a is larger than the wiring width of the interelectrode wiring 50a, and the upper surface of the interelectrode wiring 50a is covered with the resist 60a.
The surface of the resist 60a is flat. The flatness of the resist surface means that there is substantially no step between a portion where the inter-electrode wiring exists and a portion where the inter-electrode wiring does not exist.
As shown in FIG. 4A, the surface of the resist 60a becomes flat when the interelectrode wiring 50a is buried in the ceramic layer 30.
電極間配線の断面形状は、表面と、裏面と、上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなり、上記裏面コーナー部の曲率半径が、上記表面コーナー部の曲率半径よりも大きいことが好ましい。
図4(b)及び図4(c)は、電極間配線の断面形状の一例を模式的に示す断面図である。
図4(b)は導体厚さが一定の平坦部を備える断面形状の例である。
図4(b)において、電極間配線50aの断面形状は表面51と、表面51に対向する裏面52とを備えており、導体厚さが一定の平坦部と、表面51から裏面52方向に向かう表面コーナー部(両矢印Cで示す)と、裏面52から表面51方向に向かう裏面コーナー部(両矢印Cで示す)とを備えている。
図4(b)には、表面コーナー部Cの曲率半径をR、裏面コーナー部Cの曲率半径をRで示しており、R>Rとなっている。
なお、表面コーナー部Cは2箇所存在するが、2箇所の表面コーナー部Cにそれぞれ対応する曲率半径Rは同じであってもよく、異なっていてもよい。
また、裏面コーナー部Cは2箇所存在するが、2箇所の裏面コーナー部Cにそれぞれ対応する曲率半径Rは同じであってもよく、異なっていてもよい。
そして、図4(b)に示す電極間配線50aの形状は、全体としては略台形状になっており、本発明のセラミック基板の電極間配線の断面形状としては、このような略台形状の形状が好ましい。
図4(c)は裏面側が凸になっており、配線の中央部において導体厚さが厚くなっている断面形状の例である。
図4(c)において、電極間配線50a´の断面形状は表面51´と、表面51´に対向する裏面52´とを備えており、表面51´から裏面52´方向に向かう表面コーナー部(両矢印C´で示す)と、裏面52´から表面51´方向に向かう裏面コーナー部(両矢印C´で示す)とを備えている。
図4(c)には、表面コーナー部C´の曲率半径をR´、裏面コーナー部C´の曲率半径をR´で示しており、R´>R´となっている。
なお、表面コーナー部C´は2箇所存在するが、2箇所の表面コーナー部C´にそれぞれ対応する曲率半径R´は同じであってもよく、異なっていてもよい。
また、裏面コーナー部C´は2箇所存在するが、2箇所の裏面コーナー部C´にそれぞれ対応する曲率半径R´は同じであってもよく、異なっていてもよい。
図4(c)に示す電極間配線50a´では、表面51´は平坦であり、裏面52´は下に凸な形状となっている。そのため、全体としては底面が膨らんだ略台形状になっている。
本発明のセラミック基板の電極間配線の断面形状としては、このような底面が膨らんだ略台形状の形状も好ましい。
The cross-sectional shape of the inter-electrode wiring has a front surface, a back surface, a front surface corner portion having an R chamfered shape from the front surface to the back surface direction, and a back surface corner portion having an R chamfered shape from the back surface to the front surface direction. It is preferable that the radius of curvature of the rear corner portion is larger than the radius of curvature of the front corner portion.
FIG. 4B and FIG. 4C are cross-sectional views schematically showing an example of the cross-sectional shape of the interelectrode wiring.
FIG. 4B is an example of a cross-sectional shape including a flat portion having a constant conductor thickness.
4B, the cross-sectional shape of the inter-electrode wiring 50a includes a front surface 51 and a back surface 52 opposite to the front surface 51, and a flat portion with a constant conductor thickness, and from the front surface 51 toward the back surface 52. surface corner section (indicated by double arrow C 1), and a back surface corner portion extending from the rear surface 52 to the surface 51 direction (shown by the double arrow C 2).
FIG. 4 (b), R 1 to the radius of curvature of the surface corner portion C 1, and the radius of curvature of the back surface corner portion C 2 shown in R 2, and has a R 2> R 1.
Although surface corner portion C 1 exists in two places, the radius of curvature R 1 respectively corresponding to the surface corner portion C 1 of the two locations may be the same or may be different.
Although the back surface corner portion C 2 is present at two locations, the radius of curvature R 2 respectively corresponding to the back side corner portion C 2 of the two portions may be the same or may be different.
The shape of the interelectrode wiring 50a shown in FIG. 4B is substantially trapezoidal as a whole, and the cross-sectional shape of the interelectrode wiring of the ceramic substrate of the present invention is such a substantially trapezoidal shape. Shape is preferred.
FIG. 4C shows an example of a cross-sectional shape in which the back surface is convex and the conductor thickness is thick at the center of the wiring.
In FIG. 4C, the cross-sectional shape of the interelectrode wiring 50a ′ includes a front surface 51 ′ and a back surface 52 ′ facing the front surface 51 ′, and a front surface corner portion (from the front surface 51 ′ toward the back surface 52 ′ ( both arrows C 1 and a 'and indicated by), the back surface corner portions toward the surface 51' direction from the back surface 52 '(double arrow C 2' indicated by).
FIG 4 (c), 'the radius of curvature of R 1' surface corner portion C 1, 'the radius of curvature of R 2' backside corner portion C 2 is indicated by, becomes R 2 '> R 1' Yes.
Incidentally, 'although there are two places, the surface corner portion C 1 of the two locations' surface corner portion C 1 radius of curvature R 1 respectively corresponding to the' may be the same or may be different.
Also, 'although there are two places, the back side corner portion C 2 of the two locations' back surface corner portion C 2 radius of curvature R 2 that correspond to the' may be the same or may be different.
In the interelectrode wiring 50a ′ shown in FIG. 4C, the front surface 51 ′ is flat and the back surface 52 ′ has a downwardly convex shape. Therefore, as a whole, it has a substantially trapezoidal shape with the bottom surface swelled.
The cross-sectional shape of the inter-electrode wiring of the ceramic substrate of the present invention is also preferably a substantially trapezoidal shape with such a bulging bottom surface.
なお、電極の断面形状も、電極間配線の断面形状と同様に、表面と、裏面と、上記表面から上記裏面方向に向かい、R面取り形状を有する表面コーナー部と、上記裏面から上記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなり、上記裏面コーナー部の曲率半径が、上記表面コーナー部の曲率半径よりも大きい形状(すなわち、略台形状又は底面が膨らんだ略台形状の形状)であることが好ましい。 In addition, the cross-sectional shape of the electrode is the same as the cross-sectional shape of the inter-electrode wiring, the front surface, the back surface, the surface corner portion having an R chamfered shape from the front surface to the back surface direction, and the back surface to the front surface direction. A back corner portion having an R chamfered shape and having a radius of curvature of the back corner portion larger than that of the surface corner portion (that is, a substantially trapezoidal shape or a substantially trapezoidal shape with an expanded bottom surface) ) Is preferable.
以下、本発明のセラミック基板を構成する各部材について説明する。
セラミック基板には、絶縁層としてのセラミック層が用いられる。
セラミック層の材質としては、特に限定されるものではないが、低温焼結セラミック材料を用いることが好ましい。
低温焼結セラミック材料としては、例えば、クオーツやアルミナ、フォルステライト等のセラミック材料にホウ珪酸ガラスを混合してなるガラス複合系低温焼結セラミック材料、ZnO-MgO-Al-SiO系の結晶化ガラスを用いた結晶化ガラス系低温焼結セラミック材料、BaO-Al-SiO系セラミック材料やAl-CaO-SiO-MgO-B系セラミック材料等を用いた非ガラス系低温焼結セラミック材料等が挙げられる。
Hereinafter, each member which comprises the ceramic substrate of this invention is demonstrated.
A ceramic layer as an insulating layer is used for the ceramic substrate.
The material of the ceramic layer is not particularly limited, but a low-temperature sintered ceramic material is preferably used.
Examples of the low-temperature sintered ceramic material include a glass composite-based low-temperature sintered ceramic material obtained by mixing borosilicate glass with a ceramic material such as quartz, alumina, forsterite, or the like, ZnO—MgO—Al 2 O 3 —SiO 2 type Crystallized glass low-temperature sintered ceramic materials using crystallized glass, BaO—Al 2 O 3 —SiO 2 ceramic materials, Al 2 O 3 —CaO—SiO 2 —MgO—B 2 O 3 ceramic materials, etc. Non-glass type low-temperature sintered ceramic material using
電極及び電極間配線の材料としては、低温焼結セラミック材料を用いたセラミック電子部品に用いられる導体材料が好適に用いられる。
導体材料としては、金属材料を含むことが好ましい。また、セラミック材料やガラス材料が添加されていてもよい。
金属材料としては、Au、Ag又はCuを含むことが好ましく、Ag又はCuを含むことがより好ましい。
また、セラミック材料としては、アルミナ、チタニア、シリカ等が挙げられる。
ガラス材料としては、石英ガラス、硼珪酸ガラス等が挙げられる。
電極及び電極間配線を構成する材料は、同じであってもよく異なっていてもよい。
As a material for the electrodes and the inter-electrode wiring, a conductor material used for a ceramic electronic component using a low-temperature sintered ceramic material is preferably used.
The conductive material preferably includes a metal material. Further, a ceramic material or a glass material may be added.
The metal material preferably contains Au, Ag, or Cu, and more preferably contains Ag or Cu.
Examples of the ceramic material include alumina, titania, silica and the like.
Examples of the glass material include quartz glass and borosilicate glass.
The materials constituting the electrodes and the interelectrode wirings may be the same or different.
電極間配線の厚さは5μm以上、30μm以下であることが好ましい。
電極間配線の厚さがこの範囲の領域において、コプラナリティを高くする効果が特に好適に発揮されやすい。
The thickness of the interelectrode wiring is preferably 5 μm or more and 30 μm or less.
In the region where the thickness of the interelectrode wiring is within this range, the effect of increasing the coplanarity is particularly preferably exhibited.
レジストの材料としては、セラミック層を構成する材料と同様の、低温焼結セラミック材料を用いることが好ましい。セラミック層を構成する低温焼結セラミック材料と、レジストを構成する低温焼結セラミック材料とは、同じであっても異なっていてもよい。
レジストと電子部品実装面との密着性及び熱膨張係数の整合の観点からは同じ材料であることが好ましい。
後述するように低温焼結セラミック材料を含むレジストパターンを電極間配線を跨ぐように転写した後に焼成することで焼結したレジストが電極間配線を跨ぐように形成される。
As the resist material, it is preferable to use a low-temperature sintered ceramic material similar to the material constituting the ceramic layer. The low temperature sintered ceramic material constituting the ceramic layer and the low temperature sintered ceramic material constituting the resist may be the same or different.
From the viewpoint of the adhesion between the resist and the electronic component mounting surface and the matching of the thermal expansion coefficients, the same material is preferable.
As will be described later, a resist that includes a low-temperature sintered ceramic material is transferred so as to straddle the inter-electrode wiring, and then baked to form a sintered resist straddling the inter-electrode wiring.
レジストの厚さは5μm以上、30μm以下であることが好ましい。
レジストの厚さがこの範囲の領域において、コプラナリティを高くする効果が特に好適に発揮されやすい。とくに、レジストの厚さと電極間配線の厚さが同様であることが好ましく、レジストの厚さと電極間配線の厚さの差が25μm以下であることが好ましい。
The thickness of the resist is preferably 5 μm or more and 30 μm or less.
In the region where the resist thickness is in this range, the effect of increasing the coplanarity is particularly preferably exhibited. In particular, the thickness of the resist and the thickness of the interelectrode wiring are preferably the same, and the difference between the thickness of the resist and the thickness of the interelectrode wiring is preferably 25 μm or less.
本発明のセラミック基板の電子部品実装面に実装する電子部品は特に限定されるものではなく、例えば、積層セラミックコンデンサ、積層インダクタ、あるいはこれらを一体焼成した積層セラミックフィルタ等のセラミック電子部品に対して適用することが可能である。また、IC、メモリ等の半導体部品に対して適用することも可能である。 The electronic component mounted on the electronic component mounting surface of the ceramic substrate of the present invention is not particularly limited. For example, for a ceramic electronic component such as a multilayer ceramic capacitor, a multilayer inductor, or a multilayer ceramic filter obtained by integrally firing these. It is possible to apply. Also, it can be applied to semiconductor parts such as IC and memory.
次に、本発明のセラミック基板の製造方法について説明する。
本発明のセラミック基板の製造方法は、電子部品実装面に複数の電極及び上記電極間を接続する電極間配線が設けられたセラミックグリーンシートを準備する工程と、表面にレジストパターンが設けられたレジストシートを準備する工程と、上記レジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記レジストシートのレジストが上記電極間配線を跨ぐようにレジストを転写する工程と、を有することを特徴とする。
レジストシートを準備する工程、及び、レジストシートのレジストが電極間配線を跨ぐようにレジストを転写する工程については、いくつかの態様があるため、各態様について説明する。
Next, the manufacturing method of the ceramic substrate of this invention is demonstrated.
The method for producing a ceramic substrate of the present invention comprises a step of preparing a ceramic green sheet provided with a plurality of electrodes and an inter-electrode wiring connecting the electrodes on the electronic component mounting surface, and a resist having a resist pattern provided on the surface. A step of preparing a sheet, and the resist sheet is placed and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet, and the resist is placed so that the resist of the resist sheet straddles the inter-electrode wiring. And a transferring step.
Since there are several modes for the step of preparing the resist sheet and the step of transferring the resist so that the resist of the resist sheet straddles the inter-electrode wiring, each mode will be described.
セラミック基板の製造方法の第1の態様では、離型フィルムにレジストパターンを印刷し、さらに上記離型フィルムを転写用シートに圧着し、離型フィルムを剥離することにより転写用シートにレジストパターンを転写してレジストシートを準備し、上記レジストパターンが転写された転写用シートからなるレジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記転写用シートを剥離して、上記転写用シート上のレジストが上記電極間配線を跨ぐようにレジストを転写する。
図5(a)、図5(b)、図5(c)及び図5(d)は、セラミック基板の製造方法の第1の態様の一部を模式的に示す工程図である。
まず、図5(a)に示すように離型フィルム210にレジストパターン260を印刷する。
離型フィルムは、PET等の基材フィルムに離型層が形成されたフィルムであり、一般的な離型フィルムを使用することができる。
レジストパターンの印刷には、レジストペーストを使用した、スクリーン印刷、フォトリソグラフィ、インクジェット印刷等の印刷工法を用いることができる。レジストペーストとしては、本発明のセラミック基板の説明においてレジストの材料として説明した低温焼結セラミック材料を含むペーストを使用することができる。
In the first aspect of the method for producing a ceramic substrate, a resist pattern is printed on a release film, the release film is pressure-bonded to a transfer sheet, and the release film is peeled off to form a resist pattern on the transfer sheet. A resist sheet is prepared by transfer, and a resist sheet made of a transfer sheet on which the resist pattern is transferred is placed and pressure-bonded so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet. The sheet is peeled off, and the resist is transferred so that the resist on the transfer sheet straddles the inter-electrode wiring.
FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
First, a resist pattern 260 is printed on the release film 210 as shown in FIG.
The release film is a film in which a release layer is formed on a base film such as PET, and a general release film can be used.
For the printing of the resist pattern, a printing method using a resist paste, such as screen printing, photolithography, and ink jet printing, can be used. As the resist paste, a paste containing the low-temperature sintered ceramic material described as the resist material in the description of the ceramic substrate of the present invention can be used.
次に、図5(b)に示すように離型フィルム210をレジストパターン260が転写用シート220に向き合うように反転させて、図5(c)に示すように離型フィルム210と転写用シート220を重ねる。
なお、図5(b)及び図5(c)並びに本明細書の各図面において、2枚以上のシート又はフィルムを重ねた図面においては上側のシートまたはフィルムを透過させてレジストパターン、電極、電極間配線の位置関係を模式的に示している。
そして、重ねた離型フィルム210と転写用シート220を圧着して、図5(d)に示すように離型フィルム210を剥離することによりレジストパターン260を転写用シート220に転写する。
転写用シートとしてはPET樹脂シート、発泡剥離シート、UV剥離シート等の樹脂シートを使用することができる。
このようにして、転写用シート220の表面にレジストパターン260が設けられたレジストシート200を準備する。
転写用シートの厚さは10μm以上であることが好ましく、500μm以下であることが好ましい。
圧着の圧力、温度及び時間は任意に設定することができる。
Next, the release film 210 is inverted so that the resist pattern 260 faces the transfer sheet 220 as shown in FIG. 5 (b), and the release film 210 and the transfer sheet as shown in FIG. 5 (c). 220 is stacked.
In FIGS. 5B and 5C and the drawings in this specification, in the drawings in which two or more sheets or films are stacked, the upper sheet or film is allowed to pass through to form a resist pattern, electrodes, and electrodes. The positional relationship of the inter-wiring is schematically shown.
Then, the overlapped release film 210 and the transfer sheet 220 are pressure-bonded, and the release film 210 is peeled off as shown in FIG. 5D to transfer the resist pattern 260 to the transfer sheet 220.
As the transfer sheet, a resin sheet such as a PET resin sheet, a foam release sheet, or a UV release sheet can be used.
In this way, a resist sheet 200 having a resist pattern 260 provided on the surface of the transfer sheet 220 is prepared.
The thickness of the transfer sheet is preferably 10 μm or more, and preferably 500 μm or less.
The pressure, temperature, and time for crimping can be arbitrarily set.
図6(a)、図6(b)及び図6(c)は、セラミック基板の製造方法の第1の態様の一部を模式的に示す工程図である。
別途、電子部品実装面に複数の電極及び電極間を接続する電極間配線が設けられたセラミックグリーンシートを準備する。
図6(a)には、セラミックグリーンシート230を示している。セラミックグリーンシートは焼成前のセラミック材料を含むシートである。
セラミックグリーンシートは以下のように作製することができる。
まず、低温焼結セラミック材料を含有するセラミック粉末、バインダー、可塑剤を任意の量で混合しセラミックスラリーを作製する。
このセラミックスラリーをキャリアフィルム上に塗布してシート成形する。スラリー塗布にはリップコーター、ドクターブレード等の装置を用いることができる。
作製するセラミックグリーンシートの厚さは任意であるが厚さ5μm以上、100μm以下とすることが好ましい。
6 (a), 6 (b) and 6 (c) are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
Separately, a ceramic green sheet is prepared in which a plurality of electrodes and inter-electrode wiring for connecting the electrodes are provided on the electronic component mounting surface.
FIG. 6A shows a ceramic green sheet 230. The ceramic green sheet is a sheet containing a ceramic material before firing.
The ceramic green sheet can be produced as follows.
First, ceramic powder containing a low-temperature sintered ceramic material, a binder, and a plasticizer are mixed in arbitrary amounts to prepare a ceramic slurry.
This ceramic slurry is applied on a carrier film to form a sheet. An apparatus such as a lip coater or a doctor blade can be used for slurry application.
The thickness of the ceramic green sheet to be produced is arbitrary, but is preferably 5 μm or more and 100 μm or less.
セラミックグリーンシート230には、電子部品実装面10に電極240及び電極間配線250が設けられている。なお、この電極240及び電極間配線250は焼成により図2に示すセラミック基板1の電極40及び電極間配線50になるものである。
電極240は複数設けられており、複数の電極240の間を電極間配線250で接続している。
セラミックグリーンシート230の電子部品実装面10への電極240及び電極間配線250の形成はスクリーン印刷、インクジェット、グラビア印刷やフォトリソグラフィ等の方法により行うことができる。
製造するセラミック基板が多層板である場合は、配線形成したセラミックグリーンシートを複数枚積層して圧着した積層体を1枚のセラミックグリーンシートとみなして、以下の工程を行うことができる。積層体の主面のうち電子部品を実装する面がセラミックグリーンシートの電子部品実装面になる。
The ceramic green sheet 230 is provided with an electrode 240 and an interelectrode wiring 250 on the electronic component mounting surface 10. The electrode 240 and the interelectrode wiring 250 become the electrode 40 and the interelectrode wiring 50 of the ceramic substrate 1 shown in FIG. 2 by firing.
A plurality of electrodes 240 are provided, and the plurality of electrodes 240 are connected by an interelectrode wiring 250.
Formation of the electrode 240 and the interelectrode wiring 250 on the electronic component mounting surface 10 of the ceramic green sheet 230 can be performed by a method such as screen printing, inkjet, gravure printing, photolithography, or the like.
When the ceramic substrate to be manufactured is a multilayer board, a laminated body obtained by laminating and pressing a plurality of wiring-formed ceramic green sheets can be regarded as one ceramic green sheet, and the following steps can be performed. Of the main surface of the laminate, the surface on which the electronic component is mounted becomes the electronic component mounting surface of the ceramic green sheet.
次に、図6(b)に示すようにセラミックグリーンシート230を電極240及び電極間配線250がレジストシート200のレジストパターン260に向き合うように反転させて、図6(c)に示すようにセラミックグリーンシート230とレジストシート200を重ねる。
このときに、レジストパターン260が電極間配線250を跨いで重なるようにする。
そして、重ねたセラミックグリーンシート230とレジストシート200を圧着する。
圧着の圧力、温度及び時間は任意に設定することができる。
Next, as shown in FIG. 6B, the ceramic green sheet 230 is inverted so that the electrode 240 and the inter-electrode wiring 250 face the resist pattern 260 of the resist sheet 200, and the ceramic green sheet 230 as shown in FIG. The green sheet 230 and the resist sheet 200 are overlapped.
At this time, the resist pattern 260 is overlapped across the interelectrode wiring 250.
Then, the stacked ceramic green sheet 230 and the resist sheet 200 are pressure-bonded.
The pressure, temperature, and time for crimping can be arbitrarily set.
図7(a)及び図7(b)は、セラミック基板の製造方法の第1の態様の一部を模式的に示す工程図である。
図7(a)には、圧着したセラミックグリーンシート230及びレジストシート200を反転させてレジストシート200が上になるようにした様子を示している。そして、レジストシート200を構成する転写用シート220をセラミックグリーンシート230から剥離するとレジストパターン260がセラミックグリーンシート230側に残る。
その結果、転写用シート上のレジストが電極間配線を跨ぐように転写される。
FIG. 7A and FIG. 7B are process diagrams schematically showing a part of the first aspect of the method for manufacturing a ceramic substrate.
FIG. 7A shows a state in which the bonded ceramic green sheet 230 and the resist sheet 200 are reversed so that the resist sheet 200 is on the upper side. When the transfer sheet 220 constituting the resist sheet 200 is peeled from the ceramic green sheet 230, the resist pattern 260 remains on the ceramic green sheet 230 side.
As a result, the resist on the transfer sheet is transferred so as to straddle the inter-electrode wiring.
図7(b)に示すようにレジストが転写されたセラミックグリーンシートを焼成することによって、セラミックグリーンシートに含まれる未焼結のセラミック材料が焼結してセラミック層が形成される。また、セラミックグリーンシート上の電極、電極間配線及びレジストも焼成される。その結果、図2に示すようなセラミック基板1を得ることができる。 By firing the ceramic green sheet to which the resist has been transferred as shown in FIG. 7B, the unsintered ceramic material contained in the ceramic green sheet is sintered to form a ceramic layer. In addition, the electrodes on the ceramic green sheet, the interelectrode wiring, and the resist are also fired. As a result, a ceramic substrate 1 as shown in FIG. 2 can be obtained.
次に、セラミック基板の製造方法の第2の態様について説明する。
セラミック基板の製造方法の第2の態様では、上記セラミックグリーンシートの焼成温度で焼失する材料からなる焼成用シートにレジストパターンを印刷してレジストシートを準備し、上記レジストパターンが印刷された焼成用シートからなるレジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記セラミックグリーンシートとともに上記レジストシートを焼成することにより上記焼成用シートを焼失させ、上記焼成用シート上のレジストが上記電極間配線を跨ぐようにレジストを転写する。
セラミック基板の製造方法の第2の態様は、レジストシートとして焼成用シートを用い、焼成によりレジストシートのシート部分を除去する点で第1の態様と異なる。
図8(a)、図8(b)、図8(c)及び図8(d)は、セラミック基板の製造方法の第2の態様を模式的に示す工程図である。
Next, a second aspect of the method for manufacturing a ceramic substrate will be described.
In the second aspect of the method for producing a ceramic substrate, a resist pattern is prepared by printing a resist pattern on a firing sheet made of a material that is burned off at the firing temperature of the ceramic green sheet, and the resist pattern is printed on the firing sheet. A resist sheet made of a sheet is placed and pressure-bonded so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet, and the firing sheet is burned out by firing the resist sheet together with the ceramic green sheet. The resist is transferred so that the resist on the baking sheet straddles the inter-electrode wiring.
The second aspect of the method for manufacturing a ceramic substrate differs from the first aspect in that a baking sheet is used as the resist sheet and the sheet portion of the resist sheet is removed by baking.
FIG. 8A, FIG. 8B, FIG. 8C, and FIG. 8D are process diagrams schematically showing a second aspect of the method for manufacturing a ceramic substrate.
まず、図8(a)に示すように焼成用シート320にレジストパターン260を印刷する。焼成用シートにレジストパターンを印刷する方法としては、第1の態様において離型フィルムにレジストパターンを印刷する方法と同様の方法を用いることができる。
焼成用シートは、セラミックグリーンシートの焼成温度で焼失する材料からなる焼成用シートである。セラミックグリーンシートの焼成温度はセラミックグリーンシートに含まれるセラミック材料の組成によって異なるが、一般的には200℃以上、1000℃以下である。
焼成用シートが焼成温度で焼失するかどうかは、焼成温度に設定した加熱炉内で焼成用シートを2時間保持した際の重量減少率により判定する。上記重量減少率が5%以上であれば焼成用シートが焼成温度で焼失するシートであると判断する。
First, as shown in FIG. 8A, a resist pattern 260 is printed on the baking sheet 320. As a method for printing the resist pattern on the baking sheet, the same method as the method for printing the resist pattern on the release film in the first embodiment can be used.
The firing sheet is a firing sheet made of a material that burns away at the firing temperature of the ceramic green sheet. The firing temperature of the ceramic green sheet varies depending on the composition of the ceramic material contained in the ceramic green sheet, but is generally 200 ° C. or higher and 1000 ° C. or lower.
Whether or not the firing sheet is burned off at the firing temperature is determined by the weight reduction rate when the firing sheet is held for 2 hours in a heating furnace set to the firing temperature. If the weight reduction rate is 5% or more, it is determined that the firing sheet is a sheet that burns out at the firing temperature.
焼成用シートの具体例としては、樹脂系シート、カーボンシートが好適に用いられる。樹脂系シートの例としては、アクリル樹脂シート、ポリスチレン樹脂シート等を用いることができる。
焼成用シートの厚さは5μm以上であることが好ましく、100μm以下であることが好ましい。
As specific examples of the firing sheet, a resin-based sheet and a carbon sheet are preferably used. As an example of the resin-based sheet, an acrylic resin sheet, a polystyrene resin sheet, or the like can be used.
The thickness of the firing sheet is preferably 5 μm or more, and preferably 100 μm or less.
焼成用シート320にレジストパターン260を印刷したシートがレジストシート300となる。別途、第1の態様において説明したものと同じセラミックグリーンシート230を準備する(図8(a)右側参照)。 A sheet obtained by printing the resist pattern 260 on the baking sheet 320 becomes the resist sheet 300. Separately, the same ceramic green sheet 230 as described in the first embodiment is prepared (see the right side of FIG. 8A).
次に、図8(b)の左側に示すようにセラミックグリーンシート230を電極240及び電極間配線250がレジストシート300のレジストパターン260に向き合うように反転させて、図8(b)の右側に示すようにセラミックグリーンシート230とレジストシート300を重ねる。
このときに、レジストパターン260が電極間配線250を跨いで重なるようにする。
そして、重ねたセラミックグリーンシート230とレジストシート300を圧着する。
圧着の圧力、温度及び時間は任意に設定することができる。
Next, as shown on the left side of FIG. 8B, the ceramic green sheet 230 is inverted so that the electrode 240 and the interelectrode wiring 250 face the resist pattern 260 of the resist sheet 300, and on the right side of FIG. As shown, the ceramic green sheet 230 and the resist sheet 300 are stacked.
At this time, the resist pattern 260 is overlapped across the interelectrode wiring 250.
Then, the stacked ceramic green sheet 230 and the resist sheet 300 are pressure-bonded.
The pressure, temperature, and time for crimping can be arbitrarily set.
図8(c)には、圧着したセラミックグリーンシート230及びレジストシート300を反転させてレジストシート300が上になるようにした様子を示している。
そして、セラミックグリーンシート230とともにレジストシート300をセラミックグリーンシートの焼成温度で焼成する。
焼成によって、セラミックグリーンシートに含まれる未焼結のセラミック材料が焼結してセラミック層が形成される。
また、セラミックグリーンシート上の電極及び電極間配線も焼成される。
同時に、焼成によりレジストシート300を構成する焼成用シート320が焼失する。
レジストパターン260は焼失せず焼成されて残るため、焼成用シート上のレジストが電極間配線を跨ぐように転写される。
その結果、図8(d)に示すようなセラミック基板1を得ることができる。このセラミック基板1は、図2に示すセラミック基板1と同様のものである。
FIG. 8C shows a state in which the pressure-bonded ceramic green sheet 230 and the resist sheet 300 are reversed so that the resist sheet 300 is on the upper side.
Then, the resist sheet 300 is fired together with the ceramic green sheet 230 at the firing temperature of the ceramic green sheet.
By firing, the unsintered ceramic material contained in the ceramic green sheet is sintered to form a ceramic layer.
Further, the electrodes on the ceramic green sheet and the interelectrode wiring are also fired.
At the same time, the baking sheet 320 constituting the resist sheet 300 is burned out by baking.
Since the resist pattern 260 remains without being burned off, the resist on the baking sheet is transferred so as to straddle the inter-electrode wiring.
As a result, a ceramic substrate 1 as shown in FIG. 8D can be obtained. This ceramic substrate 1 is the same as the ceramic substrate 1 shown in FIG.
次に、セラミック基板の製造方法の第3の態様について説明する。
セラミック基板の製造方法の第3の態様では、上記セラミックグリーンシートへの圧着後に剥離可能な剥離用シートにレジストパターンを印刷してレジストシートを準備し、上記レジストパターンが印刷された剥離用シートからなるレジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記剥離用シートを剥離して、上記剥離用シート上のレジストが上記電極間配線を跨ぐようにレジストを転写する。
セラミック基板の製造方法の第3の態様は、レジストシートとして剥離用シートを用いる。第3の態様は、離型フィルムを使用することなく、剥離用シートに直接レジストパターンを印刷してレジストシートを準備する点で第1の態様と異なる。
図9(a)、図9(b)、図9(c)及び図9(d)は、セラミック基板の製造方法の第3の態様を模式的に示す工程図である。
Next, the 3rd aspect of the manufacturing method of a ceramic substrate is demonstrated.
In the third aspect of the method for producing a ceramic substrate, a resist pattern is prepared by printing a resist pattern on a peeling sheet that can be peeled off after pressure bonding to the ceramic green sheet. From the peeling sheet on which the resist pattern is printed, The resist sheet is placed so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and the resist sheet is peeled off, and the resist on the peeling sheet straddles the inter-electrode wiring. The resist is transferred as follows.
In the third aspect of the method for producing a ceramic substrate, a release sheet is used as the resist sheet. The third aspect is different from the first aspect in that a resist sheet is prepared by printing a resist pattern directly on a release sheet without using a release film.
FIG. 9A, FIG. 9B, FIG. 9C, and FIG. 9D are process diagrams schematically showing a third aspect of the method for manufacturing a ceramic substrate.
まず、図9(a)に示すように剥離用シート420にレジストパターン260を印刷する。剥離用シートにレジストパターンを印刷する方法としては、第1の態様において離型フィルムにレジストパターンを印刷する方法と同様の方法を用いることができる。
剥離用シートは、セラミックグリーンシートへの圧着後に剥離可能なシートである。剥離性を高めるために表面にシリコーン離型剤、フッ素系離型剤等の離型剤が付与されていてもよい。
First, as shown in FIG. 9A, a resist pattern 260 is printed on the peeling sheet 420. As a method for printing the resist pattern on the release sheet, the same method as the method for printing the resist pattern on the release film in the first embodiment can be used.
The peeling sheet is a sheet that can be peeled off after being pressed onto the ceramic green sheet. In order to enhance the peelability, a release agent such as a silicone release agent or a fluorine release agent may be provided on the surface.
剥離用シートの具体例としては、樹脂系シート、カーボンシートが好適に用いられる。樹脂系シートの例としては、アクリル樹脂シート、ポリスチレン樹脂シート等を用いることができる。
剥離用シートの厚さは5μm以上であることが好ましく、100μm以下であることが好ましい。
As specific examples of the peeling sheet, a resin-based sheet and a carbon sheet are preferably used. As an example of the resin-based sheet, an acrylic resin sheet, a polystyrene resin sheet, or the like can be used.
The thickness of the peeling sheet is preferably 5 μm or more, and preferably 100 μm or less.
剥離用シート420にレジストパターン260を印刷したシートがレジストシート400となる。別途、第1の態様において説明したものと同じセラミックグリーンシート230を準備する(図9(a)右側参照)。 A sheet obtained by printing the resist pattern 260 on the peeling sheet 420 becomes the resist sheet 400. Separately, the same ceramic green sheet 230 as described in the first embodiment is prepared (see the right side of FIG. 9A).
次に、図9(b)の左側に示すようにセラミックグリーンシート230を電極240及び電極間配線250がレジストシート400のレジストパターン260に向き合うように反転させて、図9(b)の右側に示すようにセラミックグリーンシート230とレジストシート400を重ねる。
このときに、レジストパターン260が電極間配線250を跨いで重なるようにする。
そして、重ねたセラミックグリーンシート230とレジストシート400を圧着する。
圧着の圧力、温度及び時間は任意に設定することができる。
Next, as shown on the left side of FIG. 9B, the ceramic green sheet 230 is inverted so that the electrode 240 and the interelectrode wiring 250 face the resist pattern 260 of the resist sheet 400, and on the right side of FIG. As shown, the ceramic green sheet 230 and the resist sheet 400 are stacked.
At this time, the resist pattern 260 is overlapped across the interelectrode wiring 250.
Then, the stacked ceramic green sheet 230 and the resist sheet 400 are pressure bonded.
The pressure, temperature, and time for crimping can be arbitrarily set.
図9(c)には、圧着したセラミックグリーンシート230及びレジストシート400を反転させてレジストシート400が上になるようにした様子を示している。そして、レジストシート400を構成する剥離用シート420をセラミックグリーンシート230から剥離するとレジストパターン260がセラミックグリーンシート230側に残る。
その結果、剥離用シート上のレジストが電極間配線を跨ぐように転写される。
FIG. 9C shows a state in which the pressure-bonded ceramic green sheet 230 and the resist sheet 400 are reversed so that the resist sheet 400 is on the upper side. When the peeling sheet 420 constituting the resist sheet 400 is peeled from the ceramic green sheet 230, the resist pattern 260 remains on the ceramic green sheet 230 side.
As a result, the resist on the peeling sheet is transferred so as to straddle the inter-electrode wiring.
図9(d)に示すようにレジストが転写されたセラミックグリーンシートを焼成することによって、セラミックグリーンシートに含まれる未焼結のセラミック材料が焼結してセラミック層が形成される。また、セラミックグリーンシート上の電極、電極間配線及びレジストも焼成される。その結果、図2に示すようなセラミック基板1を得ることができる。 As shown in FIG. 9D, by firing the ceramic green sheet to which the resist has been transferred, the unsintered ceramic material contained in the ceramic green sheet is sintered to form a ceramic layer. In addition, the electrodes on the ceramic green sheet, the interelectrode wiring, and the resist are also fired. As a result, a ceramic substrate 1 as shown in FIG. 2 can be obtained.
これまで説明した本発明のセラミック基板の製造方法のいずれの態様においても、本発明のセラミック基板を製造することができる。
本発明のセラミック基板の製造方法では、いずれの態様においても、レジストシートのレジストパターンが電極間配線を跨ぐようにレジストシートをレジストパターンがセラミックグリーンシートの電子部品実装面と重なるように配置して圧着する。
この圧着により、電極間配線がセラミックグリーンシートの方へ押し込まれ、電極間配線の一部がセラミックグリーンシートに埋まる。その結果、図3に示すようにレジスト60aの上面とレジスト60aの周囲の電極間配線50a及び電極40a、電極40bの上面との高さが揃うこととなる。
すなわち、本発明のセラミック基板の製造方法では、電極間配線周囲のコプラナリティが高いセラミック基板を得ることができる。
In any of the above-described methods for producing a ceramic substrate of the present invention, the ceramic substrate of the present invention can be produced.
In any aspect of the method for producing a ceramic substrate of the present invention, the resist sheet is disposed so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet so that the resist pattern of the resist sheet straddles the inter-electrode wiring. Crimp.
By this pressure bonding, the inter-electrode wiring is pushed toward the ceramic green sheet, and a part of the inter-electrode wiring is buried in the ceramic green sheet. As a result, as shown in FIG. 3, the height of the upper surface of the resist 60a and the upper surfaces of the interelectrode wiring 50a and the electrodes 40a and 40b around the resist 60a are aligned.
That is, according to the method for manufacturing a ceramic substrate of the present invention, a ceramic substrate having a high coplanarity around the interelectrode wiring can be obtained.
本発明のセラミック基板の他の態様は、電子部品実装面に電極が設けられたセラミック基板であって、電子部品実装面には電極を跨ぐことによって電極を複数の電極に分割するレジストが配置されていることを特徴とする。
この態様は、レジストが跨ぐ部分が電極間配線ではなく電極である点で先に示した本発明のセラミック基板の態様と異なる。その他の構成の好ましい態様は同様である。
Another aspect of the ceramic substrate of the present invention is a ceramic substrate in which an electrode is provided on an electronic component mounting surface, and a resist that divides the electrode into a plurality of electrodes by straddling the electrode is disposed on the electronic component mounting surface. It is characterized by.
This aspect is different from the aspect of the ceramic substrate of the present invention described above in that the portion where the resist straddles is not an inter-electrode wiring but an electrode. The preferable aspect of another structure is the same.
図10(a)は、本発明の一実施形態に係るセラミック基板において、電極を跨ぐレジストが配置された部分を模式的に示す上面図である。
図10(a)には電極を跨ぐレジスト560が配置されたことによって電極が複数の電極である電極540aと電極540bに分割された様子を模式的に示している。電極540aと電極540bは、その上にレジスト560が配置される前に1つの電極とみなすことのできる電極である。電極540aと電極540bが繋がっていることは、レジスト560の下に隠れている部分を点線で示すことにより表現している。
FIG. 10A is a top view schematically showing a portion where a resist straddling an electrode is arranged in a ceramic substrate according to an embodiment of the present invention.
FIG. 10A schematically shows that the electrode is divided into a plurality of electrodes 540a and 540b by arranging the resist 560 straddling the electrodes. The electrode 540a and the electrode 540b can be regarded as one electrode before the resist 560 is disposed thereon. The connection between the electrode 540a and the electrode 540b is expressed by showing a portion hidden under the resist 560 with a dotted line.
図10(b)は、分割した電極のそれぞれに電子部品(積層セラミックキャパシタ110a及び積層セラミックキャパシタ110b)を実装した様子を模式的に示す上面図である。
この態様の本発明のセラミック基板では、電子部品実装面に電極間配線が設けられていない場合でも、電極を跨ぐレジストを配置することにより、電極自体を複数の電極に分割して使用することができる。そして、複数の電極にそれぞれ電子部品を搭載した電子装置とすることができる。
また、この態様でも、部品実装時にはんだが電極間で濡れ拡がることを防止することができる。
FIG. 10B is a top view schematically showing a state in which electronic components (multilayer ceramic capacitor 110a and multilayer ceramic capacitor 110b) are mounted on each of the divided electrodes.
In the ceramic substrate of the present invention of this aspect, even when the inter-electrode wiring is not provided on the electronic component mounting surface, the electrode itself can be divided into a plurality of electrodes by arranging a resist straddling the electrodes. it can. And it can be set as the electronic device which each mounted the electronic component in the some electrode.
Also in this aspect, it is possible to prevent the solder from spreading between the electrodes during component mounting.
本発明のセラミック基板の製造方法の他の態様は、電子部品実装面に電極が設けられたセラミックグリーンシートを準備する工程と、表面にレジストパターンが設けられたレジストシートを準備する工程と、上記レジストシートを上記レジストパターンが上記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、上記レジストシートのレジストが上記電極を跨ぐようにレジストを転写する工程と、を有することを特徴とする。
この態様の本発明のセラミック基板の製造方法によると、レジストシートのレジストが電極を跨ぐようにレジストを転写することができる。そして、電極が複数の電極に分割されたセラミック基板を製造することができる。
レジストシートのレジストが電極を跨ぐようにレジストを転写する工程の具体的な態様は、上記に説明した、レジストシートのレジストが電極間配線を跨ぐようにレジストを転写する工程と同様にすることができるのでその詳細な説明は省略する。
Other aspects of the method for producing a ceramic substrate of the present invention include a step of preparing a ceramic green sheet having electrodes provided on an electronic component mounting surface, a step of preparing a resist sheet having a resist pattern on the surface, Placing the resist sheet so that the resist pattern overlaps with the electronic component mounting surface of the ceramic green sheet, and then transferring the resist so that the resist of the resist sheet straddles the electrodes. And
According to the method for manufacturing a ceramic substrate of the present invention of this aspect, the resist can be transferred so that the resist of the resist sheet straddles the electrodes. And the ceramic substrate by which the electrode was divided | segmented into the some electrode can be manufactured.
The specific mode of the step of transferring the resist so that the resist of the resist sheet straddles the electrode may be the same as the step of transferring the resist so that the resist of the resist sheet straddles the inter-electrode wiring described above. Since it can, detailed description is abbreviate | omitted.
以下、本発明のセラミック基板及び本発明のセラミック基板の製造方法をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Examples of the ceramic substrate of the present invention and the method for manufacturing the ceramic substrate of the present invention will be described below more specifically. In addition, this invention is not limited only to these Examples.
(実施例1)
セラミックグリーンシートに対し、Cuを含む導電性ペーストをスクリーン印刷して複数の電極と電極間を接続する電極間配線が設けられたセラミックグリーンシートを準備した。
別途、PET製の離型フィルムに、セラミックグリーンシートを構成するセラミック材料と同じセラミック材料を含むレジストペーストを印刷してレジストパターンを形成した。そして、PET樹脂シートからなる転写用シートと離型フィルムを重ねて圧着し、転写用シートにレジストパターンを転写した。
続けて、セラミックグリーンシートと転写用シートを、レジストパターンが電極間配線を跨ぐように重ねて、圧着した。
さらに転写用シートを剥離することにより、転写用シート上のレジストが電極間配線を跨ぐようにレジストを転写した。
その後、セラミックグリーンシートを構成するセラミック材料の焼成温度での焼成を行い、セラミック基板を得た。
Example 1
A ceramic green sheet provided with interelectrode wiring for connecting a plurality of electrodes to each other by screen printing a conductive paste containing Cu on the ceramic green sheet was prepared.
Separately, a resist pattern containing the same ceramic material as that of the ceramic green sheet was printed on a PET release film to form a resist pattern. Then, a transfer sheet made of a PET resin sheet and a release film were stacked and pressure-bonded, and the resist pattern was transferred to the transfer sheet.
Subsequently, the ceramic green sheet and the transfer sheet were stacked and pressure-bonded so that the resist pattern straddled the inter-electrode wiring.
Further, by peeling off the transfer sheet, the resist was transferred so that the resist on the transfer sheet straddled the inter-electrode wiring.
Then, the ceramic material which comprises a ceramic green sheet was baked at the baking temperature, and the ceramic substrate was obtained.
(比較例1)
実施例1と同様のセラミックグリーンシートを準備した。このセラミックグリーンシート上の電極間配線を跨ぐように、セラミックグリーンシートを構成するセラミック材料と同じセラミック材料を含むレジストペーストをスクリーン印刷により直接印刷した。
その後、圧着を行うことなくセラミックグリーンシートを構成するセラミック材料の焼成温度での焼成を行い、セラミック基板を得た。
(Comparative Example 1)
A ceramic green sheet similar to that in Example 1 was prepared. A resist paste containing the same ceramic material as that forming the ceramic green sheet was directly printed by screen printing so as to straddle the inter-electrode wiring on the ceramic green sheet.
Then, the ceramic material which comprises a ceramic green sheet was baked at the baking temperature, without performing crimping | compression-bonding, and the ceramic substrate was obtained.
(コプラナリティの評価)
実施例1及び比較例1でそれぞれ得たセラミック基板につき、電極間配線の周囲の領域(図3に示す拡大断面図の領域)を電子顕微鏡により断面観察して、当該領域における段差の大きさを測定してコプラナリティを求めた。
実施例1で作製したセラミック基板では電極間配線の一部がセラミック層に埋まっており、電極間配線周囲のコプラナリティは5μmであった。
比較例1で作製したセラミック基板では電極間配線の高さが電極の高さと同じであり、電極間配線の上にレジストが形成されているため、レジストの高さはレジストの厚さ分だけ電極や電極間配線の高さよりも高くなっていた。そのため、電極間配線周囲のコプラナリティは低くなっていた。なお、コプラナリティは30μmであった。
(Evaluation of coplanarity)
For each of the ceramic substrates obtained in Example 1 and Comparative Example 1, the area around the inter-electrode wiring (area in the enlarged cross-sectional view shown in FIG. 3) is cross-sectional observed with an electron microscope, and the size of the step in the area is determined. Coplanarity was determined by measurement.
In the ceramic substrate produced in Example 1, a part of the interelectrode wiring was embedded in the ceramic layer, and the coplanarity around the interelectrode wiring was 5 μm.
In the ceramic substrate manufactured in Comparative Example 1, the height of the inter-electrode wiring is the same as the height of the electrode, and the resist is formed on the inter-electrode wiring. And the height of the inter-electrode wiring was higher. For this reason, the coplanarity around the interelectrode wiring has been low. The coplanarity was 30 μm.
このように実施例1のセラミック基板はその電極間配線周囲のコプラナリティの測定値が小さい(コプラナリティが高い)基板であるといえるので、電子部品実装時の作業性を高めることができる。 As described above, the ceramic substrate of Example 1 can be said to be a substrate having a small measured value of coplanarity around the inter-electrode wiring (high coplanarity), so that it is possible to improve workability when mounting electronic components.
1 セラミック基板
10 電子部品実装面
20 マザーボード実装面
30 セラミック層
40、40a、40b、40c、40d、40e、40f、540a、540b 電極(電子部品実装面に設けられた電極)
45 マザーボード実装電極
50、50a、50a´50b、50c 電極間配線
51 51´ 電極間配線の表面
52 52´ 電極間配線の裏面
60、60a、60b、60c、560 レジスト
100 電子装置
110、110a、110b 電子部品(積層セラミックキャパシタ)
120 電子部品(半導体部品)
200、300、400 レジストシート
210 離型フィルム
220 転写用シート
230 セラミックグリーンシート
240 電極(未焼成の電極)
250 電極間配線(未焼成の電極間配線)
260 レジストパターン
320 焼成用シート
420 剥離用シート
DESCRIPTION OF SYMBOLS 1 Ceramic substrate 10 Electronic component mounting surface 20 Mother board mounting surface 30 Ceramic layer 40, 40a, 40b, 40c, 40d, 40e, 40f, 540a, 540b Electrode (electrode provided in electronic component mounting surface)
45 Motherboard mounting electrodes 50, 50a, 50a′50b, 50c Inter-electrode wiring 51 51 ′ Inter-electrode wiring surface 52 52 ′ Inter-electrode wiring back surface 60, 60a, 60b, 60c, 560 Resist 100 Electronic device 110, 110a, 110b Electronic components (multilayer ceramic capacitors)
120 Electronic parts (semiconductor parts)
200, 300, 400 Resist sheet 210 Release film 220 Transfer sheet 230 Ceramic green sheet 240 Electrode (unfired electrode)
250 Interelectrode wiring (unfired interelectrode wiring)
260 Resist pattern 320 Firing sheet 420 Peeling sheet

Claims (10)

  1. 電子部品実装面に複数の電極及び前記電極間を接続する電極間配線が設けられたセラミック基板であって、
    前記電子部品実装面には前記電極間配線を跨ぐレジストが配置されていることを特徴とするセラミック基板。
    A ceramic substrate provided with a plurality of electrodes on the electronic component mounting surface and inter-electrode wiring connecting the electrodes,
    A ceramic substrate, wherein a resist straddling the inter-electrode wiring is disposed on the electronic component mounting surface.
  2. 前記電極間配線を跨ぐレジストの表面が平坦である請求項1に記載のセラミック基板。 The ceramic substrate according to claim 1, wherein a surface of the resist straddling the inter-electrode wiring is flat.
  3. 前記電極及び電極間配線の断面形状は、表面と、裏面と、前記表面から前記裏面方向に向かい、R面取り形状を有する表面コーナー部と、前記裏面から前記表面方向に向かい、R面取り形状を有する裏面コーナー部とからなり、前記裏面コーナー部の曲率半径が、前記表面コーナー部の曲率半径よりも大きい請求項1又は2に記載のセラミック基板。 The cross-sectional shape of the electrode and the inter-electrode wiring has a front surface, a back surface, a front surface corner portion having an R chamfer shape from the front surface to the back surface direction, and an R chamfer shape from the back surface to the front surface direction. 3. The ceramic substrate according to claim 1, wherein the ceramic substrate includes a back surface corner portion, and a curvature radius of the back surface corner portion is larger than a curvature radius of the front surface corner portion.
  4. 電子部品実装面に電極が設けられたセラミック基板であって、
    前記電子部品実装面には前記電極を跨ぐことによって前記電極を複数の電極に分割するレジストが配置されていることを特徴とするセラミック基板。
    A ceramic substrate having electrodes provided on an electronic component mounting surface,
    A ceramic substrate, wherein a resist for dividing the electrode into a plurality of electrodes by straddling the electrodes is disposed on the electronic component mounting surface.
  5. 電子部品実装面に複数の電極及び前記電極間を接続する電極間配線が設けられたセラミックグリーンシートを準備する工程と、
    表面にレジストパターンが設けられたレジストシートを準備する工程と、
    前記レジストシートを前記レジストパターンが前記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、前記レジストシートのレジストが前記電極間配線を跨ぐようにレジストを転写する工程と、を有することを特徴とするセラミック基板の製造方法。
    Preparing a ceramic green sheet provided with a plurality of electrodes on the electronic component mounting surface and inter-electrode wiring connecting the electrodes;
    Preparing a resist sheet provided with a resist pattern on the surface;
    Placing the resist sheet in such a manner that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet and pressing the resist sheet, and transferring the resist so that the resist of the resist sheet straddles the inter-electrode wiring. A method for manufacturing a ceramic substrate.
  6. 離型フィルムにレジストパターンを印刷し、さらに前記離型フィルムを転写用シートに圧着し、離型フィルムを剥離することにより転写用シートにレジストパターンを転写してレジストシートを準備し、
    前記レジストパターンが転写された転写用シートからなるレジストシートを前記レジストパターンが前記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、
    前記転写用シートを剥離して、
    前記転写用シート上のレジストが前記電極間配線を跨ぐようにレジストを転写する、請求項5に記載のセラミック基板の製造方法。
    A resist pattern is printed on the release film, and the release film is further pressure-bonded to the transfer sheet, and the resist film is transferred to the transfer sheet by peeling the release film to prepare a resist sheet.
    A resist sheet composed of a transfer sheet on which the resist pattern is transferred is disposed and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet,
    Peel off the transfer sheet,
    The method for manufacturing a ceramic substrate according to claim 5, wherein the resist is transferred so that the resist on the transfer sheet straddles the inter-electrode wiring.
  7. 前記セラミックグリーンシートの焼成温度で焼失する材料からなる焼成用シートにレジストパターンを印刷してレジストシートを準備し、
    前記レジストパターンが印刷された焼成用シートからなるレジストシートを前記レジストパターンが前記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、
    前記セラミックグリーンシートとともに前記レジストシートを焼成することにより前記焼成用シートを焼失させ、
    前記焼成用シート上のレジストが前記電極間配線を跨ぐようにレジストを転写する、請求項5に記載のセラミック基板の製造方法。
    A resist sheet is prepared by printing a resist pattern on a baking sheet made of a material that burns out at the baking temperature of the ceramic green sheet,
    A resist sheet made of a baking sheet on which the resist pattern is printed is disposed and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet,
    The firing sheet is burned out by firing the resist sheet together with the ceramic green sheet,
    The method for producing a ceramic substrate according to claim 5, wherein the resist is transferred so that the resist on the firing sheet straddles the inter-electrode wiring.
  8. 前記セラミックグリーンシートへの圧着後に剥離可能な剥離用シートにレジストパターンを印刷してレジストシートを準備し、
    前記レジストパターンが印刷された剥離用シートからなるレジストシートを前記レジストパターンが前記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、
    前記剥離用シートを剥離して、
    前記剥離用シート上のレジストが前記電極間配線を跨ぐようにレジストを転写する、請求項5に記載のセラミック基板の製造方法。
    A resist pattern is prepared by printing a resist pattern on a peeling sheet that can be peeled off after pressure bonding to the ceramic green sheet,
    A resist sheet made of a peeling sheet on which the resist pattern is printed is arranged and pressure-bonded so that the resist pattern overlaps an electronic component mounting surface of the ceramic green sheet,
    Peel off the release sheet,
    The method for producing a ceramic substrate according to claim 5, wherein the resist is transferred so that the resist on the peeling sheet straddles the inter-electrode wiring.
  9. 前記電極間配線の厚さが5μm以上、30μm以下である請求項5~8のいずれかに記載のセラミック基板の製造方法。 The method for manufacturing a ceramic substrate according to any one of claims 5 to 8, wherein a thickness of the interelectrode wiring is 5 袖 m or more and 30 袖 m or less.
  10. 電子部品実装面に電極が設けられたセラミックグリーンシートを準備する工程と、
    表面にレジストパターンが設けられたレジストシートを準備する工程と、
    前記レジストシートを前記レジストパターンが前記セラミックグリーンシートの電子部品実装面と重なるように配置して圧着し、前記レジストシートのレジストが前記電極を跨ぐようにレジストを転写する工程と、を有することを特徴とするセラミック基板の製造方法。
    Preparing a ceramic green sheet provided with electrodes on the electronic component mounting surface;
    Preparing a resist sheet provided with a resist pattern on the surface;
    Placing the resist sheet so that the resist pattern overlaps the electronic component mounting surface of the ceramic green sheet, and then pressing the resist sheet, and transferring the resist so that the resist of the resist sheet straddles the electrodes. A method for producing a ceramic substrate.
PCT/JP2017/038264 2016-11-11 2017-10-24 Ceramic substrate and method for manufacturing ceramic substrate WO2018088191A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018550115A JP6743903B2 (en) 2016-11-11 2017-10-24 Ceramic substrate and method of manufacturing ceramic substrate
CN201780069401.4A CN109923950B (en) 2016-11-11 2017-10-24 Ceramic substrate and method for manufacturing ceramic substrate
US16/394,459 US10999927B2 (en) 2016-11-11 2019-04-25 Ceramic substrate and method for manufacturing ceramic substrate
US17/220,533 US20210227690A1 (en) 2016-11-11 2021-04-01 Ceramic substrate and method for manufacturing ceramic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220913 2016-11-11
JP2016220913 2016-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/394,459 Continuation US10999927B2 (en) 2016-11-11 2019-04-25 Ceramic substrate and method for manufacturing ceramic substrate

Publications (1)

Publication Number Publication Date
WO2018088191A1 true WO2018088191A1 (en) 2018-05-17

Family

ID=62109424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038264 WO2018088191A1 (en) 2016-11-11 2017-10-24 Ceramic substrate and method for manufacturing ceramic substrate

Country Status (4)

Country Link
US (2) US10999927B2 (en)
JP (1) JP6743903B2 (en)
CN (1) CN109923950B (en)
WO (1) WO2018088191A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275836A (en) * 1992-03-26 1993-10-22 Matsushita Electric Works Ltd Wiring circuit board
JPH09223870A (en) * 1996-02-19 1997-08-26 Hitachi Ltd Manufacture of ceramic substrate
JP2001320168A (en) * 2000-03-02 2001-11-16 Murata Mfg Co Ltd Wiring board and its manufacturing method, and electronic device using it
JP2003174261A (en) * 2001-12-05 2003-06-20 Murata Mfg Co Ltd Ceramic multi-layer substrate

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560256A (en) * 1966-10-06 1971-02-02 Western Electric Co Combined thick and thin film circuits
US4164778A (en) * 1976-07-20 1979-08-14 Matsushita Electric Industrial Co., Ltd. Printed circuit board
JPH02122594A (en) 1988-10-31 1990-05-10 Taiyo Yuden Co Ltd Circuit board device
JPH03219605A (en) 1990-01-24 1991-09-27 Murata Mfg Co Ltd Laminated-type inductance element
JPH0437091A (en) * 1990-05-31 1992-02-07 Aisin Seiki Co Ltd Insulating tape for thick film printed circuit
JPH07142849A (en) 1993-11-22 1995-06-02 Casio Comput Co Ltd Wiring board and its manufacture
JP2999357B2 (en) * 1993-12-27 2000-01-17 太陽誘電株式会社 Manufacturing method of multilayer electronic component
WO1996022008A1 (en) * 1995-01-10 1996-07-18 Hitachi, Ltd. Low-emi electronic apparatus, low-emi circuit board, and method of manufacturing the low-emi circuit board
JP2836536B2 (en) * 1995-08-25 1998-12-14 松下電器産業株式会社 Dielectric filter and package mounting the same
JPH09270579A (en) * 1996-03-29 1997-10-14 Kyocera Corp Low-temperature sintered circuit board
US6937480B2 (en) * 2001-05-14 2005-08-30 Fuji Xerox Co., Ltd. Printed wiring board
US7141874B2 (en) * 2003-05-14 2006-11-28 Matsushita Electric Industrial Co., Ltd. Electronic component packaging structure and method for producing the same
US8853001B2 (en) * 2003-11-08 2014-10-07 Stats Chippac, Ltd. Semiconductor device and method of forming pad layout for flipchip semiconductor die
JP2005197422A (en) 2004-01-07 2005-07-21 Renesas Technology Corp Semiconductor device and electronic apparatus
WO2005071744A1 (en) * 2004-01-27 2005-08-04 Murata Manufacturing Co., Ltd. Multilayer electronic part and structure for mounting multilayer electronic part
US7875313B2 (en) * 2007-04-05 2011-01-25 E. I. Du Pont De Nemours And Company Method to form a pattern of functional material on a substrate using a mask material
CN101682983B (en) * 2007-05-18 2012-06-20 凸版印刷株式会社 Wiring substrate, semiconductor package, and electronic device
JP4645635B2 (en) * 2007-11-02 2011-03-09 セイコーエプソン株式会社 Electronic components
WO2013030931A1 (en) * 2011-08-29 2013-03-07 日本碍子株式会社 Laminated sintered ceramic wiring substrate, and semiconductor package containing wiring substrate
GB201305500D0 (en) * 2013-03-26 2013-05-08 Semblant Ltd Coated electrical assembly
JP5835282B2 (en) * 2013-07-04 2015-12-24 株式会社村田製作所 Multilayer wiring board manufacturing method, probe card manufacturing method, multilayer wiring board and probe card
JP6223909B2 (en) * 2013-07-11 2017-11-01 新光電気工業株式会社 Wiring board and manufacturing method thereof
KR102122934B1 (en) * 2013-07-22 2020-06-15 삼성전기주식회사 Multi-layered ceramic capacitor and board for mounting the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275836A (en) * 1992-03-26 1993-10-22 Matsushita Electric Works Ltd Wiring circuit board
JPH09223870A (en) * 1996-02-19 1997-08-26 Hitachi Ltd Manufacture of ceramic substrate
JP2001320168A (en) * 2000-03-02 2001-11-16 Murata Mfg Co Ltd Wiring board and its manufacturing method, and electronic device using it
JP2003174261A (en) * 2001-12-05 2003-06-20 Murata Mfg Co Ltd Ceramic multi-layer substrate

Also Published As

Publication number Publication date
JP6743903B2 (en) 2020-08-19
US20210227690A1 (en) 2021-07-22
CN109923950A (en) 2019-06-21
US10999927B2 (en) 2021-05-04
CN109923950B (en) 2021-09-21
JPWO2018088191A1 (en) 2019-09-26
US20190254162A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP4111239B2 (en) Composite ceramic substrate
JPH04263486A (en) Sintered conductor wiring board and manufacture thereof
JP6502205B2 (en) Multilayer wiring board and method of manufacturing the same
JPWO2006033402A1 (en) Manufacturing method of ceramic electronic components
JP4158798B2 (en) Composite ceramic substrate
WO2018088191A1 (en) Ceramic substrate and method for manufacturing ceramic substrate
TW507484B (en) Method of manufacturing multi-layer ceramic circuit board and conductive paste used for the same
JP2007305886A (en) Multipiece substrate
JP2004259995A (en) Circuit board mounted with electronic component and manufacturing method thereof
JP4310458B2 (en) Electronic component manufacturing method and electronic component
JP4663706B2 (en) Manufacturing method of electronic parts
JPH0567864A (en) Ceramic substrate and metallizing method thereof
JP2001015930A (en) Multilayer printed wiring board and manufacture thereof
JP3493358B2 (en) Ceramic substrate and metallizing method thereof
JP2005072558A (en) Ceramic substrate and its manufacturing method
JP5166890B2 (en) Wiring board and manufacturing method thereof
JPH02239697A (en) Manufacture of circuit board
JP3872440B2 (en) Manufacturing method of glass ceramic circuit board
JP2002171064A (en) Manufacturing method for multi-layered wiring board
JP2008016572A (en) Wiring substrate, and method for manufacturing the same
JP2012019152A (en) Manufacturing method of ceramic multilayer substrate and quartz glass plate for manufacturing method of ceramic multilayer substrate
JPH03112606A (en) Manufacture of ceramic multilayer interconnection board
JP2003273521A (en) Method for manufacturing ceramic multilayer substrate
JPH11284334A (en) Method for filling through hole with metallic paste in ceramic green sheet
JP2003224362A (en) Manufacturing method of ceramic multilayer substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869294

Country of ref document: EP

Kind code of ref document: A1